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We perform a thorough analysis of de Sitter solutions in Oðd; dÞ invariant cosmologies. Starting with a
homogeneous and isotropic framework we examine conditions for the existence of such solutions to the
vacuum field equations, nonperturbative in α0 in both the string frame and the Einstein frame. We elucidate
the nature of the instability in the string frame vacuum. For the Einstein frame, we demonstrate that the de
Sitter solutions cannot be eternal. We then extend our analysis to include Bianchi I universes where the
Oðd; dÞ symmetry includes scale factor exchange as well as scale factor duality. We show how the theory
can be extended to the anisotropic case so that it admits de Sitter solutions, noting the crucial role played by
the Oðd; dÞ symmetry in satisfying any additional constraints.
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I. INTRODUCTION

Cosmological observations [1–3] indicate that our
Universe has undergone two phases of accelerated expan-
sion, at early [4] and at late times [5]. At early times we
have inflation, consistent with the evolution of a scalar field
in slow roll. At late times we have dark energy, which may
correspond to our Universe approaching a de Sitter vac-
uum, or else quintessence, which is a low scale version of
early Universe inflation. Data recently released by the
DESI collaboration shows some preference for dark energy
with an evolving equation of state [6], consistent with
quintessence. Whether it takes the form of quintessence or
de Sitter, obtaining an accelerated expansion from string
theory is an ongoing challenge. Although we can construct
stable de Sitter vacua using background flux and brane
uplifts (see, e.g., [7,8] and for reviews [9,10]) the con-
sistency of these constructions is a matter of considerable
debate (see, e.g., [11,12]). This has led to the so-called de
Sitter conjecture which implies that fully consistent and
stabilized de Sitter vacua are absent from the spectrum of
weakly coupled string theory at or near the boundary of
moduli space [13–15]. If the conjecture is correct and these

vacua are indeed absent, then quintessence is also expected
to be ruled out [16–19].
String theory is a consistent quantum theory of gravity,

with a well defined low energy description in terms of
higher dimensional supergravities. For this to be relevant to
our universe, it must be able to admit a compactification
down to four dimensions, where gravity is well described
by general relativity and matter by a suitable extension of
the StandardModel of particle physics. It should also be able
to accommodate an accelerated cosmological expansion. Of
course, it is still possible that the concerns surrounding de
Sitter vacua in perturbative string theory will go away and
we will be able to find consistent accelerated cosmological
solutions that everyone is happy with. However, if this is
not the case, we will need a nonperturbative understanding
of the theory to probe the full vacuum structure and establish
the existence of de Sitter vacua far from the boundary of
moduli space. An important no-go theorem, valid at any
order in the string scale, suggests that de Sitter vacua of
dimension four or higher are not possible for the classical
heterotic string, or indeed classical type II strings in the
absence of RR fluxes [20]. To say much more will likely
require a third string revolution—a step change in our
current approach to string theory/M theory. We can also
consider the possibility that de Sitter is a resonant or excited
state of string theory [21–23].
We can try and get some insight into what can happen

nonperturbatively by focusing on the effective field theory
for classical strings in the homogeneous limit. The Neveu-
Schwarz sector describing the metric, the Kalb-Ramond
field and the dilaton, are known to possess an Oðd; dÞ
symmetry to leading order [24–28]. This symmetry is
expected to be preserved to all orders in the slope parameter
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α0, motivating corrections to the leading order Neveu-
Schwarz theory using higher order Oðd; dÞ invariant
operators [29]. Note that Oðd; dÞ invariance can be made
manifest using double field theory, albeit at the expense of
manifest diffeomorphism invariance [30–33]. Duality
invariant cosmology has been used to tackle the problem
of the initial singularity (see eg. [34–38]).
Remarkably, for homogeneous fields,HohmandZwiebach

have been able to provide a complete classification of all
higher order terms invariant under Oðd; dÞ [39–41]. With
field redefinitions, the system is reduced to first order time
derivatives allowing them to write down the most general
duality invariant theory to all orders in α0 for the metric,
Kalb-Ramond field and dilaton. To leading order in the
expansion in α0 the theory coincides with the Neveu-
Schwarz sector of the supergravity theories describing
the effective theory of classical strings, in the homogeneous
limit. In the limit of vanishing Kalb-Ramond field and an
isotropic spatially flat metric, the theory exhibits scale
factor duality a → 1=a as a remnant of the underlying
Oðd; dÞ symmetry. The full theory is now tractable at all
orders in α0, enabling the authors of [40,41] to identify string
frame de Sitter solutions to the vacuum field equations that
are nonperturbative in α0, with a time dependent dilaton.
The dynamics of this new class of theories has been studied
in a series of subsequent papers [42–54]. In particular, one
can extend the system to include Oðd; dÞ invariant matter
fields [28,43], or find theories that admit de Sitter solutions
even in Einstein frame [42,43,46]. Instabilities for homo-
geneous and isotropic perturbations were studied in detail
in [44,46,49,50] with subsequent extensions to aniso-
tropic perturbations [51]. Bianchi I universes were studied
in [52–54], along with two-dimensional black hole solu-
tions [52] and bouncing cosmologies [53,54].
In this paper, we revisit the dynamics of Oðd; dÞ invariant

cosmologies, starting with isotropic and spatially flat
metrics before moving on to the anisotropic case. Our
focus is on the existence of de Sitter solutions in both the
string frame and the Einstein frame, with a time dependent
dilaton. Of course, the isotropic case is simpler and much
more extensively studied. Within the isotropic framework,
string frame de Sitter solutions are known to exist but have
been shown to be unstable [44,49,50], something we are
able to verify using slightly different methods. de Sitter
solutions in the Einstein frame have been obtained in the
presence of a source [43] and in vacuum [42,46]. The latter
only exist when the theory takes on a very bespoke form at
all orders in α0. As we will show, these Einstein frame de
Sitter solutions are the only solutions to the vacuum field
equations for these particular theories for a finite time
period, ensuring their local stability under homogeneous
fluctuations. However, the solutions are not eternal in both
past and future. This is because the dilaton evolves. After a
finite time (toward either the past or future), the solution is
kicked into a new dynamical phase where an Einstein frame

de Sitter metric is no longer possible. This resonates with
the idea of de Sitter as a resonance [21,22].
These solutions enjoy a natural extension to anisotropic

