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Recently, Cui et al. [Nature (London) 621, 711 (2023)] reported that the jet nozzle of M87* exhibits a
precession with a period of approximately 11 years. This finding strongly suggests that the supermassive
black hole in the core of M87 galaxy is a spinning black hole with a tilted accretion disk. In this paper, our
aim is to utilize these observations to preliminarily constrain the parameters of the black hole by using the
characteristics of the geodesic motion. Firstly, we investigate the properties of the spherical orbits and the
innermost stable spherical orbits with constant radius. The corresponding angular momentum, energy, and
Carter constant for both prograde and retrograde orbits are calculated. We find that, compared to equatorial
circular orbits, these quantities exhibit significant differences for fixed tilt angles. Moreover, the Carter
constant takes positive values for nonvanishing tilt angles. Notably, the presence of misalignment of the
orbit angular momentum and black hole spin leads to a precession effect in these spherical orbits. We then
make use of these spherical orbits to model the warp radius of the tilted accretion disk, which allows us to
determine the corresponding precession period through the motion of massive particles. Further comparing
with the observation of M87*, the relationship between the black hole spin and the warp radius is given,
through which if one of them is tested, the other one will be effectively determined. Additionally, our study
establishes an upper bound on the warp radius of the accretion disk. These findings demonstrate that the
precession of the jet nozzle offers a promising approach for testing the physics of strong gravitational
regions near supermassive black holes.
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I. INTRODUCTION

A few years ago, the Event Horizon Telescope (EHT)
Collaboration released the first event-horizon-scale image
of the supermassive black hole located at the center of the
M87 Galaxy [1]. This remarkable achievement unveiled the
distinctive ring structure, which represents the character-
istic features of the black hole shadow, an extraordinary
phenomenon arising from strong gravitational effects.
Consequently, investigating these shadow patterns provides
us with valuable insights into the properties of super-
massive black holes. By modeling M87* with the Kerr
black hole, the EHT Collaboration demonstrated the
remarkable consistency between the observations of the
black hole shadow and the predictions of general relativity.
Subsequently, the EHT Collaboration also unveiled the

shadow of the supermassive black hole located at the center
of our Milky Way [2]. These breakthrough observations
have sparked significant interest in the study of black hole
shadows, with the objective of constraining the parameters
of these celestial objects [3]. However, due to the precision
required in capturing these images, this study remains a
huge challenge.
On the other hand, the observation of M87* presents a

distinctive opportunity to explore the relationship between
the relativistic jet and the black hole accretion disk. In a
recent study [4], the high-resolution imaging revealed a
ringlike structure with a diameter of approximately 8.4
Schwarzschild radii at a wavelength of 3.5 mm. This
remarkable phenomenon further signifies the connection
between the jet and the accretion flow surrounding M87*.
Very recently, basing on radio observations spanning

22 years, Cui et al. in Ref. [5] reported a remarkable finding
that there is a periodic variation in the position angle of the
jet with a period of approximately 11 years. By extensive
general relativistic magnetohydrodynamics simulation of
the settings closely resembling the M87* system, it was

*Contact author: weishw@lzu.edu.cn
†Contact author: zouyc@hust.edu.cn
‡Contact author: zyp@lzu.edu.cn
§Contact author: liuyx@lzu.edu.cn

PHYSICAL REVIEW D 110, 064006 (2024)

2470-0010=2024=110(6)=064006(11) 064006-1 © 2024 American Physical Society

https://orcid.org/0000-0003-0731-0610
https://orcid.org/0000-0002-4117-4176
https://ror.org/01mkqqe32
https://ror.org/01mkqqe32
https://ror.org/00p991c53
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.064006&domain=pdf&date_stamp=2024-09-03
https://doi.org/10.1038/s41586-023-06479-6
https://doi.org/10.1103/PhysRevD.110.064006
https://doi.org/10.1103/PhysRevD.110.064006
https://doi.org/10.1103/PhysRevD.110.064006
https://doi.org/10.1103/PhysRevD.110.064006


suggested the disk and jet precess in a tilted disk.
Furthermore, this observation can be attributed to the
Lense-Thirring precession resulting from the misalignment
of the orbital angular momentum and the black hole spin.
Consequently, it strongly indicates that the supermassive
black hole in the core of M87 galaxy is a spinning black
hole with a tilted accretion disk deviating from the
equatorial plane. The half-opening angle of the preces-
sion cone is estimated to be 1.25� 0.18 degrees, while
the angular velocity of precession is measured to be
0.56� 0.02 radians per year, leading to a precession period
of 11.24� 0.47 years.
The study of tilted accretion disks has been extensively

