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The Universe may contain sufficiently small size matter-antimatter domains at temperatures of a few
hundred MeV, without violating the success of big bang nucleosynthesis. We demonstrate that this
possibility enhances the keV scale sterile neutrino production and may lead to its abundance consistent with
the observable energy density of dark matter (DM). Assuming that the quantum chromodynamics (QCD)
phase transition is of the first order we argue that it may lead to the separation of matter and antimatter,
creating temporarily macroscopic domains occupied by hadronic matter and quark-gluon plasma. In these
domains an excess of baryons over antibaryons and vice versa largely can exceed the average baryon and
lepton asymmetries of the Universe. We discuss several scenarios of matter-antimatter separation at the
QCD phase transition and the production of DM sterile neutrinos in each of them. One of the possibilities
requires the presence of lepton asymmetry of the Universe, which can be smaller than that needed for the
DM correct abundance in the homogeneous case. Another, the more speculative one, is related to the
Omnes phase transition and does not require lepton asymmetries.
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I. INTRODUCTION

The motivation for the sterile neutrino dark matter (DM)
candidate [1,2] stems from discovery of neutrino oscilla-
tions [3–17]. The simplest and most natural way to get
nonzero neutrino masses is to add to the Standard Model
several (at least two) right-handed neutrinos (or, what is the
same, Majorana fermions or heavy neutral leptons-HNLs)
[18–22]. These particles have Yukawa couplings with the
Higgs boson and leptonic doublets, which generate the
active neutrino masses via the see-saw mechanism. If
the number of HNLs is three (the same as the number
of fermionic generations in the StandardModel) this model,
known as the minimal type I seesaw model or the νMSM
(neutrino minimal Standard Model) [23,24], is capable
of explaining simultaneously the Dark Matter (in terms
of the lightest HNL—N1 with the mass in the keV range),
and also neutrino masses and baryon asymmetry of the
Universe coming about because of heavier HNLs N2;3,
addressing thus all experimental drawbacks of the SM. The
keV sterile neutrinos do not contribute to the masses of
light neutrinos, which allows us to fix the absolute scale of
active neutrino masses [23] within the νMSM.
In the νMSM, the DM sterile neutrinos are most effec-

tively produced viamixingwith active neutrinos in reactions
with other particles of the SM, such as lþl− → νN1, at

temperatures of a few hundred MeV.1 In the case of small
lepton asymmetries of the Universe (the Dodelson-Widrow
mechanism [1]), the required mixing angle is in contra-
diction with x-ray2 and structure formation constraints.3

We define lepton asymmetry as ΔL ¼ L=s, where L is
the density of the total lepton number and s is the entropy
density. If the asymmetry is much larger than the baryon
asymmetry [36,37], and furthermore

ΔL ≳ Lcrit ≡ 6.6 × 10−5; ð1:1Þ

then the production of the sterile neutrinos is resonantly
enhanced according to the Shi-Fuller mechanism [2] and all
the constraints mentioned above can be satisfied (for a
review see [35]). The quantities ΔL and Lcrit in Eq. (1.1) are

*Contact author: mikhail.shaposhnikov@epfl.ch
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1The DM sterile neutrino may also be created in the processes
including physics beyond the νMSM. The proposals include the
decays of extra scalar particles [25,26], higher-dimensional
operators [27], Einstein-Cartan 4-fermion gravitational interac-
tion [28], left-right symmetric theories [29] etc.

2N1 is unstable and can decay as N1 → γν, producing a narrow
X-ray line that can be seen by x-ray telescopes [30–32]. Evidence
for such a line at 3.5 keV which would correspond to decays of
7 keV DM sterile neutrino was reported in [33,34]. It remains to
be seen if this line indeed corresponds to the radiative decay
of DM particles.

3The free streaming length of N1 admitted by the x-ray
constraints is too large and contradicts to the cosmological
Lyman-α forest data, for a review see [35].
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taken at a temperature 4 GeV, and it is assumed that the
lepton numbers of different generations can only be
changed due to the mixing with DM sterile neutrino (or,
in other words, that the processes with N2;3 of the νMSM
are irrelevant). The number Lcrit depends on the flavor
composition of the lepton asymmetry, on the sterile
neutrino mixing angle θ, and on the mass of the DM
sterile neutrino [36,37]. The specific value of Lcrit given
above in (1.1) corresponds to Le ¼ Lμ ¼ Lτ ¼ L=3,
M1 ¼ 7 keV, and θ2 ¼ 5 × 10−11 [37].
The lepton asymmetries of this magnitude can indeed be

produced in the νMSM, albeit in a fine-tuned domain of the
parameter space leading to strong mass degeneracy
between heavier HNLs N2 and N3 [38–40].
To the best of our knowledge, in all approaches to sterile

neutrino production proposed so far, the Universe was
taken to be homogeneous and isotropic at the relevant
temperatures of the order of 200 MeV. However, this is a
mere assumption. The success of the big bang nucleosyn-
thesis (BBN) indicates that this was very likely to be the
case at smaller temperatures T ∼ 1 MeV, but the inhomo-
geneities at T ∼ 200 MeV with a size as large as few meters
are admitted [41], as they dissipate before the BBN starts
through the combined action of neutrino inflation and
neutron diffusion [42–46]. Moreover, even the existence of
matter-antimatter domains with a baryon-to-entropy ratio
of the order of one (or minus one) is allowed, provided their
size is smaller than the neutron diffusion length at the
BBN epoch.
The presence of these domains may change consid-

erably the sterile neutrino DM abundance and their
momentum distribution, important for structure forma-
tion. Indeed, even though the average baryon asymmetry
of the Universe is small, it can be large locally, leading
to the resonant production of sterile neutrinos.
Furthermore, the resonance will occur for the left chi-
rality of sterile neutrinos in one type of domain, and with
right chirality in another, producing the chiral symmetric
DM, contrary to the resonance production in the homo-
geneous situation.
How the matter-antimatter domains can appear in the

