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Gravitational waves (GWs) induced by primordial fluctuations can be affected by the modification of the
sound speed c2s and the equation of state parameter w once the curvature fluctuations reenter the
cosmological horizon. That softening can also significantly boost the production of primordial black holes
(PBHs) at the mass scale where the softening arises. In this work, we consider a hypothetical softening of w
and c2s caused by a smooth crossover beyond standard model theories, for which we numerically compute
the secondary induced GW considering the case of a flat scale-invariant power spectrum. We find that if the
amplitude of the power spectrum is sufficiently large, the characteristic feature of the GW signal caused by
the smooth crossover can be detected by future space-based gravitational wave interferometers and
differentiated from the pure radiation case. At the same time, depending on the mass scale where the
crossover occurs, such a scenario can have compatibility with PBHs being all the dark matter when
A ∼Oð10−3Þ, with a mass function very sharply peaked around the horizon mass scale of the minimum of
the sound speed. Our results show that the GW signal can be used to resolve the existing degeneracy of
sharply peaked mass function caused by peaked power spectra and broad ones in the presence of softenings
of w and c2s .
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I. INTRODUCTION

Since the first gravitational wave (GW) detection [1],
phase transitions (PTs) in the very early Universe have
obtained increasing attention due to the possibility of
testing them with planned future space-based GWs inter-
ferometers [2–4]. Several studies focus on first-order PTs,
during which bubbles are nucleated, and its collapse,
collision, and expansion can lead to a detectable stochastic
background of GWs [5–15]. Another interesting possibility
is focusing on smooth crossover (SC), not a PT. For
instance, within the Standard Model (SM), the deconfine-
ment in quantum chromodynamics (QCD) [16] and electro-
weak (EW) phase transitions [17–19] are actually SC [20].
Induced GWs, associated with primordial fluctuations,

can be a probe of the existence of primordial scalar
curvature fluctuations at much smaller scales than the
cosmic microwave background (CMB) scale [28–31]
(see Ref. [32] for a review). Their spectrum depends not
only on the specific shape of the power spectrum that

generates the curvature fluctuation, but also on the thermal
history [30,33–44]. Since the induced GWs are affected by
the modification of the equation-of-state parameter w and
sound speed cs (see Refs. [39,45,46] for a numerical study
focusing on the QCD crossover), it can be a direct probe of
the existence of a crossover beyond the SM that modifies w
and c2s in a specific timescale during the early Universe.
Additionally, induced GWs can be an indirect probe of

the existence of primordial black holes (PBHs) [29,47–54],
formed in the very early Universe [55] (see Ref. [56] for a
review). For sufficiently large curvature fluctuations, PBHs
can constitute all the dark matter (DM) or a significant
fraction of it [57]. Since their abundance is exponentially
sensitive to the threshold for a perturbation to collapse, a
threshold reduction enhances PBH production. This results
in a sharply peaked mass function at the scale where a SC
occurs, as shown in Ref. [58] (see also Refs. [59–64]
related to the QCD crossover and Ref. [65] for a beyond the
SM extension).
This work explores the potential gravitational wave

signature of a hypothetical SC beyond the SM for temper-
atures T ≳ 0.2 TeV (corresponding to horizon mass
MH ≲ 10−6M⊙). We numerically compute the spectrum
of scalar-induced GWs affected by this SC and examine
its implications in the PBH scenario. Detecting a GW
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signature from the SC would imply new physics modi-
fying the thermal history from a pure radiation epoch and
could indirectly support a large PBH production in the
mass range of the crossover if the curvature fluctuation is
sufficiently large. Our motivation is to identify a potential
observational signature of the SC that may be observed in
future GW interferometers, along with predicting the
corresponding PBH mass function. Specifically, we focus
on the GW signature induced by a flat scale-invariant
power spectrum, where modifications arise solely from
changes in the thermal history, not the power spectrum’s
specific shape. Throughout the paper, we use Planck units
with c ¼ ℏ ¼ G ¼ 1.

II. THE MODEL

To modulate the hypothetical SC beyond the SM, we
consider that the softening of the sound speed c2s ¼ ∂p=∂ρ
(p is the pressure and ρ is the energy density of the
Universe) follows a log-normal template as a function of ρ:

c2s ðρ̃Þ ¼ w0 − ðw0 − c2s;minÞ exp
"
−ðln ρ̃Þ2
2σ2

#
; ð1Þ

with ρ̃ ¼ ρ=ρc, where the model parameters ρc, c2s;min, and σ
are the location of the minimum of c2s , its value, and the
width of the SC, respectively. The template of Eq. (1) is
mainly motivated by crossovers built from holographic
models [58] beyond SM theories. It also has similarities to
the case of QCD crossover within the SM [16] and its
beyond-SM extension [65]. The convenient choice of the
parameters allows several realizations that can approxi-
mately fit the different models. Then, the corresponding
equation of state wðρÞ ¼ p=ρ can be obtained by integrat-
ing Eq. (1):

wðρ̃Þ¼w0−
σ

ρ̃

ffiffiffi
π

2

r
eσ

2=2ðw0−c2s;minÞerfc
�
σ2− lnðρ̃Þffiffiffi

2
p

σ

�
; ð2Þ

withw0 ¼ 1=3 during the radiation-dominated era. Different
realizations of Eqs. (1) and (2) can be found in Fig. 1. Fixing
wðρÞ, we can obtain the Friedmann-Lemaître-Robertson-
Walker (FLRW) background dynamics by solving

ρ0ðηÞ ¼ −
ffiffiffiffiffiffiffiffi
24π

p �
1þ wðρÞ�aðηÞρ3=2ðηÞ;

a0ðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πρðηÞ

3

r
a2ðηÞ; ð3Þ

where η is the conformal time η ¼ R a−1dt and the Hubble
factor in terms of the conformal time is defined asH ¼ a0=a,
where the prime denotes derivative ∂η. Equation (3) needs to
be solved numerically taking into account Eq. (2). We
consider a source for the primordial Gaussian curvature

fluctuation ζ, given by a flat scale-invariant power spectrum
extending over scales much shorter than the CMB scale:

PζðkÞ ¼ A: ð4Þ

III. PRIMORDIAL BLACK HOLE PRODUCTION

The softening of w and c2s affects the PBH production by
the horizon reentry of a large superhorizon adiabatic
curvature fluctuation ζ (which remains frozen on a super-
horizon scale) generated in the early Universe. In this
scenario, PBH formation should be associated with a rare,
high peak (in position space) of ζ so that PBHs remain well
subdominant during the radiation-dominated era. If one
supposes ζ to follow the Gaussian statistics, such a high
peak typically forms a spherically symmetric shape, which
can be locally modeled by the spacetime [66]

ds2¼−dt2þa2ðtÞe2ζðrÞ½dr2þ r2ðdθ2þ sin2ðθÞdϕ2Þ�; ð5Þ

where r ¼ 0 is placed at the localmaximumof ζ. The typical
profile and probability of ζðrÞ should be also characterized
only by the power spectrum (4) in the Gaussian case, which
is known as the peak theory [67]. We follow the approach of
Ref. [68], which applies peak theory [67] to account for
peaks onΔζ rather than ζ [69] to drop the contamination by
the physically irrelevant long-wavelength mode. The cloud-
in-cloud effect can be also treated by implementing a top-hat
window function WðkÞ ¼ ΘðkW − kÞ with a UV cutoff
scale kW. Specifically, we eliminate irrelevant contributions
from smaller-scale perturbations at a PBH mass scale of
interest using thewindow function. Eventually, the true PBH
mass function fPBH is obtained as the envelope curve for
various kW:

fPBHðMÞ ¼ max
kW

ffPBHðMjkWÞg: ð6Þ

FIG. 1. Template of c2s (solid line) and w (dashed line) for
different parameters. The horizontal axis is labeled by the horizon
mass normalized by its value at the minimum of c2s .
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fPBHðMÞd lnM is the current PBH abundance in the mass
range ½M;Med lnM� normalized by the total DM abundance.
Given kW, the typical profile of the curvature fluctuation

reads ζðrÞ ¼ μ2gðx; k•Þ, where μ2 ¼ −ð2=k2WÞΔζjr¼0 (the
normalized peak value of Δζ) and k• ¼ −ΔΔζjr¼0=
ðΔζjr¼0Þ (the curvature scale of the peak) are both random
variables and x ¼ r=rm is the normalized radius by rm, the
location of the peak value of the compaction function
during radiation domination at superhorizon scales, CðxÞ ¼
2
3
ð1 − ð1þ μ2∂xgðx; κÞÞ2Þ [66,70], where κ ¼ k•=kW. In the

scale-invariant case (4), the template g is given by

gðx; κÞ ¼ 6

x4λ4
�
−12κ2 þ x2λ2ð3 − 4κ2Þ

þ 4ð3κ2 − 2Þxλ sin ðxλÞ þ 8

þ ½12κ2 − 8þ x2λ2ð1 − 2κ2Þ� cos ðxλÞ�; ð7Þ

with λ ¼ kWrm. The (normalized) maximum radius λ is
found by solving the maximum compaction condition
½∂xgðx; κÞ þ ∂

2
xgðx; κÞ�x¼1 ¼ 0 for each κ.

For specific configurations of Eq. (7), we make numeri-
cal simulations following Refs. [58,63,71] to obtain the
threshold values μ2;c on the curvature peak μ2 to form a
PBH, taking into account the reduction in pressure gra-
dients from the SC (see Appendix B for details). The results
are shown in Fig. 2, where we fixed κ ¼ κt ≈ 0.707 with
λ ≈ 4.16 for which PBHs are most likely produced (numeri-
cally found). The overall scale kW is labeled by the horizon
massMH at the horizon reentry tH. One can observe that the
reduction in the threshold values is increased when the
duration of the SC is more extended and/or the softening of
w and c2s is larger.
The PBH formation rate for κt can be approximated

by [68]

βapprox0;max ≔
�

κλ3

36
ffiffiffi
π

p ð6κ4 − 8κ2 þ 3Þ e
3μ2gð1;κÞ

× f

� ffiffiffiffi
2

A

r
κ2μ2

�
P1

�
μ2ffiffiffiffi
A

p ;

ffiffiffiffi
2

A

r
κ2μ2

�

×

				 ddκ ln λþ μ2
d
dκ

gm

				−1
�
κ¼κt;μ2¼μ2;cðktÞ

: ð8Þ

The correlated Gaussian P1 and function f are given
in Appendix. The formation rate is related to the
abundance by fPBHðMtjkWÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mt=Meq

p
βapprox0;max , where

the mass Mt corresponding to κt is given by Mt ¼
Meqk2eqλ2ðκtÞe2μ2;cgð1;κtÞ=k2W with the mode of horizon re-
entry at the equality, keq ≈ 0.01 Mpc−1, and the corre-
sponding horizon mass, Meq ≈ 2.8 × 1017M⊙ [72]. Notice
that Eq. (8) shows no explicit dependence on the scale kW
thanks to the flat spectrum assumption. The nontrivial scale

FIG. 2. Threshold values μ2;c for the curvature profile of Eq. (7)
and for the different templates of the SC.

