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Ongoing or soon to come cosmological large-scale structure surveys such as DESI, SPHEREx, Euclid,
or the High-Latitude Spectroscopic Survey of the Nancy Grace Roman Space Telescope promise
unprecedented measurement of the clustering of galaxies on large scales. When quantified with the
Cartesian Fourier basis, the measurement of these large scales requires the introduction of so-called wide-
angle corrections. By contrast, the measurement of the power spectrum in a spherical Fourier Bessel (SFB)
basis does not require such corrections and naturally accounts for the spherical survey geometries. Here, we
develop and implement a fast code to construct the SFB power spectrum and investigate how line of sight
effects, physics such as non-Gaussianity, and differing survey geometries affect SFB power spectrum
estimates. We then leverage our program to predict the tightness of cosmological constraints from realistic
survey specifications using a Fisher matrix formalism.
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I. INTRODUCTION

In order to answer questions about elusive cosmological
phenomena such as dark energy and inflation, next-
generation deep, wide-angle galaxy redshift surveys such
as SPHEREx [1], Euclid [2], DESI [3], and Roman [4] will
be launched within the next decade and will obtain spectra
of hundreds of millions of galaxies. This will enable the
analysis of the large-scale distribution of matter throughout
space, and as a consequence, precise estimates of the
cosmological parameters that govern the evolution of the
universe.
A three-dimensional map of the distribution of galaxies

and galaxy clusters can be studied using statistics such as
the two-point correlation function ξðxÞ which describes the
probability of observing two galaxies separated by some
distance. However, for separation of scales, in this paper we
use the power spectrum, the two-point correlation function
in Fourier space. The power spectrum contains the same
information as ξðxÞ, though has advantages in our case,
such as the fact that the Fourier modes that comprise the
power spectrum have the desirable property of being
statistically orthogonal in a homogeneous and isotropic
universe [e.g., [5–7] ]. Further details on trade-offs between
the two-point function in configuration space and Fourier
space can be found in Feldman et al. [8].
Previous measurements of the 3D power spectrum have

relied on Cartesian Fourier decomposition and have been
sufficient for pencil-beam surveys with small volumes and

minimal sky coverage. In the global-plane parallel case, one
approximates the sky as being planar, and the Cartesian
power spectrum uses a single global line of sight (LOS) for
each galaxy pair. However, this assumption neglects the
spherical geometry of the sky and becomes invalid for
galaxies with large angular separations as is expected in
upcomingwide-angle surveys. Resolutions include the local
plane-parallel approximation, which uses a single LOS per
galaxy pair [9] and usually involves perturbativewide-angle
corrections [10–12] (but see Refs. [13,14] for nonperturba-
tive approaches). Still, these perturbative approximations
break down with the full-sky coverage to be seen in next-
generation surveys, resulting in a loss of information. The
mismatch of the Cartesian basis and the inherent spherical
geometry of the survey implies that PðkÞ is not directly
measurable due to thesewide-angle effects [15].While large
angular scales pose many challenges, large radial scales also
present difficulties in a Cartesian basis. For example, the
survey volume is divided into redshift bins, and the power
spectrum estimator is measured at the effective redshift in
each bin. Radial bins that are too large inadequately capture
redshift evolution while narrow bins fail to measure radial
modes larger than the bin size [15].
A spherical Fourier Bessel (SFB) decomposition of the

matter overdensity field improves upon the Cartesian power
spectrumwith these limitations in mind. The basis functions
of the SFB decomposition are defined as the eigenfunctions
of the Laplacian operator in spherical coordinates: spherical
Bessel functions jl and spherical harmonics Ylm for the
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radial and angular components of the Laplacian, respec-
tively. In the SFB basis, a LOS for each galaxy is implicit,
avoiding the need for flat-sky approximations, and we need
only to assume that we can model redshift space distortions
(RSD) to linear order [16]. Furthermore, radial distortions
are naturally included in the analysis and preserve isotropy,
thereforemaintaining statistical orthogonality of the angular
modes in the real-space power spectrum [17].
In this paper we develop code that computes the

discrete SFB power spectrum, tunable to survey param-
eters such as the selection function and survey radius, as
well as different cosmologies and physical parameters
like galaxy bias. We use the code to study physical effects
in the power spectrum—including non-Gaussianity and
RSD—and investigate the evolution of power across
multipole moments. We then leverage the power spec-
trum estimator to predict cosmological constraints with
Fisher forecasts. Our code is available upon request and
institutional approval.
In Sec. II, we provide a short review of the SFB

decomposition formalism along with the features obtained
from various physical effects and survey parameters
considered in our modeling. In Sec. III, for a SPHEREx-
like survey, we predict constraints on the parameters
fσ8; bσ8; h;Ωm, and fNL using one galaxy number density
and bias subsample, then extend the calculation to include
cross-correlations with four other subsamples defined by
their redshift uncertainties. We then conclude in Sec. IV.
Our strategy for numerical integration is outlined in the
Appendix. Unless otherwise stated, we will use the Planck
ΛCDM cosmological model (2018) throughout this work.