explored in previous works [6,7]. It is also related with
quasiperiodic oscillations [8]. For clarity, we provide a
schematic representation of the tilted disk in Fig. 1. The
simulation figure can also be found in Ref. [9]. The figure
clearly illustrates the presence of an angle ψ jet that
quantifies the misalignment between the orbital angular
momentum and the black hole spin. At larger radial
distances, the accretion disk, depicted in color, exhibits
a tilt angle ψ jet. As the radial distance decreases, the
gravitational force of the black hole causes the tilt angle
of the disk to decrease. Upon reaching a characteristic
radius known as the warp radius, the disk is pulled back
into the equatorial plane. Furthermore, as particles exceed
the equatorial innermost stable circular orbit (ISCO), they
shall undergo a rapid fall into the black hole and disappear
behind the event horizon.
For the tilted accretion disks or the motion of a star

orbiting the supermassive black hole, the precession induced
by the Lense-Thirring effects is supposed to be a common
phenomenon that can be traced back to early work. For
example, the possible jet precession and periodicmodulation
of disk luminosity are observed in the Swift J164449.3þ
573451 flare [10]. The x-ray quasiperiodic eruptions of
GSN069 showed an alternative short and long recurring
time, which can also be well explained by the orbital
precession of the star near the supermassive black hole [11].

By making use of the approximation of the geodesic, the
Lense-Thirring precession of the trajectory for a star orbiting
supermassive rotating black hole was considered in
Refs. [12,13]. It is also required to explain precessing radio
jet of OJ287 on a timescale of about 22 yr [14].
In this paper, we aim to present a toy model for quick and

effective estimation of the black hole parameters by
utilizing the precession period, which might provide a
preliminary explanation of the observation and generate
interest for further research. For this purpose, we utilize
geodesic motion, while making the following assumptions.
Firstly, we assume that the motion of the disk particles at
each radial distance can be accurately described by the
spherical orbits with constant radius while deviating
from the equatorial plane [15–21]. This assumption is
well-justified as these orbits tend to be circularized due
to the friction within the disk. Secondly, we assume that
the jet originates near the warp radius and is oriented
perpendicular to the accretion disk. It is important to note
that the warp radius is larger than the radius of the ISCO
and thus, may not necessarily coincide with it. Lastly, as a
third assumption, we consider the precession axis provided
in Ref. [5] as the axis of the black hole spin.
At first, we study the spherical orbits and innermost

stable spherical orbits (ISSOs) through the motion of a test
massive particle in the Kerr black hole background. The
corresponding radius, angular momentum, energy, and the
Carter constant are calculated. Their behaviors with the tilt
angle is also examined in detail. Then by making use of the
equation of motion of the particle, the angular velocity of
the precession, as well as the period, for a spherical orbit are
obtained. Finally, modeling the M87* with the Kerr black
hole, we constrain the black hole parameter and the warp
radius via the observed period of the precession.
The present study is structured as follows. In Sec. II, we

devote our study to the analysis of spherical orbits and
ISSOs. Based on these results, Sec. III focuses on the
calculation of precession for these orbits. In Sec. IV, we
employ the observed period of the precession to constrain
the black hole spin and warp radius. Finally, our results are
summarized and discussed in Sec. V.

II. SPHERICAL ORBITS

Spherical orbits are the orbits with constant radius. If the
trajectory is limited in the equatorial plane, it will be the
conventional circular orbit. Otherwise, it is spherical orbit
which deviates from the equatorial plane. The original
study can be traced back to Wilkins [15] for the extremal
Kerr black hole. The numerically results can be found in
Refs. [16,17]. The parametrization forms of the energy and
angular momentum are given in Refs. [18,19]. It is well
known that, along each spherical orbit, the energy, angular
momentum, and the Carter constant are preserved. More
recently, the numerical results of these constants were
presented in Ref. [21].

FIG. 1. Sketch figure of the tilted accretion disk (pink color), jet
axis (blue color), and black hole spin axis (z axis). Near the ISCO,
the disk is pulled back to the equatorial plane described by
the xy plane.
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Before discussing the precession of the spherical orbits,
in this section, we would like to investigate the radius and
constants of the motion with and without inclination to the
equatorial plane. The potential properties are also wished to
be uncovered.
Let us start with the Kerr black hole. In the Boyer-

Linquist coordinates, the Kerr black hole can be described
by the following line element:

ds2 ¼ −
Δ
ρ2

ðdt − asin2θdϕÞ2 þ ρ2

Δ
dr2 þ ρ2dθ2

þ sin2θ
ρ2

�
adt − ðr2 þ a2Þdϕ�2; ð1Þ

where the metric functions are

ρ2 ¼ r2 þ a2 cos2 θ; ð2Þ

Δ ¼ r2 − 2Mrþ a2: ð3Þ

Solving Δ ¼ 0, it is easy to obtain the radii of the black
hole horizons,

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð4Þ

Obviously, for a black hole with horizon, its spin must
be a=M∈ ð0; 1Þ.
Using the Hamilton-Jacobi method, the geodesics of a

massive particle around the spinning Kerr black hole takes
the following forms:

ρ2
dr
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð5Þ

ρ2
dθ
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
; ð6Þ

ρ2
dϕ
dτ

¼ −
Pθ

sin2θ
þ aPr

Δ
; ð7Þ

ρ2
dt
dτ

¼ −aPθ þ
ðr2 þ a2ÞPr

Δ
; ð8Þ

where τ is the affine parameter along the geodesics, and

Pθ ¼ aE sin2 θ − l; ð9Þ

Pr ¼ Eðr2 þ a2Þ − al; ð10Þ

R ¼ P2
r − Δðr2 þQþ ðaE − lÞ2Þ; ð11Þ

Θ ¼ Qþ ðaE − lÞ2 − a2 cos2 θ −
P2
θ

sin2 θ
: ð12Þ

The symbols E and l represent the energy and angular
momentum per unit mass of the test particle, respectively,
and are associated with the Killing fields ∂t and ∂ϕ. The
Carter constant Q, which corresponds to the Killing-Yano
tensor, is another conserved quantity along each geodesic.
For an orbit confined to the equatorial plane, we have

θ ¼ π
2
and dθ

dτ ¼ 0, resulting in a vanishing Carter constant
Q ¼ 0. Consequently, for the orbits deviating from the
equatorial plane, the Carter constant does not vanish.
However, it remains constant along the trajectory of a
massive particle. Let us now focus on a geodesic in the θ
motion. By examining Eqs. (6) and (12), it is apparent that
the θ motion of the massive particle exhibits symmetry
about θ ¼ π

2
. Therefore, for a bounded motion, the value of

θ must be confined within the range [π
2
− ζ, π

2
þ ζ], where

ζ∈ ½0; π
2
� represents the maximum half-opening angle of the

motion along the θ direction. For convenience, we refer to ζ
as the tilt angle. Considering the particle turns back at this
point, we have dθ

dτ ¼ Θ ¼ 0, which gives

Q ¼ l2tan2ζ þ a2ð1 − E2Þsin2ζ: ð13Þ

For a geodesic with bounded θ motion, the quantities l and
E remain constant. Additionally, if the maximum half-
opening angle ζ is given as a priority, the Carter constant
will also be determined. Subsequently, we can analyze the r
motion of the massive particle. In the following discussion,
we specifically focus on these orbits with constant radius.
On the other hand, according to Eq. (13), it can be observed
that the Carter constant vanishes for the equatorial motion
with ζ ¼ 0, while it takes positive values for these orbits off
the equatorial plane with bounded energy E < 1. Moreover,
negative values of the Carter constant indicate

E >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

a2 cos2 ζ

s
: ð14Þ

Obviously, the energy E > 1.

A. Spherical orbits

Quite recently, these constants along the ISSOs, margin-
ally bound spherical orbits, and the innermost stable polar
orbit were calculated in Ref. [21]. It was also demonstrated
in Ref. [22] that, the precession of these spherical orbits
was obtained from the perspective of a local observer. For
the purpose of calculating the period of the precession for a
distant observer, we aim to numerically obtain the energy,
angular momentum, and Carter constant for a general
spherical orbit, and compare the result with that of
Ref. [21] for uncovering more subdetail of these spherical
orbits and ISSOs. Furthermore, we will examine the
stability of these orbits.
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From Eq. (5), the radial r motion can be expressed as

�
ρ2

dr
dτ

�
2

þ Veff ¼ 0; ð15Þ

where the effective potential reads

Veff ¼ −RðrÞ: ð16Þ

Note thatRðrÞ depends on the Carter constant, which has a
close relation with the tilt angle ζ. Therefore, it is actually
dependent of ζ. The constant radius orbits require

R ¼ R0 ¼ 0; ð17Þ

where the prime symbol denotes the derivative with respect
to r. From above equation, we can determine the energy
and angular momentum corresponding to an orbit with a
given radius r. The explicit form of these quantities is
omitted for brevity. Additionally, the stability of these
orbits is determined by the value of R00. Specifically, a
negative value of R00 corresponds to a stable orbit, while a
positive value indicates an unstable one.
We present the variations of the angular momentum,

energy, and Carter constant as a function of the radius of the
spherical orbits in Fig. 2. Notably, both the angular
momentum and energy exhibit nonmonotonic behaviors,
as illustrated in Figs. 2(a), 2(b), 2(d), and 2(e). Taking the

