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Since galaxy distribution reconstruction effectively reduces non-Gaussian terms in the power spectrum
covariance matrix, it has attracted interest not only for baryon acoustic oscillation (BAO) signals but also
for various cosmological signal analyses. To this end, this paper presents a novel theoretical model that
addresses infrared (IR) effects in the postreconstruction galaxy power spectrum, including one-loop
corrections. In particular, we discuss the importance of incorporating nonperturbative effects arising from
IR contributions into the displacement vector s used for reconstruction. Consequently, postreconstruction
nonlinear damping of BAO can be described by a single two-dimensional Gaussian function. This is a
phenomenon not observed when s is considered at a linear order in the Zel’dovich approximation.
Furthermore, we confirm that the cross-power spectrum of the pre- and postreconstruction density
fluctuations lacks IR effect cancellations, and shows an exponential decay in both the cross-power
spectrum and the associated shot-noise term.
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I. INTRODUCTION

The reconstruction of galaxy distributions [1] has tradi-
tionally been a focus of research to amplify baryon acoustic
oscillation (BAO) signals [2,3]. However, recent findings
indicate that these reconstruction techniques can effectively
reduce non-Gaussian terms in the covariance matrix of
cosmological n-point statistics. As a result, their applica-
tion has expanded beyond BAO signals to encompass a
variety of cosmological signals. In particular, there is a
growing interest in improving constraints on cosmological
parameters through postreconstruction two-point statistics
[4,5]. In addition, applications in three-point statistics have
been reported to strengthen constraints on primordial non-
Gaussianity [6].
Despite the potential of reconstruction techniques, their

practical applications, particularly beyond BAO signal
analysis, are still emerging. This slow advancement is
due to a limited understanding of the nonlinear character-
istics of reconstructed density fluctuations. The examina-
tion of prereconstruction two-point correlation functions
(PCFs) and power spectra primarily employs advanced
theoretical models, which extend beyond standard pertur-
bation theory (SPT) (e.g., [7]), to precisely extract small-
scale information. For instance, sophisticated theoretical
models such as the convolution Lagrangian perturbation
theory [8,9], the renormalized perturbation theory [10], the
Taruya-Nishimichi-Saito model [11], and the effective field
theory of large-scale structure (EFT of LSS) [12,13] have

been applied to analyze actual galaxy survey datasets, such as
the Baryon Oscillation Spectroscopic Survey Data Release
12 (BOSS DR12) galaxy data [14–17]. On the other hand,
theoretical research into postreconstruction density fluctua-
tions has been limited to one-loop calculations in SPT
[18–20] andmethods based on theZel’dovich approximation
[21–24]. See also [25,26] for perturbation theory approaches
to iterative reconstruction methods [27–34].
In this study, we primarily investigate the infrared (IR)

effect on the power spectrum of galaxies. This effect
possesses a unique property that allows for nonperturbative
analysis, making it crucial for advancing theories beyond
SPT. For the prereconstruction scenario, several IR effects
are found, and we summarize them below. When taking the
IR limit and considering only the nonlinearities arising
from IR effects, all IR nonlinear effects are negated in the
calculations of the power spectrum, leaving only the linear
power spectrum [35–43]. This IR cancellation holds true
when evaluating all density fluctuations at equal times.
However, assessing the correlation of fluctuations at dis-
tinct times yields the consistency relation for the LSS,
which uniquely connects higher-order statistics to their
lower-order counterparts [37,38,44]. Moreover, proper
consideration of the IR effect can shed light on the
nonlinear decay of the BAO signal [40,45–55].
This paper aims to comprehensively elucidate the impact

of nonperturbative IR effects on the BAO signal and the
overall power spectrum shape after reconstruction. In this
context, we present a new IR-resummed model of the
postreconstruction power spectrum, including one-loop
corrections. Concurrently, we explore its relation to*Contact author: nao.s.sugiyama@gmail.com
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established theories that address partial IR effects after
reconstruction, such as the one-loop correction in SPT and
the Zel’dovich approximation. We further demonstrate the
fundamental significance of the IR effect in the cross-power
spectrum between the pre- and postreconstruction density
fluctuations. The proposed model should be directly
applicable to observational galaxy data as it incorporates
redshift space distortions (RSDs) (e.g., [56]) and galaxy
bias effects (e.g., [57]).
The outline of this paper is as follows. Section II reviews

the nonperturbative treatment of IR effects on prerecon-
struction density fluctuations. Section III explores the IR
effects on postreconstruction density fluctuations and
presents a model for their power spectrum. Section IV
calculates the cross-power spectrum of density fluctua-
tions before and after reconstruction, highlighting the
importance of nonlinear IR effects. Section V concludes
with the findings and implications in this paper.
Appendix A introduces a kind of modified gravity theory
as an example of breaking the IR cancellation.
Appendixes B and C summarize the behavior in the IR
limit for solutions up to third-order fluctuations in SPT
before and after reconstruction, respectively.
Our numerical calculations use a flat ΛCDM model

as the fiducial cosmological model with the following
parameters: matter density Ωm0 ¼ 0.316, Hubble con-
stant h≡H0=ð100 km s−1 Mpc−1Þ ¼ 0.671, baryon den-
sityΩb0h2 ¼ 0.022, σ8 ¼ 0.86, and spectral tilt ns ¼ 0.962,
which are close to the best-fit values given by
Planck2018 [58].

II. PRERECONSTRUCTION CASE

In preparation for the postreconstruction case, we review
the derivation for the IR-resummedpower spectrummodel in
the prereconstruction case. For the behavior of the solution in
the IR limit, see [39,40,55], and for the details of the
derivation of the IR-resummed model, see [40,49–54,59].

A. Infrared effects on dark matter
density fluctuations

Consider a density field function ρðxÞ defined over three-
dimensional spatial coordinates x. Let δðxÞ represent the
deviation from the mean density field ρ̄. This relation can
be expressed as ρðxÞ ¼ ρ̄ð1þ δðxÞÞ. The Fourier transform
of δðxÞ can be represented as δ̃ðkÞ ¼ R

d3xe−ix·kδðxÞ,
where the tilde denotes a Fourier-transformed quantity.
Let us begin by considering the density fluctuations of

dark matter, denoted δmðxÞ, wherein the subscript “m”
represents “matter.” In perturbation theory, an nth-order
dark matter density fluctuation in Fourier space, denoted

δ̃½n�m ðkÞ, can be represented by the convolution integral of n
wave vectors (p1;…; pn) with an associated nth-order
kernel function Fnðp1;…; pnÞ. Hence, the nth-order density
fluctuation is expressed as

δ̃½n�m ðkÞ ¼
Z

d3p1

ð2πÞ3 � � �
d3pn

ð2πÞ3 ð2πÞ
3δDðk − p½1;n�Þ

× Fnðp1;…; pnÞδ̃½1�m ðp1Þ � � � δ̃½1�m ðpnÞ; ð1Þ

where p½1;n� ¼ p1 þ � � � þ pn, δ̃
½1�
m is the linear (first-order)

dark matter density fluctuation in Fourier space, and δD is
the three-dimensional delta function.

1. Second-order fluctuations

For example, the second-order kernel function is given
by

F2ðp1; p2Þ ¼
17

21
þ 1

2
μ12

�
p1

p2

þ p2

p1

�
þ 2

7

�
μ212 −

1

3

�
; ð2Þ

where pn ¼ jpnj and μ12 ¼ p̂1 · p̂2 with p̂n ¼ pn=pn.
Substituting Eq. (2) into Eq. (1) and performing the inverse
Fourier transform, we obtain

δ½2�m ðxÞ ¼ 17

21
½δ½1�m ðxÞ�2 −Ψ½1�ðxÞ · ∇δ½1�m ðxÞ

þ 2

7

��
∂i∂j

∂
2
−
1

3
δij

�
δ½1�m ðxÞ

�
2

: ð3Þ

On the right hand side of Eq. (3), the three terms from left to
right are, respectively, named the “nonlinear growth term,”
“shift term,” and “tidal term” [18,60]. The linear displace-
ment vector, associated with the shift term, is defined by the
linear dark matter density fluctuation as

Ψ½1�ðxÞ ¼
Z

d3k
ð2πÞ3 e

ik·x ik
k2

δ̃½1�m ðkÞ: ð4Þ

In the IR limit, where one of the wave vectors in
F2ðp1; p2Þ is much smaller than the other (specifically,
when p2 → 0), the following relation holds:

F2ðp1; p2Þ⟶
p2→0

1

2

�
p1 · p2
p2
2

�
: ð5Þ

When substituting Eq. (5) into Eq. (1), the following
approximation is considered simultaneously:

δDðk − p1 − p2Þ⟶
p2→0

δDðk − p1Þ: ð6Þ

Consequently, in the IR limit, we derive

δ½2�m ðxÞ⟶
IR limit

− Ψ̄½1� ·∇δ½1�m ðxÞ; ð7Þ

where

Ψ̄½1� ¼ Ψ½1�ðx ¼ 0Þ: ð8Þ
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In deriving Eq. (7), we also accounted for the condition
p1 → 0 and introduced a prefactor of 2. Comparison with
Eq. (3) reveals that the IR limit solution involves isolating
only the shift term, and furthermore, the displacement
vector contained in the shift term is evaluated at the
origin x ¼ 0.
Decomposing the second-order fluctuation solution into

terms manifesting in the IR limit and the others, the
solution can be reformulated as

δ½2�m ¼ δ½2�ðSÞmðxÞ − Ψ̄½1� ·∇δ½1�m ðxÞ; ð9Þ

where the subscript (S) denotes the contribution from short-

wavelength modes and δ½2�ðSÞmðxÞ is explicitly given by

δ½2�ðSÞmðxÞ ¼
17

21
½δ½1�m ðxÞ�2 −Ψ½1�

ðSÞðxÞ ·∇δ½1�m ðxÞ

þ 2

7

��
∂i∂j

∂
2
−
1

3
δij

�
δ½1�m ðxÞ

�
2

: ð10Þ

In the equation above, we defined the displacement vector
contributing from short-wavelength modes as

Ψ½1�
ðSÞðxÞ ¼ Ψ½1�ðxÞ − Ψ̄½1�; ð11Þ

where Ψ½1�
ðSÞðx ¼ 0Þ ¼ 0.

2. Nonperturbative treatment

In the IR limit of the nth-order kernel function
Fnðp1;…; pnÞ, one of the n wave numbers contributing
to the scale of interest k ¼ jp½1;n�j possesses a magnitude
substantially smaller than the other (n − 1) wave numbers.
For a single dark matter fluid in general relativity (GR), the
recursion relation allows the determination of solutions for
Fnðp1;…; pnÞ up to an infinite order (e.g., see [7]). Using
mathematical induction on this recursion relation, the
relation below can be proven [39]:

Fnðp1;…; pn−1; pÞ⟶
p→0

1

n

�
p½1;n−1� · p

p2

�
Fn−1ðp1;…; pn−1Þ:

ð12Þ

More generally, for r wave numbers approaching zero,

Fnðp1;…; pn−r; pn−rþ1;…; pnÞ⟶
pn−rþ1;…;pn→0

ðn − rÞ!
n!

