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We investigate quantum characteristics around Schwarzschild black hole, exploring various quantum
resources and their interplay in curved space-time. Our analysis reveals intriguing behaviors of quantum
coherence, global and genuine multipartite entanglement, first-order coherence, and mutual information in
different scenarios. Initially, we consider three particles shared among Alice, Bob, and Charlie in a
Minkowski space far from the event horizon, where these particles are correlated via Greenberger-Horne-
Zeilinger-type correlation. While Alice’s particle remains in Minkowski space, Bob and Charlie accelerate
towards the event horizon, experiencing black hole evaporation and generating antiparticles correlated via
the Hawking effect. We employ the Kruskal basis formulation to derive a pentapartite pure state shared
among particles inside and outside the event horizon. Investigating different scenarios among particles both
inside and outside the event horizon, we observe how quantum resources evolve and distribute among
consideration of different particles with Hawking temperature and mode frequency. The trade-off
relationship between first-order coherence and concurrence fill persists, indicating the intricate interplay
between coherence and entanglement. Notably, the mutual information between external observers and
particles inside the black hole becomes nonzero, deepening our understanding of quantum effects in curved
space-time and shedding light on the quantum nature of the black hole. We believe that these findings will
pave the way for future investigations into the fundamental quantum mechanical aspects of gravity under
extreme environments.
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I. INTRODUCTION

Black holes (BHs), stemming from Schwarzschild’s
solution to Einstein’s general relativity, have captivated
scientific inquiry since 1916 [1]. The groundbreaking
release of the first BH image in 2019 by the Event
Horizon Telescope marked a milestone [2]. BHs, according
to the no-hair theorem, appear to conceal information
beyond their mass, charge, and angular momentum [3].
However, the discovery of Hawking radiation by Stephen
Hawking suggests a gradual evaporation of BH, raising
questions about unitarity [4–6]. This phenomenon involves
the creation of particle pairs near the event horizon, with
one escaping and the other contributing to the BH’s
eventual disappearance [7]. The event horizon of a BH
is a boundary in space beyond which nothing, not even
light, can escape the BH’s gravitational pull. When an
object or light crosses this boundary, it is inevitably pulled
into the BH and its information is lost to external observers.

Even now, understanding the intricate interplay between
quantum theory, general relativity, and the profound mys-
teries surrounding BH physics is a formidable challenge that
has captivated the curiosity of physicists for decades [8–18].
This study embarks on a journey to investigate the quali-
tative migration and transformation of quantum resources in
curved space-times, specifically focusing on quantifying
genuine multipartite entanglement (GME), global entangle-
ment, and quantum coherence among different particles and
inside each particle in the context of Dirac fields interacting
with a Schwarzschild BH.
Quantum information theory provides a unique lens for

investigating foundational puzzles in relativistic quantum
physics. Some basic concepts such as entanglement and
coherence have proven instrumental in elucidating quantum
effects in the perplexing environments near BHs [19–23].
The enigmaof theBH information paradox, revolvingaround
the potential loss of information as matter crosses the event
horizon, has been a focal point of inquiry. Hawking’s initial
calculations suggested information loss [4,5], but in later
work, Hawking proposed the escape of information through
subtle quantum correlations in Hawking radiation [24].
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The study of entanglement between partitions aroundBHs
has been extensive [19–22], but global entanglement and
GME can reveal richer multipartite correlations [25]. Global
concurrence (GC) [25–27] emerges as a quantifier that
encapsulates both bipartite and multipartite entanglement
contributions, providing a comprehensive measure of total
entanglement between all parties involved. Additionally,
examining first-order coherence (FOC) becomes crucial in
capturing quantum superpositions within the local states of
individual particles [28–32]. From the understanding of the
trade-off relation between FOC and concurrence-fill (CF), a
genuine multipartite entanglement measure, as particles
approach the BH, FOC may transition into CF through
interactions as a trade-off [31].Hence, theGMEmeasures are
essential to specifically address irreducible multiparty
inseparable correlations [33,34]. These measures quantify
quantum correlations that are not reducible to any subset of
particles and may offer a nuanced understanding of the
intricate quantum fabric surrounding BHs.
This paper examines how Dirac field particles behave

near a Schwarzschild BH, focusing on the average super-
position of all the particles through FOC, GME through
concurrence fill (CF), and global entanglement through GC
in curved space-time. In order to see if quantum correla-
tions other than entanglement exist, we also quantify the
l1-norm of quantum coherence (QC). Additionally, the
study looks into how the Hawking temperature and mode
frequency of Dirac particles near the BH affect these
quantum behaviors and aims to explain how these quantum
resources manifest trade-offs in curved space-time. The
meticulous tracking of these quantum resources not only
deepens our understanding of information dynamics but
also offers valuable insights into the intersection of quan-
tum theory and general relativity.

II. PRELIMINARIES

This section provides the definitions and some necessary
properties of quantum coherence (captured by l1-norm of
QC and FOC), global entanglement (captured by CF and
GC), and mutual information.