universes thanks to the Oðd; dÞ symmetry. Here we con-
sider a Bianchi I universe, with a number of different scale
factors with corresponding Hubble parameters. In a notable
departure from the isotropic framework, the Oðd; dÞ sym-
metry now implies an invariance under the exchange of any
two of those Hubble parameters, placing important restric-
tions on the structure of the underlying theory. Although
isotropy is no longer assumed at the level of the theory, we
are interested in isotropic solutions: namely, the de Sitter
solutions in both string frame and Einstein frame, with a
time dependent dilaton. In string frame, de Sitter solutions
are possible, provided the anisotropic theory obeys proper-
ties analogous to the isotropic case. These solutions are
once again unstable. In the Einstein frame, we find
conditions for the de Sitter solutions to exist. This mirrors
the isotropic case discussed in the previous paragraph, with
additional conditions pointing along the anisotropic direc-
tions. Remarkably, these extra conditions hold automati-
cally thanks to the Oðd; dÞ symmetry.
The rest of this paper is organized as follows. In Sec. II

we give a brief review of Oðd; dÞ-invariant cosmology. In
Sec. III, we review the structure of the underlying theory for
an isotropic and spatially flat universe, including sources.
When studying vacua, the Einstein frame is arguably the
most relevant since the corresponding fluctuations are
diagonalized. However, it is often the case that observa-
tional probes follow geodesics in the string frame, so it is
important to consider both scenarios. In Sec. III A we
review the derivation and instability of de Sitter solutions in
the string frame, providing some added insight into the
source of the instability. In Sec. III B we demonstrate how
de Sitter solutions can also be found in the Einstein frame.
As discussed above, these solutions exist for a finite time
period, during which time they are stable against homo-
geneous fluctuations. However, the solutions are not
eternal, and will eventually give way to a new cosmological
phase. In Sec. IV, we change gears and extend our analysis
to include Bianchi I universes. In Sec. IVAwe establish the
appropriate conditions for string-frame de Sitter solutions,
commenting on the stability. In Sec. IV B we do the same
for de Sitter solutions in the Einstein frame, noting the
crucial role played by the Oðd; dÞ symmetry. In Sec. V, we
summarize our conclusions, and extend the results to
noncritical dimensions.

II. REVIEW OF Oðd;dÞ-INVARIANT
COSMOLOGY

We begin with a review of all orders in α0 duality invariant
cosmology, as originally proposed by Hohm and Zwiebach
[40,41] building on earlier pioneering work [24–28].
Consider the leading order theory describing the universal
massless sector of closed strings in dþ 1 dimensions. This
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corresponds to the well known Neveu-Schwarz action
depending on the string framemetric, gμν, the antisymmetric
Kalb-Ramond field, bμν, and the scalar dilaton ϕ,

I0 ¼
1

2ld−1s

Z
d1þdx

ffiffiffiffiffiffiffi
−g

p
e−2ϕ

�
Rþ 4ð∂ϕÞ2

−
1

12
HμνρHμνρ − 2Λ

�
; ð2:1Þ

where the string length ls ¼
ffiffiffiffi
α0

p
, Hμνρ ¼ 3∂½μbνρ� is the

Kalb-Ramond field strength and R is the Ricci scalar for the
string framemetric. The cosmological term,Λ, is present for
noncritical strings and scales as l−2s . For critical strings it
vanishes, so we shall neglect it in the following. We make a
cosmological ansatz for the metric, b-field and dilaton,

gμν ¼
�−n2ðtÞ 0

0 gijðtÞ

�
; ð2:2Þ

bμν ¼
�
0 0

0 bijðtÞ
�
; ð2:3Þ

ϕ ¼ ϕðtÞ; ð2:4Þ

where nðtÞ is the lapse and gijðtÞ are the components of the
spatial metric. This breaks diffeomorphisms down to the
subgroup t → fðtÞ; xi → xi, withϕ; gij and bij transforming
as scalars, and the lapse as a vector, n → nḟ. In this limit, the
corresponding field equations also exhibit an Oðd; dÞ sym-
metry. Indeed, the full system can be written in terms of
Oðd; dÞ covariant objects: a generalized dilaton,

Φ ¼ 2ϕ − ln
ffiffiffiffiffiffiffiffiffi
det g

p
; ð2:5Þ

and a generalized metric

H ¼
�
g−1 −g−1b
bg−1 g − bg−1b

�
: ð2:6Þ

The latter transforms as a tensor, H → ΩTHΩ, under
Ω∈Oðd; dÞ where

ΩTηΩ ¼ η; η ¼
�
0 1

1 0

�
: ð2:7Þ

In contrast, the generalized dilaton and the lapse function are
Oðd; dÞ scalars, transforming trivially asΦ → Φ and n → n.
The spatial contribution to the action can now be inte-

grated out, resulting in a one-dimensional, two-derivative
action that can bewritten in a form that ismanifestly invariant
under the residual diffeomorphisms as well as the underlying
Oðd; dÞ symmetry [25,28],

I0 ¼ κ2
Z

dtne−Φ
�
−ð∂nΦÞ2 − 1

8
tr½ð∂nSÞ2�

�
: ð2:8Þ

where κ2 > 0 is some dimensionful constant that plays no
role in what follows. Note that we have introduced the
following notation for the covariant time derivative

∂n ¼
1

nðtÞ
d
dt
; ð2:9Þ

and further defined

S ¼ ηH ¼
�
bg−1 g − bg−1b

g−1 −g−1b

�
: ð2:10Þ

Note also that both η and S are involutory matrices, squaring
to the identity, S2 ¼ η2 ¼ 1. The action is now seen to be
manifestly invariant under Oðd; dÞ since S transforms as1

S → S0 ¼ Ω−1SΩ; ð2:11Þ

We now consider the residual diffeomorphism and Oðd; dÞ
invariant α0 corrections to I0. These terms are constructed out
of Oðd; dÞ scalars such as Φ and its covariant derivatives,
∂nΦ; ∂2nΦ;… along with traces of Oðd; dÞ covariant terms
such as ∂nS and higher covariant derivatives ∂2nS; ∂3nS;….
Through a judicious use of equations of motion, field
redefinitions, integration by parts, and useful relations of
the form

trðSÞ ¼ trð∂nSÞ ¼ trð∂2nSÞ ¼ … ¼ 0; ð2:12Þ

tr
�ð∂nSÞ2kþ1

� ¼ 0 for k ¼ 0; 1;…; ð2:13Þ

tr
�
Sð∂nSÞk

� ¼ 0 for k ¼ 0; 1;…; ð2:14Þ

we can eliminate all higher order derivatives in the system.
Indeed, Holm and Zwiebach [41] showed that the most
general action at all order in α0 must take the following form