Yr
α¼1

�
p½1;n−r� · pn−rþα

p2
n−rþα

�
Fn−rðp1;…; pn−rÞ: ð13Þ

In this context, we decompose the linear dark matter
density fluctuation into long-wavelength modes, with wave
numbers approaching zero, and short-wavelength modes

which are independent of the former:

δ̃½1�m ðpÞ ¼ δ̃½1�m ðp → 0Þ þ δ̃½1�ðSÞmðpÞ: ð14Þ

Substituting Eqs. (13) and (14) into Eq. (1) and using the
approximation

δDðk − p½1;n�Þ⟶
pn−rþ1;…;pn→0

δDðk − p½1;n−r�Þ; ð15Þ

the dark matter density fluctuation can be formally
expressed as [40]

δmðxÞ ¼ δðSÞmðx − Ψ̄½1�Þ; ð16Þ

where the nth order of δðSÞmðxÞ is given by

δ½n�ðSÞmðxÞ ¼
Z

d3p1

ð2πÞ3 � � �
d3pn

ð2πÞ3 e
iðp1þ���þpnÞ·x

× Fnðp1;…; pnÞδ̃½1�ðSÞmðp1Þ � � � δ̃½1�ðSÞmðpnÞ: ð17Þ

Thus, the IR limit effect in a single dark matter fluid can be
interpreted as a result of a coordinate transformation due to
the displacement vector at the origin.
The IR limit is an operation that extracts nonlinear

contributions from large scales (small wave numbers). In
other words, the wave number k of interest is considerably
larger than the wave numbers contributed in the IR limit.
Therefore, historically, the IR limit solution has also been
referred to as the high-k (k → ∞) limit solution (e.g., see
[61]). Conversely, the ultraviolet limit corresponds to the
low-k (k → 0) limit and is treated by, e.g., EFT of
LSS [12,13].
In summary, this paper makes three approximations

related to the IR limit:
(1) As illustrated in Eqs. (5) and (13), for the kernel

function Fnðp1;…; pnÞ that characterizes nonlinear
effects, we employ the approximate kernel function
when one or multiple wave numbers approach zero.
This means that the dominant effect in the IR limit
appears as the coordinate transformation of the
short-wavelength density fluctuation δðSÞ due to Ψ̄
as in Eq. (16).

(2) As presented in Eqs. (6) and (15), within the delta
function δDðk − p½1;n�Þ that characterizes the mode-
coupling integral with multiple wave vectors, we
assume no mode coupling occurs between the IR
effect and other components when one or more wave
numbers approach zero. This implies that the dis-
placement vector is evaluated at the origin in Eq. (8),
and furthermore, indicates no correlation between
δðSÞ and Ψ̄, as will be discussed in Sec. II C.

(3) The nonlinear effects of δðSÞm are truncated at a finite
perturbation order. Any higher-order perturbative
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effects beyond this are treated as IR effects
through Ψ̄.

The clearest example in the IR limit occurs when

δðSÞmðxÞ ∼ δ½1�m ðxÞ, approximating the nonlinear dark matter
density fluctuation as

δmðxÞ ⟶
IR limit

δ½1�m ðx − Ψ̄½1�Þ: ð18Þ

The conclusions of this paper will be mainly based on this
simplest case in Secs. III and IV. When higher-order
correction terms up to the one-loop order are to be
considered, they will be explained on there as appropriate.

B. Extensions to RSD and bias effects

In cases affected by RSD and bias effects, such as
observed galaxies, the use of Lagrangian perturbation
theory (LPT) is advantageous. This is because LPT
naturally accommodates displacement vectors. Within
LPT, RSD effects are integrated into the displacement
vector. Bias effects, on the other hand, can be treated using
the equation [62]

1þ δgðx; n̂Þ ¼
Z

d3q½1þ δbiasðqÞ�δDðx − q −Ψredðq; n̂ÞÞ;

ð19Þ
where δg represents the galaxy density fluctuation, δbias is
the density fluctuation including the bias effect in
Lagrangian space, Ψred is the displacement vector includ-
ing the RSD effect, and n̂ is a unit vector directed along the
line of sight (LOS). The relation between Ψ and Ψred is
given by

Ψred ¼ Ψþ Ψ̇ · n̂
aH

n̂; ð20Þ

where Ψ̇ðqÞ is the time derivative ofΨðqÞ, and a and H are
the scale factor and the Hubble parameter, respectively.
The nth order of ΨðqÞ in Fourier space is represented as

Ψ̃½n�
m ðkÞ ¼ i

Z
d3p1

ð2πÞ3 � � �
d3pn

ð2πÞ3 ð2πÞ
3δDðk − p½1;n�Þ

× Lnðp1;…; pnÞδ̃½1�m ðp1Þ � � � δ̃½1�m ðpnÞ; ð21Þ

where the nonlinear kernel vector functions up to the
second order are given by

L1ðp1Þ ¼
p1
p2
1

;

L2ðp1; p2Þ ¼
3

14

p½1;2�
jp½1;2�j2

ð1 − μ212Þ2: ð22Þ

Note that the second-order kernel vector function
L2ðp1; p2Þ does not include a shift term but consists of a

combination of a growth term and a tidal term,
unlike F2ðp1; p2Þ.
The displacement vector is decomposed into two parts:

the value at the origin q ¼ 0 and the other values. Thus, we
can write

Ψredðq; n̂Þ ¼ Ψ̄redðn̂Þ þΨðSÞredðq; n̂Þ: ð23Þ

Here, ΨðSÞred ¼ ΨredðqÞ − Ψ̄red is termed as the short-
wavelength mode of Ψred. Consequently, δg can be for-
mally rewritten as

δgðx; n̂Þ ¼ δðSÞgðx − Ψ̄redðn̂Þ; n̂Þ; ð24Þ

where

1þ δðSÞgðx; n̂Þ ¼
Z

d3q½1þ δbiasðqÞ�

× δDðx − q −ΨðSÞredðq; n̂ÞÞ; ð25Þ

In the above derivation, we used 1 ¼ R
d3qδDðx − qÞ ¼R

d3qδDðx − q − Ψ̄redðn̂ÞÞ. In Fourier space, it becomes

δ̃gðk; n̂Þ ¼ e−ik·Ψ̄redðn̂Þδ̃ðSÞgðk; n̂Þ: ð26Þ

Note that Eq. (24) is simply a rewrite of Eq. (19) and,
unlike Eq. (16), is not the result of solving the equation to
perturbative infinite order in the IR limit. To consider
Eq. (24) as an extension of the solution of Eq. (16) that
takes into account the bias effect, the RSD effect, and even
nonlinear effects on the displacement vector, one must
make an assumption. That is, in the IR limit, all contribu-
tions from IR modes appear as the coordinate trans-
formation through Ψ̄red. This is expected to be true for a
single dark matter fluid in GR. However, in Appendix A,
we introduce degenerate higher-order scalar-tensor
(DHOST) theories (for reviews, see, e.g., [63,64]), a type
of modified gravity theory, as an example of how a simple
rewrite of Eq. (19) into Eq. (24) cannot extract only the IR
effect through Ψ̄red. Also, while this assumption is con-
sidered valid for the standard bias model in GR (e.g., see
[57]), there is a possibility that it may be violated by other
bias effects in the context of modified gravity theories
[65,66] and multicomponent fluids [67].

1. Perturbative expansion

In Fourier space, the nth-order term of the galaxy density
fluctuation can be expressed as

δ̃½n�g ðkÞ ¼
Z

d3p1

ð2πÞ3 � � �
d3pn

ð2πÞ3 ð2πÞ
3δDðk − p½1;n�Þ

× Znðp1;…; pn; n̂Þδ̃½1�m ðp1Þ � � � δ̃½1�m ðpnÞ: ð27Þ
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Here, Znðp1;…; pnÞ represents nonlinear kernel functions
that incorporate both the bias effect and the RSD effect.
Approximating both δðSÞðxÞ and Ψ̄red as linear, we then

obtain [55]

δgðx; n̂Þ⟶
IR limit

δ½1�g ðx − Ψ̄½1�
redðn̂Þ; n̂Þ;

δ̃gðk; n̂Þ⟶
IR limit

e−ik·Ψ̄
½1�
redðn̂Þδ̃½1�g ðk; n̂Þ: ð28Þ

The linear galaxy density fluctuation is given by

δ̃½1�g ðk; n̂Þ ¼ Z½1�ðk; n̂Þδ̃½1�m ðkÞ; ð29Þ

where Z1ðk; n̂Þ is the first-order kernel function [56]

Z1ðk; n̂Þ ¼ b1 þ fμ2: ð30Þ

Here, b1 is the linear bias parameter, f represents the linear
growth rate function, and μ ¼ k̂ · n̂ denotes the cosine of
the angle between k̂ and n̂.
From Eq. (26), up to the third order in perturbation

theory, δ̃½n�ðSÞgðk; n̂Þ are expressed as

δ̃½1�ðSÞgðk; n̂Þ ¼ δ̃½1�g ðk; n̂Þ;
δ̃½2�ðSÞgðk; n̂Þ ¼ δ̃½2�g ðk; n̂Þ − ð−ik · Ψ̄½1�

redðn̂ÞÞδ̃½1�g ðk; n̂Þ;
δ̃½3�ðSÞgðk; n̂Þ ¼ δ̃½3�g ðk; n̂Þ − ð−ik · Ψ̄½2�

redðn̂ÞÞδ̃½1�g ðk; n̂Þ
− ð−ik · Ψ̄½1�

redðn̂ÞÞδ̃½2�g ðk; n̂Þ

þ 1

2
ð−ik · Ψ̄½1�

redðn̂ÞÞ2δ̃½1�g ðk; n̂Þ: ð31Þ

The nth-order displacement vector in redshift space is
computed by the following linear transformation as [62]

Ψ½n�
redðq; n̂Þ ¼ Rnðn̂Þ ·Ψ½n�ðqÞ: ð32Þ

The transformation matrix is given by

½Rn�ij ¼ Iij þ nfn̂in̂j; ð33Þ

where I is the three-dimensional identity matrix and i,
j ¼ 1, 2, 3.
Throughout the remainder of this paper, we always

consider both RSD and bias effects. To simplify notation,
the subscripts “g” and “red,” as well as the LOS-
dependence n̂, are omitted in the subsequent sections.
We retain the subscript “m” only for quantities related
to dark matter: i.e., Ψredðq; n̂Þ ¼ ΨðqÞ, Ψ̄redðn̂Þ ¼ Ψ̄,
δgðx; n̂Þ ¼ δðxÞ, and Znðp1;…; pn; n̂Þ ¼ Znðp1;…; pnÞ.
Furthermore, a simple right arrow will represent the IR
limit: ⟶

IR limit
¼→.