Universe? One of the mechanisms suggested in the
literature a while ago is associated with a possible
existence of stochastic hypermagnetic fields at temper-
atures above the sphaleron freeze-out [47] (see also
[48,49]). The electroweak anomaly converts the hyper-
magnetic fields into baryons and thus leads to an inho-
mogeneous Universe with matter-antimatter domains. Yet
another possibility to have matter-antimatter domains
appears in theories with two sources of CP-violation—
spontaneous and intrinsic [50]. Also, the matter-antimatter
domains may appear in inhomogeneous baryogenesis,
described in [51,52].
Our current work gives yet another example, associated

with the possible first-order QCD phase transition if it

occurs. We will show that in the scenario with matter-
antimatter separation at the first-order QCD phase tran-
sition, the sterile neutrino DM production may be enhanced
considerably. The enhancement can be efficient even if the
asymmetry is small ΔL < Lcrit, or even absent, ΔL ¼ 0 if
the Omnes type picture of the separation (discussed in
Sec. II C) is correct. Though we concentrate on these
specific mechanisms of matter-antimatter separation at the
QCD epoch, our findings about sterile neutrino DM
generation are universal and applicable also to other
possibilities, mentioned above. In most numerical esti-
mates, we take M1 ¼ 7 keV and θ2 ¼ 5 × 10−11, but the
equations we present are valid for the other choice of
parameters as well.
To sum up, the aim of the present paper is twofold. First,

assuming that the QCD phase transition indeed takes place,
we argue that it may lead to temporary matter-antimatter
separation, creating macroscopic domains (and “antido-
mains”) with an excess of baryons over antibaryons (and
vice versa) substantially exceeding the average baryon and
lepton asymmetries of the Universe.
Second, we uncover a new possible consequence of

the first-order QCD phase transition, associated with the
production of sterile neutrino DM. We will see that the
inhomogeneities produced at this transition may facilitate
the otherwise suppressed creation of sterile neutrinos. The
droplets of QGP rich in baryon number formed at the first
order QCD phase transition play a crucial role in the
mechanism of sterile neutrino DM production we propose.
We will see that the creation of sterile neutrinos via the
conversion (oscillations) of ordinary neutrino ν into N1

inside the droplets may lead to the DM abundance con-
sistent with observations. In addition, after the phase
transition, the same type of production processes occur
in the hadronic phase inside the lumps with the excess of
the baryon number, slowly spreading when the Universe
expands. The enhancement of sterile neutrino production is
similar to the MSW effect in neutrino oscillations in the
medium [53].
The paper is organized as follows. In Sec. II, we consider

possible scenarios of matter-antimatter separation at the
QCD phase transition. In Sec. II A, we get a glimpse of its
possible parameters and get a rough estimate of the average
distance between nucleating bubble centres and the prob-
ability distribution of the droplets of quark-gluon plasma as
a function of their sizes (using the previous studies of the
QCD phase transition [54,55]). Section II B discusses the
mechanism(s) of matter-antimatter separation in the first-
order QCD phase transition. In Sec. III we investigate the
sterile neutrino production in the scenarios with matter-
antimatter separation. We study first the resonance N
production in a homogeneous medium and apply it to
Omnes phase transition and QGP droplets of big size. The
case of small droplets is considered in Sec. III E. In the last
section, we summarize our results.
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II. QCD PHASE TRANSITION AND
MATTER-ANTIMATTER SEPARATION

There is a common belief that the evolution of the
Universe in the framework of the Standard Model of
elementary particles is smooth. Potentially, during the
Universe cooling after the big bang, one could encounter
two phase transitions. The first one is the electroweak phase
transition (EWPT) at T ≃ 160 GeV passing from the
symmetric to the Higgs phase. The second one is the
QCD phase transition at T ≃ 160 MeV from the quark-
gluon plasma to the gas of hadronic states. In both cases,
there is no true gauge-invariant local order parameter that
can distinguish involved phases, meaning that in general
the phase transitions are either absent (smooth cross-over),
or are of the first order. A specific choice of parameters of
the theory may lead to a second-order phase transition (for
example, in the EW case this would happen if the Higgs
boson mass wereMH ≈ 73 GeV [56,57]). For the Standard
Model with the Higgs boson heavier than ∼60 GeV and in
the QCD, the nature of the phase transitions cannot be
identified by the use of perturbation theory, and one has to
use nonperturbative methods such as lattice simulations.
The precision study of the EWPT can be done by a

combination of perturbative and nonperturbative compu-
tations. In the first step, one constructs an effective three-
dimensional purely bosonic theory containing the gauge
bosons of the SUð2Þ × Uð1Þ group and the Higgs doublet
[58]. This effective theory is a lot simpler than the original
four-dimensional Standard Model: there are no fermions
and no strong SU(3) interactions; moreover, the effective
theory is superrenormalizable. All these allow for very
accurate lattice simulations. The lattice study of the EW
case included (i) the analysis of the first-order transition
line existing at small Higgs boson masses, (ii) a comparison
of the parameters of the phase transition found on the
lattice with the results of perturbation theory in the region
of its validity, and (iii) nonperturbative computation of the
latent heat, jump of the order parameter, and of the
interphase tension. In addition, the analysis of the scaling
behavior and critical indexes of the critical point has been
carried out. This program led to the conclusion that for
the experimentally measured value of the Higgs mass
MH ≈ 125 GeV, the transition from the symmetric to the
Higgs phase in the SM is a smooth crossover [56,57,59] (it
would be a first-order phase transition if the Higgs mass
were below 73 GeV).4 Even if the lattice simulations of the
EW phase transition missed the very weak first-order phase
transition due to the volume or the finite lattice spacing
limitations, they can exclude cosmological applications of
this phase transition. Indeed, for a 125 GeV Higgs boson
the transition temperature (160 GeV) is larger than the

sphaleron freeze-out temperature, meaning that it is irrel-
evant for baryogenesis.
The study of the QCD phase transition is way more

complicated. At the temperatures of the order of the
confinement scale Λ ∼ 200 MeV, where the phase tran-
sition (if any) is expected to take place, the system is
strongly coupled, and no three-dimensional effective
bosonic description is possible. In addition, there are
technical challenges of putting on the lattice nearly mass-
less quarks, such as u or d, and eventually s. Nonetheless,
the lattice studies [62–66] reported evidence (considered
overwhelming) for the smooth cross-over. Unfortunately,
we did not manage to find in the literature the quantitative
statement about the confidence level of this evidence and
the bounds on the parameters of the phase transition (in the
assumption that it happens), such as the latent heat and the
interphase tension, important for cosmological applica-
tions. Given this uncertainty we take the liberty to assume
the QCD phase transition is of the first order and study how
it may develop in the early Universe, as was done, for
instance, in [67,68]. Intriguingly, the frequencies and
spectrum of waves detected by NANOGrav indicate the
OCD scale [68,69], giving an extra motivation to consider
this possibility.

