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In this paper, we focus on massive Einstein-dilaton gravity including the coupling of dilaton scalar field
to massive graviton terms, and then derive static and spherically symmetric solutions of charged dilatonic
black holes in four dimensional spacetime. We find that the dilatonic black hole could possess different
horizon structures for some suitably parameters. Then, we also investigate the thermodynamic properties of

charged dilatonic black holes where f(r) approaches +oo and —oo, respectively.
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I. INTRODUCTION

Despite Einstein’s general relativity (GR) successfully
explaining many observations, alternative theories are being
sought due to the cosmological constant problem [ 1], and the
origin of acceleration of our Universe based on the supernova
data [2,3] and cosmic microwave background (CMB)
radiation [4,5]. An alternative theory to GR is dilaton gravity,
which arises from the low-energy limit of string theory. In
this theory, Einstein’s gravity is reinstated alongside a scalar
dilaton field through nonminimal coupling with other fields
such as axion and gauge fields [6]. The dilaton field is
essential in string theory when coupled with gravity and other
gauge fields. Many attempts have been made to investigate
this theory. For instance, Refs. [7—13] found that the dilaton
field alters the causal structure of black holes, leading to
curvature singularities at finite radii. The dilaton potential
can be seen as a generalization of the cosmological constant
and can also modify the asymptotic behavior of the solutions.
References [14,15] investigated black hole solutions in (A)
dS spacetimes by combining three Liouville-type dilaton
potentials. Additionally, scalar-tensor generalizations of GR
have been investigated, incorporating various curvature
corrections to the standard Einstein-Hilbert Lagrangian
coupled with the dilaton scalar field [16-18]. A specific
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model, Einstein-dilaton-Gauss-Bonnet (EdGB) gravity, was
extensively studied in Refs. [19,20]. It was found that the
scalar dilaton acts as secondary hair, with its charge
expressed in terms of the black hole mass. Later, EdGB
gravity was used to study black holes in various dimensions
[21-23], rotating black holes [24,25], wormholes [26], and
rapidly rotating neutron stars [27].

From the perspective of modern particle physics [28,29],
the gravity field is described by a unique theory involving a
spin-2 graviton. Massive gravity is a straightforward modi-
fication achieved by giving mass to the graviton. Dating back
to 1939, Fierz and Pauli [30] formulated a linear theory of
massive gravity. However, this theory consistently faces the
Boulware-Deser (BD) ghost issue at the nonlinear level
[31,32]. Notice that the authors [33] of eliminated the BD
ghost by introducing higher-order interaction terms into the
Lagrangian. Subsequently, the ghost-free massive theory
known as de Rham-Gabadadze-Tolley (dRGT) massive
gravity was developed and discussed in Refs. [34,35]. In
dRGT massive gravity, (charged) black hole solutions and
their thermodynamics in asymptotically AdS spacetime were
investigated [36—44]. It was found that the coefficients in the
potential associated with the graviton mass play a role similar
to that of charge in thermodynamic phase space. Other black
hole solutions were also studied in massive gravity [45-53].
Meanwhile, some charged dilatonic black hole solutions
have been discovered [54-57]. Recently, quasidilaton mas-
sive gravity, a scalar extension of dRGT massive gravity with
a shift symmetry, has also been studied [58—62]. Building
upon these studies, we aim to extend our investigation by
considering the nonminimal coupling of the dilaton field to

© 2024 American Physical Society
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the graviton, and derive analytical solutions for charged
dilatonic black holes in massive dilaton gravity.

The work is organized as follows. In Sec. II, we will
present the static and spherically symmetric charged black
hole solutions in four-dimensional massive Einstein-dilaton
gravity and investigate the solution structures of charged
dilatonic black holes. In Sec. III, we will discuss the
thermodynamics of theses charged dilatonic black holes
in dilaton-massive gravity. Finally, we close the work with
discussions and conclusions in Sec. IV.