C. IR cancellation of two-point statistics
in the IR limit

In this subsection, we provide a brief overview
of the IR effect cancellation in the 2PCF and its Fourier-
transformed counterpart, the power spectrum. A funda-
mental assumption is the complete absence of correlation
between δðSÞðxÞ and Ψ̄, which corresponds to the second
assumption in the IR limit discussed at the end of Sec. II A.
Owing to the translational symmetry of the ensemble
average, all IR effects originating from Ψ̄ are canceled
out, leaving only the short-wavelength 2PCF:

hδðxÞδðx0Þi¼ hδðSÞðx− Ψ̄ÞδðSÞðx0− Ψ̄Þi→ hδðSÞðxÞδðSÞðx0Þi:
ð34Þ

Assuming that all nonlinear effects emerge only from the
IR effects through Ψ̄½1�, then the nonlinear 2PCF reduces to
the linear 2PCF:

hδðxÞδðx0Þi → hδ½1�ðx − Ψ̄½1�Þδ½1�ðx0 − Ψ̄½1�Þi
¼ hδ½1�ðxÞδ½1�ðx0Þi: ð35Þ

In Fourier space, it becomes

hδðkÞδðk0Þi → he−ik·Ψ̄½1�
e−ik

0·Ψ̄½1� ihδ̃½1�ðkÞδ̃½1�ðk0Þi
¼ ð2πÞ3δDðkþ k0Þ½Z1ðkÞ�2P½11�

m ðkÞ; ð36Þ

where P½11�
m ðkÞ is the linear matter power spectrum, calcu-

lated as

hδ̃½1�m ðkÞδ̃½1�m ðk0Þi ¼ ð2πÞ3δDðkþ k0ÞP½11�
m ðkÞ: ð37Þ

In the following, we provide a detailed analysis of the
exponential function he−ik·Ψ̄½1�

e−ik
0·Ψ̄½1� i in Eq. (36). Using

cumulants, denoted by h� � �ic,1 this can be reconstructed as

he−ik·Ψ̄½1�
e−ik

0·Ψ̄½1� i ¼ DðkÞDðk0ÞEðk; k0Þ; ð39Þ

where DðkÞ and Eðk; k0Þ are defined as

DðkÞ ¼ exp

�
1

2
hð−ik · Ψ̄½1�Þ2ic

�
;

Eðk; k0Þ ¼ exp
�
hð−ik · Ψ̄½1�Þð−ik0 · Ψ̄½1�Þic

�
: ð40Þ

1The cumulants of a statistical quantity X, denoted hXnic, are
obtained from a power series expansion of the cumulant-
generating function lnheXi:

ln ðheXiÞ ¼
X
n¼1

1

n!
hXnic: ð38Þ
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The function DðkÞ is subsequently described as a two-
dimensional exponentially decaying function [45–48]:

DðkÞ ¼ exp

�
−
k2ð1 − μ2Þσ2⊥ þ k2μ2σ2k

2

�
; ð41Þ

where the radial and transverse components of smoothing
factors, σ2k and σ2⊥, are given by

σ2⊥ ¼ 1

3

Z
dp
2π2

P½11�
m ðpÞ;

σ2k ¼ ð1þ fÞ2σ2⊥: ð42Þ

In addition, the function Eðk; k0Þ satisfies

Eðk; kÞ ¼ D2ðkÞ;
Eðk;−k0Þ ¼ E−1ðk; k0Þ;
Eðk;−kÞ ¼ D−2ðkÞ; ð43Þ

and generates an exponentially increasing function as the
square of the inverse of Eq. (41) when the statistical trans-
lational symmetry kþ k0 ¼ 0 is satisfied. Finally, as indi-
cated in Eq. (36), the nonlinear galaxy power spectrum
converges to the linear galaxy power spectrum in the IR limit:

PðkÞ → he−ik·Ψ̄½1�
eik·Ψ̄

½1� i½Z1ðkÞ�2P½11�
m ðkÞ

¼ D2ðkÞD−2ðkÞ½Z1ðkÞ�2P½11�
m ðkÞ

¼ ½Z1ðkÞ�2P½11�
m ðkÞ: ð44Þ

D. Relations to previous works

1. One-loop corrections in SPT

Consider the next leading order, i.e., the one-loop order
contribution, in the framework of SPT [7]. This is divided
into P½22�ðkÞ, which is the product of the dual second-order
density fluctuations, and P½13�ðkÞ, which is the product
of the first- and third-order density fluctuations, where
P1-loopðkÞ ¼ P½22�ðkÞ þ P½13�ðkÞ.
In this context, P22 and P13 become

P½22�ðkÞ ¼ 2

Z
d3p1

ð2πÞ3
Z

d3p2

ð2πÞ3 ð2πÞ
3δDðk − p½1;2�Þ

× ½Z2ðp1; p2Þ�2P½11�
m ðp1ÞP½11�

m ðp2Þ;

P½13�ðkÞ ¼ 6Z1ðkÞP½11�
m ðkÞ

Z
d3p
ð2πÞ3 Z3ðk; p;−pÞP½11�

m ðpÞ:

ð45Þ

In the IR limit, both Z2ðk; pÞ and Z3ðk; p;−pÞ are approxi-
mated as (see Appendix B)

Z2ðk; pÞ⟶
p→0

1

2

�
k · R1 · p

p2

�
Z1ðkÞ;

Z3ðk; p;−pÞ⟶
p→0

−
1

3!

�
k · R1 · p

p2

�
2

Z1ðkÞ; ð46Þ

where R1 is the transformation matrix given in Eq. (33).
Consequently, P½22� and P½13� in the IR limit are described as

P½22�
IR ðkÞ → ðk2ð1 − μ2Þσ2⊥ þ k2μ2σ2kÞ½Z1ðkÞ�2P½11�

m ðkÞ;
P½13�
IR ðkÞ → −ðk2ð1 − μ2Þσ2⊥ þ k2μ2σ2kÞ½Z1ðkÞ�2P½11�

m ðkÞ;
ð47Þ

where the subscript “IR” means the values evaluated in the

IR limit. When summing up P½22�
IR and P½13�

IR , they mutually
cancel out, resulting in a net value of zero. These results
align with the form obtained when expanding DðkÞD−1ðkÞ
up to the one-loop order in Eq. (44).

2. Γ-expansion
The nonlinear power spectrum can generally be decom-

posed into two components. One component is propor-
tional to the linear matter power spectrum, and the other is
associated with mode-coupling integrals. This relation is
presented in [10,47]

PðkÞ ¼ G2ðkÞP½11�
m ðkÞ þ PMCðkÞ: ð48Þ

Here, the function GðkÞ appearing in the first term on the
right-hand side is referred to as the propagator, and the
second term is known as the mode-coupling term.
The Γ-expansion corresponds to the decomposition of

the power spectrum within the framework of mode-cou-
pling integrals (e.g., see [61]):

PðkÞ ¼
X∞
r¼1

r!
Z

d3k1
ð2πÞ3 � � �

Z
d3kr
ð2πÞ3 ð2πÞ

3δDðk − k½1;r�Þ

× ½ΓðrÞðk1;…; krÞ�2P½11�
m ðk1Þ � � �P½11�

m ðkrÞ; ð49Þ

where the rth-order kernel function ΓðrÞ in the Γ-expansion
can be expressed using the kernel functions Zn in SPT as

ΓðrÞðk1;…; krÞ ¼
1

r!

X∞
s¼0

ðrþ 2sÞ!
2ss!

Z
d3p1

ð2πÞ3 � � �
Z

d3ps

ð2πÞ3

× Zrþ2sðk1;…; kr; p1;−p1;…; ps;−psÞ
× P½11�

m ðp1Þ � � �P½11�
m ðpsÞ: ð50Þ

When compared with Eq. (48), the first-order Γ-expansion
is related to the propagator, and the sum of the degrees of
the Γ-expansion from the second order up to infinity
constitutes the mode-coupling term.
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Assuming that all nonlinear effects arise only from the
linear IR effect, Eq. (26) shows

δ̃ðkÞ → e−ik·Ψ̄
½1�
Z1ðkÞδ̃½1�m ðkÞ; ð51Þ

and the kernel functions in SPT corresponding to this
expression are given by

Znðk; p1;…; pn−1Þ⟶
p1;…;pn−1→0

1

n!

Yn−1
i¼1

�
k · R1 · pi

p2
i

�
Z1ðkÞ:

ð52Þ

Substituting these kernel functions Zn in this IR limit into
Eq. (50) leads to the coefficients of the Γ-expansion in the
IR limit:

ΓðrÞðk1;…; krÞ⟶
k2;…;kr→0;p1;…;ps→0

DðkÞ 1
r!

×
Yr
i¼2

�
k1 · R1 · ki

k2i

�
Z1ðk1Þ: ð53Þ

Substituting this ΓðrÞ into Eq. (49), we finally obtain
[39,40]

PðkÞ → D2ðkÞ
X∞
r¼1

ðk2ð1 − μ2Þσ2⊥ þ k2μ2σ2kÞr−1
ðr − 1Þ!

× ½Z1ðkÞ�2P½11�
m ðkÞ: ð54Þ

To derive the above expression, we assumed

δDðk − k½1;r�Þ → ⟶
k2;…;kr→0

rδDðk − k1Þ; ð55Þ

where the factor r appears because we select one wave
vector k1 from r wave vectors.
Furthermore, we obtain the IR limit expressions ofG2ðkÞ

and PMCðkÞ from Eq. (54):

G2ðkÞP½11�
m ðkÞ → D2ðkÞ½Z1ðkÞ�2P½11�

m ðkÞ;
PMCðkÞ → D2ðkÞðEðk;−kÞ − 1Þ½Z1ðkÞ�2P½11�

m ðkÞ
¼ ð1 −D2ðkÞÞ½Z1ðkÞ�2P½11�

m ðkÞ; ð56Þ

where Eðk;−kÞ ¼ D−2ðkÞ in Eq. (43). It is important to
note that the function Eðk; k0Þ serves to connect different
wave vectors k and k0. Consequently, a series expansion of
Eðk; k0Þ − 1 yields a term related to the mode-coupling
integrals.