FIG. 3. PBH mass functions for models A (ρ1=4c ≈ 1.7×
106 GeV; top panel) and B (ρ1=4c ≈ 17 TeV; bottom panel),
considering the SC templates of Fig. 1. The different colored
regions correspond to constraints taken from Ref. [73]. The
black dashed lines correspond to the pure radiation case
w ¼ c2s;min ¼ 1=3.
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dependence comes only from the effective reduction of the
threshold μ2;c by SC.
Varying the smoothing scale kW, one can draw the

mass function fPBHðMÞ. Example results are shown in
Fig. 3. We have considered two models, model A:
MHðc2s;minÞ¼ 10−13M⊙ (ρ1=4c ≈1.7×106 GeV) and model

B: MHðc2s;minÞ ¼ 10−9M⊙ (ρ1=4c ≈ 17 TeV). The ampli-
tude A of the power spectrum is fixed so that ftotPBH ¼ 1 in
model A and ftotPBH ¼ 4 × 10−3 to avoid the observational
constraints from lensing in model B, whose explicit
values for each parameter set are shown in Table I.
Notice that we have put a global UV cutoff kcut ≈ 1018keq
[in terms of horizon mass MHðkcutÞ ≈ 1.2 × 10−19M⊙] in
the power spectrum to avoid the existing observational
constraints.
The figure shows that the reduction on the thresholds

μ2;cðMHðtHÞÞ significantly enhances the production of
PBHs at the mass scale where the transition occurs (as
also found in Ref. [58]), inducing a significant sharp peak
in the mass function. Furthermore, precisely when the
reduction on μ2;c is sufficiently significant, the mass
function can be extremely sharp as if the primordial power
spectrum has a strong peak and avoid all the low PBH mass
range constraints for the same fixed ftotPBH [74]. For
c2s;min ≈ 0.1, we can already avoid the constraints even
without introducing kcut.

IV. SCALAR-INDUCED
GRAVITATIONAL WAVE

The strong SC leaves imprints also in the scalar-induced
GWs.We follow the computation approach of Refs. [45,46]
that we briefly review here. The current (denoted by the
time η0) energy density of the induced GWs is given by

ΩGWðk; η0Þh2¼ Ωr;0h2
�
ashHsh

afHf

�
2 1

24

�
k

Hsh

�
2

Phðk; ηshÞ:

ð9Þ

where Ωr;0h2 ≈ 4.2 × 10−5 since Ωr;0 is the current radia-
tion energy density parameter and h is the renormalized

Hubble parameter h ¼ H0=ð100 km s−1Mpc−1Þ. The sub-
script “sh” denotes the time once the mode k is well after
the horizon crossing time, and “f” denotes the time when
we recover the pure radiation period after the SC. Phðk; ηÞ
is the time-averaged GW power spectrum Phðk; ηÞ per
period around η. The power spectrum Phðk; ηÞ of the
induced GWs is computed as

Phðk;ηÞ¼
64

81a2ðηÞ
Z
jk1−k2j≤k≤k1þk2

dlnk1dlnk2I2ðk;k1;k2;ηÞ

×

�
k21−ðk2−k22þk21Þ2=ð4k2Þ

�
2

k1k2k2
Pζðk1ÞPζðk2Þ;

ð10Þ

where Iðk; k1; k2; ηÞ is the kernel function defined as

Iðk; k1; k2; ηÞ ¼ k2
Z

η

0

dη̃aðη̃ÞGkðη; η̃Þ
�
2Φk1ðη̃ÞΦk2ðη̃Þ

þ 4

3
�
1þ wðη̃Þ�

�
Φk1ðη̃Þ þ

Φ0
k1
ðη̃Þ

Hðη̃Þ
�

×

�
Φk2ðη̃Þ þ

Φ0
k2
ðη̃Þ

Hðη̃Þ
��

ð11Þ

with the tensor Green’s function Gkðη; η0Þ and the scalar
transfer function ΦkðηÞ.
In a practical computation, Green’s function Gkðη; η0Þ

can be obtained by the combination of two independent
homogeneous solutions g1k and g2k as

Gkðη; η̃Þ¼
1

N k
½g1kðηÞg2kðη̃Þ−g1kðη̃Þg2kðηÞ�Θðη− η̃Þ; ð12Þ

where N k is a constant N k ¼ g01kðη̃Þg2kðη̃Þ − g1kðη̃Þg02kðη̃Þ
and gjk are obtained by solving [75]

�
∂
2
η þ k2 −

1 − 3wðηÞ
2

H2ðηÞ
�
gjkðηÞ ¼ 0: ð13Þ

During the pure radiation era, we can make the following
choices: g1k ¼ sinðkηÞ and g2k ¼ cosðkηÞ as two indepen-
dent solutions.
On the other hand, the scalar transfer function ΦkðηÞ is a

solution of the Bardeen equation [76,77]:

Φ00
kðηÞ þ 3Hð1þ c2s ÞΦ0

kðηÞ
þ ½c2sk2 þ 3H2ðc2s − wÞ�ΦkðηÞ ¼ 0; ð14Þ

with the initial conditionΦkðη→ 0Þ→ 1 andΦ0
kðη→ 0Þ→ 0.

During a pure radiation epoch, Φk;radðηÞ ¼ 9=ðkηÞ2 ×
½sinðkη= ffiffiffi

3
p Þ=ðkη= ffiffiffi

3
p Þ − cosðkη= ffiffiffi

3
p Þ�. To accurately calcu-

late the induced GWs, we have made a new numerical code

TABLE I. The parameters of the amplitude of the power
spectrum used in our models A (namely, AA) and model B
(namely, AB). As a reference, the values for a pure radiation-
domination era are AA

rad ≈ 4.58 × 10−3 and AB
rad ≈ 4.09 × 10−3.

c2s;min σ AA=10−3 AB=10−3

0.01 3.0 1.045 1.021
0.1 2.0 2.136 2.083
0.1 5.0 1.672 1.629
0.2 2.0 3.668 3.596
0.2 5.0 3.420 3.339
0.3 3.0 4.582 4.090
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using Julia language [78], which is publicly available in [79].
We give details in the Appendix.
The predicted GW signature of the SC corresponding

to the mass function in Fig. 3 is shown in Fig. 4. We
numerically relate the horizon mass scale (see Fig. 1) with
the wave mode at horizon reentry using the numerical fit
shown in Fig. 8 in the Appendix D. One finds that the
crossover effects basically appear as a jump between
two levels in the spectrum of GWs, which is because
the smaller w dilutes more the relative energy density of
subhorizon GWs to the background. The differences
between the two levels (comparing the values of ΩGW
for k ≫ k⋆ and k ≪ k⋆) are given by the factor
ashHsh=afHf in Eq. (9), where k⋆ ¼ Hðη⋆Þ with η⋆ the
time when c2s ðρðη⋆ÞÞ ¼ c2s;min. In particular, the jump is
more than one order of magnitude for the case c2s;min ¼ 0.1
and σ ¼ 5.0. On the other hand, when the SC has a small
softening (basically a pure radiation period), the result of