II. SFB POWER SPECTRUM

In this section, we will review the mathematical formal-
ism of the SFB decomposition in both the continuous and
discrete SFB bases, and demonstrate how physical effects,
in particular galaxy number density evolution, RSD, and
non-Gaussianity affect the shape and amplitude of the SFB
power spectrum. This section concludes with a discussion
of the shot noise computation we use in our analyses. In this
work, we consider a survey with an observed comoving
number density and galaxy bias corresponding to five
SPHEREx redshift accuracy bins [18–21]. In this section,
unless otherwise noted, all plots of the SFB power spectrum
and shot noise will be produced from the sample with the
lowest redshift uncertainty ðσðzÞ=ð1þ zÞ ≤ 0.003Þ using a
selection function that is a cubic spline of the values given
in Ref. [20] and bias model obtained from linear regression
from [20].
Furthermore,weuse a radial survey rangeof z ∈ ½0.0; 4.6�,

and we generate the linear matter power spectrumPðkÞwith
CAMB [22].Wewill use these parameters for power spectrum
estimates throughout the rest of this work. Finally, we only
consider a spherically symmetric galaxy survey and leave a

separate treatment of the angularmask for futurework,which
could be done using the couplingmatrix as described in [23].

A. Continuous SFB power spectrum

The SFB power spectrum is given by the covariance
between continuous real space and SFB density contrasts
which are defined by

δðrÞ ¼
Z

dk
X
lm

ffiffiffi
2

π

r
kjlðkrÞYlmðθ;ϕÞδlmðkÞ; ð1Þ

δlmðkÞ ¼
Z

d3r

" ffiffiffi
2

π

r
kjlðkrÞY�

lmðθ;ϕÞ
#
δðrÞ: ð2Þ

Following [23], we define an integral kernel valid in the
linear theory as

Wlðk; qÞ ¼
2qk
π

Z
drϕðrÞDðrÞbðr; qÞjlðkrÞe−1

2
σ2uþzq

2

×
X
Δl

ðδKΔl;0 − βflΔlÞjlþΔlðqrÞr2 ð3Þ

for radial selection function ϕðrÞ, linear growth factorDðrÞ,
RSD parameter β ¼ f=b, and possibly scale-dependent
galaxy bias bðr; qÞ. The exponential factor models the
Fingers-of-God (FoG) effect as well as redshift errors by
σ2uþz ¼ σ2u þ σ2z , where

σuðrÞ2 ¼
fðrÞ2DðrÞ2

3

Z
d3k
ð2πÞ3

PðkÞ
k2

ð4Þ

models the FoG velocity dispersion and σ2z is the redshift-
dependent redshift measurement uncertainty of the galaxy
sample. As written, the exponential in Eq. (3) is an
approximation to e

1
2
σ2q2∂2qrjlðqrÞ which is part of the RSD

contribution to the power spectrum [23,24]. This approxi-
mation becomes inaccurate at large lwhere it overestimates
the suppression due to FoG, though this overestimation is
negligible for at least l≲ 700. PðkÞ is the matter power
spectrum at z ¼ 0, and we model the evolution of density
perturbations with the linear growth factor DðrÞ and linear
growth rate fðrÞ. The sum in Eq. (3) encodes the linear RSD
contribution [24], and the only nonzero flΔl

fl−2 ¼
lðl − 1Þ

ð2l − 1Þð2lþ 1Þ ; ð5Þ

fl0 ¼ −
2l2 þ 2l − 1

ð2l − 1Þð2lþ 3Þ ; ð6Þ

fl2 ¼ ðlþ 1Þðlþ 2Þ
ð2lþ 1Þð2lþ 3Þ ; ð7Þ
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arise from a recursion relation of the second derivative of the
spherical Bessel function. The integral kernel captures the
physics that ultimately serves towrite the redshift-space, i.e.
observed, galaxy density contrast to linear order in the SFB
basis δobslmðkÞ,

δobslmðkÞ ¼
Z

dqWlðk; qÞδlmðqÞ; ð8Þ

whereas δlmðqÞ denotes the density contrast of the matter
field only. We can then write the continuous SFB power
spectrum as

Clðk; k0Þ≡ hδobslmðkÞδobs;�lm ðk0Þi

¼
Z

dqWlðk; qÞW�
lðk0; qÞPðqÞ: ð9Þ

B. Discretized SFB power spectrum

Boundary conditions must be imposed on the matter
overdensity field in order to maintain orthogonality of the
spherical Laplacian eigenfunctions when considering a
finite survey radius from rmin to rmax, resulting in a
discretization of the SFB modes [25].
The discretized real space and SFB pair are defined

by [23,26]

