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We explore the consequences of the breaking of diffeomorphism (Diff) invariance in the electromagnetic
sector. We consider the breaking of Diff symmetry down to the subgroup of transverse diffeomorphisms
(TDiff) and analyze its impact on the generation and evolution of cosmic magnetic fields. We show that Diff
breaking induces a breaking of conformal invariance that modifies the way in which magnetic fields evolve
on super-Hubble scales. The effects of the highly conductive plasma in the evolution are also analyzed. We
obtain the magnetic power spectrum today and discuss the parameter regions that yield intergalactic
magnetic fields compatible with current observations.
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Magnetic fields are everywhere in the Universe, yet their
origin remains a mystery to this day [1]. The most agreed-
upon hypothesis is that μG magnetic fields in galaxies and
clusters originated via dynamo amplification [2] of a
primordial seed, although the origin of this seed or the
details of the amplification mechanism also belong to the
unknown. The observation of intergalactic magnetic fields
(IGMFs), which inhabit the voids of the large-scale structure
and thus have not been able to undergo any sort of dynamo
amplification, is key in understanding all the elements in
magnetogenesis.
The strength of large-scale IGMFs is constrained to a

certain range, with almost scale-invariant bounds coming
from two different types of observations; on the one hand,
TeV gamma rays originated in blazars (observed at low
redshift z ∼ 0.2) create electron-positron pairs that cascade
into less energetic secondary gamma rays. The absence of
secondary gamma rays in the GeV range contributing to
the source flux is believed to be due to the presence of
magnetic fields, which bend the trajectory of charged
particles. In [3], using data from Fermi/LAT telescope,
a lower bound on intergalactic magnetic fields of B ≥
10−16 G was obtained, which is independent of correlation
length for sufficiently large scales λB ≥ 1 Mpc. When
considering cascade suppression due to the time delay
of the signal, a more conservative lower bound is found
B ≥ 10−18 G [4]. On the other hand, observations of large-
scale anisotropies in the cosmic microwave background
(CMB) can be translated into an upper limit for the
magnetic field strength [5], which depends on the tilt of
the primordial magnetic field power spectrum [6].

One of the most interesting avenues for the generation
of primordial seeds is the excitation of electromagnetic
vacuum quantum fluctuations during inflation. However,
as shown in [7], the conformal triviality of Maxwell
electromagnetism in Robertson-Walker backgrounds
forces the magnetic field energy density to decay as ρB ∝
a−4 irrespective of the wavelength or plasma effects.
Breaking conformal invariance thus becomes mandatory
for any successful solution [8–10]. In this respect, in
recent years, mainly motivated by the success of unim-
odular gravity [11–17] as a possible solution to the
vacuum energy problem [18], the interest in gravitational
theories that break diffeomorphism (Diff) invariance has
grown [19–22]. In particular, the breaking of Diff sym-
metry down to transverse diffeomorphisms (TDiff) in the
gravitational couplings of matter fields has been explored
in detail in the case of scalar fields [23–26] and for
Abelian gauge fields [27]. There it was found that, while
the small-scale (sub-Hubble) phenomenology remains
unchanged, modes beyond the Hubble horizon can evolve
differently than in Diff theories. In addition, for gauge
fields, breaking down to TDiff also induces conformal
invariance breaking. Precisely, this work aims to analyze
the potential consequences of breaking Diff symmetry on
the generation and evolution of cosmic magnetic fields.
Our starting point is the Abelian gauge field action [27]

S½Aμ� ¼ −
1

4

Z
d4xfðgÞFμνFμν; ð1Þ

which is invariant under transverse diffeomorphisms
x̃μ ¼ xμ þ ξμ, ∂μξ

μ ¼ 0, a subgroup of full diffeomor-
phisms comprised of volume-preserving transformations.
Here, Fμν ¼ ∂μAν − ∂νAμ is the field strength tensor and
fðgÞ is an arbitrary function of the metric determinant
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g ¼ j det gμνj. Notice that for fðgÞ ¼ ffiffiffi
g

p
the standard Diff-

invariant theory is recovered.
The gauge field follows the equations of motion,

∇μ

�
fðgÞffiffiffi

g
p Fμν

�
¼ 0: ð2Þ

which for the magnetic field B with components Bi ¼
1
2
ϵijkFjk in a Robertson-Walker background1

ds2 ¼ bðτÞ2dτ2 − aðτÞ2dx2; ð3Þ

implies the following equation of motion:

B00 −
b2

a2
∇2Bþ

�
ð6f1− 2Þa

0

a
þð2f1− 2Þb

0

b

�
B0 ¼ 0; ð4Þ

where f1 ¼ d log f
d log g (f1 → 1=2 to recover the Diff case) and

primes indicate derivatives with respect to τ. The electric
field E with components Ei ¼ F0i can be derived from
Faraday’s law

B0 þ∇ ×E ¼ 0: ð5Þ

In this model, the energy density of the electromagnetic
field as given by the stress-energy tensor is

ρ ¼ fffiffiffi
g

p
�
1 − f1
a2b2

E2 þ f1
a4

B2

�
; ð6Þ

which indicates that the electric and magnetic fields
gravitate differently for f1 ≠ 1=2.
In the super-Hubble regime, a solution for the electric

and magnetic fields can be readily obtained for a power law
fðgÞ ¼ gα, with α a constant parametrizing the Diff break-
ing. The most general solution that follows the equations of
motion is E ¼ E0a2−6αðτÞb2−2αðτÞ for the electric field,
with E0 a constant vector, and a constant magnetic field B.
By inserting these solutions into the energy density (6), we
see that the electric and magnetic energy densities scale
differently, with the electric part scaling as

ρE ∝ b1−2αa−1−6α; ð7Þ

and the magnetic one as

ρB ∝ b2α−1a6α−7: ð8Þ

Note that in the Diff-invariant case α ¼ 1=2, the depend-
ence on b is erased and both scale as ρ ∝ a−4 as expected.
Therefore, for α ≠ 1=2, it is possible to have a magnetic

field that scales differently to the conformally invariant
scenario.
In what follows, we obtain the power spectrum of the

magnetic field that arises as quantum fluctuations during
inflation. Following [7], we evaluate the spectrum in the
Bunch-Davis vacuum for modes well inside the Hubble
radius and then match it for super-Hubble modes at horizon
crossing.
In the covariant quantization approach (see [27] for more

details), the gauge field can be decomposed as follows:

AμðxÞ ¼
Z

d3k

ð2πÞ3=2
X
λ

h
akλAμ;kλðxÞ þ a†kλA

�
μ;kλðxÞ

i
; ð9Þ

where the sum spans the four polarizations λ ¼ 0;…; 3,
two of which are unphysical. The usual canonical com-
mutation relations imply

½akλ; a†k0λ0 � ¼ −ηλλ0δð3Þðk − k0Þ; ð10Þ

with ημν ¼ diagðþ;−;−;−Þ and all other creation and
annihilation operator commutation relations zero.
In the Wentzel-Kramers-Brillouin approximation, well

inside the Hubble radius, the equations of motion are
solved by the following expression for the positive-fre-
quency modes [27]:

Aμ;kλðxÞ ¼Uμ;kλeiθkλ ¼
ffiffiffiffiffiffiffiffiffiffiffi
b2

2fωk

s
uμ;kλe

ik·x−i
R

τ
ωkðτ0Þdτ0 ; ð11Þ

where the polarization vectors satisfy uμ;kλkμ ¼ 0 and
u�μ;kλu

μ
kλ ¼ ηλλ with the usual dispersion relation

ω2
k ¼

b2

a2
k2: ð12Þ

The Bunch-Davies vacuum j0i is thus defined by

akλj0i ¼ 0; ∀ k; λ: ð13Þ

Using the mode solution in (11), we compute the vacuum
expectation value hρBi from the magnetic part of (6). The
magnetic power spectrum ρBðkÞ is defined as the energy
density per log interval as usual, so that

hρBi ¼
Z

dk
k
ρBðkÞ; ð14Þ

which yields for sub-Hubble modes

ρBðkÞ ¼
f1
2π2

k4

a4
: ð15Þ

Similarly, one can obtain the following expression for the
electric power spectrum