A. Cosmic separation of phases

Let us assume for the time being that there are just two
phases—hadronic and QGP that may coexist in some
interval of temperatures T− < T < Tþ. A more intricate
and very speculative possibility will be discussed in
Sec. II C.
We start from a short overview of the previous works

on this problem, relevant to us. We assume in what follows
that before the QCD phase transition the Universe is
homogeneous and contains a tiny baryon asymmetry,
ΔB ≡ B=s ≃ 9 × 10−11 (B and s are the densities of the
baryon number and entropy respectively) and, perhaps,
the comparable lepton asymmetry. As was argued by
Witten [70] the first-order QCD phase transition may lead
to cosmic separation of hadronic and QGP phases. When
the universe supercools somewhat below the critical
temperature Tc (we take it to be Tc ≃ 160 MeV for
numerical estimates) the bubbles of new, hadronic phase
nucleate. The shock waves originating from the bubble
expansion reheat quickly the quark phase up to the critical
temperature, and the universe stays at a constant temper-
ature Tc during the sizeable fraction of the Hubble time
until the end of the transition. The hadron bubbles grow
slowly and roughly with the Hubble rate H. They start to
percolate at the moment t0 when their fraction reaches
∼50% of the space. After that, the situation is reversed—
the hadronic phase is dominating, and the droplets with the
quark-gluon plasma inside shrink slowly.
This process may lead to the separation of the net baryon

number [70]: the droplets with the plasma are much richer
4The four-dimensional lattice simulations of the bosonic sector

of the EW theory [60,61] confirmed this conclusion.
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in baryon number than the baryonic phase, because quarks
are lighter than hadrons and the transport of the baryon
number over the phase boundary is suppressed [70,71]. It
was conjectured in [70] that the baryon asymmetry inside
the droplets can be of the order of one at the end of the
phase transition.5 The dynamics of the bubble nucleation in
QCD phase transition in this case is mainly determined by
the latent heat l and the interphase tension σ. It was
considered in detail in [54], and we just give here the
main formulas from this article.
First, the Universe is supercooled in the QGP state till

temperature T� (T� is defined as a moment when the shock
fronts originated on the nucleated bubbles start to collide).
The amount of supercooling is characterized by

x2 ¼
�
1 −

T�

Tc

�
2

≃ A

�
4 log

�
2M0

Tc

�
2πv3

3A

�1
4

��−1
; ð2:1Þ

where M0 ≃MP=ð1.66g�12Þ, MP ¼ 1.22 × 1019 GeV, g� ¼
g�w þ g�QCD is the number of effectively massless degrees
of freedom (g�QCD corresponds to the QCD degrees of
freedom, and g�w counts the rest), v2 ≈ 1=3 is the sound
speed and A is the combination of l and σ,

A ¼ 16πσ3

3l2Tc
: ð2:2Þ

At T¼Tc≃160MeV we take, following [72], g�w ≃ 14.25,
g�QCD ≃ 10, leading to M0 ≃ 1.4 × 1018 GeV and to the
horizon size of the Universe tH ¼ M0=T2 ≃ 106 cm.
The average distance between the nucleated bubbles of

the hadronic phase is given by

r0 ≃ tH
x3

A
; ð2:3Þ

and the probability distribution of the bubbles on their size
r is roughly

dP ¼ exp

�
−

r
r0

�
dr
r0

: ð2:4Þ

After the bubbles start to percolate, the picture is inverted:
the hadronic phase becomes dominant, and the droplets
of the QGP, having initially the average size ∼r0 will be
slowly shrinking and disappear eventually at the end of the

phase transition, after the time of the order of the age of the
Universe at the QCD phase transition.
A crucial parameter in this picture is the distance

between the nucleated bubbles r0, estimated in [54] as
r0 ≃ 100 cm, four orders of magnitude smaller than the
horizon size. So, it would be not unreasonable to assume
that r0 is somewhere between 1 cm and 1 m. As we have
already mentioned, this scale of inhomogeneities is too
small to change the picture of the standard BBN.
If the baryon number is indeed confined inside the

droplets of QGP, the baryon number density in the droplets,
ndBðtÞ, is given by the solution of the equation

∂ndBðtÞ
∂t

¼ −
3ṙ
r
ndBðtÞ; ð2:5Þ

leading to the obvious solution

ndBðtÞ ¼ ndBðt0Þ
�
rðt0Þ
rðtÞ

�
3

; ð2:6Þ

where rðtÞ is the time-dependent droplet size, decreasing
toward the end of the phase transition and ndBðt0Þ ¼ ΔB × s
is the initial average baryon number density.
Having this basic picture in mind, we now extend it to

the case when in addition to tiny baryon asymmetry the
universe contains a sizable lepton asymmetry ΔL ≡ L=s,
several orders of magnitude larger than the baryon asym-
metry but still small enough to contradict different bounds
coming, for instance, from big bang nucleosynthesis (BBN)
[73]. The values as large as ΔL ≃ 10−4 (i.e., million times
more than the baryon asymmetry) can be generated, for
example, in interactions of heavy neutral leptons (HNLs) of
the νMSM below the freeze out of sphaleron transitions,
thus having no influence on baryon asymmetry of the
Universe [38–40,74,75]. If the lepton asymmetry of the
Universe (or its different flavor components) is close to
its upper bound imposed by BBN, it can even change the
standard cross-over picture of the QCD phase transition
converting it to a first-order phase transition [76–78]. We
are not going to consider this possibility in our work, since
so large lepton asymmetry already ensures the sterile
neutrino DM production in the homogeneous situation.
Still, the dynamics of the first-order QCD phase transition,
in this case, should account for the effects we discuss in the
next section.