A. l1-norm of quantum coherence

QC arises from the fundamental superposition principle
in quantum mechanics. A rigorous framework to quantify
coherence as a resource has been developed, known as the
resource theory of QC [35,36]. This theory identifies the set
of incoherent states I which are diagonal in a reference
basis fjiig,

δ∈ I ⇔ δ ¼
X
i

δijiihij: ð1Þ

The free operations are the incoherent operations that map
incoherent states to incoherent states. Revealing and

quantifying QC is essential to enable quantum correlations
and information processing. Hence, Baumgratz et al. [35]
proposed the l1-norm of QC as a quantifier of coherence,

CðρÞ ¼
X
i≠j

jhijρjjij ¼
X
i;j

jρijj −
X
i

jρiij: ð2Þ

B. First-order coherence

Pauli matrices σ ¼ ðσ1; σ2; σ3Þ together with the identity
matrix I, provide a complete set of operator bases in
Liouville space to express any general two-qubit density
matrix ρ in the following parametrized form:

ρ ¼ 1

4

�
I ⊗ I þ r0x · σ ⊗ I

þ I ⊗ r0y · σ þ
X3
m;n¼1

cmnσm ⊗ σn

�
: ð3Þ

Here, cmn ¼ trðρσm ⊗ σnÞ is the matrix element of matrix
C∈ℜm×n, and r0x and r0y are the Bloch vectors corre-
sponding to each qubit. The unitary equivalent form of ρ
under local unitary transformation U ⊗ V can be written as

ρ ¼ U ⊗ VρxyU† ⊗ V† ¼ 1

4

�
I ⊗ I þ rx · σ ⊗ I

þ I ⊗ ry · σ þ
X3
i¼1

ciσi ⊗ σi

�
; ð4Þ

where rx ¼ tr½Uðr0x:σÞU†�σ and ry ¼ tr½Vðr0y:σÞV†�σ are
the corresponding local unitary equivalent Bloch vectors,
and ci are the eigenvalues of 3 × 3 C†C matrix.
Using reduced states ρx ¼ 1

2
ðI þ rx · σÞ and ρy ¼

1
2
ðI þ ry · σÞ, one can define the FOC of individual reduced

states DðρxÞ ¼ jrxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2trðρ2xÞ − 1

p
and DðρyÞ ¼ jryj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2trðρ2yÞ − 1
q

. Therefore, the FOC of ρ, i.e., DðρÞ, would
be written as mean square averages of DðρxÞ and DðρyÞ,
given by [28–32]

DðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrxj2 þ jryj2

2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðρ2xÞ þ trðρ2yÞ − 1

q
: ð5Þ

Based on the fact that trðρ2i Þ ≥ 1
2
, where i∈ x; y,

we can find that trðρ2xÞ þ trðρ2yÞ ≥ 1 which assures
that 0 ≤ DðρÞ ≤ 1.
Considering all subsystems as independent entities, the

total FOC of the tripartite state can be generalized as the
rms average of all FOC of the individual subsystems [31];
namely,
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DðρxyzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2ðρxÞ þD2ðρyÞ þD2ðρzÞ

3

s
; ð6Þ

with 0 ≤ DðρxyzÞ ≤ 1.
Note that FOC in a tripartite system is defined as the rms

average of the individual local hidden coherence, given by
DðρiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2trðρ2i Þ − 1

p
. The local coherence of any sub-

system indicates that in a maximally mixed state (repre-
sented by 1

2
I), coherence is absent, with purity expressed as

trðρ2i Þ ¼ 1=2, signifying maximal mixedness. Conversely,
for a maximally pure quantum state, coherence reaches
unity, corresponding to trðρ2i Þ ¼ 1.
Recent research has unveiled a functional complementar-

ity trade-off relationship of FOCwith variousmetrics such as
quantum nonlocality [29], quantum steering [31], separabil-
ity (separable uncertainty) [37], and concurrence [38,39].
It is hypothesized that FOC can provide insights into the
distribution of quantum coherence among subsystems
within a multipartite system, elucidating quantum correla-
tions in terms of entanglement, steering, nonlocality, and
other phenomena.

C. Concurrence fill and global concurrence

GME involves nonseparable quantum correlations
among three or more particles that cannot be simplified
into pairwise entanglements [25,33,33,34]. This complex
entanglement exceeds bipartite forms between just two
particles. When an N-particle state is indivisible into
separate parts, it exhibits genuine N-partite entanglement.
To qualify as a measure, any GME measure must meet
certain criteria, including [33,33,34,40]:

(i) If a multipartite quantum state ρ belongs to the set of
bi-separable states Sbi-sep, then the GME measure,
denoted by FðρÞ, should be zero, i.e., FðρÞ ¼ 0.
Conversely, if the state ρ is closed under the set of
GME carrying states SGME (nonbiseparable states),
then FðρÞ is anticipated to be greater than zero, i.e.,
FðρÞ > 0. Specifically, the normalized GME mea-
sure should satisfy FðρÞ ¼ 1 for a maximally
genuine multipartite entangled state. Therefore, in
a general context, we can express this relationship as
follows:

0 ≤ FðρÞ ≤ 1: ð7Þ

(ii) When considering an ensemble of quantum states
(pi, ρi) obtained through local operation and
classical communication (LOCC) applied to the
initial state ρ, the GME measure is expected to
adhere to the following monotonicity condition:

FðρÞ ≥
X
i

piFðρiÞ: ð8Þ

This inequality signifies that under LOCC opera-
tions, the GME measure is monotonic.