δðrÞ ¼
X
nlm

½gnlðrÞYlmðθ;ϕÞ�δnlm; ð10Þ

δnlm ¼
Z Z

rmax

rmin

r2drdΩgnlðrÞY�
lmðθ;ϕÞδðrÞ; ð11Þ

where gnl is a linear combination of spherical Bessel
functions of the first and second kind

gnlðrÞ ¼ cnljlðknlrÞ þ dnlylðknlrÞ ð12Þ

at discrete radial scales knl. The gnl serve as eigenfunc-
tions to the radial component of the Laplacian under
potential boundary conditions [25] with eigenvalues −k2nl,
and in practice they are computed using the code
SphericalFourierBesselDecompositions.jl.
The coefficients cnl and dnl are determined by rmin, rmax,
and knl, as derived in [23]. We note that when rmin ¼ 0,
dnl ¼ 0, and the gnl reduces to spherical Bessel functions
of the first kind.
Substituting Eq. (1) with the observed density contrast

into Eq. (11), we exploit the orthogonality relation of
spherical harmonics to obtain the relation between the
continuous and discrete SFB-space density contrasts,

δobsnlm¼
Z �Z

rmax

rmin

gnlðrÞ
ffiffiffi
2

π

r
kjlðkrÞr2dr

�
δobslmðkÞdk: ð13Þ

Modeling the observed density contrast as in Eqs. (8) and
(3), we obtain

δobsnlm ¼
Z

dqWnlðqÞδlmðqÞ; ð14Þ

where

WnlðqÞ ¼
ffiffiffiffiffiffiffi
2q2

π

r Z
rmax

rmin

gnlðrÞϕðrÞDðrÞbðr; qÞe−1
2
σ2uþzq

2

×
X
Δl

ðδKΔl;0 − βflΔlÞjlþΔlðqrÞr2dr: ð15Þ

Compared to the continuous limit Eq. (3), in the discrete
case, the first spherical Bessel is substituted by the discrete
basis functions gnlðrÞ in Eq. (15). Thus, we define the
discrete SFB power spectrum assuming isotropy around the
observer (l ¼ l0, m ¼ m0) as the covariance between
observed SFB modes δobsnlm, or

Clðknl; kn0lÞ≡ hδobsnlmδ
obs
n0lmi

¼
Z

WnlðqÞWn0lðqÞPðqÞdq: ð16Þ

Obtaining this quantity in practice can be computationally
intensive. For accurate results, we employ the procedure
described in the Appendix.

C. Radial selection function

The observed galaxy number density n̄ is not spatially
homogeneous due to inevitable magnitude limitations in
galaxy surveys, resulting in more nondetections at higher
redshifts. This bias toward galaxies proximal to the
survey’s minimum radius can be expressed in the form
of the radial selection function ϕ, defined as ϕðrÞ ¼
n̄ðrÞ=n̄0 where the normalization n̄0 is the maximum value
attained by n̄ðrÞ in the survey range. A plot of the estimated
SPHEREx average galaxy number density, separated into
five subsamples by forecasted redshift uncertainty
σðzÞ=ð1þ zÞ, is given in Fig. 1. The curves are obtained
by splining the data [20] in log-space and are extrapolated
linearly. We will provide a Fisher forecast in Sec. III B on
the cosmological parameters utilizing each subsample
individually and show that more information can be
extracted when all are included in the analysis.
In real space, a homogeneous and isotropic matter over-

density field results in a highly localized Fourier transform
with power only along the diagonal knl ¼ kn0l. In this case,
the SFB modes, and therefore clustering at scales knl and
kn0l, are uncorrelated. However, inhomogeneity on the light
cone breaks this symmetry. In Fig. 2, we compare the effects
of a constant and SPHEREx-based selection function on the
SFB power spectrum. The latter results in more power for
off-diagonal terms knl ≠ kn0l than the former due to the
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observed radial inhomogeneity as the observed galaxy
number density decreases at farther distances. The correla-
tion between SFB modes is a result of the broken transla-
tional invariance in the real-space overdensity field. In other
words, following the uncertainty principle, the lack of
homogeneity in real space no longer results in a SFB
transform with power at a single knl frequency, but instead
we obtain coupled SFB coefficients.