Ref. [80] is recovered in the limit w; c2s → 1=3. For
illustrative purpose of comparison with the related previous
work [58], we also demonstrate the case c2s;min ¼ 0.01 and
σ ¼ 3.0, which would correspond to the case near the
critical point between SC and the first-order PT.
The differences between models A and B basically shift

the signal of the induced GWs, but it has an important
implication on the detectability of future space-based
planned GWs interferometers. For model A (compatible
with PBHs being the dark matter), the GW signature
associated with the SC lies on the frequency range of
DECIGO/BBO and partially on the Laser Interferometer
Space Antenna (LISA). Instead, for model B, it would lie
on the LISA frequency range.

V. CONCLUSIONS

In this paper, we have numerically estimated the effect of
a hypothetical softening of w and c2s caused by an SC
beyond the SM on the PBH mass function and the GW
spectrum induced by sufficiently large curvature fluctua-
tions. The PBH production can be enhanced by an SC,
because the softening of w and c2s reduces the formation
threshold, which is simulated in numerical relativity
(Fig. 2). Consequently, the PBH mass function can have
a sharp peak as shown in Fig. 3 even from the scale-
invariant primordial power spectrum (4). If the SC scale ρc
is a few PeV, PBH can explain whole DM consistently with
all the existing observational constraints.
A significant feature in the GW spectrum can be

evidence of this scenario. Depending on the mass scale
of the crossover, we can detect the “jump” in the signal in
the different GW interferometers. In that case, the constant
signal before and beyond the jump can be used to infer that
the power spectrum of the curvature fluctuation is flat type,
and the jump can be associated with the change in time of w
and c2s . In particular, we have shown two representative
examples (Fig. 4): (i) For ρ1=4c ≈ 1.7 × 106 GeV (PBH-DM
with the mass ≈10−13M⊙), we find the jump in the signal
can be fully detected in the DECIGO/BBO frequencies
range and partially in LISA; (ii) for ρ1=4c ≈ 17 TeV corre-
sponding to ≈10−9M⊙, the jump can be detected in the
LISA frequency range. Therefore, induced GWs can allow
us to identify and distinguish that a peaked PBH mass
function is caused by a broad power spectrum in the
presence of a softening of w; c2s in comparison with a
peaked power spectrum.
Our results bring a novel motivation for testing new

physics at a few TeV–PeV scale giving rise to a significant
crossover using induced GWs. Future GW interferometers
will be essential to test the scenario; see Ref. [83] for a recent
work in this direction for LISA. Future directions could
explore non-Gaussianities’ impact on both the PBH mass
function [84–87] and the density shape of GWs [88–92].
Additionally, investigating the ΩGW spectrum with various

FIG. 4. Scalar-induced GWs from the SC for different cases.
The top panel corresponds to model A and the bottom to model
B. The frequency is related to the wave number as f ¼ k=2π. The
colored regions indicate sensitivity curves of different planned
space-based GWs interferometers [13,81,82] (see the legend).
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power spectrum shapes and SC modulations would be
intriguing.
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APPENDIX A: NUMERICAL COMPUTATION
OF THE INDUCED GWs

We summarize our numerical procedure for the compu-
tation of the induced GWs as follows: (i) We find the
corresponding wave mode that reenters the horizon at the
corresponding c2s;min scale [namely, k⋆ with k⋆ ¼ Hðη⋆Þ],
and from that scale we consider a range of modes
k∈ ½10−3; 104�k⋆ in log scale, for which we expect that
the SC will significantly affect the induced GWs. (ii) For a
given mode k, we obtain the numerical solution of the
homogeneous Green functions g1k,g2k [solving Eq. (13)]
using as initial condition the analytical solution when the
modes k are well outside the horizon (ηinitial ≈ 10−2=k)
during the radiation-dominated epoch and solved until the
modes arewell inside the horizon (ηsh ≈ 4 × 103=k). (iii) For
each k considered in the previous step, we solve Eq. (14) for
a range of modes in log scale kj ∈ ½10−2; 102�k (the modes
kl ∼ k will give us already the dominant contribution) with
similar ηinitial ≈ 10−2=kj and ηsh ≈ 4 × 103=kj as in the
previous step, and we store the numerical solution.
(iv) We make combinations between the modes k1 and k2
following the integral domain of Eq. (10), and we compute
the corresponding kernel functions of Eqs. (11). We make
the integration of Eq. (10) using the trapezoidal rule
approximation with ∼500 × 500 points of integration in
the domain. To compute the time average of the GW power
spectrum, we follow the practical approach of Refs. [45,46],
which consists of taking into account that the integration
kernel oscillates only by themode function g1kðηÞ and g2kðηÞ
at the evaluation time ηsh (since the scalar perturbation is
damped enough well after the horizon cross). Then the time
average square of the kernel can be computed as

I2ðk;k1;k2;ηÞ≃ I22ðk;k1;k2;ηÞg21kðηÞ
−2I1ðk;k1;k2;ηÞI2ðk;k1;k2;ηÞg1kðηÞg2kðηÞ
þ I21ðk;k1;k2;ηÞg22kðηÞ; ðA1Þ

where I2l ðk; k1; k2; ηÞ is given by Eq. (11) but substituting
Green’s function by Eq. (12) and splitting the glk (l ¼ 1 or 2)
contributions. The time average of the quantities in Eq. (A1)
is defined as

X̄ðηÞ ¼ 1

T

Z
η

η−T
Xðη̃Þdη̃; ðA2Þ

T being the period of the oscillations when the modes k are
well inside the horizon. We practically integrate Eq. (A2)
from the initial time ηinitial until ηsh, which makes the
numerical integration easier. This gives equivalent results
in the limit when ηsh → ∞, which holds in our case with an
inappreciable difference in the results with the resolu-
tion used.
We check the convergence and accuracy of our numerical

result comparing with the analytical value of ΩGW ≈
0.822=A2 [80] for the case of radiation w ¼ c2s ¼ 1=3, for
whichwe find a relative deviation of∼Oð0.01%–0.1%Þ [93].
This small deviation can be attributed to the highly oscil-
latory behavior of the kernel function when making the
numerical integration.