3. Propagator

In this paper, we focus on the impact of the BAO signal
due to nonperturbative IR effects. To that end, we provide a

detailed explanation of the calculation of the propagator,
which directly influences the nonlinear decay of BAO.
The propagator is defined by the correlation between two

factors: nonlinear galaxy density fluctuations and linear
dark matter density fluctuations,

hδðxÞδ½1�m ðx0Þi ¼
Z

d3k
ð2πÞ3 e

ik·ðx−x0ÞGðkÞP½11�
m ðkÞ: ð57Þ

Note that this definition assumes the absence of primordial
non-Gaussianities. When the nonlinear density fluctuations
are decomposed into long-wavelength displacement vec-
tors and short-wavelength density fluctuations, as shown in
Eq. (24), the propagator can be computed as

hδðSÞðx − Ψ̄Þδ½1�m ðx0Þi

¼
Z

d3k
ð2πÞ3 e

ik·ðx−x0Þhe−ik·Ψ̄i
�
Z1ðkÞP½11�

m ðkÞ

þ
X∞
n¼1

P½1ð2nþ1Þ�
ðSÞ ðkÞ=ð2Z1ðkÞÞ

�
; ð58Þ

where δ½1�m ðxÞ corresponds to short-wavelength modes and

thus correlates only with δðSÞðxÞ, and P½1ð2nþ1Þ�
ðSÞ represents

the cross-power spectrum of δ½2nþ1�
ðSÞ and δ½1�m . Note that only

odd orders appear in P½1ð2nþ1Þ�
ðSÞ since primordial non-

Gaussianities are absent.
By truncating δðSÞ up to the third order and by further

approximating Ψ̄ to be of linear order, we obtain

GðkÞ ≃DðkÞ½Z1ðkÞ þ P½13�
ðSÞ ðkÞ=ð2Z1ðkÞP½11�

m ðkÞÞ�: ð59Þ

Here, P½13�
ðSÞ is defined as

P½13�
ðSÞ ðkÞ ¼ P½13�ðkÞ − P½13�

IR ðkÞ; ð60Þ

where P½13�
IR represents the IR limit value of P½13� as given

in Eq. (47).
In the definition of the propagator (58), it is important to

note that nonlinear density fluctuations and linear density
fluctuations possess different IR effects. In particular, there
is no IR cancellation based on statistical translational
symmetry in the calculation of the propagator. The expo-
nential decay of the propagator is due to the absence of this
IR cancellation. Similarly, other higher-order coefficients in
the Γ-expansion decay exponentially, as shown in Eq. (54).
This paper repeatedly emphasizes that an exponential

decay effect is consistently observed when calculating
cross-correlations between fluctuations with distinct IR
effects. Notably, Sec. IV will demonstrate the exponential
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decay of the cross-power spectrum for both pre- and
postreconstruction density fluctuations.2

E. IR-resummed model for the prereconstruction
power spectrum

In the previous section, we discussed the IR cancellation
under the assumption that δ½1�ðxÞ and Ψ̄½1� are uncorrelated.
This lack of correlation is due to the three assumptions
mentioned at the end of Sec. II A 2, especially the one
stating that there is no mode coupling between the IR effect
and the short-wavelength density fluctuation. In practice,
however, there is mode coupling that prevents complete IR
cancellation. By addressing this imperfection in IR can-
cellation and isolating only the effects of BAO, we can
construct a theoretical template model that effectively
handles the nonlinear damping effects of BAO.

1. Linear level

We begin by relaxing the approximation of the IR limit
concerning the behavior of the power spectrum in the
context of the Γ-expansion discussed in Sec. II D 2.
Specifically, we do not use the approximation that decou-
ples the coupling between different wave vectors, as in
Eq. (55), while maintaining the IR limit approximation of
the kernel functions of the Γ-expansion given in Eq. (53).
We then obtain

PðkÞ → D2ðkÞ
X∞
r¼1

1

ðr − 1Þ!
Z

d3k1
ð2πÞ3 � � �

Z
d3kr
ð2πÞ3

× ð2πÞ3δDðk − k½1;r�Þ
Yr
i¼2

�
k1 · R1 · ki

k2i

�
2

× ½Z1ðk1Þ�2P½11�
m ðk1Þ � � �P½11�

m ðkrÞ: ð61Þ

To account for the damping effect of the BAO signal, we

decompose the linear matter power spectrum P½11�
m ðk1Þ in

Eq. (61) into two components: the “wiggle” component
containing only the BAO signal and the “no-wiggle”
component without BAO [69]. Thus, it is expressed as

P½11�
m ðk1Þ ¼ Pwðk1Þ þ Pnwðk1Þ, where the subscripts “w”

and “nw” denote “wiggle” and “no-wiggle,” respectively.

Note that this decomposition is only applied to P½11�
m ðk1Þ,

and not to other linear power spectra P½11�
m ðk2Þ � � �P½11�

m ðkrÞ.
According to this decomposition, the nonlinear power
spectrum that includes the wiggle part and the no-wiggle
part is denoted as PðkÞjw and PðkÞjnw, respectively:

PðkÞ ¼ PðkÞjw þ PðkÞjnw: ð62Þ
For the PðkÞjnw term, we adopt the approximation in

Eq. (55) and achieve full IR cancellation, leaving only the
linear no-wiggle power spectrum:

PðkÞjnw → ½Z1ðkÞ�2PnwðkÞ: ð63Þ

For the PðkÞjw term, Eq. (61) is transformed using
δDðk − k½1;r�Þ ¼

R
d3re−ir·ðk−k½1;r�Þ to become

PðkÞjw → D2ðkÞ
Z

d3re−ik·rξwðrÞA2ðk; rÞ; ð64Þ

where

ξwðrÞ ¼
Z

d3k1
ð2πÞ3 e

ik1·r½Z1ðk1Þ�2Pwðk1Þ ð65Þ

and

A2ðk;rÞ¼ exp

�Z
d3p
ð2πÞ3 e

ip·r

�
k ·R1 ·p

p2

�
2

P½11�
m ðpÞ

	
: ð66Þ

The wave vector integral in the A function is calculated as

Z
d3p
ð2πÞ3 e

ip·r

�
p̂ip̂j

p2

�
P½11�
m ðpÞ ¼ δijσ

2
0ðrÞ þ 2

�
3r̂ir̂j − δij

2

�

× σ22ðrÞ; ð67Þ

where

σ2lðrÞ ¼
1

3
il
Z

dp
2π2

jlðprÞP½11�
m ðpÞ: ð68Þ

To simplify the calculation, we only consider the isotropic
component of the A function and ignore the σ2 term.
Furthermore, the 2PCF of the wiggle part in Eq. (65) has a
peak around rBAO ∼ 110h−1 Mpc and is zero at other
scales, so we fix the scale dependence that appears in
the σ0ðrÞ function to r ¼ rBAO. With these approximations,
the A function becomes

AðkÞ≈exp

�k2ð1−μ2Þσ20ðrBAOÞþk2μ2σ2
0;kðrBAOÞ

2

�
; ð69Þ

where σ2
0;k ¼ ð1þ fÞ2σ20. Note that the r-dependence has

been omitted here. Then, we finally obtain

PðkÞjw → D2
BAOðkÞ½Z1ðkÞ�2PwðkÞ: ð70Þ

The function that expresses the nonlinear damping of the
BAO signal is defined as follows:

2As another example, Chisari and Pontzen [68] showed in the
Zel’dovich approximation that the cross-power spectrum of
density fluctuations evaluated at two different times decays
exponentially due to IR cancellation breaking.
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DðkÞAðkÞ ¼ DBAOðkÞ; ð71Þ

and its specific form is given by

DBAOðkÞ ¼ exp

�
−
k2ð1 − μ2Þσ2BAO;⊥ þ k2μ2σ2BAO;k

2

�
;

ð72Þ

where the radial and transverse components of smoothing
factors are calculated as

σ2BAO;⊥ ¼ 1

3

Z
dp
2π2

ð1 − j0ðprBAOÞÞP½11�
m ðpÞ;

σ2BAO;k ¼ ð1þ fÞ2σ2BAO;⊥: ð73Þ

Substituting Eqs. (63) and (70) into Eq. (62), we obtain
the IR-resummed power spectrum model at the linear level:

PðkÞ ¼ ½Z1ðkÞ�2½D2
BAOðkÞPwðkÞ þ PnwðkÞ�: ð74Þ

This form is consistent with the template model proposed
by [46], which has been widely used for BAO analyses.
When the decomposition of the nonlinear power spec-

trum into the wiggle and no-wiggle parts is applied to the
propagator and mode-coupling term in Eq. (48), we obtain

G2ðkÞP½11�
m ðkÞ → D2ðkÞ½Z1ðkÞ�2½PwðkÞ þ PnwðkÞ� ð75Þ

and

PMCðkÞ → D2ðkÞ½D−2ðkÞ − 1�½Z1ðkÞ�2PnwðkÞ
þD2ðkÞ½A2ðkÞ − 1�½Z1ðkÞ�2PwðkÞ

¼ ½Z1ðkÞ�2½D2
BAOðkÞPwðkÞ þ PnwðkÞ�

−D2ðkÞ½Z1ðkÞ�2½PwðkÞ þ PnwðkÞ�: ð76Þ

These expressions show that the nonlinear damping effect
of BAO arises from the mode-coupling term, and the
contribution from the propagator term cancels out with
the second term of the mode-coupling term.

2. One-loop level

We turn to the one-loop order correction terms. In the IR
limit, the nonlinear galaxy power spectrum is described as

PðkÞ → D2ðkÞD−2ðkÞPðSÞðkÞ; ð77Þ

where PðSÞ consists only of the short-wavelength density
fluctuations, δ̃ðSÞ. At the one-loop level, we derive the short-
wavelength power spectra from Eq. (31) as

P½22�
ðSÞ ðkÞ ¼ P½22�ðkÞ − P½22�

IR ðkÞ;
¼ P½22�ðkÞ − lnD−2ðkÞ½Z1ðkÞ�2P½11�

m ðkÞ;
P½13�
ðSÞ ðkÞ ¼ P½13�ðkÞ − P½13�

IR ðkÞ;
¼ P½13�ðkÞ − lnD2ðkÞ½Z1ðkÞ�2P½11�

m ðkÞ; ð78Þ

where we used the uncorrelation between Ψ̄ and δðSÞ.
Compared to the propagator including the one-loop cor-
rection term in Eq. (59), the propagator and the mode-
coupling term at the one-loop level are shown as

G2ðkÞP½11�
m ðkÞ ¼ D2ðkÞ½½Z1ðkÞ�2P½11�

m ðkÞ þ P½13�
ðSÞ ðkÞ� ð79Þ

and

PMCðkÞ ¼ D2ðkÞðD−2ðkÞ − 1Þ½½Z1ðkÞ�2P½11�
m ðkÞ þ P½13�

ðSÞ ðkÞ�
þ P½22�

ðSÞ ðkÞ: ð80Þ

When Eqs. (79) and (80) are added, they yield the one-loop
power spectrum in SPT.
To describe the nonlinear damping of the BAO signal, we

recalculate the mode-coupling term in Eq. (80). First, given

that ½Z1ðkÞ�2P½11�
m ðkÞ þ P½13�

ðSÞ ðkÞ ∝ P½11�
m ðkÞ, we can directly

apply the computational techniques used to derive the
linear IR resummation model in Eq. (76) to the first term on
the right-hand side of Eq. (80). Therefore,