II. SOLUTIONS OF CHARGED DILATONIC
BLACK HOLES

The action for massive gravity with a nonminimal
coupling of dilaton field ¢ in four dimensional spacetime
is given by

1
I = Ton d*x\/=g [R —2(Vp)* — e F, F*
V3
4
S et )| (1)
i=1

where ¢ = ¢(r) is the dilaton scalar field. The last term in
the action denotes the general form of nonminimal coupling
between the scalar field and the massive graviton with
coupling constants ;. Here m, is the mass of graviton, and
¢; are the number of dimensionless coupling coefficients.
Moreover, U; are symmetric polynomials of the eigenval-
ues of the 4 x 4 matrix K*, = \/¢**h,, in which A is a fixed
rank-2 symmetric tensor, satisfying the following recursion
relation [34]

>~

K*,,

U, = [ ] = A%y

U, = [K? - [K?],

Us = [K]’ = 3[K][K?] + 2[K°],

Uy = [K]* = 6[K?][K]* + 8[K°][K] + 3[K*] = 6[K"]. (2)

Varying the action with respect to the field variables g,, and
@, the equations of motion are obtained as

1 1
Gy =Ry — ERgﬂ” = 2e7 {FMF V- Zg/wF anm}

+ 2au(pau(p - (v(p)zg/w + m(z))(mn (3)
Vi =~ [2ae2wer, Fr 4 md 4 %iyy 4
¢ == |2 - +mo;£ il (4)

V, (2w i) = 0, (5)

where

61‘ = Cieai(pv (6)

¢ ¢
X :El(ulgmz _K;w) +?2(u29/w _ZulKﬂl/ +2Kl%”)
¢
5 s = U Ky 6 G, 6K

C
+34 (Usgu =AU K, + 12Uy K2, = 24U, K3, +24K%,).
(7)

Now we introduce the static and spherical symmetry
metric ansatz

2
ds> = —f(r)dt* + dar. + r2R(r)?dQ?, (8)
f(r)
in which f(r) and R(r) are functions of r and dQ? =
d6* + sin? Od¢? is the line element for the two dimensional
spherical subspace with the constant curvature. The fiducial
metric 4, in the action (1) serves as a Lagrange multiplier
to eliminate the BD ghost [36]. Choosing an appropriate
form simplifies the calculation. Reference [36] noted that,
unlike the dynamical physical metric g,,, the reference
metric h,, is typically fixed and assumed to be non-
dynamical in the massive theory. In this work, we will
follow [39,40] by choosing the fiducial metric to be

h,, = diag(0,0, ¢}, c}sin* 6). 9)

From the ansatz (9), the interaction potential in Eq. (2)
changes into

_2C0
R’

2
B 2c;

U 2R

2

From integrating the Maxwell equation (5), the electro-
magnetic field tensor can be given

QeZa(p
Ftr:W’ (11)

where Q is an integration constant related to the electric
charge of the black hole. Then, y#, from Eq. (7) becomes

co(cirRe™? + cocre™?)
r2R2 ’

(12)

and the corresponding components of the equation of
motion (3) can be simplified to

064007-2



CHARGED DILATONIC BLACK HOLES IN DILATON-MASSIVE ... PHYS. REV. D 110, 064007 (2024)

_ =1+ rRf'(R+ rR') + f[R* 4+ r*R”? + 2rR(3R' + rR")]

Gll 2R2
QZeZa(/;

Z—f§0/2+m%)(ll—W, (13)

—1+rRf'(R+rR") + f(R + rR')? Q?e?
G* = R =S+ mixts == (14)

1
G =GY = 3R RQ2f +rf )R + RQ2f" +rf") +2rfR"]
Q2€2a¢

= —f¢” + miy’s +W' (15)

|
Here the prime ' denotes differentiation with respect to the  black hole solutions [41,42] in the Maxwell-dilaton gravity.

radial coordinate r. By solving Eq. (16), we obtain the dilaton field as
Based on Egs. (12)—(14), we obtain
2R (r) + rR(N@ (> + R'(N] = 0. (16) o) =——L (), (18)
1+p 1+ br
We assume that the dilaton field can be expressed as
R(r) = ePo(r) (17) where a and b are integration constants, and we set a = 1
’ and b = 0.
where f is a constant. In fact, the similar assumption (17) Considering the scalar field equation (4) and substitute

has been extensively used to look for the charged dilaton  the metric ansatz (8), the scalar field equation becomes
|

262(1q)(r) Q2(Z

d
2 PR(r + rR(r)coe®? M mda ey + ZZ [FR(r)2f(r)¢'(r)] = 0. (19)

c(z)e“Z’/’(’)moazcz -

According to Eq. (19), along with the assumption R(r) (17) and the dilaton field ¢(r) (18), we can solve for f(r) as

5_202+ap) 14262 —pay p2p-ay)
Q%a(l+ p*)2r 7 comd(1 + ) ciar 7 cdm3 (1 + p2)*cropr 1+