APPENDIX B: NUMERICAL SIMULATIONS
OF PBH FORMATION

We briefly review the procedure we have followed to
make numerical simulations of the gravitational collapse of
superhorizon curvature fluctuations, the threshold values
being shown in Fig. 2 as the final output of the simulations.
We follow the approach done in Refs. [58,63], which is
based on an updated version of the numerical code
developed in Ref. [71].
To study the formation of PBHs from the collapse of a

relativistic fluid in spherical symmetry [94] using the
comoving gauge, we solve numerically the Misner-Sharp
(MS) equations [96], which are the Einstein equations
assuming an energy-momentum tensor given by a perfect
fluid as Tμν ¼ ðpþ ρÞuμuν þ pgμν, with p ¼ wρ. The
spacetime metric in spherical symmetry is given by

ds2 ¼ −Aðr; tÞ2dt2 þ Bðr; tÞ2dr2
þ Rðr; tÞ2ðdθ2 þ sin2ðθÞdϕ2Þ; ðB1Þ

where A is the lapse function and R is the areal radius.
Then, considering a time-dependent equation of state wðρÞ,
the MS equations reads as

U̇ ¼ −A
�

c2s ðρÞ
1þ wðρÞ

Γ2

ρ

ρ0

R0 þ
M
R2

þ 4πRwðρÞρ
�
;

Ṙ ¼ AU;

ρ̇ ¼ −Aρ½1þ wðρÞ�
�
2
U
R
þ U0

R0

�
;

Ṁ ¼ −4πAwðρÞρUR2;

A0 ¼ −A
ρ0

ρ

c2s ðρÞ
1þ wðρÞ ;

M0 ¼ 4πρR2R0; ðB2Þ
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where a dot denotes time derivatives with respect to the
cosmic time t and a prime the derivatives with respect to the
radius r. The sound speed c2s is defined by c2s ¼ ∂p=∂ρ as in
Eq. (1). The last equation is the Hamiltonian constraint,
used to check the validity and accuracy of the simulations.
U is the radial component of the four-velocity associated
with an Eulerian frame (not comoving), which measures
the radial velocity of the fluid with respect to the origin of
the coordinates. The MS mass Mðr; tÞ is defined as
MðRÞ≡ R R0 4πR̃2ρdR̃ which is related to Γ, U, and R

through the constraint Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U2 − 2M=R

p
, also given

by Γ ¼ R0=B.
We use gradient expansion approximation approach [97]

to set up the initial condition at the beginning of the
simulation, once the fluctuations are at superhorizon scales
following Refs. [70,98,99]. In particular, we consider in the
gradient expansion method the ratio between the length
scale of the cosmological horizon RH and one of the
fluctuations Rm ¼ armeζðrmÞ, defining a parameter ϵðtÞ ¼
RHðtÞ=RmðtÞ that should be much smaller than one ϵ ≪ 1
once the fluctuation is at superhorizon scales. In particular,
we take ϵðtiÞ≲ 0.1, ti being the initial time when we start
the simulation.
From the spacetime metric of Eq. (5) and applying the

gradient expansion method into Eqs. (B2), the initial con-
ditions for nonconstant equations of state wðρÞ are shown in
Ref. [63]. Applying a convenient change of coordinates from
Kðr̃Þ to ζðrÞ given by Ref. [70], we then obtain

Aðr; tÞ ¼ 1þ ϵ2ðtÞ;
Rðr; tÞ ¼ aðtÞreζðrÞð1þ ϵ2ðtÞR̃Þ;
Uðr; tÞ ¼ HðtÞRðr; tÞð1þ ϵ2ðtÞŨÞ;
ρðr; tÞ ¼ ρbðtÞð1þ ϵ2ðtÞρ̃Þ;

Mðr; tÞ ¼ 4π

3
ρbðtÞRðr; tÞ3ð1þ ϵ2ðtÞM̃Þ; ðB3Þ

ϕρðrÞ ¼ −
1

3r
e−2ζðrÞ



2rζ00ðrÞ þ ζ0ðrÞ�4þ rζ0ðrÞ��;

ϕUðrÞ ¼ −
1

r
e−2ζðrÞζ0ðrÞ½2þ rζ0ðrÞ�; ðB4Þ

ρ̃ ¼ ϕρξ1ðρb;iÞe2ζðrmÞr2m;

Ũ ¼ 1

2
ϕUðξ1ðρb;iÞ − 1Þe2ζðrmÞr2m;

Ã ¼ −
c2sðρb;iÞ

1þ wðρb;iÞ
ρ̃;

M̃ ¼ 2
ξ1ðρb;iÞ

ξ1ðρb;iÞ − 1
Ũ;

R̃ ¼ −
ξ2ðρb;iÞ
ξ1ðρb;iÞ

ρ̃þ ξ3ðρb;iÞ
ξ1ðρb;iÞ − 1

Ũ; ðB5Þ

where ρb;i ¼ ρbðtiÞ and ξ1ðρbÞ, ξ2ðρbÞ, and ξ3ðρbÞ are
functions of the energy density of the FLRW background,
obeying the following differential equations:

dξ1ðρbÞ
dρb

¼−
1

2ρb
þ 5þ3wðρbÞ
2½1þwðρbÞ�

ξ1ðρbÞ
3ρb

;

dξ2ðρbÞ
dρb

¼−
c2s ðρbÞ

3½1þwðρbÞ�2
ξ1ðρbÞ
ρb

þ½1þ3wðρbÞ�
3½1þwðρbÞ�

ξ2ðρbÞ
ρb

;

dξ3ðρbÞ
dρb

¼ −1
3½1þwðρbÞ�

½ξ1ðρbÞ−1�
ρb

þ½1þ3wðρbÞ�
3½1þwðρbÞ�

ξ3ðρbÞ
ρb

:

ðB6Þ

Equations (B6) are solved numerically using the analytical
templates of Eqs. (1) and (2) for c2s ðρbÞ and wðρbÞ and
with the initial conditions such that dξ1ðρb;radÞ=dρb¼
dξ2ðρb;radÞ=dρb¼dξ3ðρb;radÞ=dρb¼0, where ρb;rad¼ρbðtradÞ
and trad is the time where we have w ¼ c2s ¼ 1=3. The
numerical solution is shown in Fig. 5.
The formation of a PBH for a given initial condition can

be inferred from the dynamics of perturbations that continue
growing (i.e., which do not dissipate) after entering the
horizon until the formation of an apparent horizon [100].
In spherical symmetry, this condition is satisfied when
2M ¼ R. Following a numerical bisection, the critical value
μ2;c can be obtained. We make the simulations to obtain
the thresholds with a resolution Oð10−2%Þ as in Ref. [63],

FIG. 5. Numerical solutions of ξ1, ξ2, and ξ3 for the different SC templates.
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which means an absolute resolution of Oð10−4Þ depending
on the SC template considered.
To check the accuracy of our simulations, we use the

Hamiltonian constraint equations M0 ≡ 4πR0R2ρ to define
the following quantity:

H≡M0
num −M0

def

M0
def

¼ M0
num=R0

num

4πρnumR2
num

− 1; ðB7Þ

where the square norm is given by

jHj≡ 1

Ncheb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

�
M0

i=R
0
i

4πρiR2
i
− 1

�
2

vuut : ðB8Þ

The subindex i refers to each grid point, and Ncheb is the
total number of grid points. To ensure the accuracy of the
simulations, jHj should be much smaller than one.
Examples of the convergence of our simulations are shown
in Fig. 6 for the calculation of the threshold values μ2;c for
different SC templates. We use the maximum of the
compaction function Cmax to infer black hole formation
(when Cmax ≈ 1) or dispersion of the fluctuation on the
FLRW background (when Cmax continuously decreases in
time) [71].

APPENDIX C: PBH ABUNDANCE ESTIMATION
WITH PEAK THEORY

In this section, we give details about the statistical
estimation of PBH abundances we have followed and
the approximations considered. We refer the reader to
Refs. [67–69,86] for much more detail.
We make statics on counting peaks of the Laplacian of

the curvature fluctuation Δζ. This has the advantage of
decoupling the large-scale environmental effect in the
estimation of PBH abundance, which allows the correct
estimate of the abundance in the case of a flat power
spectrum through the introduction of a window function, in
comparison with the previous approach [69].
Let us consider that the curvature fluctuation ζ follows a

Gaussian distribution, with a power spectrum defined as

hζðkÞζ�ðk0Þi ¼ 2π2

k3
PζðkÞð2πÞ2δðk − k0Þ; ðC1Þ

where k and k are the wave-mode vector and its
modulus, respectively. Then, according to peak theory [67]
and making an integration over the typical profile of
Δζ [68], the typical profile of ζ is given by ζðrÞ ¼
μ2gðr; k•Þ with

FIG. 6. Hamiltonian constraint evolution (top panels) and the time evolution of the maximum of the compaction function
(bottom panels) for different SC templates and MHðtHÞ. The solid line corresponded to cases with apparent horizon formation and
dashed lines cases where the cosmological fluctuation is dispersed on the FLRW background (no black hole formation). Left panels,
c2s;min ¼ 0.1 and σ ¼ 5; middle panels, c2s;min ¼ 0.2 and σ ¼ 5; and right panels, c2s;min ¼ 0.3 and σ ¼ 5. The cases shown correspond
to μ2 ¼ μ2;c � 5 × 10−4.
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gðr;k•Þ¼
1

1− γ23

�
ψ1þ

1

3
R2
3Δψ1

�

−
k2•

γ3ð1− γ23Þ
σ2
σ4

�
γ23ψ1þ

1

3
R2
3Δψ1

�
þζ∞; ðC2Þ

where the last term is an integration constant and μ2
and k• are defined by μ2 ¼ −ðσ21=σ22ÞΔζjr¼0 and k• ¼
−ΔΔζjr¼0=ðΔζjr¼0Þ, respectively. The term ζ∞ can be
considered as a Gaussian distributed variable, with a mean
value equal to zero. It can be discarded by making a
renormalization as discussed in Ref. [68]. The statistical
parameters in Eq. (C2) used to build g are

σ2n ¼
Z

dk
k
k2nPgðkÞ; ψnðrÞ¼

1

σ2n

Z
dk
k
k2n

sinðkrÞ
kr

PgðkÞ;

γn ¼
σ2n

σn−1σnþ1

; Rn ¼
ffiffiffi
3

p
σn

σnþ1

for odd n: ðC3Þ

Notice that these quantities are not affected by the
existence of an SC, since they rely on the curvature
fluctuation ζ, which is frozen at superhorizon scales.
The number density of such a peak in a comoving volume
(i.e., the comoving number density of positive extremal
points of g in a high peak limit ν ¼ μ2=σ2 ≫ 1) is
furthermore expected statistically as

nðμ2;k•Þpk dμ2dk• ¼
2

33=2 · ð2πÞ3=2 μ2k•
σ32σ

2
4

σ41σ
3
3

f
�

σ22
σ21σ4

μ2k2•

�

× Pð3Þ
1

�
σ2
σ21

μ2;
σ22
σ21σ4

μ2k2•

�
dμ2dk•; ðC4Þ

where

fðξÞ ¼ 1

2
ξðξ2 − 3Þ

 
erf

"
1

2

ffiffiffi
5

2

r
ξ

#
þ erf

" ffiffiffi
5

2

r
ξ

#!