1The time coordinate τ cannot be set a priori to cosmological
or conformal time, as time reparametrizations are not TDiff.
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ρEðkÞ ¼
1 − f1
2π2

k4

a4
: ð16Þ

These energy densities scale as a−4, as expected for a
free massless vector field. Also, the total energy density
(i.e. the sum of the electric and magnetic contributions) is
independent of the TDiff coupling, as the factors f1 cancel
out. This agrees with the fact that, in the sub-Hubble regime
and when the geometric optics approximation is applicable,
the phenomenology of a TDiff-invariant field is analogous
to its Diff-invariant counterpart [27].
At horizon crossing k ¼ aH, which is the very last

moment when the sub-Hubble regime applies, the power
spectrum reads ρBðkÞ ∼H4

I , which is nearly scale-invariant
in a typical inflationary scenario. After horizon crossing,
the energy density acquires the super-Hubble scaling (8),
which must be complemented by an expression for the
lapse function in terms of the scale factor b ¼ bðaÞ. Such
an expression can be derived from the energy conservation
equations ∇μTμν ¼ 0, which are not fulfilled on solutions
to the field equations but must be for Einstein’s equations as
per Bianchi identities. For sub-Hubble modes, the energy-
momentum tensor is conserved for any b [27], so we need
to look at super-Hubble modes only. For these, the ratio of
electric to magnetic energy density is given by

ρEðkÞ
ρBðkÞ

����
super−Hubble

¼ 1 − α

α

�
g
gk

�
1−2α

; ð17Þ

with gk ¼ gðak; bkÞ the metric determinant at horizon
crossing. Here we can see that, depending on the value
of α (for α ≠ 1=2), either the electric or magnetic energy
density will dominate not long after the mode crosses the
horizon. The conditions for magnetic field domination,
while ensuring a positive magnetic energy density, are

jρBj ≫ jρEj∶
�
g0 > 0; α > 1=2

g0 < 0; 0 < α < 1=2:

In this case, the energy conservation yields [27]

CBa4 ¼ gα; ð18Þ

for α ≠ 1=2 with CB a constant. This implies b ∝ að2−3αÞ=α,
so the metric determinant g ¼ b2a6 ∝ a4=α, which satisfies
g0 > 0 if a0 > 0 (expanding universe) and α > 0. Therefore,
considering the magnetic condition only is correct for
expanding universes and α > 1=2. In this case, the mag-
netic energy density scales as

ρB ∝ a−2=α; ð19Þ

whereas the electric energy density (16) satisfies ρE ∝
a2=α−8. Thus we see that for α > 1=2 the magnetic energy

density on super-Hubble scales dilutes more slowly than in
the Diff invariant case.
Up to this point, we have only considered the free

electromagnetic field in an expanding universe. However,
for most of the known thermal history of the Universe, there
has been a large density of electrically charged particles,
which results in a universe featuring a large conductivity σc.
In order to account for this fact, we need to introduce the
interactions of the gauge field.
Let us consider the gauge coupling to a spinor field,

which we write in the following way:

S ¼
Z

d4x

�
fðgÞ

�
−
1

4
FμνFμν þ i

2
ðΨ̄=DΨ − =DΨ̄ΨÞ

�

þ fCðgÞ½−qΨ̄=AΨ�
�
: ð20Þ

whereDμ denotes the covariant derivative acting on spinor
fields and we have allowed for a different coupling function
fCðgÞ in the interaction term. In order to study the coupling
between the two fields, we first need to write the free action
in its canonical form. Let us write the free action as

S¼
Z

d4xfðgÞL½Φ; gμν� ¼
Z

d4x
ffiffiffi
g

p fðgÞffiffiffi
g

p L½Φ; gμν�; ð21Þ

which depends on the metric tensor and the fields
Φ ¼ fAμ;Ψg. Let us consider the transformation to a
system of coordinates x̃μ in which the metric becomes
the flat metric g̃μν ¼ ημν in a Minkowskian neighborhood
M. In this new system of coordinates, since d4x

ffiffiffi
g

p
and L

are both scalars under general coordinate transformations,
the action reads,

S ¼
Z
M

d4x̃
fðgÞffiffiffi

g
p L½Φ̃; ημν�; ð22Þ

where the transformation of the factor fðgÞ= ffiffiffi
g

p
is unknown

unless we specify an explicit form for fðgÞ, which will
determine its scalar weight. Therefore, we leave this factor
as is, which should be rewritten in terms of the new
coordinates. Since the free action is quadratic in the fields,
the canonically normalized fields read