B(1 +2ap - §*) 282+ = pay) 28(1+p° = pay)

where m is an integration constant related to the mass of the black hole.
On the other hand, we further consider the G'| component of the gravitational field equation, Eq. (13) can be expressed as

29002 4 PROPVIAS(NR(Y = 1 = Ges#mics] + PRIV + () + A1 (7))
+ PR(r)*{rf' (r)R'(r) + 2f(r) 3R (r) + rR"(r)] — coe®?"Ime,} = 0. (21)

f(r)= T

(20)

Substituting Eq. (20) into Eq. (21), the following parameter constraints can be obtained

1 CoCq
—a b —2a. S TR, 2
f=a o= a, =2 a=mo, |5 T comic (22)

It should be noted that for a real @, it is required that micoc; >0 or mjcoc; < —1, thereby excluding the
range —1 < m%cocl < 0.
Through (20) and (22), we can obtain the final solution as

4 4
f(l”) — _2mr_%_()+953m(2)<‘1 _|_ Q2(2 + 3C0mgcl)r ’ 6+9L‘0’”6f1
2(1 4 comie;)

2¢q m%e]

2,2 2 2
(2+3c0m2cl)r2+3com3cl + C0m0(2+3COmOC1) 2
0

2(1 + comger) (2 + comyer)”

_l’_

(23)

N[ =

Our results reduce to the Schwarzschild case when ¢; = ¢, = Q =0, and reduce to the Reissner-Nordstrom case
when ¢y = ¢, =0.
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c1=-3.5, Q=0.1, m=3

Ccp=-2.75, Q=1, m=0.5
f(r)

b

of

1f
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-1t — =715
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(a) (b)
FIG. 1. The function f(r) versus the radius r for different values of ¢; and c,.

In order to comprehend the behavior of the metric function deeply, we would like to give graphical dependence of the
function f(r), and we set mg = ¢y = 1 for simplify in following discussions. Then, Eq. (23) becomes

4(1+c

(14+¢y)
_za QX2+ 3¢)r T 1 20 (243¢1)%c,

r) = =2mr 21 + + = (24 3c¢)rFa 4 . 24
fr) 2(1 4+ ¢y) 2 ) 2(14¢)(2+¢)) (24)

Evidently, the parameter ¢, affects the asymptotic behavior of f(r). Whereas, —1 < ¢; < 0 is excluded.

Now, we calculate the Ricci and Kretschmann scalars to check the spacetime singularities
2 —rR[4f'(R + rR') + rRf"] — 2f[R* + r’R? 4+ 2rR(3R’ + rR")]
R = 5 , (25)
r“R
2R f2(R+ rR2 +4(F(R+ rRN? — )2 + FR* ("2 2rP2R%*[AfR' + (R + rR’) + 2rfR"*)?
g, 2R R R AR 4R =12 4 PR 2PRUTR (R R) 2R
"R "R
|

where function R has been shown in Eq. (17). One can find  and event horizon when ¢, = —2.75, Q = 1, m = 0.5, and

that both the Ricci and Kretschmann scalars remain non-
singular at the horizons, indicating that these points are
merely coordinate singularities, typical for black holes.
Considering the leading terms of asymptotical behaviors of
metric at the origin, we obtain

4

lim R ~ r 30, ~ 3 (27)

r—0

i R R e
For ¢; < —1 or ¢; > 0, the Ricci and Kretschmann scalars
diverge at the origin » =0 but finite for » > 0. This
suggests that the origin » = 0 is an essential and physical
singularity in the spacetime.

In order to study the asymptotic behavior of the
solutions, we expand the metric function f(r) for r - oo
limit. The figures for metric function f(r) versus radius r
are plotted in Fig. 1. If taking ¢; < —1 or ¢; > 0, we have

2¢
(2 4 3,7, (28)

N =

lim f(r) =

In case of ¢; > 0, the function f(r) approaches +oo as
r — oo0. As shown in Fig. 1(a), there are the inner horizon

¢y = 1. A naked singularity may appear with the increasing
of ¢;.

In case of ¢; < —1, f(r) approaches —co as r — oo.
Figure 1(b) shows a complicated black hole spacetime with
¢y =-3.5,0=0.1,m =3, and ¢, = 1, where three hori-
zons emerge: the inner and outer event horizons, and the
cosmological horizon. As ¢, increases further to a certain
value, the inner and outer event horizons coincide. As ¢,
decreases further to a certain value, an extremal black hole
known as the Nariai black hole may form, exhibiting a
coincidence of the event and cosmological horizons. This
indicates that, with the nonminimal coupling to the dilaton
field, ¢, plays a crucial role in the behavior of the solu-

tion f(r).