I ¼ κ2
Z

dtne−Φ
�
−ð∂nΦÞ2

þ
X∞
k¼1

ckα0k−1tr½ð∂nSÞ2k� þmultitrace

�
ð2:15Þ

where c1 ¼ − 1
8
to match the leading order Neveu-Schwarz

action (2.8). For any particular string theory, there ought to be

1To see this, note that S ¼ ηH → S0 ¼ ηΩTHΩ ¼ ηΩTηSΩ,
where we have used the fact that η2 ¼ 1. It then follows
from (2.7) that ηΩTη¼Ω−1 and so S0 ¼Ω−1SΩ, as stated in (2.11).
In [40,41], these transformations are expressed in terms of
h ¼ Ω−1 where (2.7) along with the fact that η2 ¼ 1 now implies
that hηhT ¼ η.
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a tower of dimensionless coefficients of higher order oper-
ators given by ck, along with a tower of coefficients for the
multitrace operators.

III. ISOTROPIC COSMOLOGIES

In the case of isotropic and spatially flat cosmology,
gij ¼ a2ðtÞδij, with a vanishing b field, the system sim-
plifies considerably and the action (2.15) can be written in
the following compact form [41]

I ¼ κ2
Z

dt ne−Φ
�
−Φ2

n þ
1

α0
fð

ffiffiffiffi
α0

p
HÞ

�
; ð3:1Þ

where we have introduced the shorthandΦn ¼ ∂nΦ;Φnn ¼
∂
2
nΦ;… and define the string frame Hubble factor as
H ¼ ∂n ln a. Matching with (2.15) we note that the function
f is analytic in a neighborhood of the origin where it takes
the following form

fð
ffiffiffiffi
α0

p
HÞ ¼

X∞
k¼1

dkα0kH2k; d1 ¼ d ð3:2Þ

and the dimensionless coefficients dk can, in principle, be
determined from the ck and the coefficients of the multi-
trace operators. Note that f is a manifestly even function in
H. This follows from the Oðd; dÞ symmetry which takes the
form of a simple scale factor duality, a → 1=a and so
H → −H, in the homogeneous and isotropic limit.
In the remainder of the paper, we choose units where

α0 ¼ 1. It will also be convenient to represent the scale
factor through its logarithm, q ¼ ln a. The equations of
motion for the full system can be obtained from varying the
action with respect to the lapse, the dilaton and the scale
factor. This yields the equations Ea ¼ 0 where a ¼ n;Φ; q
and

En ¼
δI
δn

¼ κ2e−Φ½Φ2
n − LfðHÞ�; ð3:3Þ

EΦ ¼ δI
δΦ

¼ κ2ne−Φ½2Φnn −Φ2
n − fðHÞ�; ð3:4Þ

Eq ¼
δI
δq

¼ −κ2
d
dt
½e−Φf0ðHÞ�: ð3:5Þ

Here, LfðHÞ ¼ Hf0ðHÞ − fðHÞ denotes the Legendre
transform of f and f0ðHÞ ¼ df=dH. Thanks to the residual
diffeomorphisms, these equations are not independent and
satisfy the following identity

d
dt
En ¼ ΦnEΦ þHEq: ð3:6Þ

We can include matter in an Oðd; dÞ invariant way by
including a matter action of the form Sm½Φ;S; χI�, where

χIðtÞ are Oðd; dÞ invariant matter fields [28,43]. For a
homogeneous and isotropic cosmology, this is equivalent to
Sm½Φ; q; χI�. The vacuum equations of motion are now
sourced as follows

En ¼ ρ̄; Eq¼−dnp̄; EΦ ¼ 1

2
nσ̄; ð3:7Þ

where the Oðd; dÞ covariant energy density, pressure, and
dilaton charge are respectively given by

ρ̄¼−
δSm
δn

����
Φ;q

; p̄¼ 1

dn
δSm
δq

����
n;Φ

; σ̄¼−
2

n
δSm
δΦ

����
n;q
: ð3:8Þ

Note that the Oðd; dÞ covariant sources differ from their
diffeomorphism invariant counterparts by a factor offfiffiffiffiffiffi−gp ¼ ad, namely, ρ ¼ ρ̄=ad; p ¼ p̄=ad; σ ¼ σ̄=ad. For
the pressure, we should also note that p is now defined by
holding Φ ¼ 2ϕ − dq fixed when we vary the matter
action. This differs from the usual definition of pressure
given by

pstandard ¼
1

dnad
δSm
δq

����
n;ϕ

;

where ϕ is held fixed instead. It is easy enough to show that
the two pressures can be related using the dilaton charge,
pstandard ¼ pþ 1

2
σ [48]. Note also that diffeomorphism

invariance in the matter sector implies that

∂nρþ dHðρþ pÞ ¼ 1

2
Φnσ: ð3:9Þ

Although we have included the matter sources for com-
pleteness, in the remainder of this paper we shall mostly
neglect them, since our focus will be on finding consistent
solutions to the vacuum field equation. In particular, we
will seek conditions for consistent de Sitter solutions for the
metric in both the string and the Einstein frame. We refer
the reader to [28,43] for more details on matter couplings.

A. dS solutions in the string frame

It was already shown in [40,41] that string frame de Sitter
solutions are possible in this class of α0 complete cosmol-
ogies for suitable choices of the function fðHÞ. These
solutions are necessarily nonperturbative in α0, and could
not have been found using standard techniques in perturba-
tive string theory. However, it has also been shown that these
solutions are unstable under vacuum fluctuations [44,49,50].
Wewill review the derivation of these solutions and add some
additional insight into the nature of the instability.
We know that in a neighborhood of the origin, the

function fðHÞ is even and admits the following Taylor
expansion in H2

fðHÞ ¼ dH2 þ d2H4 þ � � � . ð3:10Þ
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Although we cannot assume that the function remains
analytic for all values of H, we shall assume that it is twice
differentiable in order to have well defined field equations.
We shall also assume it to be an even function in order to
preserve the Oðd; dÞ symmetry.
Here we are interested in the properties of the function in

a neighborhood of a string frame de Sitter solution with
H ¼ Hc > 0, for some constantHc. While it is tempting to
motivate this with the current phase of accelerated expan-
sion, it is important to note that we are working in dþ 1
dimensions. For the critical dimension (dþ 1 ¼ 10, 26),
we must perform compactification down to four dimen-
sions before making contact with observation. Therefore,
we remain agnostic as to the value of Hc.
Setting Ea ¼ 0 for a ¼ n;Φ; q, we see thatH ¼ Hc > 0,

for some constant Hc, if and only if [46]