D2ðkÞðD−2ðkÞ − 1Þ
�
½Z1ðkÞ�2P½11�

m ðkÞ þ P½13�
ðSÞ ðkÞ

i

⟶
IR−resummed

D2ðkÞðD−2ðkÞ − 1Þ

×
h
½Z1ðkÞ�2ð1 − lnD2ðkÞÞPnwðkÞ þ P½13�

nw ðkÞ
i

þD2ðkÞðA2ðkÞ − 1Þ
×
h
½Z1ðkÞ�2ð1 − lnD2ðkÞÞPwðkÞ þ P½13�

w ðkÞ
i
; ð81Þ

where

P½13�
nw ðkÞ ¼ ðPnwðkÞ=P½11�

m ðkÞÞP½13�ðkÞ;
P½13�
w ðkÞ ¼ ðPwðkÞ=P½11�

m ðkÞÞP½13�ðkÞ: ð82Þ

Furthermore, in the IR limit, P½22�
ðSÞ can be explicitly

written as

P½22�
ðSÞ ðkÞ ¼ D2ðkÞD−2ðkÞ½P22ðkÞ

− lnD−2ðkÞ½Z1ðkÞ�2P½11�
m ðkÞ�: ð83Þ

In this context, since P22ðkÞ appropriately includes the
wiggle part within the mode-coupling integral, no further
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manipulation is required. For the second term on the right-
hand side of Eq. (83), when considering the wiggle part,
D−2 originating from the mode-coupling integral should be
replaced by A2. Conversely, for the no-wiggle part, D−2

remains unchanged. Thus, we obtain

P½22�
ðSÞ ðkÞ⟶IR−resummed

P22ðkÞ − lnD−2ðkÞ½Z1ðkÞ�2PnwðkÞ
−D2ðkÞA2ðkÞðlnA2ðkÞÞ½Z1ðkÞ�2PwðkÞ: ð84Þ

Substituting Eqs. (81) and (84) into Eq. (80) and then
combining with Eq. (79), we obtain the IR-resummed
power spectrum model at the one-loop level:

PðkÞ¼D2
BAOðkÞ½½Z1ðkÞ�2ð1− lnD2

BAOðkÞÞPwðkÞþP½13�
w ðkÞ�

þ½Z1ðkÞ�2PnwðkÞþP½13�
nw ðkÞþP½22�ðkÞ: ð85Þ

F. BAO signal in the mode-coupling term

The IR-resummed power spectrum model, which is
obtained by decomposing the linear power spectrum into
the wiggle and no-wiggle parts, as in Eqs. (74) and (85),
was derived by Sugiyama and Spergel [40] based on the
results of numerical experiments showing that the BAO
signal in the mode-coupling term was negligibly small. The
model derived there was one in which all DBAOðkÞ
appearing in Eqs. (74) and (85) was replaced with DðkÞ.
Subsequent studies [49–54,59] introduced considera-

tions regarding the wiggle part included in the mode-
coupling term. It was understood that the wiggle part within
the propagator term cancels out with a part of the wiggle
part in the mode-coupling term, ultimately leading to the
conclusion that the nonlinear damping of the BAO signal is
explained by the wiggle part in the mode-coupling term.
Consequently, the nonlinear damping of the BAO signal is
now described by DBAO, as shown in Eqs. (74) and (85),
rather than by D. However, in the context of the ΛCDM
model, the numerical difference between DBAO and D is
known to be minimal [51].
Figure 1 numerically demonstrates the nonlinear effects

on the BAO signal in real space, assuming f ¼ 0. This
figure plots the ratio of the wiggle part to the no-wiggle part
in the linear IR-resummed model given by Eq. (74) at z ¼ 0
(magenta solid line). For comparison, the linear prediction
(black dashed line) and the approximation where DBAO is
replaced by D as provided by [40] (blue dotted line) are
also plotted. The lower panel of this figure shows the
difference between the result from Eq. (74) and the
approximation where DBAO is replaced by D, defined
as Diff ¼ ½D2

BAO −D2�Pw=Pnw.
From Fig. 1, we can see that even if we approximate

DBAO ≈D and ignore the wiggles in the mode-coupling
term in Eq. (76), the numerical effect on the power
spectrum is about 0.2%. This is the result for the case of

z ¼ 0, where the nonlinear effect is at its maximum, and for
actual observations at redshifts z ¼ 0.2–0.2, this difference
will be even smaller.
Therefore, in terms of constructing a model that can

realistically explain observations, the approximation
DBAO ≈D is valid. In this case, the mode-coupling term
in Eq. (76) consists only of the no-wiggle part as

PMCðkÞ ≈ ð1 −D2ðkÞÞ½Z1ðkÞ�2PnwðkÞ; ð86Þ

leading to the linear IR-resummed model

PðkÞ ¼ ½Z1ðkÞ�2½D2ðkÞPwðkÞ þ PnwðkÞ�: ð87Þ

Similarly, at the one-loop level, the following model is also
approximately satisfied [40]:

PðkÞ ¼ D2ðkÞ½½Z1ðkÞ�2ð1 − lnD2ðkÞÞPwðkÞ þ P½13�
w ðkÞ�

þ ½Z1ðkÞ�2PnwðkÞ þ P½13�
nw ðkÞ þ P½22�ðkÞ: ð88Þ

III. POSTRECONSTRUCTION CASE

We apply the method for constructing the IR-resummed
power spectrum model from the prereconstruction to the
postreconstruction case.

FIG. 1. Ratio of thewiggle part to the no-wiggle part in the linear
IR-resummed model given by Eq. (74) at z ¼ 0 in real space. The
upper panel shows the result using DBAO (magenta solid line),
the linear theory (black dashed line), and the approximation where
DBAO is replaced byD (blue dotted line). The lower panel plots the
difference, Diff ¼ ½D2

BAO −D2�Pw=Pnw.
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A. Postreconstruction density fluctuations

To reconstruct the galaxy distribution, the displacement
vector for reconstruction is calculated from the observed
galaxy density fluctuations as follows [1]:

sðxÞ ¼
Z

d3p
ð2πÞ3 e

ip·x

�
ip
p2

��
−
WGðpRsÞ
b1;fid

�
δ̃obsðpÞ; ð89Þ

where b1;fid is an input fiducial linear bias parameter for
reconstruction, WGðpRsÞ ¼ exp ð−p2R2

s=2Þ is a Gaussian
filter function, and Rs is an input smoothing scale. This sðxÞ
is derived from the observed galaxy fluctuation δobsðxÞ. By
substituting δobs with the nonlinear density fluctuation δ in
Eq. (19), which includes the bias and RSD effects, we can
make a theoretical prediction of sðxÞ.
The reconstruction scheme uses sðxÞ to move each of the

galaxy data particles and the corresponding random par-
ticles. Such an operation is expressed as

1þ δdðxÞ ¼
Z

d3x0ð1þ δðxÞÞδDðx − x0 − sðx0ÞÞ;

1þ δsðxÞ ¼
Z

d3x0δDðx − x0 − sðx0ÞÞ: ð90Þ

Here, δdðxÞ is the density fluctuation of the reconstructed
galaxy data particles, and δsðxÞ is the density fluctuation of the
reconstructed random particles. The observed postreconstruc-
tion galaxy density fluctuation is then given by [6,55]

δrecðxÞ ¼ δdðxÞ − δsðxÞ

¼
Z

d3x0δðx0ÞδDðx − x0 − sðx0ÞÞ: ð91Þ

B. IR effects on the postreconstruction
density fluctuation

The displacement vector for reconstruction, sðxÞ, is
derived from the nonlinear density fluctuation, which
includes the shift term that should be considered in the
IR limit [e.g., see Eq. (2)]. This characteristic of sðxÞ is
unique, contrasting with the displacement vector ΨðqÞ,
where the shift term is excluded [e.g., Eq. (22)]. In this
subsection, we focus on examining the nonperturbative
behavior of the shift term within sðxÞ and demonstrate its
impact on the postreconstruction density fluctuation.
Following the approach introduced in Sec. II, we

decompose the galaxy density fluctuation δðxÞ into two
components: the IR effect represented by Ψ̄, and the short-
wavelength density fluctuation δðSÞðxÞ. By substituting
Eqs. (24) and (26) into Eqs. (89) and (91), we obtain

δrecðxÞ ¼
Z

d3x0δðSÞðx0 − Ψ̄ÞδDðx − x0 − sðSÞðx0 − Ψ̄ÞÞ

¼
Z

d3x00δðSÞðx00ÞδDðx − Ψ̄ − x00 − sðSÞðx00ÞÞ: ð92Þ

In the second line, we used the coordinate transformation:
x00 ¼ x0 − Ψ̄. Here, sðSÞðxÞ is defined as

sðSÞðxÞ ¼
Z

d3p
ð2πÞ3 e

ip·x

�
ip
p2

��
−
WGðpRsÞ
b1;fid

�
δ̃ðSÞðpÞ: ð93Þ

In the IR limit, the short-wavelength displacement vector
for reconstruction, sðSÞ, no longer receives contributions
from the shift term, leading to its analogy with the
displacement vector Ψ. As demonstrated in Eqs. (23)
and (24), the IR effect within the nonlinear density
fluctuation is represented by Ψ at the origin. Similar to
Ψ, by decomposing sS into its origin value and other
components, we can elucidate the IR effect within the
postreconstruction density fluctuation:

sðSÞðxÞ ¼ s̄þ sðSSÞðxÞ; ð94Þ

where s̄ ¼ sSðx ¼ 0Þ. Finally, δrecðxÞ can be formally
rewritten as

δrecðxÞ ¼ δðSÞrecðx − Ψ̄recÞ; ð95Þ

where

Ψ̄rec ¼ Ψ̄þ s̄ ð96Þ

and

δðSÞrecðxÞ ¼
Z

d3x0δðSÞðx0ÞδDðx − x0 − sðSSÞðx0ÞÞ: ð97Þ

This result shows that the IR effect manifests in the
postreconstruction density fluctuation as the coordinate
transformation via Ψ̄rec, like the prereconstruction case in
Eq. (24). Consequently, the arguments applicable to the
prereconstruction IR effect can similarly be applied to the
postreconstruction context.