stability into account, we represent stable spherical orbits
with solid curves and unstable spherical orbits with dashed
curves. It is worth noting that these two types of orbits are
connected by the ISSOs. The unstable spherical orbits
possess a minimum radius, leading the energy and angular
momentum to diverge towards positive infinity. In contrast,
the stable spherical orbits originate from the ISSO and
extend towards radial infinity. It is worth noting that the
energy of the stable spherical orbits is always bounded
below 1. Moreover, as the tilt angle ζ increases, the absolute
value of the angular momentum l decreases, and the energy
decreases for retrograde orbits but increases for prograde
orbits. Notably, as illustrated in Figs. 2(c) and 2(f), the
Carter constant Q always vanishes for ζ ¼ 0, while it takes
positive values for nonzero ζ. In the case of unstable
spherical orbits, Q decreases as the radius increases,
whereas it increases for stable spherical orbits. These
findings provide novel insights into the behavior of the
Carter constant for the spherical orbits.
To illustrate the behaviors of the angular momentum,

energy, and Carter constant as a function of the tilt angle,
we present them in Fig. 3 for the specific case of a=M ¼
0.8 and r=M ¼ 10, where only the stable spherical orbits
exist. From the figure, it is evident that the angular
momentum l=M decreases with increasing tilt angle ζ
for prograde spherical orbits, while it increases for retro-
grade spherical orbits. The opposite trend is observed for
the energy E, where it increases with ζ for prograde orbits
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FIG. 2. Angular momentum, energy, and Carter constant for the spherical orbits with a ¼ 0.8, and ζ ¼ 0, π
4
, and π

3
. Upper row is for the

prograde orbits and lower row is for the retrograde orbits. (a) l=M − r=M. (b) E − r=M. (c)Q=M2 − r=M. (d) l=M − r=M. (e) E − r=M.
(f)Q=M2 − r=M. ζ ¼ 0, π

4
, and π

3
from top to bottom for (a) and (e), and from bottom to top for other figures. Solid and dashed curves are

for the stable and unstable spherical orbits, respectively.
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and decreases for retrograde orbits. Notably, although the
energy and angular momentum exhibit different values at
ζ ¼ 0, they tend to converge to the same values at ζ ¼ π

2
.

The results depicted in Fig. 3(c) demonstrate that the Carter
constant vanishes for both prograde and retrograde spheri-
cal orbits when the tilt angle ζ is zero. Subsequently,Q=M2

exhibits rapid increase for retrograde orbits. Notably, the
Carter constant tends to converge to the same value as ζ
approaches π

2
. A notable characteristic of the retrograde

orbits is the nonmonotonic behavior of the Carter constant
Q=M2. Detailed calculations reveal that it decreases within
the range ζ∈ ð1.48; π

2
Þ, reaching its maximum value of

Q=M2 ¼ 14.30 at ζ ¼ 1.48. Similar behaviors can also be
observed by varying the spin of the black hole.

B. Innermost stable spherical orbits

As demonstrated earlier, the ISSO serves as a connection
between the stable and unstable spherical orbits. In this
subsection, our attention will be directed towards these
special orbits characterized by a nonzero tilt angle ζ.
From the effective potential, the ISSO can be deter-

mined by

R ¼ R0 ¼ R00 ¼ 0: ð18Þ

On the other hand, we can find from Fig. 2 that ISSOs
always locate at the extremal points of each curve of the
spherical orbits. Therefore, we can solve one of the
following equations:

�
dl
dr

�
a;ζ

¼ 0;

�
dE
dr

�
a;ζ

¼ 0;

�
dQ
dr

�
a;ζ

¼ 0; ð19Þ

for the ISSO. Note that these quantities, angular momentum
l, energy E, and Carter constant Q, are related with the
spherical radius r.
By considering various values of the black hole spin, we

present the radius, angular momentum, energy, and Carter
constant in Fig. 4 by numerically solving the conditions
(18). Dashed and solid curves correspond to prograde and

retrograde orbits, respectively. It is evident that the angular
momentum, energy, and Carter constant exhibit similar
behaviors to those observed in the stable spherical orbit
depicted in Fig. 3. From the observations in Fig. 4(a), it is
evident that the radius of the prograde ISSO is consistently
smaller than 6M and increases as the tilt angle ζ increases.
Conversely, for retrograde ISSOs with a nonzero black hole
spin, their radii decrease with the increasing of ζ. This is
exactly consistent with the result of Fig. 5 of Ref. [21].
Since the energy and angular momentum of the ISSOs are
not respectively given, we will not discussed them here.
More importantly, when ζ reaches certain critical value, the
radius of the retrograde ISSO becomes smaller than 6M,
which corresponds to the scenario of a Schwarzschild black
hole. This result has not been observed in Ref. [21] and
provides us with a substructure of the ISSOs. It is natural to
conjecture that this behavior may be linked to the non-
monotonic behavior of the Carter constant, as illustrated in
Fig. 4(d). By taking ζ ¼ π=2 in Fig. 4(d), we find the Carter
constant decreases with the black hole spin. This confirms
the result given in Ref. [21] for the innermost stable polar
orbit. Obviously, this pattern of the radius differs signifi-
cantly from that of the equatorial ISCOs.
On the other hand, the dependency of the orbits is also