B. Lepton asymmetry and matter-antimatter
separation

For the following discussion, it is important to know
the rates of the different weak reactions in the primordial
plasma at the time of the QCD phase transition. The
electron neutrino mean interaction rate coming from the
scattering on leptons is given by [79]

5Witten suggested in [70] that the QGP droplets or quark
nuggets could be absolutely stable if the baryon number trapped
in them is sufficiently large. If true, these objects can serve as
valid dark matter candidates. In our work, we do not follow this
suggestion and assume, accepting the common lore, that the
spectrum of stable states in QCD is standard and is composed of
protons and known nuclei.
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Γνe ¼
13

9

7π

24
G2

FT
4ω; ð2:7Þ

where GF is a Fermi constant, and ω is the neutrino energy.
A similar value is obtained for the muon neutrino. For τ
neutrino the rate is somewhat smaller due to the exponential
suppression of τ-lepton concentration. The presence of
quarks in QGP and mesons and baryons in the hadronic
phase changes these estimates (for discussion of hadronic
uncertainties see [36,37,80,81]) in an amount irrelevant
to the present discussion. For a typical neutrino energy,
ω ∼ 3Tc the neutrino mean free path (including their
scattering on quarks) is λν ∼ 0.4 cm, about six orders of
magnitude smaller than the horizon size∼10 km at this time.
The rates of quark flavor nonconservation due to

reactions of the type ūd → μþνμ, ūs → μþνμ in QGP
phase, and similar for the electron flavor, is difficult to
estimate reliably due to the strong coupling. It is expected
that the number of effectively massless degrees of freedom
in the QCD plasma at Tc ∼ 160 MeV goes from g�free ¼
47.5 (accounting for massless gluons and u, d, and s
quarks) to g�int ≃ 10 [72]. As the interaction rate is propor-
tional to the concentration of particles, it is reasonable to
expect that the weak mean free path of u and d flavors is
some factor ∼5 larger than that of neutrinos, λu;d ∼ 2 cm,
and factor ∼100 larger for s-quark, accounting for the
Cabibbo angle suppression by sin2 θc ≃ 0.05, λs ∼ 40 cm.
We expect to have similar estimates in the hadronic phase
due to reactions of the type ππ → πνeþ, πK → πνμþ and
alike (the rates of 2-body decays of pions and kaons are
suppressed either by chirality conservation or by the
amount of the available phase space).
The specific numbers for the mean free path given above

are not that important in what follows. What is relevant
for us is that the transitions between different hadronic
flavors are well in thermal equilibrium. In other words, an
equilibrium plasma in the vicinity of the QCD phase
transition is characterized by five chemical potentials μB,
μi, and μQ, corresponding to five conserved numbers: B—
baryon number, Le;μ;τ—three different lepton numbers, and
electric charge Q. Imposing the electric neutrality of the
QGP plasma, and neglecting for simplicity the masses of
the light quarks u, d, s and leptons e, μ and any interactions
between them one can easily find in linear order in
asymmetries:

μB
T
¼ 3B
T3

;
μQ
T

¼ 3nLe
þ3nLμ

4T3
;

μ1
T
¼ 5nLe

þnLμ

2T3
;

μ2
T
¼ nLe

þ5nLμ

2T3
;

μ3
T
¼ 6nLτ

T3
; ð2:8Þ

where ni are the number densities of the corresponding
conserved numbers in the obvious notations. In this
approximation, the asymmetries in the number of d and
s quarks are the same. If the mass of s-quark is included,

this degeneracy is broken. The analogous equations can be
derived in the hadronic phase in the noninteracting gas
approximation, with the use of baryons and mesons instead
of quarks.
These relations show that in the presence of substantial

lepton asymmetries nLi
≫ B the asymmetries in the indi-

vidual quark flavors are of the order of nLi
, rather than B.

The importance of lepton asymmetries to the description of
the QCD plasma was noted already in [82]. A similar
picture arises in the hadronic phase, with excess of
protons over antiprotons and mesons over antimesons
of the order of lepton asymmetries. The physics of this
phenomenon is obvious and is associated with the electric
neutrality of the plasma: the equilibrium character of the
weak interactions redistributes the leptonic asymmetry
between neutrinos and electrically charged leptons, and
the asymmetries in hadronic flavors are created to
compensate for the charge imbalance.
We are coming now to our main observation. The

nonzero and relatively large (of the order of lepton
asymmetry) chemical potential μQ breaks discrete sym-
metries C, CP, and CPT that distinguish hadronic matter
and antimatter, both in the QGP and hadronic phase. In
addition, the mass of the strange quark and masses of
strange mesons and baryons are the order of the critical
temperature or larger, which breaks the SU(3) flavor
symmetry. It is plausible to think that these breakings
are transmitted to the interaction of quarks and hadrons
with the interphase boundary between the different
phases.6 In the picture of a dilute gas of quarks and
hadrons, this would result in a difference between reflection
and transmission coefficients for particles carrying baryon
and antibaryon numbers. For example, for a quark incident
in the QGP phase the probability Pr of reflection back
would be different from that (P̄r) of the antiquark. Since the
interactions between quarks and hadrons are strong, it is
conceivable to assume that the CP(T) asymmetry in
reflection coefficients ΔP ≡ Pr − P̄r is of the order of

ΔP0 ≃ κ
μQ
T

≃
κL
2T3

≃ 5κΔL; ð2:9Þ

where κ is an unknown parameter presumably of the order
of one. We used here the entropy density at T ¼ Tc, s ≃
2π2

45
g�T3 with g� ≃ 24. The asymmetry ΔP0 should be zero

if the flavor symmetry were exact, we expect it to behave as
m2

s=T2
c for ms → 0.

6Of course, the C and CP-symmetries are also broken by the
weak interaction due to Kobayashi-Maskawa CP-violating
phase. We do not expect this to play any role in the matter-
antimatter separation scenario discussed below since the rate of
the weak processes is much smaller than the rate of strong
interactions.
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In a complete thermal equilibrium, with the domain
wall at rest, this dynamical feature does not lead to any
substantial consequences: the asymmetries in hadronic
flavors in different phases can be found by standard
methods of equilibrium thermodynamics (see, e.g., [70]
for a sample computation) using the same chemical
potentials for conserved charges across the interphase
boundary. Now, if the domain wall is moving with velocity
v ¼ ṙ, the difference in reflection probabilities together
with nonequilibrium induced by the bubble wall motion
will lead to the baryon current J of the order of

J ∼ −ΔP0vnq; ð2:10Þ

floating inside the droplets of the QGP (given jΔLj ≫ ΔB
the sign of this current is irrelevant for what follows). Here

nq ≃ g�QCDnf ¼
3ζð3Þ
4π2

g�QCDT
3 ≃ 0.9T3 ð2:11Þ

is an estimate of the total density of quarks and antiquarks
in the QGP (the zero mass free fermionic concentration is
nf ¼ 3ζð3Þ=ð4π2ÞT3). So, Eq. (2.5) for the baryon number
density receives an additional contribution associated with
this flux,