Φ2
n ¼ −fðHcÞ ¼ Q2; f0ðHcÞ ¼ 0; ð3:11Þ

for some real constant Q. This means that fðHÞ must have
an extremum at H ¼ Hc. Thanks to the Oðd; dÞ symmetry,
it must also have a extremum at H ¼ −Hc. This suggests
the following general form

fðHÞ ¼ −Q2 þ gðHÞ
H4

c
ðH2 −H2

cÞ2 ð3:12Þ

for some even function gðHÞ that admits a Taylor expansion
in H2 −H2

c

gðHÞ ¼ g0 þ g1ðH2 −H2
cÞ þ � � � : ð3:13Þ

For the form of fðHÞ given in (3.12) to overlap with the
form close to the origin (3.10), we obtain the following
constraints

gð0Þ¼Q2; g0ð0Þ¼ 0; g00ð0Þ¼ 2dþ4Q2

H2
c
: ð3:14Þ

It is also important to establish the stability of these de Sitter
solutions. Of course, a full analysis of cosmological pertur-
bations requires knowledge of the underlying theory beyond
the homogeneous limit under consideration. Although there
has been some interesting recentwork in this direction [52], it
is well known that Oðd; dÞ invariance in dþ 1 dimensions is
at odds with manifest diffeomorphism invariance, as evi-
denced through double field theory [32,33] (see also [55]
for a related duality observed in cosmological perturba-
tions). Faced with these limitations, we can only consider
the stability of solutions under homogeneous perturba-
tions captured by the general action (2.15). Instabilities for
homogeneous and isotropic perturbations of string frame
de Sitter solutions were identified in [44,46,49,50] with
subsequent extensions to anisotropic perturbations [51].

Here we take a subtly different approach to those works
but draw the same conclusions.
We consider only homogeneous and isotropic perturba-

tions, so that the system of equations Ei ¼ 0 remains
unchanged. Assuming f00ðHÞ ≠ 0, these can be written in
the following form

f0ðHÞ¼ ceΦ; ∂nH¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
LfðHÞp

f0ðHÞ
f00ðHÞ ; ð3:15Þ

where c is a constant of integration. Here s ¼ �1 corre-
sponds to the sign of Φ̇ ¼ dΦ=dt, appearing when we take
the square root in (3.3). This ability to take either sign was
identified as a potential source of error in the stability
analysis, as discussed in [50]. Next we will show how the
choice of sign plays a crucial role in opening up the
unstable channel.
We begin by making a choice of the time co-ordinate by

setting the lapse function to unity, n ¼ 1, and solve for the
Hubble parameter in a neighborhood of the vacuum, giving

H ¼ Hc þ δH; ð3:16Þ

where δH satisfies

˙δH ≈
�
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hcf00ðHcÞ

p
δH3=2 Q ¼ 0

sjQjδH Q ≠ 0:
ð3:17Þ

For Q ¼ 0, this gives the consistent solution

δH ≈
4

Hcf00ðHcÞðt − tcÞ2
ð3:18Þ

with s ¼ −sgnðt − tcÞ. We immediately see the unstable
channel if and only if the initial time ti < tc, or equivalently
s ¼ þ1. For Q ≠ 0, we also get an instability for
s ¼ þ1, as

δH ≈ esjQjðt−tcÞ: ð3:19Þ

In all cases, the instability is excited if and only if
Φ̇ðtiÞ > 0. These results are consistent with the instability
analysis presented in [46].

B. dS solutions in Einstein frame

We now turn our attention to the Einstein frame. Einstein
frame de Sitter solutions with constant Φ̇ were obtained
in [43] in the presence of a source with p̄ ¼ −ρ̄. Here we
shall present an Einstein frame de Sitter metric as solutions
to the vacuum equations of motion for bespoke choices of
the function fðHÞ. Although the solutions are stable, we
will also show that the required form of fðHÞ cannot be
smoothly connected to the leading order Neveu-Schwarz
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theory in a neighborhood of H ¼ 0. This agrees with the
conclusions drawn in [42,46].
The string frame and the Einstein frame are related by a

conformal transformation. Labeling the Einstein frame with
the letter “E,” we write gμν ¼ A2gE

μν and so n ¼ AnE,
aS ¼ AaE, where A is the conformal factor to be derived
presently. Focusing on the leading order curvature term in
the action, we note thatZ

d1þdx
ffiffiffiffiffiffiffi
−g

p
e−2ϕR¼

Z
d1þdx

ffiffiffiffiffiffiffiffiffi
−gE

p
e−2ϕAd−1½REþ…�;

ð3:20Þ

where the ellipsis include derivatives of A and RE is the
Ricci scalar for the transformed metric. For the latter to
coincide with the Einstein frame metric, we must

choose A ¼ e
2ϕ
d−1.

Setting Ei ¼ 0 for i ¼ n;Φ; q, we see that the vacuum
field equations are equivalent to

f0ðHÞ ¼ ceΦ; Φn ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
LfðHÞ

q
ð3:21Þ

where we recall that c is a constant of integration and
s ¼ �1. We wish to recast these equations in terms of the
Hubble parameter defined in the Einstein frame

HE ¼ ∂nEqE; ð3:22Þ

where ∂nE ¼ 1
nE

d
dt and qE ¼ ln aE. From the definition of

the generalized dilaton Φ ¼ 2ϕ − dq and the conformal
mapping between frames q − qE ¼ lnðn=nEÞ ¼ 2ϕ

d−1, we
can derive the following useful relations

Φ¼−q− ðd−1ÞqE⇒Φn ¼−H− ðd−1ÞnE
n
HE ð3:23Þ

and

ϕ ¼ −
ðd − 1Þ

2
ðΦþ dqEÞ ⇒

n
nE

¼ e−Φ

VE
; ð3:24Þ

where VE ¼ adE is volume scale factor in Einstein frame.
As first noted in [46], we can inherit an Einstein frame de

Sitter vacuum from the string frame de Sitter vacua
presented in the previous section, by fixing the dilaton,
ϕ, to be constant. This corresponds to the case where
Φn ¼ −dHc, with Hc the constant Hubble scale in string
frame. These solutions preserve all the de Sitter isometries
and would seem to be in contradiction of the classical no-go
theorem of [20]. This suggests that the corresponding form
of fðHÞ does not emerge from classical heterotic or type II
strings. For this reason, we will focus instead on quasi-de
Sitter solutions in Einstein frame, where the dilaton breaks
the de Sitter isometries.