D. Redshift-space distortions

Peculiar velocities bias estimates of distances to galaxies
when using redshifts. In particular, in large-scale structures,
the infall of galaxies toward a common gravitational center
results in a redshift of light emitted from galaxies infalling
along the LOS direction and blueshift of those antiparallel
to it. This LOS effect, known as the Kaiser effect, results in
inferences of more clustering on large scales than is present

in real space. A consequence of RSD is therefore an
increase in the clustering amplitude of the power spectrum
on large scales, as shown in Fig. 3. While the power is
increased for terms adjacent and parallel to the diagonal,
the width of the diagonal itself remains relatively
unchanged. However, a signature of RSD is the anticorre-
lation (negative power) in off-diagonal terms near the
diagonal. The slight shift of the SFB power spectrum
amplitude to larger knl with RSD can be attributed to the
“squashing” of large-scale structures to smaller scales from
the LOS component of the galaxies’ peculiar velocities.
We can also observewhere the power resides as a function

of l for fixed k and k0. This can already be seen comparing
Figs. 2 and 3 which correspond to l ¼ 2 and l ¼ 10,
respectively; the maxima of the power spectra shift to
smaller scales (larger knl) as l increases. To illustrate this
further, in Fig. 4, the SFB power spectrum is shown for
l ¼ 2;…; 75 in redshift spacewith an exponential selection
function ϕðrÞ ¼ expð−0.0019rÞ. Small l probes larger
angular scales, resulting in more power at small k and k0
which decreases rapidly asl increases. Conversely, largerl,
or smaller angular scales, finds more power in smaller radial
scales, so we find that the peak of the power spectrum shifts
to larger k as l increases. The lines of constant slope can be
explained by applying Limber’s approxmiation [27,28],

jlðkrÞ ≈
ffiffiffiffiffiffiffi
π

2kr

r
δD

�
kr − l −

1

2

�
; ð17Þ

to Eqs. (15) and (16). The exponential selection function
dominates the decay rate, resulting in straight lines. The
magnitude of the slopes for different k is also explained by
the argument to the selection function in this approximation.

FIG. 2. SFB power spectrum Clðknl; kn0lÞ in ½h−1 Mpc�3 for l ¼ 2 with Left: SPHEREx-based splined radial selection function.
Right: Constant selection function ϕðrÞ ¼ 1.

FIG. 1. Average galaxy number density data used throughout
this paper. A cubic spline was fit to the five SPHEREx sample
number density estimates shown as points in the plot.
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E. Non-Gaussianity

The slow-roll, single-field inflationary paradigm predicts
a mostly Gaussian random density field [29]. Constraining
the level of non-Gaussianity (NG) of matter overdensities
serves in delineating which inflationary models best
describe the complex physical processes of the early
universe. In some of these models, NG can be captured
by the SFB power spectrum as an observable on large
scales. This is due to the fact that large-scale structure falls
on the tail of the probability distribution of the real space
density contrast, making it especially sensitive to the
skewness resulting from local NG [30].
We adopt a galaxy bias with a scale-dependent correction

term [31],

Δbðr; kÞ ¼ 2ðb − 1ÞfNLδc
3Ωm

2D̃ðrÞTðkÞr2Hk2
; ð18Þ

to measure the SFB power spectrum under the assumption
of local primordial non-Gaussianity. Here, b is the fiducial
galaxy bias, TðkÞ is the matter transfer function, D̃ðrÞ is the
growth factor normalized to the scale factor during matter
domination, rH is the Hubble radius, fNL characterizes the
dependence of the amplitude on non-Gaussian effects, and
we take the critical overdensity as δc ¼ 1.686.
Figure 5 displays howNG is realized in the SFBPS. In the

plot, fNL ¼ 100 is exaggerated from typically constrained
values [32] for demonstration. The power spectrum ampli-
tude is increased at very large scales knl ≲ 0.05h Mpc−1.
This scaling is maximized along the diagonal, and off-
diagonal terms do not see as large of an increase in power.
Thewidth of the diagonal shows no discernible changewith
nonzero fNL. Most of the information to be extracted from
the SFB power spectrum with regard to NG lies at small
k ¼ k0 and l values.

F. Shot noise

Studying the overdensity field in the cosmic variance-
limited case is instructive for isolating and exploring the
manifestations of physical effects in the SFB power spec-
trum. However, in order to perform meaningful statistical
analyses, we must account for shot noise, which increases
the uncertainty in measurements of quantities such as the
cosmological parameters due to the sampling of finitely
many galaxieswithin the survey volume. From [23], the shot
noise matrix elements are given via

Nobs
lnn0 ¼

1

n0

1ffiffiffiffiffiffi
4π

p
Z

drr2gnlðrÞgn0lðrÞW00ðrÞ; ð19Þ

FIG. 3. SFB power spectrum for l ¼ 10 with and without RSD. Left: Heatmap of the SFB power spectrum with RSD included. One-
dimensional cuts are highlighted in red and displayed in the right plot. The same cuts are taken from the SFB power spectrum without
RSD. Right: One-dimensional cuts of the SFB power spectrum. Red lines are slices of the SFB power spectrum in redshift space, and
black is without RSD. Solid lines are diagonal cuts, dashed lines indicate off-diagonal cuts, and dotted lines are cross-sections.