(iii) For any arbitary unitary operator U, the GME
measure must preserve unitarity; namely,

FðUρU†Þ ¼ FðρÞ: ð9Þ

Recently, progress has been made in determining the
proper order for genuine tripartite entanglement by intro-
ducing the concept of CF.
The interconnection among three bipartite entanglements

is interrelated, where one system is involved with the other
two. These entanglements are not mutually independent but
adhere to a specific relationship [41], as shown

C2
xðyzÞ ≤ C2

yðzxÞ þ C2
zðxyÞ; ð10Þ

where

CiðjkÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðρiÞ

p
; ð11Þ

with 0 ≤ CiðjkÞ ≤ 1 where i; j; k∈ fx; y; zg ∀i ≠ j ≠ k.
This inequality captures the squares of three bipartite

concurrences, resembling the lengths of sides in a triangle
called the ‘concurrence triangle’. The CF is subsequently
defined for pure states as the square root of the area
enclosed by this so-called concurrence triangle as [25]

FðjψiÞ ¼
�
16

3
QðjψiÞ

× ½QðjψiÞ − C2
xðyzÞðjψiÞ�

× ½QðjψiÞ − C2
yðzxÞðjψiÞ�

× ½QðjψiÞ − C2
zðxyÞðjψiÞ�

�
1=4

; ð12Þ

where

QðjψiÞ¼ 1

2
½C2

xðyzÞðjψiÞþC2
yðzxÞðjψiÞþC2

zðxyÞðjψiÞ�; ð13Þ

is the half-perimeter of the concurrence triangle from
Heron’s formula, also known as GC [25–27], while the
prefactor 16=3 ensures the normalization condition that
is 0 ≤ FðρxyzÞ ≤ 1.
Notably, CF (12) and GC (13) can be generalized to the

case of mixed states through the convex roof construction,
given by [25]

FðρxyzÞ ¼ min
fpi;ψ ig

X
i

piFðjψ iiÞ; ð14Þ

and
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QðρxyzÞ ¼ min
fpi;ψ ig

X
i

piQðjψ iiÞ; ð15Þ

in which the minimum is taken over all possible decom-
positions ρxyz ¼

P
i pijψ iihψ ij.

It is worth mentioning that recently a mathematical
trade-off relation between FOC and CF has been estab-
lished [31], given by

D2ðρxyzÞ þ FðρxyzÞ ≤ 1: ð16Þ

D. Mutual information

Understanding the correlations between subsystems is
fundamental in quantum information theory. Quantum
mutual information, denoted by IρXY, serves as a vital tool
for quantifying this correlation. Consider a bipartite system
composed of subsystems ρX and ρY . Their state space can
be described by the tensor product of their individual
Hilbert spaces, denoted by HX ⊗ HY.
The quantum mutual information, IρXY , captures the

amount of information shared between ρX and ρY . It is
mathematically expressed as

IρXY ¼ SðρXÞ þ SðρYÞ − SðρXYÞ; ð17Þ

where ρXY represents the density matrix of the entire system
residing in HX ⊗ HY . ρX ¼ trYðρXYÞ and ρY ¼ trXðρXYÞ
are the reduced density matrices of ρXY for subsystems X
and Y, respectively. Here, SðρÞ ¼ −trðρ log2 ρÞ denotes the
von Neumann entropy of a density matrix ρ, which
quantifies the uncertainty or mixedness of the quan-
tum state.
Notice that the von Neumann entropy of the reduced

states, SðρXÞ and SðρYÞ, represents the information inherent
in each subsystem individually. The entropy of the whole
system, SðρXYÞ, captures the combined information of both
X and Y. In general, the quantum mutual information, IρXY ,
essentially reflects the information gained about one sub-
system (say, X) by knowing the state of the other (Y).

III. QUANTUM TREATMENT
OF DIRAC FIELD

The metric in the background of a Schwarzschild space-
time can be specified as

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ; ð18Þ

where M represents the mass of BH. For convenience, we
work in the natural units, for which G ¼ c ¼ ℏ ¼ kB ¼ 1.
When considering a general background space-time, the
Dirac equation would be expressed as [19]

−
γ0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q ∂Φ
∂t

þ γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r �
∂

∂r
þ 1

r
þ M
2rðr − 2MÞ

�
Φ

þ γ2
r

�
∂

∂θ
þ cot θ

2

�
Φþ γ3

r sin θ
∂Φ
∂φ

¼ 0; ð19Þ

where γi (i ¼ 0, 1, 2, 3) represent Dirac gamma matrices.
A set of positive-frequency outgoing solutions can be
obtained by solving the Dirac equation, as expressed in
Eq. (19) near the BH’s event horizon. These solutions are
relevant for describing the event horizon’s interior and
exterior regions as

Φþ
k;in ¼ ϕðrÞeiωτ ð20Þ

and

Φþ
k;out ¼ ϕðrÞe−iωτ: ð21Þ

In the given context, ϕðrÞ indicates a four-component
Dirac spinor, ω denotes a monochromatic frequency, k is
the wave vector, and τ is defined as t − r� with r� being the
tortoise coordinate given by r� ¼ rþ 2M ln r−2M

2M . Note that
the modes identified as Φþ

k;in and Φþ
k;out are commonly

known as Schwarzschild modes.
Following Damour and Ruffini’s suggestion [42], we can

extend the given equation analytically, establishing a solid
basis for positive energy modes. This extension enables
the derivation of Bogoliubov transformations [19,43,44]
related to the creation and annihilation operators in both
Schwarzschild and Kruskal coordinates. By quantizing
Dirac fields in the Schwarzschild and Kruskal modes
and appropriately normalizing the state vector, one can
articulate the formulations for the Kruskal vacuum and
excited states with mode k as [19]

j0ik ¼ S−j0ioj0ii þ Sþj1ioj1ii ð22Þ

and

j1ik ¼ j1ioj0ii; ð23Þ

where S� ¼ ðe�ω=TH þ 1Þ−1=2 with the Hawking temper-
ature as TH ¼ 1=8πM. Furthermore, jfio and jfii with
f ¼ 0, 1 are the Fock states for the particle pair outside the
region with momentum þk and inside the region with
momentum −k of the BH, respectively.