worth studying. From Fig. 4 of Ref. [21], one observes that
for different Carter constant corresponding to the tilt angle,
the radius of ISSOs coincides at 6M fora ¼ 0. This indicates
the dependency. However, for a ¼ 0, the black hole is
exactly the Schwarzschild one possessing an ISCO at 6M.
So this is induced by the spherical symmetry of black hole.
From Fig. 4(a), we observe that there may exist a depend-
ency of the ISSOs at certain radius for the retrograde case
with different black hole spin. After a detailed numerical
calculation, we find these dashed curves coincide at
r=M ¼ 6.23, 6.28, and 6.43, respectively. This indicates
that there exists no such dependency for the ISSOs.

III. PRECESSION OF SPHERICAL ORBITS

In the case of equatorial circular orbits, the angular
momentum is aligned parallel to the black hole spin,

(a) (b) (c)

FIG. 3. Angular momentum, energy, and Carter constant as a function of the tilt angle ζ with a=M ¼ 0.8 and r=M ¼ 10. (a) l=M − ζ.
(b) E − ζ. (c) Q=M2 − ζ. The red solid curves and blue dashed curves are for the prograde and retrograde spherical orbits.
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resulting in the orbit being confined to the initial equatorial
plane. However, when the orbits become tilted, an angle is
formed between the directions of the orbital angular
momentum and the black hole spin. This inclination gives
rise to the precession, commonly referred to as Lense-
Thirring precession, causing the orbit plane to deviate from
its initial plane. In this section, our focus will be on
investigating the precession of these spherical orbits.
To provide a clear visualization, we present the θ and ϕ

motions for a=M ¼ 0.9 and r=M ¼ 10 in Fig. 5. In
Fig. 5(a), we set the tilt angle as ζ ¼ π

4
. It is obvious that

the θ motion is confined within finite values, while the ϕ

motion increases boundlessly with the coordinate time t.
This behavior approximates a linear trend with slight
deviations, indicating that the particle maintains a constant
velocity in the ϕ direction. Furthermore, when considering
a larger tilt angle, such as 4π

9
, the motion characteristics are

displayed in Fig. 5(b). The θ motion remains bounded over
time, but with notable difference. It exhibits a steplike
behavior, suggesting that the particle experiences an abrupt
change in its trajectory. The slope of the curve represents
the velocity in the ϕ direction, indicating that the particle
attains higher velocities near the north and south poles
while having lower velocities near the equatorial plane.

(a) (b)

(c) (d)

FIG. 4. Characteristic quantities of the ISSO as a function of the tilted angular ζ. (a) r=M − ζ. (b) l=M − ζ. (c) E − ζ. (d) Q=M2 − ζ.
Black hole spin a=M ¼ −0.98;−0.8;−0.5; 0.5; 0.8; 0.98 for these thick curves from top to bottom in (a), (c), (d), and from bottom to top
in (b). The solid thin curves are for the case with a=M ¼ 0. Dashed and solid curves are for the retrograde and prograde ISSOs.

(a) (b)

FIG. 5. Evolutions of the angular coordinates θ (bottom red curves) and ϕ (top blue curves) with r=M ¼ 10 and a=M ¼ 0.9. (a) ζ ¼ π
4
.

(b) ζ ¼ 4π
9
.
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The precession angular velocity ωt of the spherical orbit
can be calculated with

ωt ¼
Δϕ − 2π

Tθ
; ð20Þ

where Tθ represents the period of the θ motion, while Δϕ
quantifies the difference in angular ϕ over one period of the
θ motion. It is important to note that the ωt defined here is
for the distant observer, as opposed to the local observer
defined in Ref. [22]. To extract the precession information
from the motions depicted in Fig. 5, we count the
coordinate time and the corresponding ϕ when the particle
crosses three successive maximum values of θ, as presented
in Table I. Utilizing this data, we can calculate the
precession angular velocity ωt for each tilted spherical
orbit. For the tilted orbit with ζ ¼ π

4
, we obtain ωt ¼

0.00151 and 0.00151 for the two consecutive periodic
motions in θ. Similarly, for the orbit with ζ ¼ 4π

9
, we find

ωt ¼ 0.00171 and 0.00170. These results also indicate that
the calculation error is well controlled for our calculations.