FIG. 4. The SFB power spectrum at a fixed k and k0 with
varying l. Lines of constant slope appear due to the dominating
decay rate of the exponential selection function. The power
spectrum becomes negative on the off-diagonal, so the absolute
value of the amplitude is displayed as the dotted lines.
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where, assuming that the full windowW00 is separable into a
mask Mðr̂Þ and radial selection ϕðrÞ,

W00ðrÞ ¼
Z

dΩY�
00ðθ;φÞMðθ;φÞϕðrÞ ð20Þ

≃
ffiffiffiffiffiffi
4π

p
ϕðrÞfsky; ð21Þ

for fractional sky coverage fsky. Thus,

Nobs
lnn0 ¼

fsky
n0

Z
drr2gnlðrÞgn0lðrÞϕðrÞ; ð22Þ

where n0 is the maximum galaxy number density within the
survey. The shot noise matrix is then simply added to the
power spectra. In this work, the window function consists
only of the radial selection function, andwe approximate the
fractional sky coverage after calculating the Fisher infor-
mation as shown in the next section, thereby setting fsky ¼ 1

in Eq. (22) to avoid accounting for the angular selection
function twice. We leave a more precise treatment of the
angular mask for future work.
For demonstration,Nobs

lnn0 for l ¼ 2 is displayed in Fig. 6.
The shot noise dominates at smaller scales where it
asymptotes to a constant. This can be explained by the

FIG. 5. SFB power spectrum in real space for l ¼ 10 with and without non-Gausianity. Left: Difference between the SFB power
spectrum with fNL ¼ 100 and with fNL ¼ 0. One-dimensional cuts are highlighted in gold and displayed in the right graph with the
undifferenced power spectra. Right: One-dimensional cuts of the SFB power spectrum. Gold lines are slices with fNL ¼ 100, and black
is with fNL ¼ 0.

FIG. 6. Comparison of the shot noise, multiplied by a factor of 50 in each plot, and the SFB power spectrum for l ¼ 2. Left: Shot noise
matrix. One-dimensional cuts are shown in gray and displayed in the middle graph. Middle: One-dimensional cuts of the shot noise and
SFB power spectrum with RSD. Gray lines are slices from the left plot, and red are the same cuts from the SFB PS. Right: Rescaled shot
noise (dashed) and SFB power spectrum (solid) for larger l along the diagonal.
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fact that in Eq. (22), the gnl remain approximately zero
until peaking around rpeak ¼ ðlþ 1=2Þ=knl, which is
found using the Limber approximation Eq. (17) in the
case that rmin ≈ 0. When knl ∼Oð10−3Þh=Mpc, the peak
lies outside the survey range since rpeak ≫ rmax. Thus,
increasing knl shifts the peak to smaller r so that oscil-
lations begin to enter the survey boundary and contribute to
the integral. It is easier to see why this contribution
converges at large knl when ϕ ¼ const and rmin ¼ 0 so
that the radial eigenfunctions are the spherical Bessel
functions jl. At large knlr, jlðknlrÞ scales as 1=r, so
the integrand is approximately the square of sinusoidal
function. Averaging this function from rmin to rmax then
gives a constant approximately independent of knl because
the integrand’s wavelength is much smaller than the
survey’s radial length.

III. FISHER MATRIX FORECASTING

We will now leverage our code to predict the considered
survey constraints on cosmological parameters θ ¼ ðbσ8;
fσ8; h;Ωm; fNLÞ. We review the Fisher forecasting formal-
ism before presenting our results.
We construct the likelihood function by defining the data

vector in SFB space, δ̂≡ δobsnlm. Then, the probability of
measuring this data vector given parameters θ is given by
the Gaussian likelihood function,

Lðδ̂jθÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffij2πCjp exp

�
−
1

2
δ̂C−1δ̂

�
; ð23Þ

where C≡ Clðknl; kn0lÞ þ Nobs
lnn0 is the discretized SFB

power spectrum with shot noise Eq. (22). We denote θi as
the ith parameter in θ and define □;α ≡ ∂□=∂θα. Then, the
Fisher matrix element at indices α and β is given by

Fαβ ¼ h−ðlnLÞ;αβi; ð24Þ

which, through Eq. (23), can be rewritten as

Fαβ ¼ fsky
Xlmax

l¼lmin

2lþ 1

2
trðC−1C;αC

−1C;βÞ; ð25Þ

given a fractional sky coverage fsky and 2lþ 1 m-modes
per l. Here, we choose lmin ¼ 2 to avoid systematics
associated with the monopole and dipole contributions,
such as our own peculiar velocity. Additionally, we choose
lmax a posteriori with observation of when the l ≈ lmax
mode contributions to the reduction of errors on θ become
negligible, as will be later shown in Fig. 9. Finally, the
covariance matrix of the parameters θ is obtained via the
inversion of the Fisher information matrix,