C. Lagrangian space

We can also perform the calculation of density fluctua-
tions after reconstruction in Lagrangian space. To facilitate
a comparison with the Zel’dovich approximation, set to be
discussed in Sec. III E, we provide proof for Eq. (95) in
Lagrangian space.
In Lagrangian space, δdðxÞ and δsðxÞ are each expressed

as

1þ δdðxÞ ¼
Z

d3qð1þ δbiasðqÞÞδDðx − q −ΨðqÞ

− sðqþΨðqÞÞÞ;

1þ δsðxÞ ¼
Z

d3qδDðx − q − sðqÞÞ: ð98Þ
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Similar to Eq. (92), they can be rewritten as

1þ δdðxÞ ¼
Z

d3qð1þ δbiasðqÞÞδDðx − q − Ψ̄ −ΨðSÞðqÞ

− sðSÞðqþΨðSÞðqÞÞÞ;

1þ δsðxÞ ¼
Z

d3qδDðx − q − sðSÞðq − Ψ̄ÞÞ

¼
Z

d3q0δDðx − q0 − Ψ̄ − sðSÞðq0ÞÞ; ð99Þ

where ΨðSÞðqÞ ¼ ΨðqÞ − Ψ̄ in Eq. (23). For δsðxÞ, we used
the coordinate transformation: q0 ¼ q − Ψ̄.
Note that sðqþΨðqÞÞ within δdðxÞ does not include the

contribution from the shift term in the IR limit. This is
because the coordinate transformation, represented by
qþΨðqÞ, cancels out the IR effect of Ψ̄. As a result, it
can be expressed only in terms of short-wavelength modes
as sðSÞðqþΨðSÞðqÞÞ.
Furthermore, we decompose sðSÞ into the value at the

origin q ¼ 0 and other parts:

sðSÞðqþΨðSÞðqÞÞ ¼ s̄þ sðSSÞðqþΨðSÞðqÞÞ;
sðSÞðqÞ ¼ s̄þ sðSSÞðqÞ; ð100Þ

where we used ΨSðq ¼ 0Þ ¼ 0.
Finally, we obtain

δrecðxÞ ¼ δðSÞdðx − Ψ̄recÞ − δðSÞsðx − Ψ̄recÞ
¼ δðSÞrecðx − Ψ̄recÞ; ð101Þ

where

1þ δðSÞdðxÞ ¼
Z

d3qð1þ δbiasðqÞÞ

× δDðx− q−ΨðSÞðqÞ− sðSSÞðqþΨðSÞðqÞÞÞ;

1þ δðSÞsðxÞ ¼
Z

d3qδDðx− q− sðSSÞðqÞÞ: ð102Þ

D. IR cancellation after reconstruction

We can show that the IR cancellation occurs even after
reconstruction:

hδrecðxÞδrecðx0Þi ¼ hδðSÞrecðx − Ψ̄recÞδðSÞrecðx0 − Ψ̄recÞi
→ hδðSÞrecðxÞδðSÞrecðx0Þi: ð103Þ

Approximating both δðSÞrecðxÞ and Ψ̄rec as linear, we obtain

hδrecðxÞδrecðx0Þi → hδ½1�ðx − Ψ̄½1�
recÞδ½1�ðx0 − Ψ̄½1�

recÞi
¼ hδ½1�ðxÞδ½1�ðx0Þi: ð104Þ

Under this approximation, the propagator term and the
mode-coupling term are, respectively, represented as

G2ðkÞP½11�
m ðkÞ → D2

recðkÞ½Z1ðkÞ�2P½11�
m ðkÞ ð105Þ

and

PMCðkÞ → ð1 −D2
recðkÞÞ½Z1ðkÞ�2P½11�

m ðkÞ: ð106Þ

These specifically lead to the IR cancellation in Fourier
space:

PrecðkÞ → D2
recðkÞ½Z1ðkÞ�2P½11�

m ðkÞ
þ ð1 −D2

recðkÞÞ½Z1ðkÞ�2P½11�
m ðkÞ

¼ ½Z1ðkÞ�2P½11�
m ðkÞ: ð107Þ

Here, DrecðkÞ is the two-dimensional exponentially
decaying function after reconstruction, given by

DrecðkÞ ¼ exp

�
1

2
hð−ik · Ψ̄½1�

recÞ2ic
�

¼ exp

�
−
k2ð1 − μ2Þσ2rec;⊥ þ k2μ2σ2rec;k

2

�
: ð108Þ

The radial and transverse components of the smoothing
factors are further decomposed into

σ2rec;⊥ ¼ σ2⊥ þ σ2ps;⊥ þ σ2ss;⊥;

σ2rec;k ¼ σ2k þ σ2ps;k þ σ2ss;k; ð109Þ

where σ2⊥ and σ2k are given in Eq. (42). The subscript “ps”

means the correlation between Ψ̄ and s̄, and “ss” denotes
the autocorrelation of s̄. These smoothing factors are
calculated as
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σ2ps;⊥ ¼ 1

3

Z
kmax

kmin

dp
2π2

�
−
WGðpRsÞ
b1;fid

��
2

�
b1 þ

f
5

��
P½11�
m ðpÞ;

σ2ps;k ¼
1

3

Z
kmax

kmin

dp
2π2

�
−
WGðpRsÞ
b1;fid

��
2ð1þ fÞ

�
b1 þ

3

5
f

��
P½11�
m ðpÞ;

σ2ss;⊥ ¼ 1

3

Z
kmax

kmin

dp
2π2

�
−
WGðpRsÞ
b1;fid

�
2
��

b21 þ
2

5
b1f þ 3

35
f2
�
P½11�
m ðpÞ þ 1

n̄

�
;

σ2ss;k ¼
1

3

Z
kmax

kmin

dp
2π2

�
−
WGðpRsÞ
b1;fid

�
2
��

b21 þ
42

35
b1f þ 3

7
f2
�
P½11�
m ðpÞ þ 1

n̄

�
: ð110Þ

Here, we summarize the key considerations when perform-
ing the above calculations:
(1) The integral range should depend on the scale at

which sðxÞ is measured.
(2) Since sðxÞ is derived from the power spectrum of the

measured galaxy density fluctuations, we should
consider the shot-noise term 1=n̄ in σ2ss;⊥ and σ2ss;k,
where n̄ is the mean number density [70].

E. Comparisons with the Zel’dovich approximation

Previous studies [21–24] have often used a simple linear
approximation for sðxÞ, known as the Zel’dovich approxi-
mation for reconstruction. This approximation, however,
does not account for nonlinear IR effects in sðxÞ. In this
subsection, we present a detailed comparison between the
Zel’dovich approximation and our findings in Sec. III D.
In the Zel’dovich approximation, Eq. (98) becomes

1þ δdðxÞ ∼
Z

d3qð1þ δ½1�biasðqÞÞδDðx − q −Ψ½1�ðqÞ

− s½1�ðqÞÞ;

1þ δsðxÞ ∼
Z

d3qδDðx − q − s½1�ðqÞÞ: ð111Þ

In the IR limit, they are represented as

δdðxÞ → δ½1�d ðx − Ψ̄½1� − s̄½1�Þ;
δsðxÞ → δ½1�s ðx − s̄½1�Þ: ð112Þ

We then derive

δrecðxÞ → δ½1�d ðx − Ψ̄½1� − s̄½1�Þ − δ½1�s ðx − s̄½1�Þ: ð113Þ

The key difference of this equation from Eq. (101) is how
sðqÞ is treated within δsðxÞ. In Eq. (101), nonperturbative
IR effects are incorporated into sðqÞ, revealing both Ψ̄ and s̄
effects in δsðxÞ. In contrast, the Zel’dovich approximation
assumes a linear sðqÞ, resulting in only the s̄ effect.

In Fourier space, Eq. (113) becomes

δ̃recðkÞ →
�
e−ik·ðΨ̄½1�þs̄½1�ÞZd;1ðkÞ − e−ik·s̄

½1�
Zs;1ðkÞ

�
δ̃½1�m ðkÞ;

ð114Þ

where

Zd;1ðkÞ ¼
�
1þ

�
−
WGðkRsÞ
b1;fid

��
Z1ðkÞ;

Zs;1ðkÞ ¼
�
−
WGðkRsÞ
b1;fid

�
Z1ðkÞ: ð115Þ

The propagator is then given by

GðkÞ ¼ DrecðkÞZd;1ðkÞ −DssðkÞZs;1ðkÞ; ð116Þ

with

DssðkÞ ¼ exp

�
1

2
hð−ik · s̄½1�Þ2ic

�
: ð117Þ

Equation (116) shows that the propagator in the Zel’dovich
approximation comprises two Gaussian decay functions:
DrecðkÞ and DssðkÞ. This contrasts with Eq. (105), where
only DrecðkÞ appears. The specific expression for DssðkÞ is

DssðkÞ ¼ exp

�
−
k2ð1 − μ2Þσ2ss;⊥ þ k2μ2σ2ss;k

2

�
; ð118Þ

where the radial and transverse components of the smooth-
ing factors are given in Eq. (110).
We can also demonstrate that Eq. (113) breaks the IR

cancellation:

hδrecðxÞδrecðx0Þi → hδ½1�d ðxÞδ½1�d ðx0Þi − hδ½1�d ðx − Ψ̄½1�Þδ½1�s ðx0Þi
− hδ½1�s ðxÞδ½1�d ðx0 − Ψ̄½1�Þi
þ hδ½1�s ðxÞδ½1�s ðx0Þi: ð119Þ

In the cross-correlation functions between δdðxÞ and δsðx0Þ,
the IR cancellation does not occur, and the contribution of
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Ψ̄½1� remains. In Fourier space, the cross-power spectrum
between δ̃dðkÞ and δ̃sðk0Þ is represented as

PdsðkÞ → DðkÞZd;1ðkÞZs;1ðkÞP½11�
m ðkÞ: ð120Þ

Hence, breaking the IR cancellation leads to an exponential
decay of the power spectrum. This finding deviates from
our result where the IR cancellation is satisfied even after
reconstruction.