IV. RESULTS AND DISCUSSION

Entangled tripartite states, such as the GHZ-like state,
are valuable quantum resources exhibiting GME. In [25], it
is shown that the GHZ state is the strongest GME-carrying
state as well as being a maximally global entanglement-
carrying state. Therefore, we establish and examine the

ASAD ALI et al. PHYS. REV. D 110, 064001 (2024)

064001-4



GHZ-type state shared between three observers Alice, Bob,
and Charlie in a flat Minkowski space-time outside the
event horizon of a Schwarzschild BH. Let us assume that
Alice’s qubit is in jfiA, while Bob’s and Charlie’s qubits are
in jfiB and jfiC respectively where f can take two values,
i.e., 0 or 1. The initial tripartite state shared between them
can be written as

jψiABC ¼ αj0A0B0Ci þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
j1A1B1Ci; ð24Þ

where α is the state parameter with 0 ≤ α ≤ 1. As men-
tioned before, the initial state shared among Alice, Bob,
and Charlie, denoted jψiABC, is a GHZ-type pure state,
which transitions into a GHZ state when α ¼ 1ffiffi

2
p . This GHZ

state is identified as a genuine maximally entangled three-
qubit pure state.
We now consider a scenario where Alice remains in the

flat asymptotic region outside the event horizon, but Bob
and Charlie fall freely toward the event horizon. Their
respective antiparticles, anti-Bob and anti-Charlie, are
located inside the event horizon with modes jfib and
jfic. Using the Kruskal basis shown in Eqs. (22) and (23)
for Bob and Charlie while treating Alice on a Minkowski
basis, we can reformulate the complete pentapartite quan-
tum state as (see Fig. 1)

jψiAbBcC ¼ Θþj0A1b1B1c1Ci þ Θ−j0A0b0B0c0Ci
þ Γfj0A0b0B1c1Ci þ j0A1b1B0c0Cig
þϒj1A0b1B0c1Ci; ð25Þ

where Θ� ¼ αS2�, Γ ¼ α=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2 ðω=2THÞ

p
, and

ϒ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
.

In a broader context, this quantum state embodies a pure
five-partite entanglement, encompassing separate subsys-
tems. Qubit A undergoes observation by Alice, whereas
qubits B and C are scrutinized by Bob and Charlie,
respectively, positioned beyond the event horizon of the
BH. Furthermore, qubits b and c fall under the observation
of anti-Bob and anti-Charlie inside the event horizon.
Owing to the causal disconnection between the interior
and exterior domains of the BH, Alice, Bob, and Charlie are
devoid of access to the modes within the event horizon.
Therefore, we classify the modes B and C outside the event
horizon as the ‘accessible modes’ and the modes b and c
inside the event horizon as the ‘inaccessible modes’. The
process involves taking the trace over the inaccessible and
accessible modes on jψiAbBcC given in Eq. (25), resulting in
the tripartite reduced density operators for different
configurations.
Now, we explore all the possibilities of sharing the

tripartite coherence and entanglement between different
parties, both accessible and partially accessible. We con-
sider three different scenarios: in the first scenario, three

particles are accessible, in the next scenario two particles
are accessible, and in the last scenario, only one particle is
accessible.

A. Alice–Bob–Charlie
Let us consider the accessible mode case comprised

of Alice, Bob, and Charlie, whose density operator ρABC
can be evaluated by taking the partial trace over anti-Bob
and anti-Charlie modes given in Eq. (25); namely,
ρABC ¼ trbcðjψiAbBcChψ jÞ. This yields

ρABC ¼ Θ2þj011ih011j þ Θ2
−j000ih000j þϒ2j111ih111j

þϒΘ−fj000ih111j þ j111ih000jg
þ Γ2fj001ih001j þ j010ih010jg: ð26Þ

Figures 2(a)–2(d) shows the variation of l1-norm of QC,
GC, CF, and FOC concerning α, with various fixed values
of Hawking temperature at ω ¼ 1. At TH ¼ 0.01, depicted
in Fig. 2(a), where nearly no Hawking radiation is present,
we have an entangled state. Notably, a perfect trade-off
between FOC and CF is evident, satisfying the upper bound
relationship D2ðjψiABCÞ þ FðjψiABCÞ ¼ 1. The peaks of
QC, CF, and GC occur at α ¼ 1=

ffiffiffi
2

p
. Conversely, when

TH ¼ 1, TH ¼ 10, and TH ¼ 100, as depicted in Figs. 2(b),
2(c), and 2(d) respectively, the peaks diminish compared to
Fig. 2(a), and the minimum value of FOC rises from zero.
The trade-off persists without reaching the upper bound,
i.e., D2ðρABCÞ þ FðρABCÞ < 1. This trend continues with
even lower peak values of QC, CF, and GC, accompanied
by increasing minimum values of FOC. Moreover, with an
escalation in Hawking temperature, the maximum values of

FIG. 1. Schematic diagram of our physical model with Alice’s
particle-A in a flat region, and Bob’s particle-B and Charlie’s
particle-C near the event horizon of a Schwarzschild BH. The
dashed lines show the entanglement between particles. Input state
is provided in (24) and output state is given in (25).