Cαβ ¼ ðF−1Þαβ: ð26Þ

Derivatives of the power spectra are computed numerically
by inducing small perturbations in the cosmological
parameters α; β∈ θ, then dividing the differenced fiducial
and perturbed power spectra by the perturbation size. This
is straightforward for h, Ωm, and fNL, though for fσ8ðzÞ
and bσ8ðzÞ, we model deviations from the reference
cosmology by a low-order polynomial in redshift as
described in Sec. III A.
In order to compute the numerical derivatives of the

power spectrum with respect to parameters Ωm and h, we
must calculate the input matter power spectrum in a
universe different than the Planck flat ΛCDM model used
throughout this work. Perturbing these two parameters
consequently alters quantities such as rmin and rmax,
resulting in a different set of basis functions for the SFB
decomposition and therefore different wave numbers knl.
Thus, to difference SFB power spectra between cosmolo-
gies, we calculate the SFB power spectrum in the perturbed
cosmological model, perform a two-dimensional spline,
and evaluate the splined SFB power spectrum at the
allowed wave numbers in the fiducial cosmology.

A. Modeling the redshift evolution

Here, we describe the model used for fσ8 and bσ8 in our
Fisher matrix calculation since these are functions of
redshift. We only explicitly write the model for fσ8 because
bσ8 has the same form, so the substitution fσ8 → bσ8 and
fðzÞ → bðzÞ can be made to obtain the equations for bσ8.
Given a fiducial form fσfid8 ðzÞ ¼ fðzÞDðzÞσ8 where σ8 is

evaluated at redshift z ¼ 0, we model the true functional
form by a modulation with a low-order polynomial. That is,

fσ8ðzÞ≡ fσfid8 ðzÞ
Xn
i¼0

aizi; ð27Þ

where ai are the parameters to be fit and n is the order of the
polynomial. The goal is then to obtain uncertainties for the
parameters ai from our Fisher analysis.
To obtain an uncertainty forecast for fσ8ðzÞ itself, we

propagate the uncertainties in the ai to linear order. That is,
we assume that small changes Δai will lead to a change
Δfσ8ðzÞ,

Δfσ8ðzÞ ≈
Xn
i¼0

∂fσ8ðzÞ
∂ai

Δai: ð28Þ

The variance in fσ8ðzÞ is then given by

hðΔfσ8Þ2i ¼ ½fσfid8 ðzÞ�2
X
ij

ziþjhΔaiΔaji; ð29Þ

where the sum is over i; j ¼ 0;…; n and we have assumed
the modulated model Eq. (27). The covariance between the
coefficients ai and aj is found from the inversion of the
Fisher information matrix,
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hΔaiΔaji ¼ ðF−1Þij: ð30Þ

Therefore, by evaluating the Fisher information matrix, we
can find the uncertainty in fσ8 as a function of redshift.
However, we stress that in a measurement the parameters ai
are constrained rather than fσ8ðzÞ at some discrete red-
shifts, and the constraints on the parameters ai come from
all redshifts.

B. Fisher forecast results

1. Single galaxy subsample

We present forecasts for the survey we consider in Fig. 7
where we have adopted the galaxy bias correction due to
local primordial non-Gaussianity given in Eq. (18) for our
estimates offNL having fixed the spectral tiltns ¼ 0.965 and

σð0Þ8 ¼ 0.7886. We have forecasted bσ8 ¼ 1.042� 0.0093,
fσ8 ¼ 0.4106 � 0.023, h ¼ 0.6778 � 0.0020, Ωm ¼
0.3081� 0.00087, and fNL ¼ 0� 4.6. The uncertainties
for bσ8 and fσ8 are obtained by modulating the perturbative
expansionof thesemodels to fifth order. Furthermore,we take
fsky ¼ 0.8 and use a selection function splined in log-space
from the public data described in Sec. II C. The bias model is
obtained by performing linear regression on the data [20] as
well. The constraints on Ωm and h are likely tight due to the
fact that we fix the spectral tilt ns to the fiducial value.
Figure 8 shows the evolution of fσ8 and bσ8 within the

survey range with a 1σ error band from the Fisher forecast.
Note that some regions are almost identical and overlap, as

FIG. 7. Forecasted constraints on cosmological parameters at
z ¼ 0 in a survey from z ¼ 0 to 4.6 with kmax ¼ 0.15 h=Mpc
and l ¼ 2;…; 300 and 80% sky coverage and redshift errors
σz=ð1þ zÞ ≤ 0.003. Dark blue and light blue indicate the 68%
and 95% confidence level regions, respectively. For fσ8
and bσ8, we expand to fifth order in z in Eq. (27). Other
parameters such as the spectral tile ns are fixed and not
marginalized over.

