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In this article, we investigate a coupled phantom dark-energy cosmological model in which the coupling
term between a phantom scalar field with an exponential potential and a pressureless dark-matter fluid is
motivated by the warm inflationary paradigm. Using methods of qualitative analysis of dynamical systems,
complemented by numerical solutions of the evolution equations, we study the late-time behavior of our
model. We show that contrary to the uncoupled scenario, the coupled phantom model admits accelerated
scaling solutions. However, they do not correspond to a final state of the Universe’s evolution and,
therefore, cannot be used to solve the cosmological coincidence problem. Furthermore, we show that, for
certain coupling parameter values, the total equation-of-state parameter’s asymptotic behavior is
significantly changed when compared to the uncoupled scenario, allowing for solutions less phantom
even for steeper potentials of the phantom scalar field.
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I. INTRODUCTION

Modern cosmology has received tremendous attention
from the scientific community due to the availability of a large
number of astronomical probes. The discovery of the cosmic
microwave background radiation [1] demanded a theory for
our early Universe, and inflation [2,3]—an accelerating
expansion of the Universe during its early time—served as
a potential proposal for explaininganumber of earlyUniverse
puzzles. At the end of the 1990s, Supernovae Type Ia
observations revealed that our Universe is presently experi-
encing another phase of accelerating expansion [4,5]. This
late accelerating expansion was further confirmed by other
complementary observations [6], and as a consequence, a
theory for describing this phenomenon became essential.
To explain the present-day accelerating expansion of the

Universe, two common approaches are usually put forward.
One is the introduction of some hypothetical dark energy
(DE) fluid with large negative pressure in the context of
Einstein’s General Relativity (GR) [7–10]. Alternatively,
modifying GR or introducing new gravitational theories
beyond GR in various ways can explain this late-time
accelerating expansion; such models are widely known as

modified gravity (MG) models [11–19] and sometimes the
resulting fluid in this sector mimicking the behavior of DE
is known as geometrical DE. The concepts of DE and MG
introduced plenty of cosmological models in the literature,
which have been widely investigated with various astro-
nomical probes [7–19]. However, based on up-to-date
observational evidence, the actual reason for this accel-
erating expansion—DE, geometrical DE, or any other
alternative—is not yet known. Additionally, a significant
amount of nonluminous dark matter (DM), which is
responsible for structure formation, exists in our Universe.
A small amount of the total energy density (∼4%) is
contributed by baryons, photons, and neutrinos. Thus, the
dynamics of our Universe is dominated mainly by DM and
DE (geometrical DE). Now, when considering a wide
variety of cosmological scenarios accounting for both
DM and DE (or geometrical DE), a large span of obser-
vational data is in favor of a simple cosmological scenario
constructed within the context of GR plus a positive
cosmological constant Λ, the so-called ΛCDM cosmologi-
cal model. In this model, DM is a pressureless non-
relativistic fluid (i.e., cold DM abbreviated as CDM) and
Λ serves as DE. Additionally, in this cosmological setup,
DE and DM each have their own conservation equations,
meaning that they evolve independently with the expansion
of the Universe. However, ΛCDM has faced some chal-
lenges in the past, such as the cosmological constant
problem [20] and the cosmic coincidence problem [21].
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Furthermore, according to recent observational data, cos-
mological tensions are also challenging the standard
ΛCDM model, leading to the argument that this model
is probably an approximate version of a more realistic
theory which is not yet known [22]. Thus, an extension of
the ΛCDM cosmology is welcome in order to tackle these
problems.
One of the generalizations of theΛCDM cosmology is the

theory of interacting DE or coupled DEwhere an interaction
(i.e., energy exchange mechanism) between DM and DE is
allowed. Interacting cosmologies have many attractive con-
sequences, e.g., the alleviation of the cosmic coincidence
problem [23–28], phantom crossing [29–32], and reconcil-
ing the cosmological tensions [33–39]. The above interesting
outcomesmotivatedmany researchers towork on interacting
cosmologies, and since the beginning of the 21st century to
the present date, a multitude of interacting cosmological
models have been studied [23,24,35,36,40–78]. The heart of
interacting cosmologies is the coupling function or the
interaction rate (also known as the interaction function) that
controls the energy flow between the dark sectors. As the
interaction function modifies the evolution of the dark
components at the background and perturbation levels, the
choice of the interaction function is of great importance.
In the present article, we consider an interacting scenario

between a phantom DE scalar field and a pressureless DM
fluid in which the interaction is motivated by the warm
inflationary paradigm.1 We analyzed such a model using
dynamical system techniques. Note that, because the total
energy of the phantom field is unbounded from below, this
model should be viewed as phenomenological, appropriate
only to describe the late-time evolution of the Universe.
According to the warm-inflationary paradigm [79] (see

also [80]), energy is continuously transferred from an
inflaton field ψ to a radiation bath, and hence, the energy
density of the radiation sector, ρR, is not thinned out during
the inflationary expansion. As a result of this energy
transfer, a postinflationary radiation-dominated phase is
found without the need for a reheating period, which is
essential in the standard inflationary scenario [2,3].
Therefore, in the warm inflationary paradigm, assuming
the well-known Friedmann-Lemaître-Robertson-Walker
(FLRW) geometry for the background, the evolution
equations for the inflaton field and the radiation sector
require a dissipative term as follows:

ψ̇ ψ̈ þ3Hψ̇2 þ ∂V
∂ψ

ψ̇ ¼ −Γψ̇2; ð1Þ

ρ̇R þ 4HρR ¼ Γψ̇2; ð2Þ

where H is the Hubble parameter, V ¼ VðψÞ denotes the
potential of the inflaton field, and Γ is the dissipation
coefficient. In general, Γmight be a function of the inflaton
field and the temperature T of the radiation bath, meaning
that Γ ¼ Γðψ ; TÞ. The warm-inflationary paradigm has
received considerable attention from the scientific commu-
nity with both positive and negative comments (see
Ref. [80] and the references therein). Since most cosmo-
logical theories have been challenged, and this reveals
indeed a fruitful progress of science, we avoid the criticisms
on warm inflation and focus ourselves, in the present work,
on the interacting dynamics in which the interaction
function finds its motivation in the warm inflationary
theory.
This article is organized as follows. In Sec. II, we provide

a detailed review of the uncoupled phantom DE cosmo-
logical model. Then, in Sec. III, we present our coupled
phantom DE cosmological model, in which the interaction
term between DE and DM is inspired by the warm
inflationary paradigm. For this model, we carry out a
thorough dynamical system analysis and present the results.
Finally, in Sec. IV, we conclude the article by highlighting
the key findings.

II. UNCOUPLED PHANTOM DARK ENERGY

In this section, the uncoupled phantom DE cosmological
model is briefly reviewed (for more details, see [81–88] and
the references therein).
We assume the flat FLRW metric that takes the form

ds2 ¼ −dt2 þ a2ðtÞdΣ2; ð3Þ

where aðtÞ denotes the expansion scale factor of the
Universe and dΣ2 is the metric of the three-dimensional
Euclidean space.
We further assume that the gravitational sector of the

Universe is described by Einstein’s GR and the matter
sector, minimally coupled to gravity, comprises a pressur-
eless DM fluid with energy density ρDM and a phantom DE
scalar field ϕ with an exponential potential

VðϕÞ ¼ V0e−λκϕ; ð4Þ

where V0 and λ are positive constants of dimension ðmassÞ4
and ðmassÞ0, respectively, and the notation κ ≡ ffiffiffiffiffiffiffiffiffi

8πG
p ¼ffiffiffiffiffiffi

8π
p

=mp (here mp stands for the Planck mass) has been
used. We neglect radiation and baryons and their influence
on the Universe’s late-time evolution.
Under the above assumptions, the evolution equations

for the uncoupled phantom DE cosmological model
become

H2 ¼ κ2

3

�
−
ϕ̇2

2
þ VðϕÞ þ ρDM

�
; ð5Þ

1The cosmological model, in which a quintessence DE scalar
field interacts directly with a pressureless DM fluid through a
dissipative term inspired by warm inflation, was studied in
Ref. [75].
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Ḣ ¼ −
κ2

2
ð−ϕ̇2 þ ρDMÞ ð6Þ

ϕ̈þ 3Hϕ̇ −
∂VðϕÞ
∂ϕ

¼ 0; ð7Þ

ρ̇DM þ 3HρDM ¼ 0; ð8Þ

where H ¼ ȧ=a is the Hubble parameter, an overdot
denotes a derivative with respect to cosmic time t, and
the energy density and pressure of the phantom scalar field
are given by

ρϕ ¼−
ϕ̇2

2
þVðϕÞ and pϕ ¼−

ϕ̇2

2
−VðϕÞ; ð9Þ

respectively.
Introducing the dimensionless variables

x¼ κϕ̇ffiffiffi
6

p
H

and y¼ κ
ffiffiffiffi
V

p
ffiffiffi
3

p
H
; ð10Þ

and a new time variable η, defined as

dη
dt

¼ H; ð11Þ

the above evolution equations yield the two-dimensional
autonomous dynamical system

xη ¼ −
ffiffiffi
6

p

2
λy2 −

3

2
xð1þ x2 þ y2Þ; ð12aÞ

yη ¼
�
−

ffiffiffi
6

p

2
λxþ 3

2
ð1 − x2 − y2Þ

�
y; ð12bÞ

where the subscript η denotes the derivative with respect to
η ¼ lnða=a0Þ and a0 refers to the present value of the scale
factor. Note that the variable η is nothing more than the
number of e-folds N, a convenient measure of the expan-
sion of the Universe.
From the Friedmann equation (5), the DM density

parameter ΩDM, defined as the ratio between ρDM and
the critical density 3H2=κ2, can be expressed in terms of the
dimensionless variables x and y as

ΩDM ¼ 1þ x2 − y2; ð13Þ

and hence, the DE density parameter, defined as
Ωϕ ¼ κ2ρϕ=3H2, can be expressed as

Ωϕ ¼ −x2 þ y2 ¼ 1 −ΩDM: ð14Þ

Taking into account that the energy density and the
pressure of the phantom scalar field are given by Eq. (9),

the phantom equation-of-state parameter wϕ ¼ pϕ=ρϕ and
the total equation-of-state parameter wtot ¼ ðpϕ þ pDMÞ=
ðρϕ þ ρDMÞ can be expressed in terms of the dimensionless
variables x and y as

wϕ ¼ x2 þ y2

x2 − y2
; ð15Þ

wtot ¼ −ðx2 þ y2Þ: ð16Þ

Using the dynamical system (12), the evolution equation
for the DM density parameter can be written as