III. THERMODYNAMICS OF CHARGED
DILATONIC BLACK HOLES

The parameter ¢; determines the asymptotic behavior of
f(r), as concluded in the previous section. For ¢; > 0, f(r)
approaches +oo. And for ¢; < —1, f(r) approaches —co.
Now we plan to investigate the thermodynamics of theses
charged dilatonic black holes in dilaton-massive gravity.
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A. Black holes with f(r) > + o

The black hole mass can be expressed in terms of the
mass parameter m as mentioned before. Considering that
the asymptotic behavior of the metric function (24) is
unusual, we will use the Brown and York quasilocal
formalism to obtain the quasilocal mass M [63,64]. For
the metric [Eq. (2.7) in Ref. [65] or Eq. (3.10) in Ref. [66]]

dp?
Y(p)?

ds? = —X(p)2di® + + p(d6P + sin2 0dg?),  (29)

provided that the matter field does not contain derivatives
of the metric, we can get the quasilocal black hole mass M
by using the following relation [Eq. (2.8) in Ref. [65] or
Eq. (3.11) in Ref. [66]]

M(p) = pX(p)[Yo(p) = Y(p)l, (30)

with a background metric function Y, (p) which establishes
the zero of the mass, and taking the limit p — oo

4(1+cq)

Q2<2 + 3C1)l"_ 293¢
2(1 + C1>

fo(r) =

1 2
t3 (24 3¢,)r7 +

M = lim M(p). (31)

p—00

Now, we write the metric (8) in the form of Eq. (29) by
considering the transformation p = rR(r). Thus, one can
show that

, (1452

dr RO dp?. (32)
In our case, we find
)2
XGP =100, YR = T () (33)

with r = r(p). Substituting these quantities into Eq. (30),
we obtain

R(r)?

3 VORME=F0) (34

in which

(2 + 301)202
2(1 + Cl)(2 + Cl) ’

(35)

where f(r) is the metric function f(r) evaluated for the value m = 0 of the integration constant. Now, Eq. (34) can be

rewritten as

2 2 2+c _2tep 2 —
M = e e {{ [—Zmr T + fo(’")]fo(r)} + 2mr

2+3C1

2+c

ﬁﬁ—muﬁ

for) | 8

2+4c
2+42¢ ra 1| 2mr ¥ 1
_— - 3¢ 1 —
2+ 3¢ g folr) {1+ 2

which leads to the black hole mass

242
M = limM = lim = cl{m

r—00 r—o0 2 —|—3C1

_Zi2 _2te1q3
_zmr 2+3¢ _2mr 243¢;

oO|l—
Jo(r)

fol(r)

) + 2mr T fo(r)}. (36)

m2 r_;:;;}l r_;:;;’ll 2
L L O] L IS 3
2 lfo(r)] lfo(r)] } 7

2+c
2+3¢y

r

Note that f(r) approaches +oo as r — oo, which requires ¢; > 0. Obviously, it is shown that lim,._, ., {T(r)} and its higher

powers are equal to zero. As a result, we have

Zm(l =+ C])
=—. 38
2 + 3C1 ( )
Thus, according to the definition of horizon f(r),) = 0, the mass of charged dilatonic black hole is given by
1y 4
1|0Q? (2+3c))car, ©
M=-|= 1 . 39
3 rh+( +e)rn+ o (39)
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C2=_2-75y Q=1 C1=1, Q=1 C1=6, C2=—2.75

20¢

— =8
— cq1=7

— =6

0.0 " " " 1
0.0 0.5 1.0 1.5 2.0

FIG. 2. The mass M of black hole versus the horizon radius ry,.