After somemanipulations, the systemof equations (3.21),
(3.23), and (3.24) can be expressed as follows

eΦ ¼ f0ðHÞ
c

;
n
nE

¼ c
f0ðHÞVE

;

∂nEVE ¼ cF ðHÞ; ∂nEH¼ cGðHÞ
VE

; ð3:25Þ

where

F ðHÞ¼ d
1−d

"
Hþ s

ffiffiffiffi
L

p

f0ðHÞ

#
; GðHÞ¼ s

ffiffiffiffi
L

p

f00ðHÞ ð3:26Þ

andwe have assumed f0ðHÞf00ðHÞ ≠ 0. Note that the choice
f0ðHÞ ≠ 0 is consistent with a time dependent dilaton. To
explore the possibility of a de Sitter solutions in the Einstein
frame, it is convenient to construct

∂nEHE¼ dH2
E

�
VE∂

2
nEVE

ð∂nEVEÞ2
−1

�

¼ dH2
E

�
F 0ðHÞGðHÞ
F ðHÞ2 −1

�
; cF ðHÞ≠ 0: ð3:27Þ

If we choose the function fðHÞ such that the right hand of
this equation vanishes identically, the Hubble parameter in
Einstein frame is guaranteed to be constant,HE ¼ H⋆, for a
solution to the vacuum field equations. Thus, the existence
of the de Sitter solution in Einstein frame requires that	

1

F


0
þ 1

G
¼ 0; ð3:28Þ

or in other words, that fðHÞ satisfies the following differ-
ential equation,

dþ 1

d − 1
sH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hf0 − f

p
f00 þ 1

d − 1
ðHf0 − fÞf00

þ d
d − 1

H2f00 þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hf0 − f

p
f0 þ 1

2
Hf0f00 ¼ 0: ð3:29Þ

Note further that we can use the third equation in (3.25) to
show that the Hubble parameters in the Einstein and string
frame are related according to the following formula

HE ¼ cF ðHÞ
dVE

: ð3:30Þ

For a suitable choice of fðHÞ satisfying (3.29), the corre-
sponding constant curvature solution is stable under vacuum
perturbations, as it is the only solution to (3.27).
Finding a suitable choice of fðHÞ is not easy as the

differential equation (3.29) is challenging to solve in full
generality. However, if we assume thatH > 0, it does admit
the following analytic solution when s ¼ −1,

f̄ðHÞ ¼ ðH þHmÞ2 −H2
m; ð3:31Þ

where Hm is a constant [46].

LIU, PADILLA, SAFFIN, and SMITH PHYS. REV. D 110, 063522 (2024)

063522-6



With f ¼ f̄ and taking the negative (s ¼ −1) root we
find that F ¼ 0 and G ¼ −H=2. The vanishing of F
suggests this solution lies outside of the original regime
of validity for which (3.29) was derived. Nevertheless, it is
interesting to explore the solutions to the system of
equations (3.25) in this particular case. It turns out that
they imply a constant but vanishing Hubble rate in Einstein
frame

H⋆ ¼ 0; ð3:32Þ

consistent with (3.30), along with the following solutions
for the string frame Hubble parameter, the dilaton, and the
lapse,

HðtÞ ¼ Hc exp

	
−

ct
2ad0



; ð3:33Þ

ΦðtÞ ¼ ln

�
2

c

	
Hc exp

	
−

ct
2ad0



þHm


�
; ð3:34Þ

nðtÞ ¼ c
2ad0

�
Hc exp

	
−

ct
2ad0



þHm

�
−1
; ð3:35Þ

where Hc is a dimensionful constant of integration and we
have assumed d ≠ 1 and c ≠ 0. Clearly the solution runs
into a singularity as H → −Hm although this can be
trivially avoided by taking Hm > 0.
We have not been able to find an exact solution to (3.29)

that gives nonvanishing F and, correspondingly, H⋆ > 0.
However, numerical solutions are presented in Fig. 1, with
the corresponding value ofHE shown in figure 2, where we
recall that we have set units such that α0 ¼ 1.
We can also seek a perturbative solution to (3.29). To this

end, we consider

fðHÞ ¼ f̄ðHÞ½1þ ϵðHÞ�; ð3:36Þ

where we assume jϵj ≪ 1. Plugging this into (3.29) (with
s ¼ −1) and keeping terms up to linear order in ϵ, we arrive
at the linear differential equation

ðHm−HÞð2Hm−HÞHϵ00ðHÞ
þð2H2

m−3HHmþ2H2Þϵ0ðHÞ−HmϵðHÞ¼ 0 ð3:37Þ

with the following solution

ϵðHÞ ¼
C1Hm þ C2H þ hmC2 ln j H

Hm
j

H þ 2hm
; ð3:38Þ

where C1 and C2 are constants of integration. Note that C1

can be removed by redefining Hm → Hmð1 − C1=2Þ and
working to linear order in C1. Thus we can set C1 ¼ 0
without loss of generality and express (3.38) as a simple
function of the ratio δ ¼ H=Hm,

ϵðHÞ ¼ C2

�
δþ ln jδj
δþ 2

�
: ð3:39Þ

Recall that this expression is valid as long as jϵðHÞj ≪ 1. If
we assume jC2j ≪ 1 then this condition is violated if and
only if δ strays too close to the singularities at δ ¼ 0;−2.
More precisely, we have ϵðHÞ ≪ 1 whenever jC2j ≪ 1,
provided

jδj≫ e−2=jC2j; jδþ2j≫ jC2jð2− ln2Þ:

We now revisit the field equations (3.25) and (3.28) using
the perturbed form of f given by (3.39). To leading order in
jC2j ≪ 1 (3.28) gives the following expression for Hubble
rate in Einstein frame

HE ≈
C2c

4ðd − 1ÞVE
: ð3:40Þ

If we assume HE ¼ H⋆ for some constant H⋆ and set
nE ¼ 1, it follows that we have VE ¼ ad0e

dH⋆t. We can then
solve (3.40) explicitly, giving

H⋆ ≈
1

dt
W

	
dC2ct

4ðd − 1Þad0



≈

C2c
4ðd − 1Þad0

; ð3:41ÞFIG. 1. Examples of numerically computed fðHÞ, with the
central black curve corresponding to f̄ðHÞ.