Φ̂ ¼
�
fðgÞffiffiffi

g
p

�
1=2

Φ: ð23Þ

In addition, in order to prevent the evolution of the
coupling constant, which could allow it into the strong
coupling regime,2 the coupling function of the interaction

2Notice that for α > 1=2, as required for magnetic amplifica-
tion, fðgÞ= ffiffiffi

g
p

grows as að4−2=αÞ so that if today g0 ¼ 1 we would
have a strong coupling problem during inflation [9].
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term needs to be

fCðgÞ ¼
f3=2ðgÞ
g1=4

; ð24Þ

which also prevents violation of local position invariance
for the charge from happening. With this choice, the action
written in terms of the canonically normalized fields finally
reads in the Minkowskian neighborhood,

S ¼
Z
M

d4x

�
−
1

4
F̂μνF̂

μν þ i
2
ð ¯̂Ψ=∂Ψ̂ − =∂ ¯̂Ψ Ψ̂Þ − q ¯̂Ψ =̂A Ψ̂

�
;

ð25Þ

which is gauge invariant in M, i.e. at the leading adiabatic
order in which terms involving metric derivatives are
negligible compared to those involving derivatives of the
fields.
Conductivity is accounted for by introducing a current

proportional to the electric field as per Ohm’s law [28]

ĵμ − uμuνĵ
ν ¼ σcF̂

μνuν; ð26Þ

where σc is the conductivity of the plasma. Naturally,
the quantities that appear in Ohm’s law are the canonical
fields, and the canonical current ĵμ can be read from the
action (25)

ĵμ ¼ q ¯̂ΨγμΨ̂: ð27Þ

In terms of the original fields, Ohm’s law reduces to
ji ¼ bσcFi0 for a neutral plasma uμjμ ¼ 0, which intro-
duces a conductivity term in the right-hand side of (4),

B00 −
b2

a2
∇2Bþ

�
ð6f1− 2Þa

0

a
þð2f1− 2Þb

0

b

�
B0 ¼−bσcB0:

ð28Þ

A very high conductivity σc → ∞ requires the magnetic
field to be constantB0 → 0, which makes the magnetic field
behave as in the super-Hubble regime. This also applies in
the sub-Hubble regime as long as aσc ≫ k, which can be
identified as the overdamped regime.
Following [7], let us study the effect of conductivity on

the different modes. We are interested in magnetic fields of
comoving size λ ¼ 2π=k≳ 0.1 Mpc, so we shall estimate
whether conductivity dominates before the present moment
for such modes. Starting at some point during reheating,
conductivity is very high until electron-positron annihilation
at Tann ¼ me ≃ 0.5 MeV. Conductivity can be estimated as
σc ∼ Xeme=e2, where Xe is the ratio of free electrons per
photon and the charge of the electron is e2 ¼ 4πα ∼ 1=10.
The lowest value Xe acquires is Oð10−13Þ, which happens
after recombination, so σc ≳ 10−12me. We compare this

value to the wave number of modes that enter the horizon up
to today,

σc
k=a

����
sub

≳ σc
ðk=aÞann

¼ σc
Hann

∼
σc

T2
ann=MP

≳ 1011 ≫ 1; ð29Þ

where “sub” refers to sub-Hubble modes only, so conduc-
tivity stays high until today.
Following Fig. 1, let us review the complete evolution

of a mode ρBðkÞ. During inflation, the fluctuations of the
magnetic field get excited and the power spectrum
acquires the following value at the first horizon crossing
a ¼ a1 ¼ k=HI:

ρBðkÞja¼a1 ¼ ρBðk ¼ aHIÞ ¼
f1
2π2

H4
I : ð30Þ

Thus, if the magnetic field dominates over the electric
field, this energy density evolves as (19) ρB ∝ a−2=α, with
α > 1=2. This scaling holds until today for intergalactic-
size modes, either because the mode is super-Hubble or
because the conductivity is very high so we just need to
evaluate it at the moment a we are interested in. Scaling the
energy density, we have

ρBðkÞ ¼
α

2π2
H4

I

�
k

aHI

�
2=α

; ð31Þ

with the particular case a ¼ a0 ¼ 1 for the energy den-
sity today.
The magnetic power spectrum can also be defined as [1]