IV. CONSTRAINS OF M87*

In Ref. [5], Cui et al. reported a notable precession of the
jet axis, with an observed period of approximately 11 years.
This observation provides an opportunity to constrain the
parameters of the black hole as expected. It is important to
note that the sign of the precession angular velocity cannot
be determined definitively. Therefore, in this section, one
needs to consider both the prograde and retrograde cases to
account for the possible scenarios.
In general, the precession of a jet or an accretion disk is

influenced by various factors, including the properties of
the surrounding environment, such as the accretion flow
and the presence of external bodies, which introduce
additional forces or torques. Thus, the precession frequency
being completely decoupled from the influence of the outer
accretion flow and external bodies would constitute an
exceptional case rather than the expected scenario in most
astrophysical systems. However, for a simplified or toy
model, it is beneficial to assume idealized conditions where
the precession frequency is decoupled from the influence of
the outer accretion flow and external bodies, for the sake of
simplicity and initial estimation. Such a model can serve as

a starting point for preliminary analysis and feasibility
assessment, enabling quick and effective estimations before
more detailed and complex simulations or analysis are
feasible.
To match the observable, we define the period of the

precession for the spherical orbit as T ¼ 2π
ωt
, or

T ¼ 2π

ωt

GM⊙

c3

�
M
M⊙

�

≈ 6.394 × 10−3 ×
1

ωt

�
M
M⊙

�
ðyearÞ; ð21Þ

when the unit is restored.
Here, we primarily consider two cases: the jet originating

from the inner and outer parts of the accretion flow,
respectively modeled by the ISSO and spherical stable
orbits. These cases may yield distinct and insightful results.
First, we consider the location of the ISSO as the

characteristic radius of the accretion disk. By varying
the values of the black hole spin a=M and the tilt angle,
we determine the radius, energy, angular momentum, and
the Carter constant of the ISSO. Utilizing Eqs. (5)–(8), we
calculate the trajectory of the particle. Then, the precession
angular velocity ωt and its corresponding period will be
obtained.
Following the above approach, we present the period of

the precession angular velocity in Fig. 6 for the M87* black
hole with a mass of M ¼ 6.5 × 109M⊙ for the retrograde
and prograde orbits, respectively. Examining the ζ − a=M
plane, it becomes evident that the period remains predomi-
nantly below 5 years across most parameter regions for
both retrograde and prograde cases. However, for retro-
grade ISSOs shown in Fig. 6(a), their period can extend to
higher values, reaching up to 20 years when the black hole
spin is extremely small. This behavior holds true regardless
of the specific value of the tilt angle ζ, representing a
universal result. In general, the precession angular velocity
ωt exhibits a proportional relationship with the black hole
spin, thereby explaining this result in a straightforward
manner. For the prograde ISSO case shown in Fig. 6(b), in
order to achieved a long period, the result indicates that the
black hole spin must be small and the tilt angle ζ approach
π=2 corresponding to an accretion disk perpendicular to the
equatorial plane, which is not feasible for M87*. Therefore,
if the ISSO is the characteristic radius, the accretion disk
should be retrograde one with extremely small spin, while
the tilt angle remains to be fixed.
On the other hand, the observations of the shadow and jet

by the EHT suggest that M87* may possess a wide
accretion disk, which indicates that it is inappropriate to
describe the disk by the ISSO. Fortunately, the study of
tilted accretion disks reveals that the ISSO does not
represent the characteristic radius of the whole disk [6,7].
As we move to larger radii, the disk becomes increasingly
tilted. However, as the radial distance decreases, the tilt

TABLE I. Values of t and ϕ when the particle crosses the
maximal θ for these two spherical orbits described in Fig. 5.

θ1max θ2max θ3max

ζ ¼ π
4

t 52.63957 263.35951 474.06870
ϕ 1.64887 8.25074 14.85215

ζ ¼ 4π
9

t 50.73793 253.81609 456.87905
ϕ 1.65344 8.28467 14.91318
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angle of the accretion disk also reduces. Eventually, at the
warp radius, the tilt angle vanishes. Moreover, as particles
in the disk approach the ISSO, they rapidly plunge into the
black hole. During this process, it is natural to think that the
jet originates from the warp radius and is believed to lie
within the range of (6M, 20M). This case is different from
that of Ref. [5], where the jet precession is induced by the
precession of the inner hot inclined torus. Taking this into
consideration, our aim is to investigate the precession
period at different radii of the spherical orbits within the
accretion disk and to present the potential observation
significance.
Based on the observations of M87*, the tilt angle is

determined to be ζ ¼ 1.25° [5]. By varying the black hole
spin and the radius of the spherical orbits that characterize
the accretion disk, we calculate the precession period. The
EHT observation reveals that the period corresponds to
11.24� 0.47 years. Consequently, in Fig. 7, we represent

this observed period in the a=M − r=M plane. The
solid curve corresponds to a period of T ¼ 11.24 years.
Additionally, the blue and red dashed curves represent the
upper and lower bounds of the period, namely T ¼ 10.77
and 11.71 years, respectively.
Upon examining the figures, it becomes evident that, for

each fixed period, the absolute value of the black hole
spin increases with the warp radius. Conversely, for a fixed
warp radius, the period decreases as the black hole spin
increases. Additionally, for a given black hole spin, the
period of the precession increases with the warp radius. Our
primary aim is to constrain the black hole spin via the
observed precession period. However, the obtained results
do not appear to be optimistic. For instance, considering a
warp radius of r ¼ 6M, the black hole spin a=M can be
reduced to 0.0604 and 0.0641 for the retrograde and
prograde cases, respectively, which is quite close to the
case of a nonspinning black hole.