ΩDM;η ¼ −3ðx2 þ y2ÞΩDM; ð17Þ

implying that the hyperbolas y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
are invariant

manifolds, i.e., they are not crossed by phase-space orbits.
Inspection of Eq. (12b) further reveals that y ¼ 0 is also an
invariant manifold. Since ΩDM is non-negative by defini-
tion (y2 ≤ 1þ x2) and we are interested in noncontracting
cosmological solutions (y ≥ 0), the phase space of the
dynamical system (12) is given by

R2 ¼ fðx; yÞ∈R2∶ y ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; y ≥ 0g: ð18Þ

Note that the phantom equation-of-state parameter (15)
becomes infinite for y2 ¼ x2. This is a direct consequence
of the fact that, due to the negative sign in the kinetic-
energy term, the total energy of the scalar field is no longer
bounded from below, implying, from a quantum point of
view, the appearance of ghosts in the theory, and, from a
classical perspective, the instability of the equation-of-
motion solutions under small perturbations [89]. After
analyzing the stability of the critical points of the dynamical
system (12) and describing the phase-space orbits, we shall
return to this issue.
The dynamical system (12), in the finite region of the

phase space, has just two critical points, A0 and A1. Their
properties (existence, eigenvalues, stability, and various
cosmological features) are highlighted in Table I.
The critical point A0 is located at the origin (0, 0) of the

phase space and always exists independently of the λ
parameter’s value. It represents a matter-dominated cos-
mological solution (ΩDM ¼ 1) with decelerated expansion
(wtot ¼ 0). Since the eigenvalues of the Jacobian matrix of
the dynamical system (12) are nonzero and have opposite
signs, linear stability theory indicates that A0 is a saddle
point. In summary, this critical point corresponds to a DM-
dominated decelerated phase of the Universe’s evolution.
The critical point A1 also exists for any value of the

parameter λ. It lies on the hyperbola y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
and

represents a solution completely dominated by DE
(Ωϕ ¼ 1). Becausewtot < −1=3 for any value of λ, it always
corresponds to an accelerating solution. Since both the
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eigenvalues are negative, A1 is a global attractor. Therefore,
this critical point corresponds to a DE-dominated late-time
accelerating solution.
To reproduce the succession of cosmological eras

observed in the late-time evolution of the Universe, namely,
a matter-dominated era long enough to allow for structure
formation followed by an accelerated era dominated by
phantom DE, phase-space orbits must first approach the
critical point A0, staying close to it long enough, and only
then head to the critical point A1 (see Fig. 1).
Note, however, that such orbits, coming from an infi-

nitely far region of the phase space, obligatorily cross the
lines x ¼ y or x ¼ −y, where the phantom equation-of-
state parameter (15) diverges. Therefore, we shall attribute
physical meaning to the solution only after the occurrence
of this singularity, implying that the phantom DE model
should be viewed as a phenomenological model describing
the late-time evolution of the Universe [90].
To conclude this section, let us point out that the phase

space of the dynamical system (12) can be compactified
(see, for instance, Ref. [90]). However, because of the
circumstances described in the previous paragraph, such a

procedure is not needed to fully understand the behavior of
the orbits of cosmological relevance.

III. COUPLED PHANTOM DARK ENERGY
MOTIVATED BY WARM INFLATION

Let us now turn to the coupled phantom DE cosmo-
logical model. The cosmological scenarios in which a
phantom DE scalar field directly interacts with the DM
component generalize the uncoupled phantom DE model
presented in Sec. II. The interaction function characterizing
the energy transfer between the phantom DE and DM plays
the key role in this context. Given that there is currently no
fundamental theory that specifies the exact form of the
interaction function between DE and DM, one must resort
to a phenomenological approach, considering different
couplings with different physical motivations. In this work,
we shall consider an interaction function motivated by the
warm inflationary scenario. Other choices of the interaction
function have been considered in Refs. [91,92].
For the coupled phantom DE cosmological model, the

evolution equations are the same as for the uncoupled case
of Sec. II, with the exception that Eqs. (7) and (8) now
become

ϕ̈þ 3Hϕ̇ −
∂V
∂ϕ

¼ −
Q

ϕ̇
; ð19Þ

ρ̇DM þ 3HρDM ¼ −Q; ð20Þ

where Q is the interaction term between the phantom DE
scalar field and the DM fluid, determining the energy flow
between them. For Q > 0, the energy flows from DM to
phantom DE, while Q < 0 indicates an energy flow in the
opposite direction, i.e., from the phantom scalar field to the
DM fluid.
As in Sec. II, we assume the phantom scalar field to have

the exponential potential given by Eq. (4).
Inspired by warm inflation, we choose the coupling

between DE and DM to be of the form [75]

Q ¼ Γϕ̇2; ð21Þ

where Γ is a nonzero constant having the dimension of the
Hubble rate.
Let us now write the evolution equations, Eqs. (5), (6),

(19), and (20) for the coupled phantom DE cosmological

FIG. 1. Phase portrait of the dynamical system (12). A0 and A1

denote the DM-dominated and DE-dominated critical points,
respectively. In color/shaded highlighted regions, the Universe’s
expansion is accelerated, with wtot < −1 (blue color, dark
shading) and −1 < wtot < −1=3 (red color, light shading). Orbits
starting near A0 and converging to A1 correspond to the
Universe’s transition from a past decelerating matter-dominated
phase to the present accelerating phase. The dotted black lines
correspond to y ¼ �x where the phantom equation-of-state
parameter wϕ diverges. In this figure, we have considered
λ ¼ 2; for other values of this parameter, one would get similar
graphics.

TABLE I. Critical points of the dynamical system (12) and their properties for the uncoupled phantom DE
cosmological model.