∂ndBðtÞ
∂t

¼ −
3ṙ
r
ndBðtÞ − ṙnqΔP0S=V; ð2:12Þ

where V ¼ 4=3πr3 and S ¼ 4πr2 are the volume and
surface of the droplet respectively. The solution of (2.12)
reads

ndBðtÞ ¼ ndBðt0Þ
�
rðt0Þ
rðtÞ

�
3

þ ΔP0nq

�
rðt0Þ3
rðtÞ3 − 1

�
: ð2:13Þ

For the baryon asymmetry nb of the bulk exterior to the
QGP droplet, corresponding to the hadronic phase, one gets
in the full analogy

nbðtÞ ¼ ndBðt0Þ
V0

Vb
− ΔP0nq

�
V0

Vb
− 1

�
; ð2:14Þ

where Vb is the volume occupied by the hadronic phase,
and V0 is its initial value at the moment of the bubble
percolation. Once the size of the droplet at some time t1
gets just 25% smaller than its initial value, the value
of the baryon asymmetry inside the droplet will increase
to the value of the order of initial lepton asymmetry,
ndBðt1Þ ≃ ΔP0nq. This large asymmetry may lead to even
higher asymmetry in the reflection coefficients,

ΔP ≃ κ1
ndB
nq

; ð2:15Þ

where κ1 is another unknown parameter, similar to κ. Using
Eq. (2.15) in (2.12) one finds that the baryon density inside
the QGP droplet increases as

ndBðtÞ ¼ ndBðt1Þ
�
rðt1Þ
rðtÞ

�
3þ3κ1

; ð2:16Þ

reaching the nuclear density at rðtÞ ≃ r0P
1

3ð1þκ1Þ
0 .

The solutions (2.13) and (2.16) correspond to the matter-
antimatter separation. The total baryon number of the
Universe does not change but gets unequally distributed
in the domains (droplets) occupied by the QGP and
hadronic matter, the first type carrying an excess of baryons
and the second—an excess of antibaryons (or vice versa,
depending on the sign of ΔP). Moreover, the baryon
asymmetry in the droplets of the QGP can get much larger
than the initial lepton asymmetry once the volume fraction

occupied by QGP shrinks to ∼P
1

ð1þκ1Þ
0 —an effect we will

explore later in Sec. III.
The effect of matter-antimatter separation goes away if

the asymmetry in reflection coefficients ΔP0 is smaller
than the average baryon asymmetry of the Universe. In this
case, the decrease of the volume of the QGP droplets tends
to increase the asymmetries in the individual quark flavors.
However, these asymmetries are diluted by the weak
reactions of the type ūd → μþνμ, ūs → μþνμ. As neutrinos
can go easily out of the droplets, and the latter reactions are
faster than the rate of the droplet shrinking ṙ=r ∼H (H is
the Hubble rate), the asymmetries in quark flavors remain at
the level of the average lepton asymmetries in the Universe
and do not grow with shrinking of the droplets.
Of course, the assumption that the baryon number cannot

leak out of the QGP droplets is presumably too strong and
is likely to be wrong at the end of the phase transition, when
the density of the baryonic charge approaches that of
nuclear density. The unknown strong dynamics prevented
us (and the authors before, e.g., [54,70]) from making any
definite conclusions concerning this point. We would like
just to mention that the qualitative remark of [70] remains
in force: the critical temperature of the QCD phase
transition with nonzero baryon number decreases when
the baryonic chemical potential increases, meaning that the
QGP droplets may survive till the temperatures smaller than
Tc, say Tc=2 [70].
The mechanism discussed above resembles a lot the

scenario of domain wall electroweak baryogenesis (for a
review see [83] and references therein). In the case of the
first-order electroweak phase transition, the intrinsic CP-
violation in interactions of quarks, leptons, or other
hypothetical fermions with the domain walls also leads
to the separation of fermionic number. An excess of
fermions over antifermions forms inside the bubbles of a
new Higgs phase, whereas the situation is opposite outside
the bubbles, in the symmetric phase of the electroweak
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theory. The fermionic number outside the bubbles is eaten
up by equilibrium sphaleron transitions [84], which are
inactive inside the bubbles if the phase transition is
sufficiently strongly of the first order [85,86]. This process
leads eventually to the bulk baryon asymmetry after the
bubbles with symmetric phase disappear. In the QCD case
the CP asymmetry is induced by the electric charge
chemical potential and the sphaleron processes are not
effective and thus cannot change the baryon number in
either phase.
Clearly, the matter-antimatter separation scenario

strongly deviates from the standard one in which the
universe is homogeneous and isotropic since inflation.
An obvious question is about the big bang nucleosynthesis.
The sufficiently short-scale inhomogeneities disappear by
the nucleosynthesis time [42–46] via the combined action
of neutrino inflation and neutron diffusion.7 Baryon num-
ber fluctuations affect BBN provided they are sizable
enough over the neutron diffusion scale (3 × 105 cm) at
the onset of nucleosynthesis at T ≃ 100 keV. The neutron
diffusion scale, blue-shifted to the QCD phase transition
scale Tc ≃ 160 MeV, becomes, LdiffðTcÞ ¼ 2 m, some-
what larger than the expectation for the distance between
the bubble centres, providing an estimate of the scale of
baryon number fluctuations. It would be interesting to see
whether this may change the BBN predictions and thus put
bounds on the possible parameters of the QCD phase
transition and lepton asymmetry of the Universe.
Before coming to a possible cosmological consequence

of the matter-antimatter separation scenario we will con-
sider in the next section a much more speculative possibil-
ity to have matter-antimatter separation, which would work
even without the presence of (large) lepton asymmetry.

C. Omnes phase transition

Back in 1969 Omnes [87] proposed an idea of matter-
antimatter separation on cosmological scales in an attempt
to understand why we have only baryons in the local
vicinity of our solar system. He argued that if baryons and
antibaryons are repulsed from each other at small distances,
the phase diagram of the strong matter allows the existence
of two phases, one with an excess of baryons and another
with an excess of antibaryons. If true, this would mean the
spontaneous breaking of charge-conjugation symmetry
in hadronic matter. According to [88,89], these phases
can coexist at some interval of temperatures around
∼350 MeV, and the Universe’s evolution may lead to
the separation of domains of matter and antimatter at the
cosmological scales.

