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The Euler-Heisenberg theory sheds light on the quantum electrodynamical vacuum corrections to the
Maxwell-Lorentz theory. As a fundamental assumption to ensure spacetime causality, by examining the
quasinormal modes of a massless neutral scalar field, we investigate the strong cosmic censorship (SCC)
conjecture in the context of Euler-Heisenberg-de-Sitter black holes under the massless scalar perturbation.
With the emergence of Euler-Heisenberg corrections, Euler-Heisenberg-dS black holes exhibit four
horizons and two types of extremal conditions. The first type of extremal conditions, similar to the
Reissner-Nordstrom-de Sitter (RNdS) spacetime, involves the coinciding Cauchy and event horizons,
while the second type involves the innermost and Cauchy horizons coinciding. Through numerical
calculations, we find that SCC is violated not only near the commonly observed first-type extremal
solutions but also in the vicinity of second-type extremal black holes. This marks the first instance of SCC
violation in another region besides the vicinity of first-type extremal black holes within the classical
framework. Additionally, we observe that the validation region of charge ratio shrinks as the reduced Euler-
Heisenberg parameter α=M2 increases, and beyond a critical value of α=M2, all black hole solutions violate
SCC. These findings suggest a greater likelihood of SCC violation with higher reduced Euler-Heisenberg
parameter values. Furthermore, when α=M2 is sufficiently large, not only is the Christodoulou version of
SCC violated but also the C2 version. This marks the first instance of C2 version SCC violation found under
massless scalar field perturbations. Finally, we extend our research to cases where the scalar field
nonminimally couples to electromagnetic invariants and find that, similar to the RNdS case, when the
coupling constant b is sufficiently large, the SCC can also be restored in Euler-Heisenberg-dS black holes.

DOI: 10.1103/PhysRevD.110.064003

I. INTRODUCTION

Predictability is considered a fundamental principle in
classical physics. To ensure the predictability of spacetime,
Penrose proposed the strong cosmic censorship (SCC)
conjecture [1]. This conjecture requires that spacetime be
globally hyperbolic, enabling us to predict the evolution of
the Universe by specifying reasonable initial data on a
spacelike hypersurface, also known as a Cauchy hypersur-
face. The establishment of the SCC imposes two key
restrictions on spacetime. Firstly, it demands the absence
of naked singularities, as their presence would severely
disrupt the causal structure of spacetime. This condition is
commonly referred to as the weak cosmic censorship
(WCC) conjecture. Secondly, it requires the absence of
Cauchy horizons or that Cauchy horizons are nonextend-
ible [2,3]. If a theory violates the SCC, the physical
processes described by that theory become unpredictable.
In a recent development, Sorce and Wald proposed a
new gedanken experiment utilizing the Noether charge

method [4]. This experiment showed the validation of
WCCwithin Kerr-Newman black holes under second-order
perturbation approximations. Subsequent discussions
extended to various gravity and black hole models [5–
17], mostly affirming black hole integrity and preventing
the existence of naked singularities in spacetime.
Recent research has focused on different versions of the

SCC, particularly exploring the stability of black hole
Cauchy horizons. Christodoulou proposed a more precise
formulation [18], emphasizing that when the Einstein field
equations satisfy specific physical requirements, the maxi-
mal Cauchy development is nonextendible. Depending on
the extendibility of spacetime at the Cauchy horizon, this
conjecture can be categorized into several versions, with
the strictest being theC0 version, which demands the metric
cannot be continuously extended at the Cauchy horizon.
The C2 version relaxes this condition to C2 nonextendi-
bility. Additionally, the Christodoulou version requires that
weak solutions of the Einstein equations cannot be
extended beyond the Cauchy horizon.
An important research direction for the Christodoulou

version of the SCC is the linear perturbation of matter
fields. In some cases, such as Reissner-Nordstrom (RN)*Contact author: jiatansust@163.com
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and Kerr black holes, this conjecture holds due to the
influence of the blueshift effect [19–22]. However, when
considering asymptotically de Sitter (dS) situations, the
weakening of the blueshift effect may lead to the conjecture
no longer holding, requiring further study to validate its
effectiveness [23]. In dS spacetime, perturbations with
varying spin properties demonstrate quasinormal modes
(QNMs) decaying exponentially quicker outside the event
horizon, prompting a redshift effect to offset the blueshift
effect [24–29].
Research by Cardoso et al. found that for massless scalar