Critical point Existence Eigenvalues Stability Ωϕ ΩDM wtot Acceleration

A0ð0; 0Þ Always ð− 3
2
; 3
2
Þ Saddle 0 1 0 Never

A1

�
− λffiffi

6
p ;

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

6

q �
Always ð−3 − λ2;−3 − λ2

2
Þ Attractor 1 0 −1 − λ2

3
Always
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model as a dynamical system. Since the interaction term Q
cannot be written as a function of the dimensionless
variables of x and y, introduced in Eq. (10), one extra
variable z is needed to close the dynamical system, which,
therefore, becomes three-dimensional. We choose this extra
variable to be [75]

z ¼ H�
HΩDM þH�

; ð22Þ

where ΩDM is the DM density parameter and H� is a
positive constant representing the Hubble parameter at
some particular instant t ¼ t�.
This choice of z compactifies the phase space in the z

direction, between z ¼ 0 (for H ¼ þ∞) and z ¼ 1 (for
H ¼ 0), but it also introduces a singular term on the
evolution equation for x; namely, the interaction term
becomes proportional to ð1 − zÞ−1, which diverges for
z → 1. To remove this singularity, we choose a new time
variable τ as [75]

dτ
dt

¼ H
1 − z

: ð23Þ

Note that, due to the factor 1 − z, the variable τ does not
have a simple physical interpretation as in the uncoupled
case, where, recall, the variable η, given by Eq. (11) was
simply the e-fold number.
In the variables x, y, z, and τ, the evolution equations (5),

(6), (19), and (20) for the coupled phantom DE cosmo-
logical model give rise to the three-dimensional dynamical
system

xτ ¼
�
−

ffiffiffi
6

p

2
λy2 −

3

2
xð1þ x2 þ y2Þ

�
ð1 − zÞ

− αxð1þ x2 − y2Þz; ð24aÞ

yτ ¼
�
−

ffiffiffi
6

p

2
λxþ 3

2
ð1 − x2 − y2Þ

�
yð1 − zÞ; ð24bÞ

zτ ¼
�
3

2
ð1þ x2 þ y2Þð1 − zÞ þ 2αx2z

�
zð1 − zÞ; ð24cÞ

where the subscript τ denotes a derivative with respect to
this variable and α ¼ Γ=H� is the dimensionless coupling
parameter, taken to be nonzero. Following the convention
of the direction of the energy transfer between the dark
sectors as described above, α > 0 indicates the energy
transfer from the DM sector to the phantom scalar field, and
α < 0 corresponds to the energy transfer in the reverse
direction.
Note that the above dynamical system is invariant under

the transformation x → −x and λ → −λ, allowing us to
assume, without any loss of generality, that the parameter λ

is positive. Therefore, the parameter space of our coupled
phantom DE model is fðα; λÞ∶α ≠ 0; λ > 0g.
In what concerns the DM density parameter ΩDM, the

DE density parameter Ωϕ, the phantom equation-of-state
parameter wϕ, and the total equation-of-state parameter
wtot, they do not depend on the variable z and, therefore, are
given by the same expressions as in the uncoupled case,
namely, by Eqs. (13)–(16), respectively.
Inspection of the dynamical system (24) and the evolu-

tion equation for the DM density parameter,

ΩDM;τ ¼ ΩDM½−3ðx2 þ y2Þð1 − zÞ − 2αx2z�; ð25Þ

shows that the surfaces y ¼ 0, z ¼ 0, z ¼ 1, and y ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
are invariant manifolds. Since we are not

interested in contracting cosmologies (for which H < 0,
implying y < 0) and taking into account that ΩDM ≥ 0, the
phase space of the dynamical system should be restricted to
the region

R3 ¼
n
ðx; y; zÞ∈R3∶ y ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; y ≥ 0; 0 ≤ z ≤ 1

o
:

ð26Þ
This region, however, contains the surfaces x ¼ �y, at
which wϕ diverges, and, furthermore, for y2 < x2 the DE
density parameter Ωϕ becomes negative. To avoid these
unphysical situations, we should further restrict the phase
space to the region

R̄3 ¼
n
ðx; y; zÞ∈R3∶ y ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; y2 ≥ x2;

y ≥ 0; 0 ≤ z ≤ 1
o
; ð27Þ

meaning that our model is only suitable to describe the late-
time evolution of the Universe, that is, the part of the
evolution occurring after the orbits cross the surfaces x ¼ y
or x ¼ −y. This is the same restriction we have already
encountered in the uncoupled scenario (see discussion
in Sec. II).
In the finite region of the phase space,2 the dynamical

system (24) has three critical points, A, B, and C, and two
critical lines, D and E. The qualitative features and the
eigenvalues of these critical points are displayed in
Tables II and III, respectively.
The critical points A and B were already present in the

uncoupled case. However, point B is not an attractor
anymore, but rather a saddle point. The critical point C,
as well as the critical lines D and E, are new, arising due to
the introduction of a direct coupling between the phantom
DE scalar field and the DM fluid.

2As in the uncoupled case, we do not need to study the
dynamical system’s behavior at infinity to describe the solutions
of cosmological relevance. See the discussion at the end of Sec. II.