As was noted by many researchers (see, e.g., [90,91]),
the idea fails for many reasons. First, the horizon scale at
temperatures ∼350 MeV is too small to create any struc-
tures with masses exceeding the solar mass. Second,
theoretical computations of nucleon dynamics at these
temperatures cannot be reliable due to the strong coupling.
Moreover, the domain of temperatures found by Omnes is
already in the QGP region, where quarks and gluons
provide a better description of dynamics.
Still, it seems to us that the Omnes-type phase diagram

such as the one presented in Fig. 1, though extremely exotic
and speculative, cannot be completely excluded. So, we
find it interesting to discuss the Universe’s evolution if it is
indeed realized, but we cannot put any argument for why it
should be realized.
As we have strong coupling, it would be natural to

assume that at the critical temperature, the baryonic density
of the Omnes states is of the order of the nuclear density,
i.e., much larger than the baryon and lepton asymmetries of
the Universe. In this case, the breaking of the degeneracy
between the minima with different baryon numbers will be
small and not essential for the initial stages of the QCD
phase transition. The Omnes phase transition would start
somewhat below Tc, as in the discussion in Sec. II A.
However, now two types of bubbles of the hadronic phase
will be nucleated. Approximately half of them will carry a
positive baryon number, and another half—negative baryon
number. The bubbles will grow and at some moment start to
percolate, but now with the simultaneous existence of all
three possible phases. The QGP phase will be eaten by the
hadronic bubbles and cease to exist at temperature T− at the
latest, and we are left with domains of positive and negative
baryonic number densities. The presence of lepton and
baryon asymmetries, resulting in the breaking of the
degeneracy, will lead to somewhat faster growth of the
droplets that have lower free energy. At the temperature
Tomnes (Fig. 1) the spontaneous C-breaking comes to an

FIG. 1. Omnes type QCD phase diagram. In addition to the
QGP phase with vanishing baryon number density there are two
distinct hadron phases with opposite baryon number densities.
The Omnes phase exists at Tomnes < T < Tþ, and the QGP phase
at T > T−.

7The name “neutrino” inflation was introduced in [42] and has
nothing to do with the cosmological inflation. It is related to the
excess of pressure of the neutrinos in domains with enhanced
baryonic density “inflating” these regions.
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end, and the Universe will be in the hadronic phase, with
large inhomogeneities in the distribution of the baryon
number, with a typical distance scale of the order of the
initial separation between the bubble centres. At this
temperature, roughly half of the space will carry a positive
baryon number, and another half will be rich in antibary-
ons, with baryon asymmetry of the order of �1 in each of
the domains. This is to be compared with the scenario of
Sec. II B, where in the larger part of the space we have an
excess of (say) matter with amplitude ∼ΔP0 ≪ 1, and in a
smaller part of the space occupied by the QGP an excess of
antimatter.
Most probably, the BBN can constrain the parameters

of the Omnes-type phase transition (such as the average
distance between the bubbles and the amplitude of the
baryon asymmetry in different C-odd phases). This is not
attempted in our paper. Instead, in the next section we will
consider possible cosmological consequences of the mat-
ter-antimatter separation associated with the production of
dark matter sterile neutrinos.

III. QCD PHASE TRANSITION AND PRODUCTION
OF STERILE NEUTRINO DARK MATTER

A. Matter potential and resonance

For the mechanisms discussed in the literature so far, the
neutrino potential in the medium was mainly determined
by the lepton asymmetry of the Universe, as the baryon
contribution to it is negligibly small. For the matter-
antimatter separation scenarios, it is the baryon asymmetry
which plays a crucial role.
The neutrino matter potential is given by [37,79] for the

electron neutrino

V ¼
ffiffiffi
2

p
GF

�
2Δνe þ Δνμ þ Δντ þ

�
1

2
þ 2sin2θW

�
Δe

−
�
1

2
− 2sin2θW

�
Δμ þ

�
1

2
−
4

3
sin2θW

�
Δu

−
�
1

2
−
2

3
sin2θW

�
Δd −

�
1

2
−
2

3
sin2θW

�
Δs

�
; ð3:1Þ

where Δi are asymmetries in the concentrations (summed
over spin and color) of the corresponding fermion flavor,
for instance, Δe ≡ ne − nē. For the temperatures of interest
T ∼ 200 MeV, the contribution of τ-lepton can be
neglected. Similar expressions can be written for other
types of neutrinos and also in the hadronic phase [79].
Accounting for the neutrality of the plasma expressed by
Eq. (2.8), one can get from Eq. (3.1)

V ¼ GF

3
ffiffiffi
2

p ð7L − 3BÞ ð3:2Þ

which reduces at L ≪ B to

V ≈ −
GFffiffiffi
2

p B: ð3:3Þ

To get a better feeling of the numbers involved, we can
write the baryon number density as

B ¼ ηBnh;q; ð3:4Þ

where ηB is the baryon asymmetry, and nh and nq are the
equilibrium number of baryons at zero baryon asymmetry
in the hadron and QGP phases respectively. In the hadronic
phase, nh can be estimated with the use of the so-called
noninteracting hadron gas approximation, counting the
low-lying baryon and antibaryon states (proton, neutron,
Λ-hyperon, and their excitations). At a temperature of the
phase transition T ¼ 160 MeV, it gives

nh ≃ 0.03T3: ð3:5Þ

In the QGP phase, nq is defined in Eq. (2.11), nq ≃ 0.9T3.
Depending on the sign of V, there is a level crossing

between the sterile neutrino and active neutrino or corre-
sponding antineutrino at a certain momentum (called
resonant) p, given by

pres ≈ ωres ≈
M2

1

2jVj : ð3:6Þ

The transition probability of neutrinos (or antineutrinos)
with this momentum into sterile states is enhanced, leading
to the resonant production of N. Plugging V into (3.6) we
obtain expression for the resonance energy

ωres ¼
M2

1ffiffiffi
2

p
GFB

¼ M2
1ffiffiffi

2
p

GFρBηB
: ð3:7Þ

The thermal contribution to the potential [79]

VT ¼ 14πω

45
sin2θW

G2
FT

4

αEM
ð2þ cos2θWÞ; ð3:8Þ

can be neglected for large asymmetries considered in this
work (here αEM is the fine structure constant, and θW is the
Weinberg angle).
Let us introduce the dimensionless resonance parameter

xres ≡ ωres

T
¼ M2

1

2jVjT ¼ M2
1ffiffiffi

2
p

GFBT
: ð3:9Þ

At T ¼ 160 MeV according to (3.4) and (3.5) we have in
the hadronic phase

xres ¼
0.15
ηB

�
M1

7 keV

�
2

; ð3:10Þ
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and in the QGP phase, according to (2.11) and (3.4)

xres ¼
0.005
ηB

�
M1

7 keV

�
2

; ð3:11Þ

where the sterile neutrino mass is normalized to 7 keV
having in mind the 3.5 keV line reported in several
papers [33,34].