field perturbations in RNdS black holes, the Christodoulou
version of the SCC is violated in the near-extremal region
[30]. Other studies suggest that violations may also occur
with charged scalar fields and Dirac fields [31,32]. Similar
situations have been observed in some modified gravity and
black-hole models [33–50]. Through research on classical
perturbations of non-minimally coupled scalar fields in
Reissner-Nordstrom-de Sitter (RNdS) black holes, it was
found that the conjecture can be restored within certain
parameter ranges [51–53]. Additionally, research by
Hollands et al. [54] indicates that considering semiclassical
quantum fields in spacetime leads to important insights into
the SCC in RNdS black holes, revealing that nonsingular
initial quantum field data (known as Hadamard states)
always lead to the appearance of singular Cauchy horizons,
thereby restoring the effectiveness of the conjecture.
Nonlinear electrodynamics (NLED), a crucial branch of

electromagnetic theory, explores the intricate nonlinear
interactions between electromagnetic fields and charges.
Originating with Mie’s pioneering model of nonlinear
electrodynamics in 1912 [55], and extending to the
illustrious Born-Infeld nonlinear electrodynamics theory
introduced by Born and Infeld in the 1930s [56], this field
has seen continuous advancement. With the emergence of
string theory, Born-Infeld type electrodynamics is recog-
nized as an effective theory within string theory, sparking
a resurgence of interest in nonlinear electrodynamics
[57–60]. Moreover, solutions to the Born-Infeld equations
have garnered considerable attention, as they are inter-
preted as states of D-branes, providing vital insights into
the Universe’s structural framework [61].
The Euler-Heisenberg black hole is a charged black

hole solution within the Einstein-Euler-Heisenberg frame-
work [62], arising from the coupling of nonlinear electro-
dynamics with Einstein gravity. The Euler-Heisenberg
theory [63,64], conceived in 1936, elucidates the quantum
electrodynamical vacuum corrections to the Maxwell-
Lorentz theory. This theory has been firmly established
and is presently undergoing experimental scrutiny to
ascertain the nonlinear electromagnetic effects engen-
dered under critical field or Schwinger field, characterized
by an electric field intensity of 1018 V=m (or magnetic
field of 109 T) [65].

As a fundamental assumption ensuring the causality of
spacetime, a natural question arises: does the Einstein-
Euler-Heisenberg theory satisfy the SCC? Therefore, our
paper aims to investigate this question by considering
perturbations of massless scalar fields in the context of
Euler-Heisenberg-dS (EHdS) black holes and evaluating
the stability of the Cauchy horizon under such perturba-
tions. The subsequent sections of the paper proceed as
follows: Sec. II provides a brief overview of the Einstein-
Euler-Heisenberg theory and the spacetime geometry of the
EHdS black hole, followed by Sec. III, where we analyze
the massless scalar field and assess the implications for the
validity of SCC. Section IV employs detailed numerical
methods to evaluate the QNMs and analyze potential
violations of SCC. Finally, the paper concludes by syn-
thesizing the research findings.

II. EULER-HEISENBERG-DS BLACK HOLES

In this paper, we consider the Einstein-Euler-Heisenberg
theory in which the general relativity with a cosmological
constant is coupled to NLED. The action of the theory is
given by [63,66,67]

S ¼ 1

4π

Z
M

d4x
ffiffiffiffiffiffi
−g

p �
1

4
ðR − 2ΛÞ − LðF ;GÞ

�
; ð1Þ

with

LðF ;GÞ ¼ −F þ α

2
F 2 þ 7α

8
G2; ð2Þ

in which gab is the metric of the spacetime M, R is the
Ricci scalar, Λ is the cosmological constant, and

F ¼ 1

4
FμνFμν and G ¼ 1

4
Fμν

�Fμν ð3Þ

are two electromagnetic invariants with the electromagnetic
strength F ¼ dA and �Fab ¼ ϵabcdFcd=ð2 ffiffiffiffiffiffi−gp Þ its dual.
When α ¼ 0, the theory becomes Maxwell electrodynam-
ics LðF ;GÞ ¼ −F . Here, α is the Euler-Heisenberg
parameter, which regulates the intensity of the NLED
contribution. It is not a free parameter and is given by α ¼
8α20=45m