QUANTUM CHARACTERISTICS NEAR EVENT HORIZONS PHYS. REV. D 110, 064001 (2024)

064001-5



QC, GC, and CF shift towards α ≈ 0.8, while the trade-off
between FOC and CF remains satisfied. Notably, there is no
significant decline in the metric values while transitioning
from TH ¼ 10 [Fig. 2(c)] to TH ¼ 100 [Fig. 2(d)].
Figure 3(a) showcases the modulation of QC, GC, CF,

and FOC concerning TH at ω ¼ 1 and α ¼ 1ffiffi
2

p . It is evident

that with an increase in the Hawking temperature, QC, GC,
and CF decrease from their maximum values to certain
minimum values, thereafter stabilizing and persisting with-
out reaching zero. In contrast, FOC begins from zero,
reaching a certain value, and then saturating. Note that the
trade-off relation between FOC and CF remains intact. This
observation suggests that although Hawking temperatures
degrade entanglement for a completely accessible scenario,
they fail to entirely annihilate it, even for infinitely large
Hawking temperatures.
Figure 3(b) illustrates the behaviors of QC, GC, CF, and

FOC versus ω at TH ¼ 0.1 and α ¼ 1=
ffiffiffi
2

p
. It is observed

that with an increase in mode frequency, QC, GC, and CF
ascend to maximum saturated values, maintaining their
peak levels. Conversely, FOC decreases from its maximum
value to zero at higher mode frequencies, all the while
adhering to the trade-off between CF and FOC.
After examining the variations of QC, GC, CF, and FOC

among Alice, Bob, and Charlie in a completely accessible
scenario, we now investigate the mutual information shared
between Alice and Bob, represented by IAB ¼ SðρAÞ þ
SðρBÞ − SðρABÞ, and between Alice and Charlie, denoted
by IAC ¼ SðρAÞ þ SðρCÞ − SðρACÞ, across different param-
eters. Figures 4(a) and 4(b) illustrate IAB and IAC as a
function of α at TH ¼ 0.01 and TH ¼ 10, respectively, for
ω ¼ 1. Remarkably, we observe the equivalence of IAB and
IAC when ρAB ¼ ρAC (see Appendix). Both IAB and IAC
exhibit a similar trend to other metrics discussed in Fig. 2 at

α ¼ 1=
ffiffiffi
2

p
withTH ¼ 0.01. Figure 4(c) reveals that both IAB

and IAC decrease with increasing Hawking temperature and
risewith mode frequency as depicted in Fig. 4(d), ultimately
saturating for larger values of both parameters TH and ω.
Notably, as we have seen, increasing the temperature and
frequency of the Hawking mode did not completely destroy
quantum coherence and quantum entanglement.

B. Alice–anti-Bob–anti-Charlie
Defining the interior of a BH is inherently challenging to

explore practically, as an external observer encounters
perturbative limitations, preventing the reception of signals
from beyond the event horizon. However, we know that, in
the unitary quantum mechanics framework, information
preservation is obligatory.
Considering a scenario where two particles, referred to as

anti-Bob and anti-Charlie, exist within the BH while Alice
remains outside, though the physical exploration inside the
BH is physically impractical, the complete state of our
pentapartite system is known and expressed in Eq. (25)
as a pure state, maintaining unitarity. Consequently, the
application of a partial tracing operation on the modes of

(a) (b)

(c) (d)

FIG. 2. FOC [DðρABCÞ] (dashed red), CF [FðρABCÞ] (solid
green), GC [QðρABCÞ] (dot-dashed blue), QC [CðρABCÞ] (solid
black), and D2ðρABCÞ þ FðρABCÞ (thin-solid gray) as a function
of α for ω ¼ 1 at TH ¼ 0.01 (a), TH ¼ 1 (b), TH ¼ 10 (c), and
TH ¼ 100 (d).

(a) (b)

FIG. 3. FOC [DðρABCÞ] (dashed red), CF [FðρABCÞ] (solid
green), GC [QðρABCÞ] (dot-dashed blue), QC [CðρABCÞ] (solid
black), andD2ðρABCÞ þ FðρABCÞ (thin-solid gray) as functions of
TH and ω with α ¼ 1=

ffiffiffi
2

p
. (a) ω ¼ 1 and (b) TH ¼ 0.1.

(a) (b)

(c) (d)

FIG. 4. Mutual information IAB and IAC based on state (26)
with (a) ω ¼ 1; TH ¼ 0.01, (b) ω ¼ 1; TH ¼ 10, (c) ω ¼ 1;
α ¼ 1=

ffiffiffi
2

p
, and (d) TH ¼ 0.1; α ¼ 1=

ffiffiffi
2

p
.
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Bob and Charlie within this pentapartite state yields ρAbc,
given by

ρAbc ¼ Θ2
−j000ih000j þ Θ2þj011ih011j þϒ2j100ih100j

þ Θþϒfj011ih100j þ j100ih011jg
þ Γ2fj001ih001j þ j010ih010jg: ð27Þ

In Fig. 5, the modulation of QC, GC, CF, and FOC
concerning α is illustrated, with various fixed values of
Hawking temperature at ω ¼ 1. In Fig. 5(a), for negligible
Hawking temperature (TH ¼ 0.01), the absence of
Dirac particle-antiparticle pair production on the event
horizon is observed. Consequently, in contrast to Fig. 2(a),
minimal or no entanglement generation among Dirac
particles is present, resulting in the absence of GC
and CF. Notably, the trade-off between FOC and CF is
evident here, without satisfying the upper bound relation-
ship D2ðρxyzÞ þ FðρxyzÞ < 1.
When TH ¼ 1, TH ¼ 10, and TH ¼ 100, as depicted in

Figs. 5(b), 5(c), and 5(d), respectively, both CF and GC
start appearing and reach the peak at α > 1=

ffiffiffi
2

p
, and the

minimum value of FOC decreases for α > 1=
ffiffiffi
2

p
. From

TH ¼ 10 to TH ¼ 100, one can find that the peak values of
QC, GC, and CF do not increase significantly further.
Figure 6(a) illustrates the behaviors of QC, GC, CF, and