The quasilocal mass M as a function of black hole = mass M,;, increases with c¢;, ¢,, Q, according to
radius is plotted in Fig. 2(a) for various values of cy, the case.
Fig. 2(b) for various values of ¢,, and Fig. 2(c) for To develop thermodynamics of charged dilatonic black
various values of Q. In all cases, there exists a  hole, we need to calculate the Hawking temperature of the
minimum mass M,,,, and there are two black holes  black hole geometrically associated with the black hole
with the same mass, distinguished by their sizes (a  horizon. In terms of the surface gravity k corresponding to
smaller one and a larger one). The quasilocal mass M is the null killing vector (%)a at the horizon, the temperature
always positive. It can be observed that the minimum  can be written as

|

14 14
(2+3c) [—QZ + 7 (Vh + e+ ey, M"‘)} r, o

r=ry - 877.'(1 + C]) ’ (40)

7o X _ 1 af(r)
27 4m or

The temperature of the black hole as a function of  on the case. And there exists a minimum radius r,,;, where
radius is depicted in Fig. 3(a) for various values of ¢;, in  the temperature is 0.

Fig. 3(b) for various values of ¢,, and in Fig. 3(c) for The entropy of charged dilatonic black hole is given by

various values of Q. In all scenarios, a maximum positive , ]

temperature 7', is observed for the black hole, indicating S = zr2R(ry)? = nrﬂwﬁ) (41)
. c - . h h h :

the existence of two black holes with identical temper-

atures but different sizes (a smaller one and a larger one). References [37—43] have pointed out that the graviton mass

Moreover, T, increases with ¢y, ¢,, and Q, depending  does not significantly affect the form of the entropy, and

cp=-2.75, Q=1 c1=1, Q=1 c1=1, cp=-2.75
T T T
0.20¢ — =3 0.041 G2 0.025¢
0.15} 0.03} o3 0.020}
— =4

©2 0.015}

0.10} 0.02}
0.010f

0.05}

/\ 0.005}
0.00 . . . : . ' Ih 0.000
0 10 20 30 40 50 60 0

(a) (b) (c)

FIG. 3. The temperature 7 versus the horizon radius r;,. (a) The extreme points of each T — r, curves (r.,;, Tax) are (2.92518,
0.157982), (4.12896, 0.0829192), (8.56845, 0.0225279) for ¢; = 3, 2, 1; (b) The extreme points of each T — r;, curves (r.,;, T nay) are
(4.66247, 0.034502), (10.3954, 0.0198907), (20.5486, 0.0130369) for ¢, = —2, —3, —4; (c) The extreme points of each T' — r;, curves
(eris Tmax) are (9.98137, 0.0216182), (8.56845, 0.0225279), (7.95021, 0.0229384) for O =2, 1, 0.
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C2=—2.75, Q=1 C1=1, Q=1 C1=1, C2=—2.75
C C
3000} — =3 — =2 ; — Q=2
2000¢ — =2 5000 — cp=-3 3 — Q=1
1000} J — o= J — =4 i L~ — Q=0
: - v =1 - - - - 1, : - . : - 1,
2 5 012 " - 25 30 7 B 9 1P 11 12"
—1000F — —1000f
[—
—2000f -5000( —2000} —
—3000} ya ~3000} /

(a) (b) ()

FIG. 4. The heat capacity C versus the horizon radius ry,.

contributes only as a correction for the horizon radius.  Then, we find that the thermodynamic quantities satisfy the

Then,the potential of charge is first law of black hole thermodynamics
v_2 (42) dM = TdS + UdQ. (44)
T

' ) ' _ To assess the thermal stability, we compute the heat
It is a matter of calculation to show that the intensive  capacity

parameters 7' and U, conjugate to the black hole entropy

and charge, satisty the following relations: oS 0S/o
conr(%), ().
(6M> T <0M> U (43) e e
)y Q)s which leads to

1 4

3600 %1 2_+lﬂc
47[(1+Cl)[Q2_rh(rh+Clrh+czr2+6+9‘l>j|r~h(+ 3 ])
Co = . »
2r2 = Q*(6 4+ 7cy) + 1y [c1(3 +e)rp+ (24 3¢))err, o+9cl}

One can find that the nonmonotonic nature of temperature allows us to conclude that the heat capacity exhibits
discontinuities as illustrated in Fig. 4, which shows that black holes with relatively smaller horizon radii (ry,, < r, < repi)
are stable thermodynamic systems, while a domain of instability exists for larger radii above the point of discontinuity
(r, > r.,;). In other words, the figures clearly illustrate the stable and unstable regions based on the discontinuities observed
in the heat capacity as a function of the horizon radius.