(a) (b)

FIG. 6. The period of the precession angular velocity T (in unit of year) for the ISSOs in the ζ − a=M plane. (a) Retrograde ISSO case.
(b) Prograde ISSO cases. The period remains predominantly below 5 years across most parameter regions for both retrograde and
prograde cases. However, a long period can be reached at extremely small spins for retrograde case, and small spin and large tilt angle ζ
for prograde case.

(a) (b)

FIG. 7. Constrains of the black hole spin and warp radius of the accretion disk with the precessing period of the jet nozzle of M87*.
The tilt angle ζ ¼ 1.25°. The solid curve corresponds the period T ¼ 11.24 years. The blue and red dashed curves are for T ¼ 10.77 and
11.71 years. (a) Retrograde case. (b) Prograde case.
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However, an unexpected result emerges at large warp
radii. It does not extend to infinity but instead exhibits an
upper bound. For instance, in the case of prograde or
retrograde tilted accretion disks, we can determine the
maximum warp radius,

rmax ¼ 14M; 16M; ð22Þ

respectively. Although our model is simplistic and these
values should be refined through magnetohydrodynamic
simulations where the factors such as the viscosity of the
accretion flow are considered, it qualitatively demonstrates
the existence of a potential difference between prograde
and retrograde scenarios, which may lead to observable
effects in the near future. As a result, by utilizing the
observed precession period, we can probe the maximum
warp radius for the tilted accretion disk. Furthermore, if the
observed warp radius aligns within a range of a 2M
difference, it becomes feasible to distinguish whether the
accretion disk is prograde or retrograde. Consequently, this
result holds significant value and warrants further testing
through astronomical observations.
On the other hand, we observe that the constraint

imposed by the observation becomes tighter for smaller
warp radii and lower black hole spins, while it becomes
looser for highly spinning black holes and larger warp radii.
Despite not obtaining a stringent constraint on the black
hole spin, our findings in Fig. 7 reveal the existence of a
constrained region, marked in green and yellow colors,
within the parameter space. This strongly indicates that if
the warp radius is determined through other astronomical
observations, we can subsequently determine the black hole
spin. Conversely, the warp radius can also be tested based
on the black hole spin. In order to provide convenience for
future applications, we provide a high-precision fitting
formula that relates the dimensionless black hole spin to
the warp radius corresponding to a precession period of
T ¼ 11.24 years,

a=M ¼ −0.005742þ 0.001571ðr=MÞ þ 0.000058ðr=MÞ2
− 0.000341ðr=MÞ3 þ 0.000006ðr=MÞ4; ð23Þ

a=M ¼ 0.450882 − 0.212997ðr=MÞ þ 0.037536ðr=MÞ2
− 0.002674ðr=MÞ3 þ 0.000091ðr=MÞ4; ð24Þ

for retrograde and prograde tilted accretion disks, respec-
tively. These formulas enable us to determine one of the
warp radius or black hole spin by knowing the other. This is
also a valuable outcome of our simplistic model.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we aimed to constrain the parameters of
M87* by using the recent observation of the precessing jet
nozzle [5]. In addition to the shadow, this observation

presents another promising approach for testing the proper-
ties of the supermassive black holes and investigating the
physics within strong gravitational regions.
The presence of a precessing jet axis in M87* suggests

that its accretion disk is not in the equatorial plane but
instead exhibits a tilt angle of approximately 1.25° [5].
Given that the accretion disk can be effectively described
by corresponding spherical orbits, we initiated our inves-
tigation by examining the properties of them. These orbits
are confined within the θ motion. As the spherical orbits
represents a type of geodesic, the radius, angular momen-
tum, energy, and the Carter constant remain constant along
each spherical orbit. Utilizing the equations of motion for
massive particles, we obtained the values for both the
spherical orbits and the ISSOs. Similar to the equatorial
case, the spherical orbits with small radii are found to be
radially unstable, while those with larger radii are stable.
However, a notable distinction is that the Carter constant no
longer vanishes for these spherical orbits but instead
maintains positive values. As expected, the presence of a
tilt angle results in the deviations of the angular momen-
tum, energy, and the Carter constant from those of
equatorial circular orbits. Our findings reveal that as the
tilt angle increases, the angular momentum decreases while
the energy increases for the prograde spherical orbits.
Conversely, this trend is reversed for the retrograde
spherical orbits. Moreover, for both prograde and retro-
grade spherical orbits, the Carter constant exhibits an
increasing behavior from a tilt angle of ζ ¼ 0 and reaches
a maximum near ζ ¼ π

2
. Notably, a subtle feature is

observed, wherein a slight decrease occurs in the vicinity
of ζ ¼ π

2
for the retrograde orbits.