FIG. 2. Time evolution of the Einstein-frame Hubble parameter
for the fðHÞ given in Fig. 1.
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where we have used the fact that the Lambert W function
WðxÞ ≈ x for small x. We see that we have a constant and
nonvanishing Hubble rate in the Einstein frame, with the
approximation valid as long as jtj ≪ 4ðd − 1Þad0=djcjjC2j.
Since H⋆ is required to be positive in an expanding
universe, we assume that C2c > 0. The remaining fields
are dominated by their nonvanishing zeroth order (in ϵ)
solutions (3.33)–(3.35). Recall that in a neighborhood of
the origin, perturbative string theory suggests that the
function fðHÞ should admit a Taylor expansion of
the form (3.10). We will now show that any solution to
the differential equation (3.29) valid for H > 0 cannot be
analytically continued toward a solution of the form (3.10)
in a neighborhood of H ¼ 0.
To see this, we begin by assuming that fðHÞ admits a

Taylor expansions of the form (3.10) in a neighborhood of
the origin

fðHÞ ¼ dH2 þOðH4Þ: ð3:42Þ

In this neighborhood, it immediately follows that

F 0ðHÞGðHÞ
F ðHÞ2 ¼ OðH2Þ: ð3:43Þ

In order to satisfy (3.29), the right hand side of this
expression should be equal to unity, which is clearly not
possible in a neighborhood of H ¼ 0, regardless of the
sign of s ¼ �1. Thus, it is not possible to smoothly
connect a solution to (3.29) to the desired leading order
Neveu-Schwarz theory at low curvatures. However, per-
haps this is too demanding. As noted earlier, for the field
equations to be well defined, we only need the form of
fðHÞ to be twice differentiable. For any finite N, it is
certainly possible to match the first N derivatives of a
solution to (3.29) to a function of the form (3.42), at some
value of H ¼ Hmatch > 0.
It is, perhaps, optimistic to expect such a matching to

emerge from a nonperturbative understanding of string
theory. Nevertheless, we could imagine a discontinuity in
the higher order derivatives of fðHÞ to be a remnant of the
truncation to the massless sector of the theory. Indeed, if it
emerges from string oscillators with string scale masses, we
might expect Hmatch ∼ 1 (in units of α0 ¼ 1).
Even if this desired form of fðHÞ can be justified, it is

clear that we can only trust our de Sitter solution in the
regime where H > Hmatch. However, recall that H is the
Hubble parameter in the string frame and this will change
over time. If the system evolves into a regime where
H < Hmatch, the form of fðHÞwill no longer admit de Sitter
solutions and the Einstein frame de Sitter metric is
destabilized.
To avoid this instability, we need to stopH evolving into

the unstable region with H < Hmatch in either time direc-
tion. In other words, we need H to have a turning point in

its evolution at some Hturn > Hmatch. At such a turning
point, the last equation in (3.25) tells us that GðHturnÞ ¼ 0.
Since Hturn > Hmatch by assumption, the differential equa-
tion (3.28) ought to be satisfied at H ¼ Hturn, further
implying that F ðHturnÞ ¼ 0 must have a zero at the same
point. Since we assume that fðHÞ is twice differentiable,
then (3.26) allows for F ðHturnÞ ¼ GðHturnÞ ¼ 0 if and only
if Hturn ¼ 0. This contradicts the underlying assumption
that Hturn > Hmatch > 0. It follows that our de Sitter
solution in Einstein frame cannot be eternal.

IV. ANISOTROPIC COSMOLOGIES

In order to gain a deeper insight into the structure of the
underlying Oðd; dÞ invariant theory, at all orders in α0, we
need to reduce the symmetry of the metric to eliminate any
would-be degeneracies. As first step in this direction, we
move from an isotropic to an anisotropic framework. Of
course, these extensions will be off-shell. On-shell, our goal
is still to find solutions that are de Sitter, and therefore
isotropic.
For anisotropic cosmologies in dþ 1 spacetime, we

consider a string frame line element of the form

ds2 ¼ −nðtÞ2dt2 þ
Xd
i¼1

aiðtÞ2dx2i ; ð4:1Þ

where aiðtÞ is the scale factor along the ith spatial direction.
A detailed derivation of the Oðd; dÞ invariant action
requires a careful computation of all the terms in (2.15),
including the multitrace operators. Instead of computing
that explicitly, we note that the action will take the form

I ¼ κ2
Z

dtne−Φ½−Φ2
n þ fðHiÞ�; ð4:2Þ

where we have assumed units with α0 ¼ 1. The Hubble
parameter along the ith direction is given by Hi ¼ ∂nqi for
qi ¼ ln ai, while the generalized dilaton is given in terms of
the standard dilaton via the following relation

Φ ¼ 2ϕ −
X
i

qi: ð4:3Þ

To match with the leading order Neveu-Schwarz action
(2.1) at low curvatures, we expect that f admits a Taylor
expansion near the origin such that

fðHiÞ ¼
X
i

H2
i þOðH4Þ: ð4:4Þ

The Oðd; dÞ symmetry now includes scale factor duality
along each direction, ai → 1=ai and scale factor exchange
ai ↔ aj for each i and j. This suggests that the function
fðHiÞ can also be expressed as

fðHiÞ ¼ F
�
êdi ðH2

jÞ
�
; ð4:5Þ
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where we define the normalized elementary symmetric
polynomials

êdi ðXjÞ ¼
1

ðdiÞ
X

1≤j1<…ji≤d
Xj1…Xji ð4:6Þ

for i ¼ 1;…d.
Varying the action (4.2) with respect to the lapse, the

dilaton and each of the scale factors, we obtain Ea ¼ 0 for
a ¼ n;Φ; qi, where

En ¼
δI
δn

¼ κ2e−Φ½Φ2
n − LfðHiÞ�; ð4:7Þ

EΦ ¼ δI
δΦ

¼ κ2ne−Φ½2Φnn −Φ2
n − fðHiÞ�; ð4:8Þ

Eqi ¼
δI
δqi

¼ −κ2
d
dt
½e−Φfi�; ð4:9Þ

where we denote partial derivatives fi ¼ ∂f=∂Hi and the
Legendre transform LfðHiÞ ¼

P
i Hifi − fðHiÞ. It is also

convenient to define the average Hubble parameter in string
frame as H ¼ 1

d

P
i Hi.