B. Black holes with f(r) > — oo

When f(r) is for pure dS space, horizons happen at f(r) = 0. The biggest root is the cosmological horizon at r = r,
and the next is the black hole event horizon at r = r. The equations f(r,) =0 and f(r.) = 0 are rearranged to br as
follows [67-69]:

l_»,_L‘

2m(1+¢;) 1 |Q? (24 3c))epry
Sl SN VAR | S| 47
24 3¢ 2 r++( Fers+ 24 ¢ ’ (47)

2m(1+¢,) 1|0 (24 3¢, )eprs &

m (] C1)Crre

M="T"U__ 1= 4 , 48
243¢; 2 rc+( Fegre+ 2+ (48)

from which one can derive
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M =

by eliminating the ¢,, and

4(1+cq) 4(14¢q)
Q% + r2(1+ c)lri™ = [0+ (14 ¢)fre™
4(14cq) 4(1+cy) 9’ (49)
S B4 1
2r,ry N =2l
re—r )2 +c)[Q*—ror(1+c

(24 3c))rery (re™ =7

by eliminating the M.

The surface gravities of black hole horizon and the cosmological horizon are

It 14
(2+3C'1) |:—Q2 + Ty <r+ +c1r+ +C27‘1 6+9L|):|r+3 619¢;

8z(1+ ¢)

7 ke _ 1 of(r)
Y2 4m or r—r,
7 ke _ _19/(r)
T 2r 4w oor |,

(2+3¢)) {—QZ + rc(

1,4
1,4
37 6+9,

rc C]rc C2rc Cl>:|rc

4

14
37619¢;

(52)

87{(1 + Cl)

Considering the connection between the black hole
horizon and the cosmological horizon, we can derive the
effective thermodynamic quantities and corresponding first
law of black hole thermodynamics [70,71]

dM = TodS + UetdQ — PeidV, (53)
where the effective temperature Tz, effective electric
potential Uy, and the effective pressure Py are

denoted as
ff = | 3¢ )
TN Sov (). - (3.5,
oM
Uyt = | — , 55
eff (aQ)SV ( )
() -~ BEB-@E.
eff =~ | 37, == .
W/os (5. 3).— (5. G
From Eq. (49), one know that
2,2 M_ 24,22
M:[Q +rC(1+C1)}x42(J:(-I) [Q +rcx (1+Cl)]’ (57)

2[x7F —x]r,

[

where x = r /r.. Here the thermodynamic volume is that
between the black hole horizon and the cosmological
horizon, namely

V=V.-V,==arR(r.)* —sariR(r,)?
LA
3
4 2 2
=37 C+M”(l X2, (58)
The total entropy can be written as
S =8, + S+ Sex = ariR(ry ) + ariR(r.)> + S
(43— 414l
_ ﬂrz( +_+3<1>[1 +x§‘(l+2+§q) + F(x)). (59)

Here the undefined function F(x) represents the extra
contribution from the correlations of the two horizons.
Then, how to determine the function F(x)?

In general, the temperatures of the black hole horizon
and the cosmological horizon differ, so the globally
effective temperature T cannot be compared to them.
However, in special cases like the lukewarm case, the
temperatures of the two horizons are equal. We conjecture
that in this special case, the effective temperature should
also be the same. Based on this consideration, we can
determine the function F(x).
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Substituting Egs. (57)-(59) into Eq. (54), one can obtain

_% 4(14¢)) 12413¢; 10(14¢;) 6+7c)
T = {rc Ll {Q2 [_4)62“0' (I+c) =470 (1 +c) 277 2+ ¢) + 27792+ ¢1) + x(2 4 3¢y)
14(14¢;) 8+10c) 12+13¢; 6+7c) 2(748¢1)
+x77 2+ 3c1)} [mefl ci(l+cp)+2x70 ¢ (1+¢;) + X (24+3c;+c¢})+x79 (24 3¢+ ¢3)
14(14¢;) 4(1+¢;) 2 2 e
—x3(2+5¢; +3¢%) —x 7 (24 5¢; + 3¢ )} }}/{%rx [x — X T } [—4x2+3“1 (x + x730) (1 4 ¢p)