þ
ffiffiffiffiffiffi
2

5π

r ��
8

5
þ 31

4
ξ2
�
exp

�
−
5

8
ξ2
�

þ
�
−
8

5
þ 1

2
ξ2
�
exp

�
−
5

2
ξ2
��

ðC5Þ

and

PðnÞ
1 ðν;ξÞ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
1− γ2n

p exp

�
−
1

2

�
ν2þðξ− γνÞ2

1− γ2n

��
: ðC6Þ

Here, erfðzÞ denotes the error function erfðzÞ¼ 2ffiffi
π

p
R
z
0 e

−t2dt.

The amplitude μ2 is related to the compaction function
C [66] at superhorizon scales as

μ2 ¼
−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3CðrmÞ=2
p

rm∂rgmðr; k•Þjr¼rm

: ðC7Þ

The number density of PBHs can be written as

nPBHd lnM ¼
�Z

∞

μ2;c

dμ2n
ðμ2;MÞ
pk

�
d lnM; ðC8Þ

where we change the variable k• toM in Eq. (C4) using the
Jacobian of the transformation dk• ¼ jd lnM=dk•j−1d lnM.
At this point, we consider three approximations that we use
in the next steps: (i) The PBH mass is given by the mass of
the horizon at horizon reentry MHðtHÞ ¼ H−1ðtHÞ=2 (tH
being the time of horizon crossing of the comoving scale
rm), which would overestimate the PBH mass slightly since
the PBHs that most contribute to the PBH abundance would
be αMHðtHÞ with a factor α∈ ½0.1 − 1�, which depends
on the equation of state and the curvature profile [101].
(ii) We neglect the effect of the critical regime on the PBH
mass. As shown in Ref. [102] for a pure radiation case,
that effect is anyway very small on the total abundance
ftotPBH ¼ R fPBHðMÞd lnM. Moreover, the inclusion of the
critical regime would make only a minor change in the
shape of the mass function (see, for instance, Ref. [63]).
The dominant contribution comes from the reduction of
μ2;cðMHðtHÞÞ. (iii) To simplify the computations, we also
assume that Mt is computed assuming a pure radiation-
dominated Universe. This would underestimate the PBH
mass by a factor ∼3 at most (see Fig. 8). We expect that
approximations (i) and (iii) reduce their impact when taken
together, since they overestimate or underestimate the
PBH mass.
Then the abundance of PBHs β at the time of matter-

radiation equality (denoted by the subindex “0”) is given by

β0d lnM ¼ MnPBH
ρa3

d lnM ¼ 4π

3
nPBHk−3eq

�
M
Meq

�
3=2

d lnM

¼ 2 × 3−5=2k−3eq
ð2πÞ1=2

σ24σ
3
2

σ41σ
3
3

�
M
Meq

�
3=2

×

�Z
∞

μ2;c

dμ2μ2k•f

�
σ22
σ21σ4

μ2k2•

�

× P1

�
σ2
σ21

μ2; μ2k2•
σ22
σ21σ4

�				 d
dk•

ln rm

þ μ2
d
dk•

gm

				−1
�
d lnM; ðC9Þ

where the scale factor a is written as a function of M as
a ¼ 2M1=2M1=2

eq keq. The integral of Eq. (C9) with respect to
μ2 can be approximated as follows:
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β0d lnM ≃
2 × 3−5=2k−3eq

ð2πÞ1=2
σ24
σ2σ

3
3

�
M
Meq

�
3=2

×
�
σ̃2ðk•Þk•f

�
σ22
σ21σ4

μ2k2•

�

× P1

�
σ2
σ21

μ2; μ2k2•
σ22
σ21σ4

�				 d
dk•

ln rm

þ μ2
d
dk•

gm

				−1
�
μ2¼μ2;c

d lnM; ðC10Þ

where σ̃ is defined as

1

σ̃2ðk•Þ
¼ 1

σ22
þ 1

σ24ð1 − γ23Þ
�
k2• −

σ23
σ22

�
2

: ðC11Þ

Since P1 given in Eq. (C6) has the exponential dependence,
we may expect that the value of β0 is sensitive to the
exponent −μ̃22=2σ̃2 (with μ̃2 ¼ μ2σ

2
2=σ

2
1). We can roughly

estimate the maximum value of β0 at the top of the mass
spectrum by considering the value kt of k• which minimizes

the value of μ̃ðk•Þ2;c ðk•Þ=σ̃, namely,

kt ≔ argmink•

h
μ̃ðk•Þ2;c ðk•Þ=σ̃ðk•Þ

i
: ðC12Þ

In general, a numerical procedure is needed to determine
the value of kt, which is independent of the amplitude of the
power spectrum and depends only on its shape. In our case,
we find that kt ≈ 0.707kW maximizes the corresponding
mass function and with the lowest thresholds CcðrmÞ as
shown in Fig. 7 for the specific case of c2s;min ¼ 0.2
and σ ¼ 3.
In our numerical exploration, we find a variation

δkt ≈�0.03 to the exact value of kt that maximizes the
abundance (see the top-right panel in Fig. 7). We assume
that kt ≈ 0.707kW (the value for radiation-dominated
Universe) also holds for the other SC templates with
similar variations of δkt. Even assuming a possible varia-
tion of kt for other SC, we expect that the maximum value
of the mass function will be determined by kt ≈ 0.707kW at
the mass scale corresponding to the minimum of μ2;c (as
already proven for the case tested in Fig. 7), since it will
act as an attractor because for constant w; c2s holds that
kt ≈ 0.707kW maximizes the abundance.
Notice that our choice of kt differs from themean profile,

which corresponds to k• ¼ σ3=σ2 ≈ 0.816kW (κ ≈ 0.816)
with λ ≈ 3.5, corresponding to ζ ¼ μ2ψ1. According to our