A. dS solutions in the string frame

We now seek solutions to the anisotropic field equations
corresponding to the string frame de Sitter vacua. Using
similar arguments to the isotropic case in Sec. III A, we
see that there is an isotropic solution to (4.7) to (4.9) with
Hi ¼ Hc > 0 for all i and some constant Hc if and only if

Φ2
n ¼−fðHc;…;HcÞ¼Q2; fiðHc;…;HcÞ¼ 0: ð4:10Þ

where Q is a constant. Given the form of f dictated by the
Oðd; dÞ symmetry (4.5), this suggests that

fðHiÞ ¼ −Q2 þ
X
j

gjðHlÞ
H4j

c
ðêdj ðH2

l Þ −H2j
c Þ2; ð4:11Þ

where the functions gjðHkÞ take the Oðd; dÞ symmetric
form (4.5) and admit a Taylor expansion in each of
êdj ðH2

l Þ −H2j
c ,

gjðHkÞ ¼ gj0 þ
X
k

gjkðêdkðH2
l Þ −H2k

c Þ þ � � � : ð4:12Þ

Close to the origin, the form of f should coincide with (4.4)
to recover the leading order Neveu-Schwarz theory at small
curvatures. On the isotropic line whereHi ¼ H for all i, the
form of f is compatible with the isotropic solutions (3.12),
as expected

fðHiÞjiso¼−Q2þ
X
j

gjðH;…;HÞ
H4j

c
ðH2j−H2j

c Þ2: ð4:13Þ

It immediately follows that the corresponding de Sitter
solution will once again be unstable to isotropic fluctua-
tions when ΦnðtiÞ > 0.

B. dS solutions in the Einstein frame

We now switch our attention to the Einstein frame to see
if the family of de Sitter solutions found in the isotropic
framework [42] carries over to the anisotropic framework.
As usual, we perform a conformal transformation to switch
to Einstein frame, with n ¼ AnE and ai ¼ AaEi where

A ¼ e
2ϕ
d−1. We therefore have lnðn=nEÞ ¼ qi − qEi ¼ 2ϕ

d−1 for
qEi ¼ ln aEi . This allows us to extract the following useful
relation

ϕ ¼ −
d − 1

2

	
Φþ

X
i

qEi



; ð4:14Þ

implying

n
nE

¼ e−Φ

VE
; qi − qEi ¼ −Φ − lnVE; ð4:15Þ

where VE ¼ Q
iðaEi Þki is the Einstein frame volume scale

factor.
In the Einstein frame, we defineHubble parametersHE

i ¼
∂nEq

E
i and the corresponding averageH

E ¼ 1
d

P
i H

E
i . These

are easily related to their string frame counterparts via the
relation

Hi ¼
nE
n
ðHE

i − dHEÞ −Φn: ð4:16Þ

From the field equations (4.7) to (4.9) we can derive
expressions for the generalized velocities in Einstein frame

∂nEΦ¼ e−Φ

VE
s

ffiffiffiffiffiffi
Lf

p
; HE

i −HE¼ e−Φ

VE
ðHi−HÞ;

HE¼ e−Φ

VE

Σ
d
F ð4:17Þ

where

F ¼ d
1 − d

	
H þ s

ffiffiffiffiffiffi
Lf

p
Σ



; Σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiX
j

f2j

s
ð4:18Þ

and s ¼ �1, depending on the sign of Φn. From Eq. (4.9),
we have that

e−Φfi ¼ ci ⇒ e−ΦΣ ¼ jcj≡
ffiffiffiffiffiffiffiffiffiffiffiffiX
j

c2j

s
ð4:19Þ

for some constants ci. We can now derive the following
constraints on the dynamics of the system, analogous to the
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last two equations in (3.25)

∂nEVE ¼ jcjF ; ∂nEHi ¼
jcjGi

VE
; ð4:20Þ

where

Gi ¼
s

ffiffiffiffiffiffi
Lf

p P
jf

ijfj
Σ

ð4:21Þ

and fij denotes the inverse of the Hessian of the function f,
assumed to be well defined. We proceed in a similar way to
the isotropic case, and compute the rate of change of the
Einstein frame Hubble parameters. We find that

∂nEH
E
i ¼ dðHEÞ2½ð1þ ξiÞðO lnF − 1Þ þOξi�; ð4:22Þ

where

O ¼ 1

F

X
j

Gj∂Hj
; ð4:23Þ

ξi ¼
dðHi −HÞ

ΣF
: ð4:24Þ

Since
P

j ξj ¼ 0, it follows that the rate of change of the
average Hubble factor is given by a somewhat simpler
formula

∂nEH
E ¼ dðHEÞ2ðO lnF − 1Þ; ð4:25Þ

which is strongly reminiscent of the corresponding iso-
tropic equation (3.27), as expected. We may alternatively
express (4.22) as

∂nEH
E
i − ð1þ ξiÞ∂nEHE ¼ dðHEÞ2Oξi: ð4:26Þ

Let us now evaluate our system on the isotropic line
Hi ¼ H, along which we have ξi ¼ 0 from (4.24). For
consistency, it must follow that

ð∂nEHEÞjiso¼ dðHEÞ2ðO lnF −1Þjiso; ðOξiÞjiso¼ 0;

ð4:27Þ

where jiso indicates evaluation on the isotropic line.
Requiring the vacuum to be de Sitter in the Einstein frame
on the isotropic line, i.e.,HE

i ¼ HE ¼ const, now yields the
following constraints

OðlnF Þjiso ¼ 1; ðOξiÞjiso ¼ 0: ð4:28Þ

Defining G ¼ P
i Gi=d, we note that

OðlnF Þ ¼ −
X
i

Gi∂Hi

	
1

F



; ð4:29Þ

OðξiÞ ¼
1

ΣF 2
ðGi − GÞ − ξiO lnðΣF Þ; ð4:30Þ

and impose (4.28), giving

�X
i
∂Hi

	
1

F



þ 1

G

�
iso

¼ 0; Gijiso ¼Gjiso ≠ 0: ð4:31Þ

To explore the implications of these results, consider the N
dimensional Euclidean space spanned by the Hubble
parameters, ðH1;…; HdÞ. It is convenient to introduce a
new set of coordinates ðH; vαÞ, adapted to the isotropic line,
defined in terms of the average Hubble parameter H ¼P

i Hi=d and d − 1 orthogonal directions

vα ¼
X
i

ðHi −HÞnαi ; ð4:32Þ

so that

Hi ¼ H þ
X
α

nαi vα: ð4:33Þ

Here we have introduced an orthonormal set of vectors in
Hubble space, nαi , orthogonal to the tangent vector,
ui ¼ 1=d, on the isotropic line