PBðkÞ ¼
2π2

k3
ρBðkÞ ∝ k

2
α−3; ð32Þ

FIG. 1. Evolution of the Hubble radius (in red) and the physical
wavelength of a mode with comoving wave number k (in blue).
The yellow striped region corresponds to a high conductivity
period, which starts during reheating and ends at scale factor ac.
Scale factors for nth horizon crossing an and today a0 are also
labeled.
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which displays a tilt

nB ¼ 2

α
− 3: ð33Þ

The magnetic field intensity today at a certain comoving
scale λ, which follows from (6), reads

Bλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρB;0ðkÞ

α

r ����
k¼2π

λ

: ð34Þ

By substituting the energy density, one can obtain the
following expression:

Bλ ¼
1.3 μG

ð2.5×1050Þð1−αÞ=α
�

HI

1013 GeV

�2α−1
α

�
Mpc
λ

�
1=α

; ð35Þ

which allows for values of the magnetic field of the order of
the μG at galactic scales for α ≃ 1. These expressions
encapsulate the following features of the magnetic power
spectrum:
(1) The spectrum can be either red or blue-tilted, with

−1 ≤ nB ≤ 1 for the range 1
2
≤ α ≤ 1.

(2) The energy density depends on the inflation scale as
ρB ∝ H4−2=α

I , so it grows larger for large inflation
scales. On top of that, the larger α is, the more it
grows with the inflation scale. This is depicted
in Fig. 2.

(3) The magnetic field intensity is enhanced for larger α,
which is caused by the ratio k=HI being typically
very small. This can also be seen in Fig. 2.

In Fig. 2, we plot the predicted magnetic field intensity
today (34) for a scale of λ ¼ 1 Mpc together with the
current large-scale bounds on IGMFs. We see that a TDiff-
invariant electromagnetic sector could produce the observed
values for IGMFs with a minimal inflationary scenario,
provided the Diff-breaking parameter α≳ 0.8 and the
inflation scale is sufficiently high.
The lower bound in Fig. 2 is given by blazar observations

by Fermi/LAT [3], which are low-redshift events, so we can
use the bounds directly in our model. The upper bounds,
however, come from limits on CMB anisotropies [5] which
have been scaled up to today ρCMB

B ¼ ρB;0a−4CMB. Since the
magnetic energy density scales differently in our model
ρCMB
B ¼ ρB;0a

−2=α
CMB, we have adapted the bound in order to

reflect the different dilution between the last scattering
surface and the present time. Moreover, these CMB bounds
depend on magnetic power spectrum tilt, which is related to
our parameter α (33). In [6], the dependence of the CMB
bounds on the tilt was examined, which showed that blue-
tilted power spectra are more restricted. In particular, they
found B1 Mpc ≲ 1 nG for nB ¼ 1 and B1 Mpc ≲ 6 nG for
nB ¼ −1 at 2σ level, with a somewhat linear regression
between the two. We have translated these limits when
computing the CMB limits in the plot. Thus we see that the
maximum value that TDiff models can produce in the
1=2 < α ≤ 1 range and that is compatible with the CMB
bound is B1 Mpc ¼ 2.6 μG, which is of the order of
observed galactic magnetic fields.
In conclusion, the breaking of Diff invariance offers an

interesting framework to analyze the problem of the origin
of cosmic magnetic fields. The estimates presented in this
work suggest that a restricted (TDiff) symmetry of the
electromagnetic sector could play a role in their evolution
and possible amplification after inflation.

This work has been supported by the MICIN (Spain)
Project No. PID2022-138263NB-I00 funded by MICIU/
AEI/10.13039/501100011033 and by ERDF/EU. A. D.M.
acknowledges financial support by the Ministerio de
Ciencia, Innovación y Universidades (Spain) through a
Formación de Profesorado Universitario (FPU) Fellowship
No. FPU18/04599.

FIG. 2. Magnetic field intensity Bλ today (in Gauss) for a mode
of wavelength λ ¼ 1 Mpc, as a function of the inflation scale HI
and the Diff-breaking paramater α. The upper right blue dotted
region indicates the region excluded by large-scale CMB ob-
servations. The bottom red striped region corresponds to values
B1 Mpc ≲ 10−16 and B1 Mpc ≲ 10−18 G, excluded by blazar ob-
servations, depending on whether the least conservative bound is
chosen or not, respectively (see text for details). We do not plot
all values down to α ¼ 1=2 as they are excluded by blazar
observations.
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