FIG. 8. Redshift evolution of fσ8 and bσ8 from the Fisher forecast for l ¼ 2;…; 300 for redshift errors σz=ð1þ zÞ ≤ 0.003. The
68% confidence level band is shown as the shaded region in top panel of both plots. The normalized error is plotted alone in the bottom
panels. The legend refers to coefficients in Eq. (28) for fσ8 as ai and as bi for bσ8. Left: The error curve for fσ8ðzÞ. The green error curve
is approximately the same as the red curve. Right: The same plot as the left, though for constraints on bσ8ðzÞ. The error curve in orange
is approximately the same as that in red.
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described in the caption. At z≳ 1, the variance Eq. (29)
scales quadratically at high z when including terms up to
linear order in our polynomial expansion, thus, the standard
deviation evolves approximately linearly at large z. The
minimum of the errors at z ≈ 0.5 can be explained by the
fact that the covariance ha0a1i is less than zero, so we have
a negative term at linear order in z in Eq. (28) which shifts
the minimum of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔfσ8Þ2i

p
to the right; the same

reasoning follows for bσ8.
Figure 9 indicates that most of the information from our

analysis has been extracted from the power spectrum.
Multipoles above l ¼ 200 contribute negligibly to reduc-
ing error estimates. In particular, uncertainty for fNL is
primarily reduced at large angular scales as a result of the
scale-dependent bias correction Δbðr; kÞ ∝ k−2. The
imprint of non-Gaussianity on the cosmological overden-
sity field will primarily manifest itself in the linear regime.

2. Multitracer analysis

We now present Fisher constraints for a multi-tracer
analysis including all five subsamples [20] of SPHEREx.

Multitracer analysis is expected to be a powerful probe of
local non-Gaussianity as it reduces the cosmic variance
contribution to the measurement error by correlating tracers
with different biases [33].
The SPHEREx samples are defined by their redshift

uncertainties. Each sample’s bσ8ðzÞ is modeled as in
Eq. (27) to fifth order. For the cross-correlations, the
SFB power spectrum can have two different WnlðqÞ
kernels in Eq. (16) from different subsamples, thus they
contain different galaxy biases and selection functions.
To better understand the effect of themulti-tracer analysis,

we first perform the Fisher analysis on each SPHEREx
galaxy subsample separately, then perform the full analysis
including all auto and cross-correlations between the sub-
samples. The results are shown in Table I, marginalized over
the other parameters considered here. Note that the errors
need not necessarily increase with the subsample uncer-
tainty bound. As the uncertainty increases, the exponential
in Eq. (3) suppresses the kernel amplitude, and thus the
amplitude of the power spectrum. However, this can be
compensated by the subsample’s galaxy bias and number
density, which also appear in Eq. (3).

FIG. 9. Left: Constraints on cosmological parameters as a function of the maximum l mode used in the forecast, starting from l ¼ 2
and perturbing fσ8; bσ8 to fifth order in z. Note that the constraint on fNL has been scaled to fit the top plot. Right: The same plot, though
now including l ¼ 2;…; 300 and limiting the maximum wave number knl. The bumps prominently seen in the constraints for h are due
to BAO.

TABLE I. 1σ forecasted errors (×103, except for fNL) on cosmological parameters from the Fisher forecasts at
z ¼ 0 marginalizing over all bi for l ¼ 2;…; 300. fσ8 and bσ8 are expanded to fifth order in z. The last column
indicates constraints using cross-correlations between redshift subsamples.

Subsample uncertainty upper bound σðzÞ=ð1þ zÞ
Parameter 0.003 0.01 0.03 0.1 0.2 Cross-correlation

Δbσ8 × 103 9.257 6.515 7.272 5.794 4.805 See Fig. 10
Δfσ8 × 103 22.82 15.66 13.6 11.79 7.921 4.030
Δh × 103 2.03 1.189 1.007 0.8576 0.7961 0.7382
ΔΩm × 103 0.8715 0.5112 0.4326 0.2636 0.1135 0.08197
ΔfNL 4.614 2.202 2.055 1.381 0.779 0.6899
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A corner plot with these results analogous to Fig. 7 is
shown in Fig. 10. We find that the multitracer analysis
significantly improves many of the constraints. In particu-
lar, we find that the fNL constraint is improved from �4.6
to �0.69 in the multitracer case.
All of these results are evaluated at z ¼ 0 for a SPHEREx-

like survey with 80% sky coverage and radial extent from
z ¼ 0 to z ¼ 4.6. We impose high-frequency cutoffs lmax ¼
300 and kmax ¼ 0.15 h=Mpc to avoid probing nonlinear
small-scale structure. Shot noise terms as in Eq. (22) are
included, and high-order perturbative expansions of fσ8 and
bσ8 greater than Oðz5Þ are excluded due to numerical

instability. We will note that these results are sensitive to
the selection function and bias model used, so the accuracy
of our forecasts are largely dependent on the behavior of
these models. We also limited ourselves to the cosmological
parameters shown, and including others will likely degrade
some of the forecasted constraints.