4
e ≥ 0 in physically relevant contexts, where me is

the electron mass and α0 is the fine structure constant.
By varying the action (1), the field equations can be

obtained, and they are given by

∇aPab ¼ 0;

Gab þ Λgab ¼ 8πTEM
ab ; ð4Þ

with Einstein tensor Gab ¼ Rab − ð1=2ÞRgab and
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Pab ¼ ð1− αF ÞFab − �Fab
7α

4
G;

TEM
ab ¼ 1

4π

�
ð1− αPÞPa

cPbc þ gab

�
P −

3

2
αP2 −

7α

8
O2

��
:

ð5Þ

Here we denoted

P ¼ −
1

4
PabPab and O ¼ −

1

4
Pab

�Pab: ð6Þ

The static and spherically symmetric solution with an
electric charge is given by [62,68]

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2 θdϕ2Þ;

Pμν ¼
Q
r2
δ0½μδ

1
ν�; ð7Þ

with blackening factor

fðrÞ ¼ 1 −
2M
r

þQ2

r2
−
Λr2

3
−
αQ4

20r6
; ð8Þ

where M and Q represent the mass and electric charge of
the black hole, respectively. When α ¼ 0, the black hole
solution reverts to the RNdS solution. Owing to α > 0
Euler-Heisenberg theory, the last term in the blackening
factor enhances the gravitational attraction compared to the

metric function of RNdS black holes, regardless of the sign
of the charge Q.
From the expressionoffðrÞ and considering that theEuler-

Heisenberg parameter α is positive, it is easy to see that as
r → 0, fðrÞ → −∞, and as r → ∞, fðrÞ → −∞. There-
fore, the number of horizons for the Euler-Heisenberg-dS
black hole must be even, and when the number of horizons is
odd, there must be two horizons overlapping.
As our paper mainly discusses the stability of the Cauchy

horizon in dS spacetime, it is necessary for the black hole to
have both cosmological and Cauchy horizons. In other
words, we consider a black hole characterized by four
distinct horizons: the innermost horizon ri, the Cauchy
horizon r−, the event horizon rþ, and the cosmological
horizon rc, satisfying the sequence ri < r− < rþ < rc. The
Penrose diagram of the EHdS black hole is shown in Fig. 1.
The surface gravity associated with each horizon is
determined by

κj ¼
1

2
jf0ðrjÞj; ð9Þ

where j ranges over fi;−;þ; cg. Unlike the RNdS case,
there are two critical conditions for the existence of the
Cauchy horizon at this time. One is to make the event
horizon and the Cauchy horizon coincide by increasing the
black hole charge, which we call the first-type extremal
black hole, as shown on the left side of Fig. 2; the other is to
make the innermost horizon and the Cauchy horizon
coincide by decreasing the charge, which we call the

FIG. 1. The Penrose diagram of the EHdS black hole with three inner horizons, where region I is the physical region located at
rþ < r < rc, regions II and III are the interior regions of the black hole located at r− < r < rþ and ri < r < r− respectively, and region
IV presents the white hole.
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second-type extremal black hole, as shown on the right side
of Fig. 2.
In Fig. 3, we draw the parameter ranges of black hole

solutions with both Cauchy and cosmological horizons in
the α=M2 −Q=M diagram forΛM2 ¼ 0.01, 0.04, and 0.07.
There are two boundaries, with the upper boundary given
by the first-type extremal black hole and the lower boun-
dary given by the second-type extremal black hole. It is
evident from the figure that when α is not zero, such EHdS
solutions not only have a maximum value of charge Qmax
but also have a minimum value of charge Qmin.
Through discussions by Cardoso et al. on RNdS black

holes [30], it is known that the region of violation of the
Christodoulou version of SCC mainly lies near extremal
black holes, corresponding to our first-type extremal black
holes in EHdS solutions. A similar question arises: will the
SCC also be violated when approaching the second-type
extremal black hole? This constitutes the primary focus of
discussion in the subsequent sections.