X
i

uinαi ¼
1

d

X
i

nαi ¼ 0;
X
i

nαi n
β
i ¼ δαβ: ð4:34Þ

We can now think of the isotropic line as being para-
metrized by the average Hubble parameter, H, with each of
the remaining coordinates vanishing there, vαjiso ¼ 0. At
this point, we recall that the Oðd; dÞ symmetry implies that
fðHiÞ is given in terms of the normalized elementary
symmetric polynomials, as in (4.5). In a neighborhood of
the isotropic line, we can show that

êdi ðH2
jÞ¼H2iþ iðdþ1−2iÞ

dðd−1Þ H2ði−1ÞX
α;β

δαβvαvβþOðv3Þ:

ð4:35Þ

Correspondingly we find that the function f takes the form

fðHiÞ ¼ f0ðHÞ þ g0ðHÞ
X
α;β

δαβvαvβ þOðv3Þ; ð4:36Þ

where

f0ðHÞ ¼ FðH2;…; H2dÞ;

g0ðHÞ ¼
Xd
i¼1

iðdþ 1 − 2iÞ
dðd − 1Þ H2ði−1Þ ∂F

∂êdi

����
êdj¼H2j

: ð4:37Þ
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For the de Sitter solution to exist, we require the conditions
(4.31) to hold. The second of these is equivalent tohX

uiGi

i
iso

¼Giso ≠ 0;
hX

nαi Gi

i
iso

¼ 0: ð4:38Þ

Making use of the chain rule

∂

∂H
¼

X
i

∂

∂Hi
;

∂

∂vα
¼

X
i

nðαÞi
∂

∂Hi
; ð4:39Þ

and assuming g0ðHÞ ≠ 0, we immediately see that the
condition (4.38) holds automatically. Meanwhile, the first
condition in (4.31) yields�

∂H

	
1

F



þ 1

G

�
iso

¼ 0; ð4:40Þ

which is equivalent to (3.29) for fðHÞ ¼ f0ðHÞ. It follows
that the Einstein frame de Sitter solutions found in the
isotropic framework extend naturally to the anisotropic
framework. This is because the underlying Oðd; dÞ sym-
metry ensures that deviations from isotropy only enter the
theory at Oðv2Þ ∼OððHi −Hj≠iÞ2Þ.

V. CONCLUSIONS

Can we obtain de Sitter solutions in string theory?
Although perturbative methods provide some rich phe-
nomenology, they have not been able to uncover de Sitter
solutions that are universally accepted as consistent and
fully under control. This motivates attempts to probe the
nonperturbative structure of string theory. Of course, we do
not have the tools to do this in full generality but progress
can be made by restricting access to the Neveu-Schwarz
fields in the homogeneous limit. This is because they admit
an Oðd; dÞ symmetry that can be extended to higher order
operators, extending to all orders in α0.
The underlying structure of these theories is easy to write

down whenever we have a homogeneous and isotropic
framework, where the Oðd; dÞ symmetry is equivalent to
scale factor duality a → 1=a. For a suitable nonlinear
structure, quasi–de Sitter solutions with time dependent
dilatons can be found in both the string frame and
the Einstein frame. As shown previously [44,46,49,50],
homogeneous and isotropic fluctuations about the string
frame solutions can trigger an instability, although we have
now shown that this is excited if and only if the generalized
dilaton is growing at the initial time Φ̇ðtiÞ > 0. The
situation in the Einstein frame is even more delicate.
Quasi–de Sitter solutions can and do exist in the
Einstein frame, for particular nonperturbative extensions
of the Neveu-Schwarz theory. However, these extensions
do not connect smoothly to the leading order Neveu-
Schwarz theory. This means the Einstein frame de Sitter
solutions cannot be eternal to both past and future. In

other words, a de Sitter solution can survive for a finite
period of time, or even a semi-infinite time, but at some
point toward either the future or the past, the solution
breaks down. The solution enters a new phase of the
theory in a neighborhood of small string frame curvature,
where Einstein frame de Sitter solutions are no longer
possible. Perhaps this should have been expected, as the
breakdown occurs in the perturbative regime where de
Sitter solutions are conjectured to be absent [13–15].
All of these results can be extended to include Bianchi

I metrics. The Oðd; dÞ symmetry now plays a more
interesting role than in the isotropic case, where scale
factor duality is accompanied by scale factor exchange
ai ↔ aj. This is crucial, especially for the existence of de
Sitter solutions in the Einstein frame where the additional
constraints required for existence in an anisotropic
setting are satisfied automatically thanks to Oðd; dÞ
symmetry.
A study of anisotropic cosmologies also raises the

possibility of some dimensions growing large and others
becoming small. In such a scenario, where some dimen-
sions are expanding and some are contracting, it would be
interesting to study the existence of de Sitter behavior along
the expanding directions.
Although we have focused our analysis on the case of

classical strings in a critical dimension, for which the
constant Λ ¼ 0 in (2.1), the results are easily extended to
noncritical dimensions. This is because a nonvanishing
Λ ∝ D −Dc is easily absorbed into a redefinition of the
function f that defines theory to all orders in α0,

f → f − 2Λ: ð5:1Þ

This changes the structure of the theory in neighborhood of
the origin, but little else. For the string frame de Sitter
solutions in the isotropic framework, this will affect the
boundary conditions (3.14), so that we now have
gð0Þ ¼ −2Λ. Similar relations hold in the anisotropic case.
The stability analysis is unchanged. For the Einstein frame,
we can revisit the question of whether or not the bespoke
choice of fðHÞ can be smoothly connected to the desired
form in a neighborhood of H ¼ 0. Focusing on the
isotropic case, we set fðHÞ ¼ −2Λþ dH2 þOðH4Þ and
compute

F 0ðHÞGðHÞ
F ðHÞ2 ¼ d − 1

d
þOðHÞ: ð5:2Þ

Clearly this cannot be set equal to unity, as required for
Einstein frame de Sitter solutions with a time dependent
dilaton. Thus, we conclude that the situation is qualitatively
unchanged from the critical case, D ¼ Dc, and one cannot
have eternal de Sitter solutions in the Einstein frame. The
absence of eternal de Sitter solutions is consistent with the
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so-called swampland conjectures [13–15] and of course,
the no-go theorem presented in [20].
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