IV. CONCLUSIONS

We have written code that calculates the SFB power
spectrum with discrete SFB modes, and we have leveraged
our program to investigate the effects of survey geometry,

FIG. 10. Multi-tracer Fisher forecast at z ¼ 0. The superscripts in bσðiÞ8 label which redshift subsample from [20] that the bias model
corresponds to.
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RSD, and NG on the power spectrum clustering amplitude
and the correlation between SFB modes.
The selection function, as well as growth of structure and

bias evolution, breaks the homogeneity on our past light
cone, resulting in a correlation of terms knl ≠ kn0l.
Furthermore, the local motion of galaxies within large-
scale structure from gravitational clustering results in a
LOS component of the galaxies’ velocities that contributes
to the observed redshift, biasing inferred distance estimates
and resulting in an increase of the power spectrum
amplitude in redshift space. This also breaks the homo-
geneity, and results in negative correlation for off-diagonal
terms knl ≠ kn0l.
Non-Gaussianity, due to the sensitivity of large-scale

structure to perturbations in the distribution of real space
overdensities, arises on large scales. We also studied the
evolution of the power spectrum as a function of multipole
moment, and we showed that the typical length scale at
which the clustering amplitude is largest is positively
correlated with the l mode in consideration.
Including shot noise and a spherically symmetric angular

mask with 80% sky coverage, we forecasted uncertainties
on the parameters fσ8, bσ8, h,Ωm, and fNL using the Fisher
information matrix formalism. We have also obtained the
uncertainties on fσ8 and bσ8 as a function of redshift, and
by evaluating the contribution of higher multipoles to the
constraints, we have verified that information has been
maximally extracted from the power spectrum estimator.
We extended our single-tracer Fisher forecasts to

perform a multi-tracer forecast with all five SPHEREx
subsamples. We showed that the constraints tighten sig-
nificantly with the cross-correlations.
In future work, we anticipate to include more cosmo-

logical parameters in the Fisher forecast, in particular the
spectral tilt ns that is likely responsible for our tight
constraints on the h and Ωm. Since we were limited to a
fifth-order polynomial for the redshift evolution of fσ8
and bσðiÞ8 , a possible path forward would be to switch to
an expansion in Chebyshev polynomials instead of
monomials, which we anticipate will make the numerics
more tractable. More general models for the redshift
uncertainties will also help make the analysis more
realistic.
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APPENDIX: GAUSS-LEGENDRE QUADRATURE

The Gauss-Legendre quadrature integration algorithm is
crucial for the performance and accuracy of our code. The
integral approximation takes the form of

Z
1

−1
fðxÞdx ≈

Xn
i¼1

wifðxiÞ ðA1Þ

for nodes xi and weights wi. We utilize the Julia module
FastGaussQuadrature.jl [34] to calculate the nodes
and weights. This approximation is used to compute the
integral kernel Wnl and the Cl. The integral defining the
kernel has integration bounds rmin and rmax, thus, we
perform a change of variables to obtain the form of Eq. (A1),

Z
b

a
fðxÞdx¼ b−a

2
;

Z
1

−1
f

�
b−a
2

uþbþa
2

�
du: ðA2Þ

The same change of variables is performed with the SFB
power spectrum Clðknl; kn0lÞ in Eq. (16) over a range of
qmax ≳ kmax and qmin ≲ kmin to avoid edge effects. This
procedure is powerful in that we can generate a fixed set of n
nodes qnode and weights so that for each knl, we compute
Wnlðknl; qnodeÞ. Then, a length n vector with values
Wnlðknl; qnodeÞ contains all of the information needed to
calculate Clðknl; kn0lÞ provided that we use the same
nodes and weights in the integration over q. For
q∈ ð10−4; 0.2Þ h=Mpc, we found n ¼ 750 to yield accurate
approximations to the integral Eq. (A1).
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Doré, Exact modeling of power spectrum multipole through
spherical Fourier-Bessel basis, arXiv:2404.04812.

[15] M. Wang, S. Avila, D. Bianchi, R. Crittenden, and W.
Percival, Hybrid-basis inference for large-scale galaxy
clustering: Combining spherical and Cartesian Fourier
analyses, J. Cosmol. Astropart. Phys. 10 (2020) 022.

[16] A. F. Heavens and A. N. Taylor, A spherical harmonic
analysis of redshift space, Mon. Not. R. Astron. Soc.
275, 483 (1995).

[17] K. B. Fisher, C. A. Scharf, and O. Lahav, A spherical
harmonic approach to redshift distortion and a measurement
of Ω0 from the 1.2-Jy IRAS redshift survey, Mon. Not. R.
Astron. Soc. 266, 219 (1994).
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