III. MASSLESS SCALAR FIELD PERTURBATION
AND STRONG COSMIC CENSORSHIP

Next, we consider the minimally coupled massless scalar
field perturbation in EHdS black holes. In this scenario, the
Einstein equations transform into

Gab −
1

2
Rgab ¼ TEM

ab þ TSC
ab ; ð10Þ

where

TSC
ab ¼ 2∇aΨ∇bΨ − gab∇cΨ∇cΨ ð11Þ

represents the energy-momentum tensor of the scalar field.
Furthermore, the equation of motion for the scalar field is
given by

∇a∇aΨ ¼ 0: ð12Þ

Subsequently, we examine the stability of the Cauchy
horizon under the aforementioned perturbations. For the
Christodoulou version of SCC, it demands that our space-
time solution cannot be extended as a weak solution near
the Cauchy horizon. If the gravitational field gμν, electro-
magnetic field Aμ, and scalar field Ψ can be extended as
weak solutions beyond the Cauchy horizon, then for any
smooth and compactly supported test function Φ, it
satisfies [30,46,51,52]

FIG. 2. The blackening factor fðrÞ as a function of radial coordinate r across various parameters in the EHdS black hole.

FIG. 3. The shaded regions in the α=M2 −Q=M diagram indicate the parameter spaces where fourth horizons exist, corresponding to
ΛM2 ¼ 0.01, 0.04, and 0.07.

LU CHEN and JIA TAN PHYS. REV. D 110, 064003 (2024)

064003-4



Z
V
d4x

ffiffiffiffiffiffi
−g

p ðGμν − Λgμν − 8πTEM
μν − TSC

μν ÞΦ ¼ 0: ð13Þ

The conditions outlined above require that each integral
term in the equation is integrable. Considering the first two
terms, given that the Riemann curvature is composed of
Christoffel symbols Γ and their derivatives, we can deduce
that

Z
V
d4x

ffiffiffiffiffiffi
−g

p ðGμν − ΛgμνÞΦ

∼
Z
V
d4x

ffiffiffiffiffiffi
−g

p ð∂ΦÞΓþ
Z
V
d4x

ffiffiffiffiffiffi
−g

p
Γ2Φ: ð14Þ

Hence, ensuring the finiteness of these integrals near the
Cauchy horizon necessitates that Γ belongs to the space of
locally square-integrable functions, i.e., Γ∈L2

loc.
For the electromagnetic field part, to ensure the weak

solution extends beyond theCauchy horizon,we requireTEM
μν

to be integrable near the Cauchy horizon, i.e., TEM
μν ∈L1

loc.
This condition imposes certain constraints on Aμ.
Concerning the scalar field part, we have

Z
V
d4x

ffiffiffiffiffiffi
−g

p
TSC
μνΦ ∼

Z
V
d4x

ffiffiffiffiffiffi
−g

p ð∂ΨÞ2Φ: ð15Þ

The boundedness of this integral leads to the requirement
that the derivative of the scalar field Ψ must be locally
square integrable, signifying Ψ∈H1

loc.
In summary, to extend the weak solution beyond the

Cauchy horizon, we need to ensure that the conditions
Γ∈L2

loc, T
EM
μν ∈L1

loc, and Ψ∈H1
loc are all satisfied. When

considering scalar field perturbations, the extension of the
weak solution beyond the Cauchy horizon requires that all
existing scalar fields fulfill Ψ∈H1

loc.
Moving forward, we delve into the decomposition of the

scalar field under spherical symmetry and time translational
invariance

Ψðt; r; θ;ϕÞ ¼
X
l;m

e−iωtYlmðθ;ϕÞ
ψðrÞ
r

; ð16Þ

where Ylmðθ;ϕÞ denotes the spherical harmonics. Then, we
have

d2ψðrÞ
dr2�

þ ½ω2 − VðrÞ�ψðrÞ ¼ 0 ð17Þ

with the tortoise coordinate

r� ¼
Z

r

r0

dr
fðrÞ ð18Þ

and the effective potential

VðrÞ¼ fðrÞ
r2

�
lðlþ1Þþ2M

r
−
2Q2

r2
−
2Λr2

3
þ3αQ4

10r6

�
: ð19Þ

Here we set rþ < r0 < rc.
The solutions satisfying the boundary conditions

ψ ∼ e−iωr� ; r → rþ ðr� → −∞Þ;
ψ ∼ eiωr� ; r → rc ðr� → ∞Þ ð20Þ

are referred to as QNMs. These boundary conditions dictate
that the scalar field exhibits ingoing waves near the event
horizon and outgoing waves near the cosmological horizon,
conforming to scenarios where the initial values of the
matter field are confined within a finite region between the
event and cosmological horizons [69]. Under these boun-
dary conditions, the behavior of QNMs near the Cauchy
horizon is described by [51,52]