COUPLED PHANTOM COSMOLOGICAL MODEL MOTIVATED BY … PHYS. REV. D 110, 063529 (2024)

063529-5



The critical point A always exists for all allowed values
of the model parameters α and λ. It corresponds to a matter-
dominated decelerating solution (ΩDM ¼ 1 and wtot ¼ 0).
Since one eigenvalue of the Jacobian matrix of the
dynamical system (24) is negative and the other two are
positive, linear stability theory indicates that A is unstable;
more specifically, it is a saddle point.
The critical point B is also always present, representing a

DE-dominated accelerating solution (Ωϕ ¼ 1, wtot < −1).
Because two eigenvalues are negative and one positive, B is
also a saddle point: all orbits approaching it near the fx; yg
plane are repelled along the z direction.
The critical point C belongs to the phase space only if

α < 0, i.e., only when there is an energy transfer from the
phantom DE scalar field to the DM fluid. This critical point
represents a DE-dominated accelerating solution (Ωϕ ¼ 1,
wtot < −1). Because all eigenvalues are negative, point C,
whenever it exists, is a global attractor to which all orbits
converge asymptotically (see Fig. 2).
The critical line D, consisting of a continuous set of

critical points, exists for all values of the parameters α and
λ. Critical points with 0 < y < 1 correspond to scaling
solutions for which the ratio ΩDM=Ωϕ is nonzero.
Furthermore, these scaling solutions are accelerated if
y > 1=

ffiffiffi
3

p
. However, as shown in the Appendix using

the center manifold theory, these critical points are unstable
for 0 ≤ y < 1 (and any value of α), i.e., they cannot
correspond to a final state for which ΩDM=Ωϕ ≠ 0 and,

therefore, unfortunately, they cannot solve the cosmic
coincidence problem. On the other hand, the critical point
with y ¼ 1 is an attractor (for α > 0), but does not
correspond anymore to a scaling solution, since for it
the DM density parameter vanishes (ΩDM ¼ 0).
Finally, the nonisolated critical points of the lineE, which

exist for all values of the parameters α and λ, correspond to
DE-dominated accelerating solutions (Ωϕ ¼ 1, wtot < −1).
As shown in theAppendix, these critical points are stable for
positive α, i.e., for such values of α, all orbits converge
asymptotically to these points (see Fig. 3).
Among all possible phase-space orbits, only a set

reproduces the succession of cosmological eras observed
in the late-time evolution of the Universe, namely, an era
dominated by matter, long enough to allow for structure
formation, followed by an era of accelerated expansion.
Let us focus our attention on these cosmologically

relevant orbits. They must pass close to the critical point
A to guarantee the existence of a long enough matter-
dominated era and then proceed to the final state, which is
the critical point C if α < 0 or the critical line E if α > 0
(see Figs. 2 and 3).
For α < 0, the final state C has the same x and y

coordinates as the global attractor A1 of the uncoupled case
(see Sec. II), implying that the asymptotic values of the
quantities Ωϕ, ΩDM, wϕ, and wtot, which, recall, depend
only on x and y, coincide in both cases. Therefore, the
introduction of the interaction term (21) between DE and

TABLE II. Properties of the critical points and critical lines of the dynamical system (24) for the coupled phantom
DE cosmological model.

Critical point/line Existence Ωϕ ΩDM wtot Acceleration

Að0; 0; 0Þ Always 0 1 0 Never

B
�
− λffiffi

6
p ;

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

6

q
; 0
�

Always 1 0 −1 − λ2

3
Always

C
�
− λffiffi

6
p ;

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

6

q
; 3ð6þλ2Þ
3ð6þλ2Þ−2αλ2

�
α < 0 1 0 −1 − λ2

3
Always

Dð0; y; 1Þ 0 ≤ y ≤ 1 y2 1 − y2 −y2 1ffiffi
3

p < y ≤ 1

Eðx;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; 1Þ Always 1 0 −1 − 2x2 Always

TABLE III. Stability of the critical points and critical lines of the dynamical system (24) for the coupled phantom
DE cosmological model.

Critical point/line Eigenvalues Stability

Að0; 0; 0Þ ð− 3
2
; 3
2
; 3
2
Þ Saddle (α ≠ 0)

B
�
− λffiffi

6
p ;

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

6

q
; 0
� ð−3 − λ2;−3 − λ2

2
; 3þ λ2

2
Þ Saddle (α ≠ 0)

C
�
− λffiffi

6
p ;

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

6

q
; 3ð6þλ2Þ
3ð6þλ2Þ−2αλ2

� �
αλ4

3ð6þλ2Þ−2αλ2 ;
αλ2ð6þλ2Þ

3ð6þλ2Þ−2αλ2 ;
αλ2ð6þλ2Þ

3ð6þλ2Þ−2αλ2
�

Attractor (α < 0)

Dð0; y; 1Þ ð0; 0;−αð1 − y2ÞÞ Attractor (α > 0, y ¼ 1), Saddle (otherwise)

Eðx;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; 1Þ ð0;−2αx2;−2αx2Þ Attractor (α > 0, ∀ x)
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DM does not seem to influence the late-time evolution of
the Universe if Γ < 0 (α < 0).
Quite different is the situation for α > 0. Here, the x and

y coordinates of the final state E may not coincide with the
corresponding coordinates of the global attractor of the
uncoupled case, leading to different late-time behaviors of
Ωϕ, ΩDM, wϕ, and wtot. More specifically, orbits that, after
passing near A, proceed first to the vicinity of B and only
then head to the final state at the critical line E, correspond
to cosmological solutions similar to those obtained in the
uncoupled case. On the contrary, orbits that, after passing
near A, proceed directly to the final state, end up on a
critical point not lying above B, and consequently yield
different late-time behaviors for the above-mentioned
physical quantities. These two types of orbits can be easily
identified in Fig. 3.