F. Comparison with the one-loop solution in SPT

In this subsection, we investigate the IR limit properties
of the one-loop solution in SPT for the postreconstruction
power spectrum.
In Fourier space, the nth-order term of the redshift-space

density fluctuations after reconstruction is given by

δ̃½n�recðkÞ ¼
Z

d3p1

ð2πÞ3 � � �
d3pn

ð2πÞ3 ð2πÞ
3δDðk − p½1;n�Þ

× Zrec;nðp1;…; pnÞδ̃½1�m ðp1Þ � � � δ̃½1�m ðpnÞ: ð121Þ

The function Zrec;nðp1;…; pnÞ denotes nonlinear kernel
functions accounting for the bias effect, the RSD effect, and
the reconstruction effect. Consequently, the postreconstruc-
tion terms corresponding to P½22� and P½13� are expressed as

P½22�
rec ðkÞ ¼ 2

Z
d3p1

ð2πÞ3
Z

d3p2

ð2πÞ3 ð2πÞ
3δDðk − p½1;2�Þ

× ½Zrec;2ðp1; p2Þ�2P½11�
m ðp1ÞP½11�

m ðp2Þ;

P½13�
rec ðkÞ ¼ 6Z1ðkÞP½11�

m ðkÞ
Z

d3p
ð2πÞ3 Zrec;3ðk; p;−pÞP½11�

m ðpÞ:

ð122Þ

In the IR limit, both Zrec;2ðk; pÞ and Zrec;3ðk; p;−pÞ are
approximated as (see Appendix C)

Zrec;2ðk;pÞ⟶
p→0

1

2
Z1ðkÞ

��
k ·R1 · p

p2

�

þ
�
k · p
p2

��
−
WðpRsÞ
b1;fid

�
Z1ðpÞ

	
;

Zrec;3ðk;p;−pÞ⟶
p→0

−
1

3!
Z1ðkÞ

��
k ·R1 · p

p2

�

þ
�
k · p
p2

��
−
WðpRsÞ
b1;fid

�
Z1ðpÞ

	
2

: ð123Þ

Using Eq. (123), P½22�
rec and P½13�

rec in the IR limit are described
as

P½22�
rec;IRðkÞ ¼ ðk2ð1 − μ2Þσ2rec;⊥ þ k2μ2σ2rec;kÞ

× ½Z1ðkÞ�2P½11�
m ðkÞ;

P½13�
rec;IRðkÞ ¼ −ðk2ð1 − μ2Þσ2rec;⊥ þ k2μ2σ2rec;kÞ

× ½Z1ðkÞ�2P½11�
m ðkÞ: ð124Þ

These terms cancel each other out, leading to the post-
reconstruction one-loop power spectrum approaching zero
in the IR limit: P1-loop

rec ðkÞ → 0. This result is consistent with
those obtained by expanding both the propagator term and
the mode-coupling term up to the one-loop order, as
presented in Eqs. (105) and (106). Given that SPT ensures
accurate calculations for each respective order, this finding
further reinforces the validity of our main result: i.e., the IR
cancellation occurs even after reconstruction.

G. IR-resummed model for the postreconstruction
power spectrum

As discussed in Sec. II E, the function Eðk;−kÞ ¼
D−2ðkÞ in Eq. (43), resulting from the mode-coupling
integrals, plays an essential role in describing the non-
linearity of the BAO signal. In particular, focusing on the
wiggle part, the IR-resummed model can be constructed by
replacing D−2 with A2 in Eq. (69).
After reconstruction, the same calculations used to

derive the IR-resummed model before reconstruction can
be repeated. The postreconstruction AðkÞ is denoted
as ArecðkÞ. This ArecðkÞ can be calculated by replacing

P½11�
m ðpÞ in the smoothing parameters σ2rec;⊥ and σ2rec;k,

which characterize D−1
recðkÞ in Eq. (108), with

j0ðprBAOÞP½11�
m ðpÞ. The function describing the nonlinear

damping of BAO after reconstruction then becomes

DBAO;recðkÞ ¼ DrecðkÞArecðkÞ; ð125Þ

and the linear IR-resummed model of the postreconstruc-
tion power spectrum is obtained as

PrecðkÞ ¼ ½Z1ðkÞ�2½D2
BAO;recðkÞPwðkÞ þ PnwðkÞ�: ð126Þ

This form is identical to the one before reconstruction, with
the exception of the values of the smoothing parameters
that characterize the exponential decay of the BAO signal.
Template models using a single Gaussian function have
been widely used in postreconstruction BAO analysis (e.g.,
see [71–74]). The findings in this paper confirm the validity
of these previous postreconstruction BAO analyses.
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At the one-loop level, we obtain

PrecðkÞ ¼D2
BAO;recðkÞ

× ½½Z1ðkÞ�2ð1− lnD2
BAO;recðkÞÞPwðkÞ þP½13�

rec;wðkÞ�
þ ½Z1ðkÞ�2PnwðkÞ þP½13�

rec;nwðkÞ þP½22�
rec ðkÞ; ð127Þ

where

P½13�
rec;wðkÞ ¼ ðPwðkÞ=P½11�

m ðkÞÞP½13�
rec ðkÞ;

P½13�
rec;nwðkÞ ¼ ðPnwðkÞ=P½11�

m ðkÞÞP½13�
rec ðkÞ: ð128Þ

H. BAO signal in the mode-coupling term

To investigate the behavior of the BAO signal in the
mode-coupling term after reconstruction, we plot Fig. 2
similar to Fig. 1 before reconstruction, assuming f ¼ 0,
b1 ¼ b1;fid ¼ 2, and n̄ ¼ 3.0 × 10−4ðh−1 MpcÞ−3.
This figure shows that the difference between the two

results obtained with DBAO;rec and with the DBAO;rec ≈Drec

approximation on the power spectrum is extremely small,
about Diff ¼ 0.0005%. This is due to the fact that the
postreconstruction smoothing parameters σ2rec;⊥ and σ2rec;k in
Eq. (109) are constructed so that they become small in the
limit of p → 0 in Eq. (110), i.e., in the large-scale limit, and
the contribution from large scales of rBAO ∼ 110h−1 Mpc is
strongly suppressed compared to before reconstruction.
Therefore, after reconstruction, the approximation

DBAO;rec ≈Drec holds very well, and the model can be
constructed while effectively ignoring the wiggle part in the

mode-coupling term. Under this approximation, the fol-
lowing models are provided at the linear and one-loop
levels, respectively:

PrecðkÞ ¼ ½Z1ðkÞ�2½D2
recðkÞPwðkÞ þ PnwðkÞ� ð129Þ

and

PrecðkÞ ¼D2
recðkÞ× ½½Z1ðkÞ�2ð1− lnD2

recðkÞÞPwðkÞ
þP½13�

rec; wðkÞ� þ ½Z1ðkÞ�2PnwðkÞ þP½13�
rec; nwðkÞ

þP½22�
rec ðkÞ. ð130Þ

IV. CROSS-POWER SPECTRUM BETWEEN
PRE- AND POSTRECONSTRUCTION

DENSITY FLUCTUATIONS

We now turn to the cross-power spectrum between the
pre- and postreconstruction density fluctuations. In this
section, we demonstrate that the pre- and postreconstruc-
tion cross-power spectrum does not occur with the IR
cancellation, resulting in an overall exponential decay.
In the IR limit, the cross 2PCF of δðxÞ and δrecðxÞ can be

expressed as

hδðxÞδrecðx0Þi → hδ½1�ðx − Ψ̄½1�Þδ½1�recðx0 − Ψ̄½1�
recÞi: ð131Þ

Because of the statistical translation symmetry, this expres-
sion transforms to

hδðxÞδrecðx0Þi → hδ½1�ðxþ s̄½1�Þδ½1�recðx0Þi: ð132Þ

As a result, the contributions from the IR effect related to
s̄½1� are retained in the cross 2PCF.
In Fourier space, the cross-power spectrum of δ̃ðkÞ and

δ̃recðkÞ in the IR limit is given by

PcrossðkÞ → DðkÞDrecðkÞEpdðk;−kÞ½Z1ðkÞ�2P½11�
m ðkÞ; ð133Þ

where the exponential function Epdðk; k0Þ is defined as

Epdðk; k0Þ ¼ expðhð−ik · Ψ̄½1�Þð−ik0 · Ψ̄½1�
recÞicÞ: ð134Þ

This function satisfies the following relation:

Epdðk;−kÞ ¼ DssðkÞD−1
recðkÞD−1ðkÞ: ð135Þ

Substituting Eq. (135) into Eq. (133) leads to

PcrossðkÞ → DssðkÞ½Z1ðkÞ�2P½11�
m ðkÞ: ð136Þ

Thus, the contribution from the remaining IR effect in the
cross 2PCF, shown in Eq. (132), appears as the exponential
decay function in the cross-power spectrum.

FIG. 2. Same as Fig. 1, except that the functions DBAO and D
have been replaced by DBAO;rec and Drec, respectively.
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To account for the nonlinear damping effect of BAO, as
was done in Eqs. (74) and (126), we calculate Ass by

replacing P½11�
m ðpÞ in the smoothing parameters σ2ss;⊥ and

σ2ss;k with j0ðprBAOÞP½11�
m ðpÞ and substituting the new

smoothing parameters obtained there intoD−1
ss . Then, when

focusing on the wiggle part, we perform the replacement

Epdðk; -kÞ⟶
replacement

A−1
ss ðkÞArecðkÞAðkÞ; ð137Þ

and when considering the no-wiggle part, we leave it as it
is. Through these operations, we can finally obtain

PcrossðkÞ → ½Z1ðkÞ�2½DBAOðkÞDBAO;recðkÞA−1
ss ðkÞPwðkÞ

þDssðkÞPnwðkÞ�: ð138Þ

In the same way as Eqs. (87) and (129), when we ignore
the BAO signal in the mode-coupling term, set DBAO ¼ D,
DBAO;rec ¼ Drec, and A−1

ss ¼ 1, we obtain

PcrossðkÞ ≈ ½Z1ðkÞ�2½DðkÞDrecðkÞPwðkÞ þDssðkÞPnwðkÞ�:
ð139Þ

Figure 3 shows the difference between the models of
Eqs. (138) and (139), and the difference is very small, at

0.025%. Therefore, Eq. (139) can be considered a good
approximation.

A. Shot noise in the cross-power spectrum

The shot-noise term in the power spectrum arises when
the same particle is counted multiple times during power
spectrum calculations. Usually, the shot-noise term is
absent in the cross-power spectrum of different density
fluctuations. However, in the case of the cross-power
spectrum between the pre- and postreconstruction density
fluctuations, the same galaxies can be identified, making
the shot-noise term significant.
In the discrete picture, the number density in Fourier

space is given by

nðkÞ ¼
XNg

i

e−ik·xi ; ð140Þ

where xi denotes the position of the ith galaxy and Ng

represents the total number of galaxies. The auto power
spectrum in this discrete picture is expressed as

V
N2

g
jnðkÞj2 ¼ V

N2
g

X
i≠j

e−ik·ðxi−xjÞ þ V
N2

g

XNg

i¼j

¼ PðkÞ þ 1

n̄
; ð141Þ

where V denotes the survey volume. The first and second
terms on the right-hand side correspond to the power
spectrum and the shot-noise term, respectively,

PðkÞ ¼ V
N2

g

X
i≠j

e−ik·ðxi−xjÞ;

1

n̄
¼ V

N2
g

XNg

i¼j

; ð142Þ

where n̄ ¼ Ng=V is the mean number density.
Let nrecðkÞ be the postreconstruction density field in

Fourier space. It can be expressed in the discrete picture as

nrecðkÞ ¼
XNg

i

e−ik·xrec;i ; ð143Þ

where

xrec;i ¼ xi þ sðxiÞ: ð144Þ

Therefore, the shot-noise term in the cross-power spectrum
is given by

V
N2

g

XNg

i¼j

e−ik·ðxi−xrec;iÞ ¼ V
N2

g

XNg

i¼j

eik·sðxiÞ: ð145Þ

FIG. 3. Ratio of the wiggle part to the no-wiggle part in the
cross-power spectrum model between before and after
reconstruction at z ¼ 0 in real space. The upper panel shows
the result in Eq. (138) (magenta solid line), the linear theory
(black dashed line), and the approximation in Eq. (139) (blue
dotted line). The lower panel plots the difference between
Eqs. (138) and (139).
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Calculating the ensemble average of the above equation
and taking the continuous limit, we obtain



V
N2

g

XNg

i¼j

eik·sðxiÞ
�

¼ 1

Ng

Z
d3xheik·sðxÞi

¼ 1

n̄
heik·sðx¼0Þi

≃
1

n̄
heik·s̄½1� i: ð146Þ

In the final line, we made an approximation of the linear
sðxÞ. Finally, we derive



V
N2

g
nðkÞn�recðkÞ

�
¼ PcrossðkÞ þDssðkÞ

�
1

n̄

�
: ð147Þ

This result indicates that the shot-noise term is proportional
to DssðkÞ and exponentially decays, as is PcrossðkÞ.