Ψ ∼ ei
ω
κ−

ln jr−r−j ∝ jr − r−jβ; ð21Þ

where

β≡ −
ImðωÞ
κ−

: ð22Þ

For the weak solution to extend beyond the Cauchy
horizon, it requires the local square integrability of the
derivative of the scalar field (i.e., Ψ∈H1

loc), necessitating

β > 1=2: ð23Þ

Typically, the initial values of our matter field are set
within the physical spacetime region, i.e., between rþ and
rc [69]. Under these circumstances, the scalar field must
adhere to specific boundary conditions that ensure only
ingoing waves near the event horizon and outgoing waves
near the cosmological horizon. These conditions are
precisely defined as

ψ ∼ e−iωr� ; r → rþ ðr� → −∞Þ;
ψ ∼ eiωr� ; r → rc ðr� → ∞Þ: ð24Þ

To satisfy these boundary conditions, certain restrictions on
the scalar field frequency ω are necessary. The solution Ψ
obtained under these conditions is known as the QNM, and
the corresponding ω is referred to as the QNM frequency.
We will next explore the relationship between these QNM
frequencies and the validity of the SCC in de Sitter-like
spacetimes.
The asymptotic solution near the Cauchy horizon reveals

that the key aspect for regularity is [51,52]

Ψ ∼ ei
ω
κ−

ln jr−r−j ∝ jr − r−jβ ð25Þ
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with

β≡ −
ImðωÞ
κ−

: ð26Þ

From the preceding discussion, it follows that for the weak
solution of the scalar field to extend beyond the Cauchy
horizon, the derivative of the scalar field must be locally
square integrable, i.e., Ψ∈H1

loc, which implies

β > 1=2: ð27Þ

Therefore, to uphold the SCC under scalar field perturba-
tions, it is necessary for at least one QNM to exist such that
the Cauchy horizon becomes inextendible within the realm
of weak solutions under these perturbations. In other
words, the lowest-lying mode must satisfy

β ≤ 1=2: ð28Þ

Finally, we investigate the C2 version of the SCC, which
requires that the scalar field ΨðrÞ cannot be extended to be
C2 beyond the Cauchy horizon. From Eq. (25), it is clear
that this condition necessitates the lowest-lying QNMs to
satisfy

β ≤ 1: ð29Þ

IV. NUMERICAL METHODS AND RESULTS

A. Numerical methods

Taking into account the boundary conditions (24) for
QNMs, we introduce a new variable yðrÞ as follows:

ψðrÞ ¼ ðxþ 1Þ iω
2κþðx − 1Þ− iω

2κcyðxÞ; ð30Þ

where

r ¼ rc − rþ
2

xþ rc þ rþ
2

: ð31Þ

Under this variable, the field equation (17) becomes a
regular form within ½−1; 1�, and yðxÞ is analytic throughout
the interval. Hence, we can employ the pseudospectral
method [70,71] to solve it. Expanding yðxÞ using nth-order
basis functions CiðxÞ, i.e., yðxÞ ¼ P

n
i¼0 ziCiðxÞ, and

evaluating the regularized equation at nþ 1 grid points
xj, we can transform it into a matrix equation, thereby
converting the QNM frequency ω into the eigenvalues of
this matrix. Then, by solving for the eigenvalues of the
matrix, we can obtain the QNM frequencies.
In addition to the pseudospectral method mentioned

above, we will also employ the direct integration method
[72,73] to validate our numerical results, ensuring compu-
tational accuracy. Furthermore, due to challenges in com-
puting for large angular momenta (large l), we will utilize
the WKB approximation [74] to compute the QNMs in the
large l limit (photosphere mode).
For the direct integration method, given a specific ω, we

can obtain the series solutions of yðxÞ at x ¼ �1 using the
regularized equation. Then, using these solutions as boun-
dary conditions, we can individually compute the solutions
within the intervals ð−1; 0� and [0, 1) using Mathematica.
Finally, to ensure the smoothness of the solutions at x ¼ 0,
we determine acceptable frequencies ω.