FOC versus TH at ω ¼ 1 and α ¼ 1=
ffiffiffi
2

p
. It is observed that

with an increase in the Hawking temperature, QC, GC, and
CF increase from zero to certain maximum values, there-
after stabilizing and persisting without reaching their
respective maximum values. In contrast, FOC starts from
its maximum, reaching a certain nonzero minimum value,
and then saturating, while the trade-off relation between
FOC and CF remains intact. Interestingly, this observation

suggests that increasing Hawking temperature generates
entanglement, in contrast to the completely accessible sce-
nario where Hawking temperature degrades entanglement.
Unlike the effect of Hawking temperature on the afore-

mentioned metrics, Fig. 6(b) showcases the behaviors of
QC, GC, CF, and FOC concerning ω at TH ¼ 0.1 and
α ¼ 1=

ffiffiffi
2

p
. It is discerned that with an increase in mode

frequency, QC, GC, and CF descend from their maximum
values. Conversely, FOC increases from its minimum at
higher-mode frequencies, all the while adhering to the
trade-off between CF and FOC.
Let’s analyze the mutual information shared between

Alice–anti-Bob and Alice–anti-Charlie. In Fig. 7(a), the
variation of IAb and IAc as a function of α when TH ¼ 0.01
and ω ¼ 1 is depicted. We observe that both IAb and IAc are
zero for all values of α, which makes sense because when
TH ¼ 0.01, there is no generation of antiparticles inside
the BH.
Now, when TH ¼ 10, Fig. 7(b) demonstrates that both

IAb and IAc become nonzero in general, indicating the
creation of anti-Bob and anti-Charlie. The peak value of IAb
and IAc appears to be around α ≈ 0.65. It is notable that

(a) (b)

(d)(c)

FIG. 5. FOC [DðρAbcÞ] (dashed red), CF [FðρAbcÞ] (solid
green), GC [QðρAbcÞ] (dot-dashed blue), QC [CðρAbcÞ] (solid
black), and D2ðρAbcÞ þ FðρAbcÞ (thin-solid gray) as a function of
α for ω ¼ 1 at TH ¼ 0.01 (a), TH ¼ 1 (b), TH ¼ 10 (c), and
TH ¼ 100 (d).

(a) (b)

FIG. 6. FOC [DðρAbcÞ] (dashed red), CF [FðρAbcÞ] (solid
green), GC [QðρAbcÞ] (dot-dashed blue), QC [CðρAbcÞ] (solid
black) and D2ðρAbcÞ þ FðρAbcÞ (thin-solid gray) as functions of
TH and ω with α ¼ 1=

ffiffiffi
2

p
. (a) ω ¼ 1 and (b) TH ¼ 0.1.

(a) (b)

(c) (d)

FIG. 7. Mutual information IAb and IAc based on state (27)
with (a) ω ¼ 1; TH ¼ 0.01, (b) ω ¼ 1; TH ¼ 10, (c) ω ¼ 1;
α ¼ 1=

ffiffiffi
2

p
, and (d) TH ¼ 0.1; α ¼ 1=

ffiffiffi
2

p
.
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ρAb ¼ ρAc, hence the mutual information for both pairs, IAb
and IAc, are equal.
Furthermore, in Fig. 7(c), we find that an increase in

Hawking temperature from zero to 10 generates IAb ¼ IAc,
and mutual information increases as temperature rises.
Conversely, Fig. 7(d) shows the inverse relation of IAb
and IAc with mode frequency so that the mutual informa-
tion saturates to a zero value and does not change by
increasing ω.

C. Alice–Bob–anti-Bob
As a third scenario, let us consider the partially acces-

sible mode case comprised of Alice, anti-Bob, and Bob,
whose density operator ρAbB ¼ trcCðjψiAbBcChψ jÞwould be
represented as

ρAbB ¼ ðΘ2
− þ Γ2Þj000ih000j þ ðΘ2þ þ Γ2Þj011ih011j

þ ðΘþΓþ Θ−ΓÞfj000ih011j þ j011ih000jg
þϒ2j101ih101j: ð28Þ

Unlike the accessible and completely inaccessible cases
discussed in the previous subsections, QC, GC, CF, and
FOC do not show the same trend in this partially accessible
scenario.
In Fig. 8, FOC, CF, GC, and QC are depicted against

α for various fixed values of Hawking temperature. In
Fig. 8(a), with TH ¼ 0.01, negligible Hawking temperature
results in no Dirac particle-antiparticle pair production,
leading to minimal entanglement among Dirac particles and
zero values for both CF and GC. However, FOC varies with
α, and the trade-off is evident. Increasing the Hawking
temperature to TH ¼ 1 in Fig. 8(b) generates nonzero QC
and GC, but CF remains at zero, indicating that the state is

not genuinely entangled. A similar trend is observed in
Figs. 8(c) and 8(d), but CF is consistently zero, meaning
that in the case of Alice-Bob anti-Bob, no CF is created,
resulting in no GME. However, there is global entangle-
ment or quantum coherence despite this, and the trade-off
relation strictly holds.
In Fig. 9(a), the variations of these measures with

Hawking temperature at ω ¼ 1 and α ¼ 1=
ffiffiffi
2

p
are

depicted. It is observed that CF remains consistently at
zero, while QC and GC increase with rising Hawking
temperature until reaching certain positive values where
they saturate. Conversely, FOC exhibits the opposite
behavior, decreasing with increasing Hawking temperature.
Figure 9(b) illustrates how all the measures change with
mode frequency. It demonstrates that higher-mode frequen-
cies lead to a decrease in QC and GC while increasing
FOC. Both GC and QC approach zero as the mode
frequency tends to 1, maintaining a tight trade-off relation-
ship for the given parameter values.
Let us examine the information correlation shared

between IAB and IAb. In Fig. 10(a), the variations of IAB
and IAb as a function of α at TH ¼ 0.01 and ω ¼ 1 are

(a) (b)

(c) (d)

FIG. 8. FOC [DðρAbBÞ] (dashed red), CF [FðρAbBÞ] (solid
green), GC [QðρAbBÞ] (dot-dashed blue), QC [CðρAbBÞ] (solid
black) and D2ðρAbBÞ þ FðρAbBÞ (thin-solid gray) as a function of
α for ω ¼ 1 at TH ¼ 0.01 (a), TH ¼ 1 (b), TH ¼ 10 (c), and
TH ¼ 100 (d).