B. Resonance oscillations in infinite medium

The physics picture of ν − N transition is the following:
neutrinos oscillate in between the collisions with particles
of the medium. At the collisions, the coherence of the
oscillating state is broken and after collisions, the active and
sterile components start to oscillate independently from the
beginning. Correspondingly, the relevant scales are (i) the
oscillation length in medium lm, and (ii) the mean free
path: λν ¼ 1=Γ.
According to this picture, the rate of production of sterile

neutrinos can be written as

RNðωÞ ¼
nFðωÞ
ð2πÞ3 PðωÞΓ; ð3:12Þ

where nFðωÞ is the Fermi distribution function, and PðωÞ is
the ν → N oscillation probability between two collisions
averaged over the distance between the collisions:

PðωÞ ¼ sin2 2θmhsin2 ϕmi: ð3:13Þ

The mixing angle in matter θm is determined by

sin2 2θm ¼ sin2 2θ
R2
MSW

; ð3:14Þ

where RMSW is the MSW resonance factor:

R2
MSWðωÞ≡ cos22θ

�
1 −

ω

ωres

�
2

þ ϵ2 ð3:15Þ

with

ϵ2 ≡ sin2 2θ þ
�
2ωΓ
M2

1

�
2

: ð3:16Þ

Here the last term corresponds to the broadening of the
resonance due to inelastic collisions. It can be obtained by
adding −iΓ=2 to the Hamiltonian of evolution, or more
consistently, as the inelastic term to the equation for the
density matrix.
The half-oscillation phase ϕm acquired along the dis-

tance x equals

ϕm ¼ πx
lm

¼ πxRMSWðωÞ
lν

; ð3:17Þ

and the oscillation length in a medium is

lm ¼ lν
RMSWðωÞ

¼ 4πω

M2
1RMSWðωÞ

: ð3:18Þ

Inserting expression for probability into (3.12) we obtain
the rate of N-production

RN ¼ nFðωÞ
ð2πÞ3 Γ

1

RMSWðωÞ2
hsin2ϕmi: ð3:19Þ

The quantity ϵ (3.16) can be rewritten as

ϵ2 ¼ sin22θ
��

lR
2πλν

�
2

þ 1

�
; ð3:20Þ

where lR ¼ lν=2θ is the oscillation length in resonance (in
the absence of collisions), lR ≫ lν; l0. In the epoch of the
QCD phase transition λν ≪ lR=2π and the second term
in (3.20) can be neglected. Then the expression for the rate
of N-production (3.19) becomes explicitly (taking c2θ ¼ 1)

RN ¼ nF
ð2πÞ3 4θ

2M4
1

Γ
ðM2

1 − 2ωVÞ2 þ ð2ωΓÞ2 hsin
2ϕmi:

ð3:21Þ

The key feature of these oscillations is that due to the
smallness of vacuum mixing the oscillation length in
matter changes with E by many orders of magnitude: in
resonance lm ¼ lR ¼ lν= sin 2θ ≈ lν=2θ, while below res-
onance lm ≈ lν, and above resonance lm ≈ l0, lR ≫ lν. So,
lm ≫ λν in resonance, while lm ≪ λν outside the resonance.
This means that outside the resonance the oscillations
between two collisions are averaged, and consequently
sin2 ϕm ¼ 1=2. The resonance peak exists but its width and
height are determined by collisions. The oscillation phase
between two collisions equals

ϕm ¼ π
λ

lm
≈
λ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M2

1

2ω
− V

�
2

þ Γ2

s
ð3:22Þ

and in the resonance ϕm ≈ λΓ=2 ≈ 1=2.
Here we computed the rate of production ofN by a single

active neutrino. If we neglect the term ðM2
1 sin 2θÞ2 and

assume for simplicity the same potential V for all neutrino
species (which is justified if the neutral current scattering
on quarks dominates), then summation over active neu-
trinos is reduced to considering θ2 as the overall vacuum
mixing angle squared:

θ2 ≡X
θ2α:

Using relation

α

ðxres − xÞ2 þ α2
¼ πδðx − xresÞ þOðαÞ; ð3:23Þ
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we can rewrite the rate (3.21) as

RN ≈
nF

ð2πÞ2
θ2M4

1

2ωV
δðω − ωresÞhsin2ϕmi

¼ nF
ð2πÞ2 θ

2M2
1hsin2ϕmiδðω − ωresÞ; ð3:24Þ

where we used (3.6). For sin2 ϕm ¼ 1=2 it coincides with
the expression obtained from the first principle computa-
tion of the resonance contribution in [36]

RN ¼ nFðωÞ
ð2πÞ22ωθ2M4

1δðM2
1 − 2ωVÞ: ð3:25Þ

This result is valid in the narrow width approxima-
tion, Γνe ≪ jVj.
For very high interaction rate: Γ ≫ 2π=l0 ≫ 2π=lR,

(wide width) the resonance peak essentially disappears
and we cannot use the δ- function approximation (3.23).
Formally the oscillation length becomes lm ≈ 2π=Γ and
the oscillation phase acquired between two collisions
is ϕm ¼ 1=2. The rate of N-production equals according
to (3.24)

RN ¼ nF
ð2πÞ3

θ2M4
1

ω2Γ
hsin2ϕmi ð3:26Þ

with sin2 ϕm ≤ 1=4. In the opposite extreme case of very low
interaction rate, λν ≫ lR=2π, the vacuum term ðM2