B. Numerical results

In Tables I–III, we conducted computations of the lowest-
lying QNMs, characterized by β ¼ −ImðωÞ=κ−, using the
pseudospectral method, direct integration method, and the
WKB approximation in the large l limit, respectively. These
calculations were performed for massless scalar fields in
Euler-Heisenberg-dS black holes, considering different
charge ratios χ ¼ ðQ −QminÞ=ðQmax −QminÞ ¼ 0.1 and
various values of l, while keeping parameters ΛM2 ¼
0.01 and α=M2 fixed. Our numerical analyses affirm the
reliability of these methods in determining the lowest-lying
QNMs in EHdS black holes.
Figures 4 and 5 illustrate the interrelation between the

lowest-lying QNMs’ β and the extremal charge ratio
χ ¼ ðQ −QminÞ=ðQmax −QminÞ, under specific values of
ΛM2 and the Euler-Heisenberg parameter α=M2. For
χ ¼ 1, representing first-type extremal black holes where
the event and Cauchy horizons coincide ðrþ ¼ r−Þ, and
χ ¼ 0, representing second-type extremal black holes
where the innermost and Cauchy horizons coincide
ðri ¼ r−Þ, the plots consistently show that as χ approaches
1, indicative of nearly extremal black holes of the
first type, the corresponding lowest-lying QNMs’ β values
remain consistently below 1=2, thereby violating the
Christodoulou version of the SCC. Moreover, unlike
scenarios involving RNdS black holes or other

TABLE I. Computing the lowest-lying QNMs β ¼ −ImðωÞ=κ− based on various numerical methods for various l
values, with ΛM2 ¼ 0.01, α=M2 ¼ 0.1, and the charge ratio χ ¼ ðQ −QminÞ=ðQmax −QminÞ ¼ 0.9.

l ¼ 0 l ¼ 1 l ¼ 2 l ¼ 10 l ¼ 20

Pseudospectral method 0.418505 0.252573 0.385369 0.384982 0.383254
Direct integration method 0.418545 0.253545 0.386524 0.388546 0.387545
WKB approximation 0.383374 0.383218
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TABLE II. Computing the lowest-lying QNMs β ¼ −ImðωÞ=κ− based on various numerical methods for various l
values, with ΛM2 ¼ 0.01, α=M2 ¼ 0.1, and the charge ratio χ ¼ ðQ −QminÞ=ðQmax −QminÞ ¼ 0.5.

l ¼ 0 l ¼ 1 l ¼ 2 l ¼ 10 l ¼ 20

Pseudospectral method 0.122511 0.070449 0.113052 0.112366 0.112632
Direct integration method 0.122524 0.072421 0.112821 0.113230 0.112524
WKB approximation 0.112357 0.112333

TABLE III. Computing the lowest-lying QNMs β ¼ −ImðωÞ=κ− based on various numerical methods for various
l values, with ΛM2 ¼ 0.01, α=M2 ¼ 0.1, and the charge ratio χ ¼ ðQ −QminÞ=ðQmax −QminÞ ¼ 0.1.

l ¼ 0 l ¼ 1 l ¼ 2 l ¼ 10 l ¼ 20

Pseudospectral method 0.088969 0.049719 0.081351 0.080780 0.080755
Direct integration method 0.089669 0.048912 0.081545 0.080502 0.080697
WKB approximation 0.080763 0.080750