(a) (b)

FIG. 9. FOC [DðρAbBÞ] (dashed red), CF [FðρAbBÞ] (solid
green), GC [QðρAbBÞ] (dot-dashed blue), QC [CðρAbBÞ] (solid
black) and D2ðρAbBÞ þ FðρAbBÞ (thin-solid gray) as functions of
TH and ω with α ¼ 1=

ffiffiffi
2

p
. (a) ω ¼ 1 and (b) TH ¼ 0.1.

(a) (b)

(c) (d)

FIG. 10. Mutual information IAB and IAb based on state (28)
with (a) ω ¼ 1; TH ¼ 0.01, (b) ω ¼ 1; TH ¼ 10, (c) ω ¼ 1;
α ¼ 1=

ffiffiffi
2

p
, and (d) TH ¼ 0.1; α ¼ 1=

ffiffiffi
2

p
.
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illustrated. We observe that IAb ¼ 0 throughout for all
values of α, which makes sense as at very low Hawking
temperatures no particles are generated inside the BH.
However, the situation changes when TH ¼ 10; both IAB
and IAb become nonzero, but still IAB > IAb except at
α ¼ 0 and α ¼ 1. In Fig. 10(c), the behaviors of IAB and IAb
as a function of TH at α ¼ 1=

ffiffiffi
2

p
and ω ¼ 1 are plotted. It

shows that with an increase in Hawking temperature, IAB
monotonically decreases, whereas IAb increases from zero.
For sufficiently large Hawking temperatures, both IAB and
IAb saturate to certain values with IAB > IAb. Conversely,
the divergence behavior of IAB and IAb is seen when they
are plotted against ω, as shown in Fig. 10(d) at TH ¼ 0.1
and α ¼ 1=

ffiffiffi
2

p
.

D. Alice–Bob–anti-Charlie
Finally, as the fourth scenario, we consider an interesting

case, Alice–Bob–anti-Charlie, with the following state:

ρABc ¼ Θ2
−j000ih000j þ Θ2þj011ih011j

þϒΓfj001ih110j þ j110ih001jg
þ Γ2fj001ih001j þ j010ih010jg
þϒ2j110ih110j: ð29Þ

Figure 11 shows the variation of QC, GC, CF, and FOC as a
function of α with ω ¼ 1. At TH ¼ 0.01, Fig. 11(a) shows
that QC, GC, and CF are all zero whereas FOC is equal to
one at α ¼ 0 and α ¼ 1, and the trade-off relation holds.
With the increase in Hawking temperature, i.e., TH ¼ 1, we
find that all the measures are now in general nonzero,
meaning that the Hawking temperature is capable of

generating QC, GC, and CF. A similar trend is seen in
Figs. 11(c) and 11(d). Besides, Fig. 12(a) shows the
behaviors of the mentioned measures as a function of
Hawking temperature at α ¼ 1=

ffiffiffi
2

p
and ω ¼ 1, confirming

that increasing the Hawking temperature increases QC, GC,
and CF from zero to some certain saturated values whereas
FOC decreases from its maximum value. The opposite
behavior is seen when these measures are plotted again
mode frequency ω, as shown in Fig. 12(b).
Let us examine the information correlation shared

between IAB and IAc. In Fig. 13(a), the variations of IAB
and IAc as a function of α at TH ¼ 0.01 and ω ¼ 1 are
illustrated. One can observe that IAc ¼ 0 throughout for all
values of α, which makes sense as for very low Hawking
temperatures no particles are generated inside the BH.
However, the situation changes when TH ¼ 10 [see
Fig. 13(b)], namely both IAB and IAc become nonzero,
but still IAB > IAc except for α ¼ 0 and α ¼ 1. In Fig. 13(c),
IAB and IAc have been plotted as a function of TH at
α ¼ 1=

ffiffiffi
2

p
and ω ¼ 1. It shows that with an increase

in Hawking temperature, IAB monotonically decreases,
whereas IAc increases from zero. For sufficiently large

(a) (b)

(c) (d)

FIG. 11. FOC [DðρABcÞ] (dashed red), CF [FðρABcÞ] (solid
green), GC [QðρABcÞ] (dot-dashed blue), QC [CðρABcÞ] (solid
black) and D2ðρABcÞ þ FðρABcÞ (thin-solid gray) as a function of
α for ω ¼ 1 at TH ¼ 0.01 (a), TH ¼ 1 (b), TH ¼ 10 (c), and
TH ¼ 100 (d).

(a) (b)

FIG. 12. FOC [DðρABcÞ] (dashed-red), CF [FðρABcÞ] (solid-
green), GC [QðρABcÞ] (dot-dashed blue), QC [CðρABcÞ] (solid
black) and D2ðρABcÞ þ FðρABcÞ (thin-solid gray) as functions of
TH and ω with α ¼ 1=

ffiffiffi
2

p
. (a) ω ¼ 1 and (b) TH ¼ 0.1.