Let us analyze in more detail the late-time behavior of
Ωϕ, ΩDM, wϕ, and wtot for α > 0, considering three
examples for which α ¼ 1 and λ ¼ 1.88, 2.08, and 2.95
(see Fig. 4). In all cases, we choose initial conditions at
τ ¼ −8 such that all solutions yield Ωϕð0Þ ≈ 0.69 and
wtotð0Þ ≈ −1.03, in agreement with observations.3

For λ ¼ 1.88, the corresponding phase-space orbit passes
very close to B, implying that the x coordinate at the final
state is xf ≈ −0.76, almost the samevalue as the x coordinate
of the critical point B, xB ≈ −0.77. Therefore, the total
equation-of-state parameter has similar asymptotic values in
the coupled and uncoupled cases, namely, wtot ≈ −2.16 and
−2.18, respectively.
For λ ¼ 2.08, the orbit does not pass near B, heading

directly to a final state with an x coordinate, xf ≈ −0.70,
quite different from the x coordinate of the critical point B,
xB ≈ −0.85. This circumstance implies that the asymptotic
value of the total equation-of-state parameter, wtot ≈ −1.98,
becomes noticeably higher than the corresponding value in
the uncoupled case, wtot ≈ −2.44. In other words, a direct
energy transfer from DM to phantom DE results in a
solution which is less phantom.
This difference between the coupled and uncoupled

cases is more pronounced in the case λ ¼ 2.95, in which
the corresponding phase-space orbit heads even more
directly to the final state, yielding xf ≈ −0.62 and
wtot ≈ −1.77, while in the uncoupled case these values
are xB ≈ −1.20 and wtot ≈ −3.90.
The above results can be summarized as follows. In the

uncoupled phantom model, the equation-of-state parame-
ter’s asymptotic value is determined solely by λ, namely,
wtot ¼ −1 − λ2=3 (see Table I). Thus, as λ increases, wtot
becomes more negative, leading to a solution that is more
phantom. When the direct coupling (21) with Γ > 0
(α > 0) is introduced in the evolution equations, the
equation-of-state parameter depends not only on λ but also
on the energy exchange between DE and DM. As a result,
the asymptotic behavior of wtot is reversed when compared
to the uncoupled case, namely, wtot increases with increas-
ing λ, making the solution less phantom.
To conclude this section, let us point out that outside the

phase space R̄3, on the boundary of the region R3, defined
in Eq. (26), for α < 0, there are two more critical points,
namely, F�ð�1; 0; 3=ð3 − 2αÞÞ. Such critical points attract
a set of orbits, which, instead of converging to the phantom
final state C, end up in the unphysical region y < �x. Such
a circumstance would require, in general, the imposition of

FIG. 2. Phase portrait of the dynamical system (24) for α ¼ −1
and λ ¼ 2. For negative values of the parameter α, the global
attractor is the critical point C, representing a phantom accel-
erating solution for which wtot < −1.

FIG. 3. Phase portrait of the dynamical system (24) for α ¼ 1
and λ ¼ 2. For positive values of the parameter α, the attractor is
the critical line E, representing a phantom accelerating solution
for which wtot < −1.

3From Eq. (23), and considering that z ≈ 0 near the critical
point A, it follows that a matter-dominated era starting at a redshift
of about 3000 corresponds to τ ≳ −8. To guarantee that Ωϕð0Þ ≈
0.69 and wtotð0Þ ≈ −1.03, the initial conditions at τ ¼ −8 were
chosen to be xi ¼ 3.49 × 10−7, yi ¼ 20xi, and zi ¼ 10−7 for
λ¼ 1.88; xi ¼ 7.61×10−7, yi ¼ 20xi and zi ¼ 10−5 for λ¼ 2.08;
xi ¼ 1.32×10−5, yi ¼ 20xi, and zi ¼ 10−3 for λ ¼ 2.95.
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an additional constraint, either on the phase space or on the
parameter space. However, as we have checked numeri-
cally, none of the orbits of cosmological relevance (those
that guarantee a long enough matter-dominated era by
passing near the critical point A) is attracted to these
unphysical critical points, so we can safely ignore them.

IV. CONCLUSIONS

Cosmological models with an energy exchange between
DE and DM have gathered noteworthy attention in the
scientific community because of their rich phenomeno-
logical consequences. It is essential to note that the
dynamics of such coupled cosmological models depend
significantly on the nature of the dark components and the
energy exchange rate between them; since none of these
features is currently known, there is a large freedom in
constructing coupled quintessence and phantom cosmo-
logical models.
In this article, we have considered an interacting scenario

between a pressureless DM fluid and a phantom DE scalar
field with an exponential potential in which the interaction
function is motivated by the warm inflationary paradigm.
More specifically, we have assumed the interaction term Q
to be of the dissipative type, Q ¼ Γϕ̇2, where Γ is a
dissipation coefficient determined by local properties of the
dark-sector interactions. In a first, simplified approach to
this model, we have chosen Γ to be constant, leaving more
general cases for future work.
To understand the salient features of the interacting

dynamics, we have first reviewed the dynamics of the
uncoupled phantom DE cosmological model. Using meth-
ods of qualitative analysis of dynamical systems, we have
shown that this uncoupled model admits a set of cosmo-
logically relevant solutions that reproduce the succession of
cosmological eras observed in the late-time evolution of the
Universe, namely, an era dominated by matter, long enough
to allow for structure formation, followed by the current era
of accelerated expansion. However, contrarily to the
corresponding uncoupled quintessence model [93], there