FIG. 4. For ΛM2 ¼ 0.01, the figure illustrates the lowest-lying QNMs characterized by β ¼ −ImðωÞ=κ− across different values of
α=M2, with respect to the black-hole charge ratio χ ¼ ðQ −QminÞ=ðQmax −QminÞ for a constant l. The critical charge ratio for SCC is
represented by horizontal dashed lines at β ¼ 1=2 and β ¼ 1.
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RNdS-like black holes with massless scalar field pertur-
bations, an increase in the Euler-Heisenberg parameter
α=M2 results in instances where the lowest-lying QNMs’
β exceeds 1, leading to a violation of the C2 version of the
SCC. Notably, when α=M2 reaches sufficiently large
values, all EHdS black hole solutions contravene the
C2 version of the SCC.
Finally, we explore the impact of the Euler-Heisenberg

parameter α=M2 on the validity of the SCC, particularly
analyzing its influence on the validation region of the
Christodoulou version of the SCC concerning the charge
ratio χ. In Fig. 6, with ΛM2 ¼ 0.01, 0.04, and 0.07 held
constant, we map the distribution of the lowest-lying
QNMs’ β within the α=M2 − χ parameter space. The
shaded pink region denotes where β < 1=2, presenting
the validation region of the Christodoulou version of the

SCC, while the blank area represents β > 1=2, showing the
violation region of the SCC. It is apparent from the figures
that as α=M2 increases, the width of the SCC validation
interval in χ decreases, suggesting a greater likelihood of
SCC violation with higher Euler-Heisenberg parameter
values. Furthermore, it is not hard to see that beyond a
critical threshold of α=M2, all black hole solutions violate
the SCC.

V. NONMINIMALLY COUPLED SCALAR FIELD
PERTURBATION

In this paper, we primarily consider the massless
scalar field perturbation. It has been found that the SCC
in RNdS black holes can be restored when the theories
include perturbations of nonminimally coupled scalar

FIG. 5. For ΛM2 ¼ 0.07, the figure illustrates the lowest-lying QNMs characterized by β ¼ −ImðωÞ=κ− across different values of
α=M2, with respect to the black-hole charge ratio χ ¼ ðQ −QminÞ=ðQmax −QminÞ for a constant l. The critical charge ratio for SCC is
represented by horizontal dashed lines at β ¼ 1=2 and β ¼ 1.
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fields [52,53]. In this section, we aim to extend our research
to cases where the scalar field nonminimally couples to
gravitational or electromagnetic invariants. As an example,
we consider the case where the scalar field is coupled to the
electromagnetic invariant, as in [53], where the field
equation for this scalar field perturbation is given by

∇a∇aΨ −
b
2
FabFabΨ ¼ 0; ð32Þ

in which b is a coupling constant. Here, ðb=2ÞFabFab can
be regarded as the effective mass term of the scalar field.
Using the same decomposition (16), we obtain

d2ψðrÞ
dr2�

þ ½ω2 − VðrÞ�ψðrÞ ¼ 0; ð33Þ

with the effective potential:

VðrÞ ¼ fðrÞ
r2

�
lðlþ 1Þ þ 2M

r
−
2Q2

r2

−
2Λr2

3
þ 3αQ4

10r6
−
bQ2

r2

�
: ð34Þ

Following similar discussions as in Sec. III and Ref. [53],
the condition for the validity of the SCC is that there exists
at least one QNM satisfying β ≤ 1=2.
For RNdS black holes, corresponding to the case of

α ¼ 0, it has been shown in Ref. [53] that the SCC can be
restored when the coupling constant b exceeds a critical
value bcrit. Next, we use numerical calculations to explore
whether a similar situation can occur in EHdS black holes,
specifically whether the SCC violations of the first and
second types found earlier in the massless scalar field case
can be salvaged when the coupling constant b is sufficiently
large. In Fig. 7, we present the numerical results of the
lowest-lying mode β for different coupling constants b
when l ¼ 0, ΛM2 ¼ 0.01, and α=M2 ¼ 0.2 (left panel),

FIG. 6. When ΛM2 ¼ 0.01, 0.04, and 0.07, the plots illustrate the distribution of the lowest-lying QNM β in the parameter space of
α=M2 and χ. The pink region represents the area where β < 1=2, indicating the validation region of the Christodoulou version of the
SCC, while the blank region indicates where β > 1=2, corresponding to the violation region of the SCC.