(a) (b)

(d)(c)

FIG. 13. Mutual information IAB and IAc based on state (29)
with (a) ω ¼ 1; TH ¼ 0.01, (b) ω ¼ 1; TH ¼ 10, (c) ω ¼ 1;
α ¼ 1=

ffiffiffi
2

p
, and (d) TH ¼ 0.1; α ¼ 1=

ffiffiffi
2

p
.
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Hawking temperatures (when the BH approximates to
evaporate completely, TH → ∞), the mutual information
is distributed to the physically inaccessible region. The
converse behaviors of IAB and IAc can be observed when
they are plotted against ω, as shown in Fig. 13(d).

V. SUMMARY AND OUTLOOK

In this study, we conducted a comprehensive investiga-
tion of quantumness near a Schwarzschild black hole,
examining various quantum resources and their interplay in
curved space-time. Our findings, depicted through multiple
plots, reveal intriguing behaviors of quantum coherence,
entanglement, and information correlation across different
scenarios. In the accessible regime characterized by neg-
ligible Hawking temperature (TH ¼ 0.01), the absence of
particle-antiparticle pair production near the event horizon
resulted in minimal entanglement among Dirac particles,
reflected in zero values for quantum coherence, global
concurrence, and concurrence fill. However, a persistent
trade-off relationship between first-order coherence and
concurrence fill underscored the intricate balance between
coherence and entanglement. Transitioning to partially
accessible scenarios with increasing Hawking temperature
(TH ¼ 1 to TH ¼ 100), we observed the emergence of
nonzero concurrence fill and global concurrence, indicating
particle-antiparticle pair creation inside the black hole.
Despite this, concurrence fill remained zero in certain
scenarios, suggesting the absence of genuine entanglement.
Notably, first-order coherence decreased with increasing
Hawking temperature, while quantum coherence, concur-
rence fill and global concurrence exhibited saturation
behavior, highlighting the coherence-entanglement trade-
off. In the completely inaccessible scenario within the black
hole’s event horizon, the mutual information between
external observers and particles inside the black hole
became nonzero, signaling the creation of particle-anti-
particle pairs. These findings deepen our understanding of
quantum effects in curved space-time, shedding light on the
quantum nature of black holes and paving the way for
future investigations into the fundamental principles of
quantum gravity.
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current study.
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APPENDIX: STATES OF SUBSYSTEMS

The states of all subsystems with Θ� ¼ αS2�,
Γ ¼ α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ðω=2THÞ

p
, and ϒ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
would be

expressed as

ρA ¼
�
Θ2þ þ 2Γ2 þ Θ2

− 0

0 ϒ2

�
; ðA1Þ

ρB ¼
�
Γ2 þ Θ2

− 0

0 Θ2þ þϒ2 þ Γ2

�
; ðA2Þ

ρb ¼
�
ϒ2 þ Γ2 þ Θ2

− 0

0 Θ2þ þ Γ2

�
; ðA3Þ

ρC ¼
�
Γ2 þ Θ2

− 0

0 Θ2þ þϒ2 þ Γ2

�
; ðA4Þ

and

ρc ¼
�
ϒ2 þ Γ2 þ Θ2

− 0

0 Θ2þ þ Γ2

�
: ðA5Þ

The state shared by Alice and Bob,

ρAB ¼

0
BBBB@

Γ2 þ Θ2
− 0 0 0

0 Θ2þ þ Γ2 0 0

0 0 0 0

0 0 0 ϒ2

1
CCCCA: ðA6Þ

The state shared by Alice and Charlie,

ρAC ¼

0
BBBB@

Γ2 þ Θ2
− 0 0 0

0 Θ2þ þ Γ2 0 0

0 0 0 0

0 0 0 ϒ2

1
CCCCA: ðA7Þ

The state shared by Bob and Charlie,

ρBC ¼

0
BBB@

Θ2
− 0 0 0

0 Γ2 0 0

0 0 Γ2 0

0 0 0 Θ2þ þϒ2

1
CCCA: ðA8Þ

The state shared between Alice and anti-Bob,

ρAb ¼

0
BBBB@

Γ2 þ Θ2
− 0 0 0

0 Θ2þ þ Γ2 0 0

0 0 ϒ2 0

0 0 0 0

1
CCCCA: ðA9Þ
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The state shared between Bob and anti-Bob,

ρBb ¼

0
BBBB@

Γ2 þ Θ2
− 0 0 ΓðΘþ þ Θ−Þ

0 0 0 0

0 0 ϒ2 0

ΓðΘþ þ Θ−Þ 0 0 Θ2þ þ Γ2

1
CCCCA: ðA10Þ

The state shared between Alice and anti-Charlie,

ρAc ¼

0
BBBB@

Γ2 þ Θ2
− 0 0 0

0 Θ2þ þ Γ2 0 0

0 0 ϒ2 0

0 0 0 0

1
CCCCA: ðA11Þ

The state shared between Bob and anti-Charlie,

ρBc ¼

0
BBBB@

Θ2
− 0 0 0

0 Γ2 0 0

0 0 ϒ2 þ Γ2 0

0 0 0 Θ2þ

1
CCCCA: ðA12Þ

The state shared between Charlie and anti-Charlie,

ρcC ¼

0
BBBB@

Γ2 þ Θ2
− 0 0 ΘþΓþ Θ−Γ

0 ϒ2 0 0

0 0 0 0

ΘþΓþ Θ−Γ 0 0 Θ2þ þ Γ2

1
CCCCA: ðA13Þ
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