—4x"TTE (1 4 ¢ ) F(x) + (P - 1)(2 4 301)F'(x)} } (0

substituting Eq. (57) into Eq. (55), one can obtain

4(14¢))
Q X 23— 1:|

Ueff = TR , (61)
[ ]
substituting Eqs. (57)-(59) into Eq. (56), one can obtain
gigc] 2her d(l4ep)
Py = {r ”{ 12(1 + ¢p) HZ +3c; — 47 (1 4 cl)} [QQ + 7202 (1 +¢;) = x5 [Q% + r2(1 + cl)]}
4(14¢q) 2+4c
=2 [x =7 | [+ e)(2 + 3e) = 26750 (1+ )[04 (1 + ¢y
4(14¢q) 4(14cy) 4(1+cy) 4(l+cy)
[1 + x 2P 4 F( )} + [x—x”“l }(2_,_36.1)[ |:x2+'§rl _XZ} (1 +c ) Q2 [xz+3c, — ]H
2+c) 4(1+cq) 2
x (126751 4 ) +32 4 3e)F ()] |} /{48 e =750 P04 ) [ (x4 ) (1)
+ 4X1+2+§Ll( + Cl) ( ) ( +7+3L1 — 1)(2 + 3C1)F/<x):| } (62)
As is well known, in the lukewarm case, we have T, = T'. [72,73], there is
2te. 617¢) 645
rex(1+cp) [—x 24 cp) + 724 ¢1) + x(2 4 3¢;) =X (2 4 3cl>]
Q2 - 8(I+cy) : (63)

2+3c; - 4x2+“1(1 +cy) —|—4x2+*‘1(1 +c¢y) —x770 (24 3¢)

Using this, we can determine the effective temperature of a lukewarm black hole

6+7¢)

12413¢; 10(1+¢) 6+7c
T . 2+3cy
eff = I'c

4(14cy)
{[r%x(l +c1)[ — 4y (I+c)—4x7 (14c¢p)+x7% 24c¢)) +x7 (24 ¢;) +x(2+ 3¢y)

2+c

14(1+cy) 2+c
+ xTMIQ + 3c1)} [—xz“fl (24cy)+ AT (2+c)) +x(243¢)) - 7 2+ 3c1)} ] / [2 + 3¢ — 4xﬁ(1 + )

8+10c

6+7¢ 12+13¢ 6+7¢
1 4x7a (I+c¢)- x2+3‘l (2 + 361)} +ri [2x2+3€1 ci(1+¢p)+ Zfollcl(l +cp)+ xﬁ(Z +3c; + )

2(748¢;) 14(14¢ 4+cp)7 9
+ x5 (243¢c; +¢3) = x3(2+5¢; +3¢?) —x = (2 +5¢; + 3¢ )] }/{Zﬂx[x — X7 ]

X [—4xﬁ (x + x”ﬁTl‘l) (I4+¢) - 4xl+ﬁ(1 +cp)F(x) + (—1 + x2+ﬁ)(2 + 3C1)F/(x):| } (64)

We also note that for the lukewarm black hole, the temperature is

064007-9



ZHANG, PAN, LIU, ZHANG, and ZOU

PHYS. REV. D 110, 064007 (2024)

2+

2+4c 6+7c 2+c
- 2xﬁ(2 +3cy) + xﬁ(4 + 6c1)] }/{8;:(;52% - 1) {_2 -3¢, + 4xﬁ(1 +cp) -

8(l+cy)

¥ L

f*‘l 8(1+cy)
N2+ 3¢)) [2c1 —2x7 c1 —4x*(1 + ¢) + 4x 750 e ( +c)+2x24¢p) -

2(2+¢q) 6+5¢)

2650(2 4 ¢1)

6+7¢y

477 (I+¢p)

(65)

Equating temperatures from Eqs. (64) and (65). When ¢; = —3.5, we obtain the analytic solution to this equation, which is

1 30 1
F(x) = 1 —x17)3|50D 1 —x
(0 = g (1 =B 50D, -
—|—3x17—|—3x17—|—3x+3x17—|—3_0 3xt7
1 216 2 3 1 2 11
—18x172F1<15 375 7)—17x172F1<10,3,10,
4 219 4 5 3 213
— 12X, F X7 ) = 11lxv,F [ —. 2. =
2 1(15315 ) 2 1(0’3’1

odip (122
— 0OX17
15030150

A F 2 7 17
X17 AN AN A
221\3°10°10

353

81 » 2
2F1 Py 5 )
330 30

&>
X7 | ——

23"
189

—) 7

297"
We require D; = 1.6.