FIG. 7. For ΛM2 ¼ 0.01 and α=M2 ¼ 0.2 (left panel), (0.4) (right panel), the figure illustrates the lowest-lying QNMs of
l ¼ 0 characterized by β across different values of the coupling constant b, with respect to the black hole charge ratio χ ¼
ðQ −QminÞ=ðQmax −QminÞ for a constant l. The critical charge ratio for SCC is represented by horizontal dotted lines at β ¼ 1=2.
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(0.4) (right panel). As shown in these figures, for a given
α=M2, as long as the coupling constant b is sufficiently
large, the lowest-lying modes of QNMs for all charged
black holes at l ¼ 0 satisfy β < 1=2, thereby restoring
the SCC.
This result is quite easy to understand. By considering

the nonminimal coupling between the scalar field and the
electromagnetic invariant, the effective mass term of the
scalar field becomes negative. When the coupling constant
b is sufficiently large, this term induces tachyonic insta-
bility. This tachyonic instability is reflected in the QNMs as
low-lying modes with −Imω < 0. Given that the low-lying
modes of QNMs generally vary continuously, it is easy to
imagine that when b is large enough, the low-lying modes
of QNMs for all black holes will satisfy β < 1=2, thus
validating the SCC.
Additionally, it is worth mentioning that in the case of

−Imω < 0, due to tachyonic instability, the EHdS black
hole undergoes spontaneous scalarization and becomes a
scalarized black hole [75–81]. Fortunately, recent literature
has demonstrated that any electrodynamic black holes with
scalar hair lack a Cauchy horizon, thereby automatically
satisfying the requirements of the SCC [82,83]. Therefore,
for the case of −Imω < 0, the SCC is also automatically
validated. Thus, for the scenario we consider, there always
exists a sufficiently large nonminimal coupling constant b
such that the EHdS black hole satisfies the SCC. Given the
aforementioned reasons, it is easy to believe that when the
scalar field nonminimally couples to geometric invariants,
such as the Gauss-Bonnet term, sufficiently strong non-
minimal coupling effects can also restore the SCC.

VI. CONCLUSION

This study focuses on the SCC within the Euler-
Heisenberg-dS black holes, aiming to explore the impact
of quantum electrodynamical corrections to the Maxwell-
Lorentz theory on spacetime causality. With the emergence
of Euler-Heisenberg corrections, Euler-Heisenberg-dS
black holes exhibit a complex horizon structure, leading
to the occurrence of two types of extremal conditions.
Specifically, EHdS black holes present four horizons and
two types of extremal conditions. The first type resembles
the RNdS spacetime, involving coinciding Cauchy and
event horizons, while the second type involves the coinci-
dence of the innermost and Cauchy horizons.
We investigate the Cauchy horizon stability in Euler-

Heisenberg-dS black holes under the influence of a

massless scalar field perturbation. Through numerical
calculations of lowest-lying QNMs, we discover that
the violation of the SCC not only occurs near the
commonly observed first-type extremal solutions but also
manifests in the vicinity of second-type extremal black
holes. This marks the first instance of SCC violation
extending to another region within the classical frame-
work. Additionally, we observe that with an increase in
the Euler-Heisenberg parameter, the validation region of
the charge ratio shrinks, and beyond a critical value of
α=M2, all black hole solutions violate SCC. These find-
ings suggest an increased likelihood of SCC violation
with higher values of the reduced Euler-Heisenberg
parameter α=M2, which implies that the greater the impact
of quantum electrodynamical vacuum corrections on the
external region of the black hole, the more easily the SCC
is violated. Furthermore, when α=M2 is sufficiently large,
violations occur not only for the Christodoulou version
but also for the C2 version of the SCC. This represents the
C2 version SCC violation observed under massless scalar
field perturbations, which marks the first instance of C2

version SCC violation found under massless scalar field
perturbations.
Furthermore, our research extended to cases where the

scalar field nonminimally couples to gravitational or
electromagnetic invariants. We found that for sufficiently
large coupling constants b, the lowest-lying modes of
QNMs for all charged black holes at l ¼ 0 satisfy
β < 1=2, thereby restoring the SCC. This result can also
be understood from the tachyonic instability induced when
b is large enough. Similarly, we believe that sufficiently
strong nonminimal coupling effects to geometric invariants
(such as the Gauss-Bonnet term) can also restore the SCC.
Considering that the paper mainly focuses on the impact of
minimally coupled scalar perturbations on the SCC and that
a comprehensive discussion of the violation interval for
nonminimal cases requires substantial computational effort,
we do not discuss these nonminimal cases in detail in the
current paper.
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