are no scaling attractor solutions; the unique late-time
attractor in the uncoupled phantom model describes a
Universe completely dominated by phantom DE. Note
also that the asymptotic value of the total equation-of-state
parameter wtot ¼ −1 − λ2=3 is fixed solely by the choice of
the parameter λ, related to the steepness of the potential of
the scalar field.
When the aforementioned direct coupling between the

phantom DE scalar field and the DM fluid is introduced in
the evolution equations, the dynamical system’s phase
space structure changes considerably fromwhat we observe
in the uncoupled scenario, allowing for a different late-time
behavior of the solutions.
First, the dynamical system of the coupled model admits

a set of nonisolated critical points corresponding to
accelerated scaling solutions, i.e., solutions for which
ΩDM=Ωϕ ≠ 0 and wtot < −1=3 (see Table II). However,
since these critical points are unstable for any value of α,
they do not correspond to a final state of the Universe’s
evolution, and hence the coincidence problem cannot be
solved within this particular model. The absence of scaling
attractor solutions is quite common in coupled phantom
cosmological models.4 Indeed, such solutions were proven
not to exist for various interaction terms between DM and
phantom DE, mainly considering an exponential potential
for the phantom scalar field [92,94–96], but also power-law
and hyperbolic potentials [95,97]. However, scaling attrac-
tor solutions have been found for specific interaction
terms [92,94], although in one instance at the expense of
fine-tuning the model parameters [92]. It is unclear why
phantom DE appears to favor the absence of scaling
attractor solutions, even in models where the interaction
term allows for a substantial transfer of energy from the

FIG. 4. Evolution of Ωϕ, ΩDM, wϕ, and wtot for α ¼ 1 and different values of λ ¼ 1.88, 2.08, and 2.95 (left to right panels). Initial
conditions at τ ¼ −8 (redshift of about 3000) are such that all solutions yield Ωϕð0Þ ≈ 0.69 and wtotð0Þ ≈ −1.03. In all cases, the matter-
dominated era is long enough to allow for structure formation. Contrarily to the uncoupled scenario, the smaller the parameter λ, the
more phantom the solution is.

4It might be interesting to note that in some coupled DM-DE
scenarios where the coupling function has sign shifting nature
and DE behaves like a phantom fluid (without being a phantom
scalar field), one can obtain accelerated scaling solutions which
are stable [77], and hence, these coupled DE-DM scenarios can
alleviate the coincidence problem.
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phantom DE to the DM fluid. This is an issue that warrants
further investigation.
Second, for α > 0 (indicating an energy transfer from

DM to phantom DE), the asymptotic value of the total
equation-of-state parameter wtot is no longer fixed uniquely
by the choice of λ, as in the uncoupled scenario. Instead, it
also depends on the energy exchange between the dark
components. Our dynamical system analysis shows that, in
the coupled scenario, the phase-space orbits asymptotically
converge to a critical line, ending up at different points of
this line. To each of these points corresponds a different
asymptotic value of wtot, namely, wtot ¼ −1 − 2x2f, where
xf is the x coordinate of the point. The asymptotic values of
wtot are such that higher values of λ correspond to solutions
less phantom, which is exactly the opposite of what
happens in the uncoupled scenario. Therefore, a direct
energy transfer from DM to DE through a dissipative term
inspired by warm inflation significantly alters the late-time
behavior of the phantom DE cosmological model.
Based on the outcomes of the present work, we deem it

important to further explore the coupled phantom DE
cosmological model inspired by warm inflation. In par-
ticular, models with a dissipation coefficient Γ depending
on both the phantom scalar field and the dark-matter energy
density, as well as with different potentials for the phantom
scalar field, will be considered in future work. It will be
interesting to examine whether these coupled phantom DE
cosmological models can lead to stable accelerating scaling
solutions, thus, solving the cosmic coincidence problem.
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APPENDIX: STABILITY
OF THE CRITICAL LINES D AND E

In this appendix, we investigate the stability of the
critical lines Dð0; y; 1Þ and Eðx;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; 1Þ.

Let us start with the critical line Eðx;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; 1Þ, con-

sidering, to that end, a specific point Eðxc;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2c

p
; 1Þ,

where −∞ < xc < þ∞.
The Jacobian matrix of the dynamical system (24),

given by

JE ¼

0
BB@
−2αx2c 2αxc

ffiffiffiffiffiffiffiffiffiffiffiffi
1þx2c

p
3ð1þx2cÞðxcþ

ffiffi
6

p
6
λÞ

0 0 3xc
ffiffiffiffiffiffiffiffiffiffiffiffi
1þx2c

p
ðxcþ

ffiffi
6

p
6
λÞ

0 0 −2αx2c

1
CCA;

ðA1Þ

has the eigenvalues

λ1¼ 0; λ2;3¼−2αx2c: ðA2Þ
Since the above Jacobian matrix has only a zero eigen-

value, the nonisolated critical point Eðxc;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2c

p
; 1Þ is

normally hyperbolic, meaning that stability can be assessed
within the linear theory. Because the nonzero eigenvalues
are negative for α > 0, this critical point is an attractor for
such values of the parameter α.
Let us now turn to the analysis of the stability of the

critical line Dð0; y; 1Þ, considering, to that end, a specific
point Dð0; yc; 1Þ, where 0 ≤ yc < 1.
The Jacobian matrix of the dynamical system (24),