The ISCO represents the last stable orbit of the massive
particles before they rapidly fall towards the black hole. It is
widely accepted as the inner boundary of the accretion disk.
In order to provide a more accurate description of the disk,
we also examined the behavior of the ISSOs when the tilt
angle is nonzero. Our results demonstrate that, for each
fixed black hole spin, the angular momentum, energy, and
the Carter constant exhibit similar trends as the tilt angle
increases. However, the radius of the ISSO exhibits an
intriguing behavior. In the case of the equatorial ISCO, the
radius for either prograde or retrograde motion is always
smaller or larger, respectively, than 6M, which is the value
for a Schwarzschild black hole. However, with an increase
in the tilt angle, the retrograde ISSO reveals a notable
feature: its radius becomes smaller than 6M, indicating a
distinct characteristic of tilted retrograde ISSOs.
Having obtained the characteristic quantities of the

spherical orbits, we proceeded to plot the trajectories for
the massive particles moving along these orbits. Due to the
presence of the tilt angle, the orbital angular momentum
and the black hole spin become misaligned. Consequently,
the particle does not return to its initial location after
completing one loop, but exhibits a discernible deviation.

CONSTRAINING BLACK HOLE PARAMETERS WITH THE … PHYS. REV. D 110, 064006 (2024)

064006-9



For instance, following one complete circle in the θmotion,
the particle’s ϕ angle will experience a small shift.
Exploiting this observation, we defined the precession
angular velocity ωt as a measurement of the variation in
the orbital plane. Consequently, the precession manifests as
a periodic phenomenon with a period denoted as T, which
precisely corresponds to the period observed in the pre-
cessing jet nozzle [5].
Subsequently, we assumed that the jet originates from

the location defined by the ISSO and proceeded to calculate
the precession period for various black hole spins and tilt
angles. The results reveal that, in the majority of the
parameter space, the precession period is below five years.
However, for extremely slowly spinning black holes, an
11 year period can be achieved. Consequently, based on
this pattern, if M87* possesses spin, it must be exceedingly
small. Meanwhile, the accretion disk is retrograde with the
black hole spin.
On the other hand, our study of the tilted accretion disk

reveals that the ISSO may be not the location where the jet
originates. Instead, at larger radii, the disk exhibits a
significant tilt, while with decreasing radius, the degree
of tilt decreases. Remarkably, when the radius exceeds a
certain threshold known as the warp radius, the gravita-
tional forces pull the disk back towards the equatorial
plane. Ultimately, at the equatorial ISCO, the accretion disk
ceases to extend further. Consequently, it is natural to
consider the warp radius as the origin of the jet, which is
estimated to be within the range of 6M to 20M.
Under the assumption mentioned above, we revisited the

precession period by setting ζ ¼ 1.25°. The numerical
results indicate that, with a warp radius at 6M and an
expected period of T ¼ 11.24 years, the possible black
hole spin can be as low as 0.06. At first glance, it may seem
challenging to establish a precise constraint on the black
hole spin. However, this case might change for a large warp
radius. We provide an explicit relationship between the

black hole spin and the warp radius, as illustrated in Fig. 7.
Furthermore, we derived the fitting formulas in (23)
and (24). Therefore, if we can determine the warp radius
through other observations, we can precisely determine the
black hole spin using such precession measurements. It is
worth noting that the reverse approach is also feasible.
On the other hand, while it may be challenging to

constrain the black hole spin precisely, it does impose an
upper bound on the warp radius. In the case of prograde and
retrograde accretion disks, we find upper bounds of r=M ¼
14 and 16, respectively. Notably, the difference between
these bounds can also serve as a potential distinguishing
feature between the prograde and retrograde accretion disks.
In conclusion, while our treatments have notable limi-

tations when considering the complex astrophysical envi-
ronment and accretion disk fluid model, they still yield
insightful results that could spark further interest. For
instance, if the jet originates from the inner regions of
the accretion flow, our results indicate that a retrograde disk
is more feasible and the black hole spin is extremely small.
Conversely, if the jet emanates from the outer regions of the
accretion flow, the warp radius should have an upper
bound, even with a value that needs to be refined by
accounting for realistic large-scale flows, magnetohydro-
dynamics, and radiation effects. Furthermore, it presents an
opportunity to test physics, such as hidden dimensions [23],
in strong gravitational regions proximate to supermassive
black holes.
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