In Fig. 5, we depict the total entropy S, effective tem-
perature T as functions of x. It is shown that 7' tends to
zero as x — 1, namely the charged Nariai limit. Although
this result does not agree with that of Bousso and Hawking
[74], it is consistent with the entropy. As is depicted in
Fig. 5(b), the entropy will diverge as x — 1. Besides, one
can see that the entropy is monotonically increasing with

2 9 19

5%, F
+ 7%, 1(3 10°10°

)%(80 — 18xT — 97x7 + 3xT7 4 3x17 + 3% + 3x7 + 3x17 + 3xi7

1
30 15 1 2 3 30
i _5 F Sogea s X7
17) X7, l<2 33 x1>
2

2 29 59
3730730

9

127
15x%,F
> xfy l<636

30 1
’x17> —9)(172F1 — =, —

17 2 47 s (328 .
—3x2F1(%,§,%,x%>—2x%2F1<§,§,§,x%)
s (249 W\ T2 (21328 4
7 4dxv F, | —.—. = . x77 F 7
x7>+ 2 ‘(3’5’5”‘) 3" 1(3 1515 )

30
’xl7):| .

[

the increase of x, while T. first increases and then
decreases. According to the general definition of heat
capacity, C = 24 = T %5, these black holes can be thermo-
dynamically stable only in the region of x with the positive
temperature and positive slope. This is unexpected. It means
that when the black hole horizon and the cosmological
horizon are too far apart (small x) or too close together
(large x), the black hole cannot be thermodynamically stable.

S
Ter 50y
0.5 [
0.4 40 :
0.3 30}
0.2 i
ol
0.1 0 i
0.0 10}
0.1 E
0
-0.2 0.0
(a)
FIG.5. T and total entropy S with respect to x. In (a), T has a maximum at x = 0.107593. In (b), the dashed (blue) curve represents

the sum of the two horizon entropies and the solid (red) curve depicts the result in Eq. (59). We set r. =1 and Q = 0.2.
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IV. CONCLUSIONS AND DISCUSSIONS

Considering the nonminimal coupling between the grav-
iton and dilaton field, we discussed the charged massive
Einstein-dilaton gravity. According to the gravitational,
dilaton, and Maxwell field equations obtained by varying
the action, we derived the static spherically symmetric
solutions of charged dilatonic black holes in four-
dimensional spacetime. It should be noted that for a real
a, it is required that m3cyc; > 0 or mjcyc; < —1, thereby
excluding the range —1 < m(z)coc 1 < 0. Ourresults reduce to
the Schwarzschild case when ¢; = ¢, = Q = 0, and reduce
to the Reissner-Nordstrom case when ¢; = ¢, = 0.

Later, we have analyzed the singularity of the solution,
we give the Ricci and Kretschmann scalars, which suggest
that the horizons of black holes are just singularity of
coordinate as it should be. What is more, both scalars
exhibit the same asymptotic behavior at the origin. When
my = co = 1, the range —1 < ¢; <0 is excluded. For
¢y <=1 or ¢; >0, it can be deduced that there is an
essential point located at the origin, and the metric function
f(r) tends to infinity as r — co. We also show that the
black hole solutions can provide one horizon, two horizons
(the inner and outer event horizons), three horizons (the
inner and outer event horizons, and the cosmological
horizon), extreme (Nariai) and naked singularity black
holes for the suitably fixed parameters. With dilaton field,
the parameter c; affects the behavior of the metric function.

Finally, we analyzed the thermodynamics of black holes
where f(r) approaches +oco and —oo, respectively. In the
f(r) = +oo case, we studied the mass, temperature, and
entropy of these charged dilatonic black holes, and checked
the first law of black hole thermodynamics. The analysis of

the mass suggest that there could exists a minimum of the
mass function of black hole horizon. For the temperature of
these black holes, we found that it has a maximum positive
value T, distinguishing two sizes of black holes (a
smaller one and a larger one) with the same temperature.
Moreover, the maximal points of the temperature function
correspond to the discontinuous points of the heat capacity.
The domain of smaller black hole radii (rp;, < 1), < Fepi)
demonstrates stability, while black holes with relatively
large horizon radii (r;, > r,,;) are unstable. In the f(r) —
—oo case, we have presented the entropy. It is not only the
sum of the entropies of black hole horizon and the
cosmological horizon, but also with an extra term from
the correlation between the two horizons. This idea has
twofold advantages. First, without the additional term in the
total entropy, the effective temperature is not the same as
that of the black hole horizon and the cosmological horizon
in the lukewarm case. Second, the method of effective first
law of thermodynamics lacks physical explanation or
motivation. While taking advantage of the method, we
obtain the corrected entropy of the black hole, which may
make the method more acceptable.
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