V. CONCLUSIONS

In this paper, we present a new theoretical model
addressing the resummation of infrared effects in the
power spectrum of galaxy density fluctuations after
reconstruction. Our model accurately describes the non-
linear damping of the postreconstruction BAO signal, while
including the one-loop correction term in SPT. The first
main results are summarized in Eqs. (126) and (127).
We point out in Sec. III B that it is crucial to consider the

nonlinear IR effects contained within the displacement
vector for reconstruction s (89). As a result, the IR effects
on the postreconstruction density fluctuation can be
described as a coordinate transformation of the density
fluctuations (95), like the prereconstruction case (24). This
result leads to the cancellation of the IR effects on the
power spectrum in the IR limit even after reconstruction.
Furthermore, the nonlinear behavior of BAO is character-
ized by the two-dimensional Gaussian decaying function of
BAO, supporting the theoretical foundation of the com-
monly used single two-dimensional Gaussian decay func-
tion in postreconstruction power spectrum and 2PCF
analyses [e.g., 71–74].
We compare our findings regarding the postreconstruc-

tion infrared effects with those obtained using the
Zel’dovich approximation and SPT in Secs. III E and III
F. Notably, in the Zel’dovich approximation, which linearly
approximates s, IR cancellation does not occur, and two
Gaussian damping functions are required to describe the
nonlinear BAO effects. Conversely, in the postreconstruc-
tion SPT, IR cancellation is observed in the IR limit,
corroborating our results.
We further clarify the behavior of the cross-power

spectrum between pre- and postreconstruction density
fluctuations, noting its overall exponential decay due to
the absence of IR cancellation. This observation also

applies to the corresponding shot-noise term. While these
phenomena have been observed in previous simulation
studies [5], our work thus provides a mathematical foun-
dation for these observations. Additionally, as our second
main result, we present a model, as shown in Eq. (138), to
elucidate the nonlinear effects of BAO on the cross-power
spectrum.
In conclusion, our work presents a novel direction in

developing theoretical models for the postreconstruction
power spectrum beyond standard perturbation theory. The
IR-resummed models presented in this paper, which con-
sider the galaxy bias and RSD effects, are directly appli-
cable to the analysis of real galaxy data.

Note added.—Recently, we learned that the DESI
Collaboration [75] was planning to submit a study with
conclusions similar to ours, suggesting that theBAOsignal in
the postreconstruction power spectrum should be described
by a single Gaussian damping function. To ensure a
coordinated approach, we arranged to submit our paper
close to the DESI Collaborators’ paper submission. Their
study investigates the theoretical and numerical systematics
of the post-reconstruction BAO signal in detail. In contrast,
our work focuses on the IR effects before and after
reconstruction, providing a more detailed theoretical analy-
sis. Therefore, these studies complement each other well,
each enriching the understanding of the topic from a different
perspective. We refer readers interested in the numerical
aspects to the paper by the DESI Collaboration.
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APPENDIX A: DEGENERATE HIGHER-ORDER
SCALAR-TENSOR THEORIES

In DHOST theories, the second-order kernel density
fluctuation of dark matter is given by [79]

δ½2�m ðxÞ ¼
�
κ −

4

21
λ

�
½δ½1�m ðxÞ�2 − κΨ½1�ðxÞ ·∇δ½1�m ðxÞ

þ 2

7
λ

��
∂i∂j

∂
2
−
1

3
δij

�
δ½1�m ðxÞ

�
2

: ðA1Þ

Here, in ΛCDM assuming f2 ¼ Ωm, κ ¼ λ ¼ 1. From
Eqs. (9) and (10), the short-wavelength density fluctuation
then becomes
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δ½2�ðSÞmðxÞ ¼
�
κ −

4

21
λ

�
½δ½1�m ðxÞ�2 −Ψ½1�

ðSÞðxÞ ·∇δ½1�m ðxÞ

− ΔκΨ½1�ðxÞ ·∇δ½1�m ðxÞ

þ 2

7
λ

��
∂i∂j

∂
2
−
1

3
δij

�
δ½1�m ðxÞ

�
2

: ðA2Þ

where κ ¼ 1þ Δκ. There remains a shift term, ΔκΨ½1�ðxÞ ·
∇δ½1�m ðxÞ, in δ½2�ðSÞmðxÞ that does not go to zero in the IR limit.
Therefore, it is not possible to simply separate IR effects from
the rest based on Eq. (24). This unique feature of DHOST
theories leads to a violation of the IR cancellation [80]. This
deviation in the coefficient of the shift term from1 inDHOST
theories is also related to the consistency relation for the
large-scale structure [66,81,82].

APPENDIX B: STANDARD PERTURBATION
THEORY

In this appendix, we show the specific form of the
nonlinear kernel functions Zn given in Eq. (27) up to the
third order in SPT and investigate their behaviors in the
IR limit.
In Fourier space, Eq. (19) becomes

δ̃gðkÞ ¼
Z

d3qe−ik·q
�
½1þ δbiasðqÞ�e−ik·ΨredðqÞ − 1

	
: ðB1Þ

We assume that the nth order of the biased density
fluctuation can be represented as

δ̃½n�biasðkÞ ¼
Z

d3p1

ð2πÞ3 � � �
d3pn

ð2πÞ3 ð2πÞ
3δDðk − p½1;n�Þ

× Bnðp1;…; pnÞδ̃½1�m ðp1Þ � � � δ̃½1�m ðpnÞ; ðB2Þ

where B1ðp1Þ ¼ ðb1 − 1Þ with b1 being the Eulerian linear
bias. We follow the standard bias theory (e.g., [57]) and
assume that Bn≥2ðp1;…; pnÞ do not include the shift terms.
Then, the nonlinear kernel functions up to the third order
are given by [62,83]

Z1ðkÞ ¼ B1ðkÞ þ k · Lred;1ðkÞ; ðB3Þ

Z2ðp1; p2Þ ¼ B2ðp1; p2Þ þ ½k · Lred;2ðp1; p2Þ�

þ 1

2
fB1ðp1Þ½k · Lred;1ðp2Þ� þ 1 permg

þ 1

2
½k · Lred;1ðp1Þ�½k · Lred;1ðp2Þ�; ðB4Þ

and

Z3ðp1; p2; p3Þ ¼ B3ðp1; p2; p3Þ þ ½k · Lred;3ðp1; p2; p3Þ�

þ 1

3
fB2ðp1; p2Þ½k · Lred;1ðp3Þ� þ 2 permsg

þ 1

3
fB1ðp1Þ½k · Lred;2ðp2; p3Þ� þ 2 permsg

þ 1

6
fB1ðp1Þ½k · Lred;1ðp2Þ�½k · Lred;1ðp3Þ�

þ 2 permsg þ 1

6
½k · Lred;1ðp1Þ�

× ½k · Lred;1ðp2Þ�½k · Lred;1ðp3Þ�; ðB5Þ

where k ¼ p1 þ p2 for Z2, k ¼ p1 þ p2 þ p3 for Z3, and
Lred;nðp1;…; pnÞ are calculated through the transformation
matrix given in Eq. (33):

Lred;nðp1;…; pnÞ ¼ Rn · Lnðp1;…; pnÞ: ðB6Þ

Since Ln≥2ðp1;…; pnÞ do not include the shift term, the
functions Z2ðk; pÞ and Z3ðk; p;−pÞ, which are needed to
compute the one-loop power spectrum in the IR limit, are
approximated as

Z2ðk; pÞ⟶
p→0

1

2

�
k · R1 · p

p2

�
Z1ðkÞ;

Z3ðk; p;−pÞ⟶
p→0

−
1

3!

�
k · R1 · p

p2

�
2

Z1ðkÞ: ðB7Þ

APPENDIX C: STANDARD PERTURBATION
THEORY AFTER RECONSTRUCTION

We investigate the IR limit properties of the postrecon-
struction density fluctuations up to the third order.
In Fourier space, Eq. (91) becomes

δ̃recðkÞ ¼
Z

d3xe−ik·xe−ik·sðxÞδðxÞ: ðC1Þ

The nonlinear kernel function up to the third order are then
given by [20]
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Zrec;1ðp1Þ ¼ Z1ðp1Þ;

Zrec;2ðp1; p2Þ ¼ Z2ðp1; p2Þ þ
1

2

��
k · p1
p2
1

��
−
WGðp1RsÞ

b1;fid

�
þ
�
k · p2
p2
2

��
−
WGðp2RsÞ

b1;fid

�	
Z1ðp1ÞZ1ðp2Þ;

Zrec;3ðp1; p2; p3Þ ¼ Z3ðp1; p2; p3Þ þ
1

3

��
k · p½1;2�
p2
½1;2�

��
−
WGðp½1;2�RsÞ

b1;fid

�
Z2ðp1; p2ÞZ1ðp3Þ þ 2 perms

	

þ 1

3

��
k · p1
p2
1

��
−
WGðp1RsÞ

b1;fid

�
Z1ðp1ÞZ2ðp2; p3Þ þ 2 perms

	

þ 1

6

��
k · p1
p2
1

��
−
WGðp1RsÞ

b1;fid

��
k · p2
p2
2

��
−
WGðp2RsÞ

b1;fid

�
Z1ðp1ÞZ1ðp2ÞZ1ðp3Þ þ 2 perms

	
; ðC2Þ

where k ¼ p1 þ p2 for Zrec;2 and k ¼ p1 þ p2 þ p3 for Zrec;3. The above equations include the bias effects as a slight
extension of those given by Hikage et al. [20]. Approximations in the IR limit of Zrec;2 and Zrec;3 in the form needed to
compute the one-loop power spectrum are given by

Zrec;2ðk; pÞ⟶
p→0

1

2

��
k · R1 · p

p2

�
þ
�
k · p
p2

��
−
WGðpRsÞ
b1;fid

�
Z1ðpÞ

	
Z1ðkÞ;

Zrec;3ðk; p;−pÞ⟶
p→0

−
1

3!

��
k · R1 · p

p2

�
þ
�
k · p
p2

��
−
WGðpRsÞ
b1;fid

�
Z1ðpÞ

	
2

Z1ðkÞ: ðC3Þ
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