FIG. 7. Left-top panel: threshold values μ2;cðMHðtHÞÞ for different realizations of k•. Right-top panel: values of κt that maximize the
PBH abundance. Bottom panel: PBH mass function using the values of μ2;cðMHðtHÞÞ from the top-left panel and using the same
amplitude A. In all cases, we have considered the SC template with c2s;min ¼ 0.2 and σ ¼ 3.0.
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results, the assumption of the typical profile to be coinci-
dent with the mean profile in the case of a flat power
spectrum would substantially underestimate the PBH
production by several orders of magnitude, fixing the same
amplitude of the power spectrum A. In other words, the
most statistically relevant curvature profile ζ is not always
the mean profile [103].
When computing the PBH abundance, several realiza-

tions of the curvature profiles need to be taken into account
for the different modulations k•. In our case, due to the
time-consuming computation of finding the numerical
threshold μ2;cðMHÞ for different k• and templates of the
SC, we have searched for the most likely statistical
realization fixing the value of kt, which we expect give
us the maximum contribution to the PBH abundance
according to our approximations. Notice that in Eq. (C2)
we could have also included the dispersion in the shapes
following Ref. [67] as done in Ref. [104], although we
expect it to be small for the high peak limit, as shown in
Ref. [104] for the case of a peaked power spectrum. In
addition, the choice of the window function can also affect
the results, although we have chosen the top hat following
Ref. [68], which gives us the maximum abundance with the
minimal setup. We leave the consideration of all these
effects for future research.
Substituting kt into k• in Eq. (C10), we obtain the

following rough estimate for the maximum value of β0;max:

β0;max ≃ βapprox0;max ≔
2 × 3−5=2k−3eq

ð2πÞ1=2
σ24
σ2σ

3
3

�
Mt

Meq

�
3=2

×

�
σ̃2ðk•Þk•f

�
σ22
σ21σ4

μ2k2•

�

× P1

�
σ2
σ21

μ2; μ2k2•
σ22
σ21σ4

�				 d
dk•

ln rm

þ μ2
d
dk•

gm

				−1
�
k•¼kt;μ2¼μðk•Þ

2;c ðktÞ
: ðC13Þ

Finally, the mass function shown [105] in Fig. 3 is
computed as fPBHðMjkWÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=Meq

p
βapprox0;max .

As a final remark, notice that in our approach the use of a
transfer function is unnecessary, since numerical simula-
tions (starting initially with the fluctuations at superhorizon
scales) are already telling us the final output (threshold),
and we account for peaks of Δζ at superhorizon scale when
ζ is frozen and Gaussian randomly distributed, for which
we can correctly account for the statistics [67].
Our numerical and theoretical approach using peak

theory can be used to study the case of the QCD crossover
in the range of T ≈ 200 MeV and compare it with the
current literature on the topic. We leave that for future
research.

FIG. 8. Mass of the cosmological horizon at horizon reentry (in solar mass) for a given wave mode k (in Mpc−1) for different
realizations of the SC. Cases fixing MHðc2s;minÞ ¼ 10−13M⊙ (top panels) and MHðc2s;minÞ ¼ 10−9M⊙ (bottom panels).
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APPENDIX D: MASS OF THE COSMOLOGICAL
HORIZON WITH THE SC

We numerically solve the FLRW background equation
of Eq. (3) to obtain a relation between the mass of the
cosmological horizon of given wave mode k when reenters
it and itself. We fix the condition at the EW epoch to be
MHðtEWÞ ≈ 10−6M⊙ with kEW ≈ 109 Mpc−1 [106], irre-
spective of the SC template considered. Then the time of
horizon crossing tH is given by k ¼ aðtHÞHðtHÞ, which can
be translated to be

a2ðtHÞρðtHÞτ2 ¼ ρbðt0Þ; ðD1Þ

for a practical numerical computation,where τ−1 ¼ kRHðt0Þ.
The mass MH can be then evaluated at each time tH for a
range of different initial conditions of τ. The result is shown
in Fig. 8.
We take into account MHðkÞ when computing the

induced GWs to make a fully realistic result, but not for
the PBH abundance estimation, to simplify the computa-
tion, which would have a minor impact.
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[87] A. Escrivà, V. Atal, and J. Garriga, J. Cosmol. Astropart.

Phys. 10 (2023) 035.
[88] V. Atal and G. Domènech, J. Cosmol. Astropart. Phys. 06

(2021) 001; 10 (2023) E01.
[89] P. Adshead, K. D. Lozanov, and Z. J. Weiner, J. Cosmol.

Astropart. Phys. 10 (2021) 080.
[90] K. T. Abe, R. Inui, Y. Tada, and S. Yokoyama, J. Cosmol.

Astropart. Phys. 05 (2023) 044.
[91] J.-P. Li, S. Wang, Z.-C. Zhao, and K. Kohri, J. Cosmol.

Astropart. Phys. 10 (2023) 056.
[92] J.-P. Li, S. Wang, Z.-C. Zhao, and K. Kohri, J. Cosmol.

Astropart. Phys. 06 (2024) 039.
[93] Increasing the number of points for the numerical

integration and the final time of evaluation can be
observed that the deviation decreases, although the
numerical computation is much more expensive. We set
∼Oð0.1%Þ as the limit of accuracy of our numerical
results for the ΩGW, which is already more than enough
for our purposes.

[94] Deviations from sphericity could become important in a
situation with a very soft constant equation of state [95]. In
our case, we will consider a transition from radiation with
w and c2s that becomes softer during a specific narrow
period. Therefore, we expect our estimation following
spherical symmetry to be realistic, since we still consider
high peaks.

[95] T. Kokubu, K. Kyutoku, K. Kohri, and T. Harada, Phys.
Rev. D 98, 123024 (2018).

[96] C.W.Misner andD. H. Sharp, Phys. Rev. 136, B571 (1964).
[97] D. S. Salopek and J. R. Bond, Phys. Rev.D 42, 3936 (1990).
[98] A. G. Polnarev and I. Musco, Classical Quantum Gravity

24, 1405 (2007).
[99] T. Nakama, T. Harada, A. G. Polnarev, and J. Yokoyama, J.

Cosmol. Astropart. Phys. 01 (2014) 037.
[100] R. Penrose, Phys. Rev. Lett. 14, 57 (1965).
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