given by

JD ¼

0
B@

αðy2c − 1Þ 0
ffiffi
6

p
2
λy2c

0 0 3
2
ycðy2c − 1Þ

0 0 0

1
CA; ðA3Þ

has the eigenvalues

λ1 ¼ αðy2c − 1Þ; λ2;3 ¼ 0; ðA4Þ
to which correspond the (generalized) eigenvectors

v1¼

0
B@
1

0

0

1
CA; v2 ¼

0
B@
0

1

0

1
CA; v3¼

0
BB@

ffiffi
6

p
λy2c

2αð1−y2cÞ
0

1

1
CCA: ðA5Þ

Since the Jacobian matrix JD has two zero eigenvalues,
the linear theory is not enough to assess the stability of the
critical point Dð0; yc; 1Þ and, consequently, one has to
resort to alternative methods. Here, we choose the center
manifold theory [98–100].
To shift the critical point Dð0; yc; 1Þ to the origin of the

coordinate system, we introduce new variables,

u¼ x; v¼ y−yc; w¼ z−1; ðA6Þ
for which the dynamical system (24) becomes

uτ ¼ −αð1 − y2cÞuþ
ffiffiffi
6

p

2
λy2cwþ f1ðu; v; wÞ; ðA7aÞ

vτ ¼ −
3

2
ycð1 − y2cÞwþ f2ðu; v; wÞ; ðA7bÞ

wτ ¼ f3ðu; v; wÞ; ðA7cÞ
where fi ¼ Oðu2; v2; w2; uv; uw; vwÞ, i ¼ 1, 2, 3.
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Another change of variables, namely,

0
B@

u

v

w

1
CA ¼ S

0
B@

U

V

W

1
CA; ðA8Þ

where S is a matrix whose columns are the generalized
eigenvectors (A5), brings the dynamical system to the form

Uτ ¼ −αð1 − y2cÞU þ F1ðU;V;WÞ; ðA9aÞ

Vτ ¼ −
3

2
ycð1 − y2cÞW þ F2ðU;V;WÞ; ðA9bÞ

Wτ ¼ F3ðU;V;WÞ; ðA9cÞ

where Fi ¼ OðU2; V2;W2; UV;UW;VWÞ, i ¼ 1, 2, 3.
Before proceeding to the determination of the center

manifold U ¼ hðV;WÞ and the flow on it, let us point out
that along the U direction, the orbits approach the critical
point for α > 0 and move away from it for α < 0.
Now, the center manifold is a solution to the partial

differential equation

∂h
∂V

�
−
3

2
ycð1 − y2cÞW þ F2ðhðV;WÞ; V;WÞ

�

þ ∂h
∂W

F3ðhðV;WÞ; V;WÞ þ αð1 − y2cÞhðV;WÞ
− F1ðhðV;WÞ; V;WÞ ¼ 0; ðA10Þ

where hðV;WÞ is defined on some neighborhood of the
critical point with hð0; 0Þ and ∇hð0; 0Þ ¼ 0.
Searching for a solution to the above equation of the

form

hðV;WÞ ¼
Xm
j¼2

Xj

i¼0

ai;j−iViWj−i; ðA11Þ

where aij are constants and m ≥ 2, we obtain, at lowest
order in powers of V and W,

U ¼
ffiffiffi
6

p
λyc

αð1 − y2cÞ2
VW þ

ffiffiffi
6

p
λy2c½3 − αð1 − y2cÞ�
2α2ð1 − y2cÞ2

W2: ðA12Þ

As both terms of the above solution vanish for yc ¼ 0,
for such a value of yc we have to extend our calculation to
the third order in powers of V and W, obtaining

U ¼
ffiffiffi
6

p
λ

2α
V2W: ðA13Þ

The flow on the center manifold is determined by the
differential equations

Vτ ¼ −
3

2
ycð1 − y2cÞW; ðA14aÞ

Wτ ¼
3

2
ð1þ y2cÞW2: ðA14bÞ

Again, the right-hand side of Eq. (A14a) vanishes for
yc ¼ 0, requiring, for such a value of yc, that one extend the
calculation to higher orders in powers of V andW. The flow
on the center manifold is then, for yc ¼ 0, determined by
the differential equations

Vτ ¼ −
3

2
VW; ðA15aÞ

Wτ ¼
3

2
W2: ðA15bÞ

For 0 < yc < 1, taking into account that W < 0 in the
neighborhood of the critical point, it follows that both Vτ

and Wτ are positive and, consequently, the orbits approach
the critical point along the W direction and drift in the
direction of increasing V. For the case yc ¼ 0, taking also
into account that V > 0, we arrive at the very same
conclusion. Note that this result does not depend on the
parameter α, contrarily to the result obtained for the flow
along the U direction, which, as mentioned above,
approaches the critical point for α > 0 and moves away
from it for α < 0. In terms of the original variables x, y,
and z, the above results mean that, for α > 0, the
orbits, when approaching the critical line Dð0; y; 1Þ, drift
in the y direction, toward the critical point Dð0; 1; 1Þ,
which coincides with the point Eð0; 1; 1Þ of the critical
line Eðx;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; 1Þ.

This result, together with the stability analysis of the
critical line Eðx;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; 1Þ, leads to the conclusion that

for positive values of the parameter α the critical line
Eðx;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; 1Þ is an attractor, i.e., all orbits (except the

heteroclinic ones, connecting critical points along the
boundaries of the phase space) asymptotically converge
to one of the points of this critical line.
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