1s2θÞ2 in
the denominator of (3.19) dominates and we obtain

RN ¼ nF
ð2πÞ2

Γθ2M2
1

4V
δðω − ωresÞ

¼ nF
ð2πÞ2

Γθ2ωres

2
δðω − ωresÞ: ð3:27Þ

Thus, the rate ofN production has the following dependence
on Γ: for low Γ, RN ∝ Γ, in the intermediate range the rate
does not depend on Γ and for large Γ, RN ∝ 1=Γ.
To get the total number density of sterile neutrinos, nN ,

the rate RN in Eq. (3.24) should be integrated over time and
momentum

nN ¼
Z

dt
Z

d3pRNðωÞ ¼ 4π

Z
dt

Z
dωω2RNðωÞ:

ð3:28Þ
Integration over energy is trivial due to the δ- function,
giving

nN ¼ 1

2π
θ2M2

1

Z
dtnFðωresÞω2

resh2sin2ϕmi: ð3:29Þ

For h2 sin2 ϕmi ¼ 1 the concentration of resonantly pro-
duced sterile neutrinos at the time t is given by

nNðtÞ ¼
1

2π
θ2M2

1TðtÞ3
Z

t

0

dt0

Tðt0Þ nFðxresÞx
2
res; ð3:30Þ

which is the same as Eq. (2.7) of [36], rewritten in terms of
time integral rather than the temperature one.
Assuming that the production of the sterile neutrinos

stops at temperature T corresponding to t, their concen-
tration at the present epoch can be found with the use of the
entropy conservation by a standard computation, giving

nNðnowÞ ¼ nNðtÞ
sðnowÞ
sðTÞ ; ð3:31Þ

where sðnowÞ=sðTÞ ¼ g�ðnowÞ=g�ðTÞðTγ=TÞ3 with
g�ðnowÞ ¼ 3.9, and Tγ ¼ 2.73K being the temperature of
the CMB. Thus the ratio of energy density in sterile
neutrinos to DM energy density is given by

ΩN

ΩDM
¼ nNM1

ΩDM

sðnowÞ
sðTÞ : ð3:32Þ

For a future comparison, we present below an estimate of
the sterile neutrino DM abundance in the homogeneous
situation in the presence of both baryon and lepton
asymmetries, see Eq. (3.2). In the assumption of standard
cosmology without the QCD phase transition and neglect-
ing the temperature dependence of g� the integral in (3.30)
can be computed analytically, giving the abundance of the
resonantly produced sterile neutrino,

ΩN

ΩDM
≃ 1016θ2

�
1

g�

����ΔL −
3

7
ΔB

����
�

M1

7 keV

�
2
�
3=4

: ð3:33Þ

The temperature of the maximal production rate equals

Tprod ≃ 380 MeV

�
M1

7 keV

�1
2

�
1

g�ðTÞ
6.6 × 10−5

ΔL

�1
4

; ð3:34Þ

where we used the observed DM abundance ΩDM ¼
1.26 × 10−6 GeV=cm−3. The formula (3.33) overestimates
the number of sterile neutrinos by a factor of a few. It
does not take into account the thermal contribution (3.8) to
the matter potential, which cuts the resonance at high
temperatures. Also, the delta-function approximation to the
rate (3.27) becomes invalid at temperatures large enough,
where the resonance is suppressed by the active neutrino
collisions. Finally, it does not incorporate the depletion
of lepton asymmetry because of the resonance
transitions of active to sterile neutrinos and temperature
dependence of g�.
The most elaborated analysis of the sterile neutrino

production in lepton asymmetric homogeneous Universe,
accounting for the finite width of the neutrino, the back
reaction of produced sterile neutrinos, and nonresonant
production can be found in [37].

MIKHAIL SHAPOSHNIKOV and ALEXEY YU SMIRNOV PHYS. REV. D 110, 063520 (2024)

063520-10



With these considerations, we are now in a position to
estimate the sterile neutrino production in matter-antimatter
separating QCD phase transition. We will discuss first a
simpler, but more exotic possibility of the Omnes phase
transition (Sec. II C). Then we will turn to a more realistic
scenario of Sec. II B.

C. Sterile neutrino DM production with
matter-antimatter domains

Suppose that the Universe is filled by matter-antimatter
domains at the QCD epoch. This may happen due to
hypermagnetic fields [47–49], inhomogeneous baryogen-
esis [50–52], or Omnes-type QCD phase transition, dis-
cussed in Sec. II C. The origin of these domain is not
essential in what follows, though for concreteness we chose
it to be the (speculative) Omnes-type phase transition.
As we discussed in Sec. II C, at temperatures below T−,

half of the universe is occupied by hadronic matter with the
baryon excess, and another part contains an excess of
antimatter. In both parts, the resonant production of sterile
neutrinos takes place by neutrinos and antineutrinos.
Contrary to the homogeneous situations, the sterile neu-
trinos will be produced in left- or right-handed polar-
izations, depending on the sign of the baryon asymmetry in
a given domain.8 So, production here is essentially the same
as in a homogeneous background.
If characteristics of medium n, T do not change

substantially during phase transition, then according
to (3.30) the total number density of N produced during
the time tPT is

nN ≈
nFðxresÞ

2π
θ2M2

1x
2
resT2

PTtPT: ð3:35Þ

We expect that this equation gives a fairly good account of
the sterile neutrino production, but in reality, one would
need to take into account the change of parameters of the
medium during the phase transition (and even after the
matter-antimatter domain structure existed). This is not
attempted here because of the many uncertainties involved.
It is clear that only an order of magnitude estimate can be
made at the present stage, as even the mere existence of the
Omnes-type phase transition is speculation. We note,
however, that contrary to Eq. (3.33) the depletion of the
lepton asymmetry due to resonant transition can indeed be
neglected since the matter potential is due to baryon rather
than lepton asymmetry. Also, the temperature at which the
process of conversion happens is relatively small, justifying
the delta-function approximation of the rate and dropping
off the thermal contribution to the potential.

Equation (3.35) leads to the sterile neutrino DM
abundance

ΩN

ΩDM
≃ 4 × 1012θ2

�
M1

7 keV

�
3

x2resnFðxresÞ
tPT
tH

: ð3:36Þ

This formula shows that the matter-antimatter separating
Omnes phase transition can easily accommodate 100%
sterile neutrino DM abundance for ranges of mixing
angles and masses. For example, keeping in mind the
possible detection of 7 keV sterile neutrino decays by
x-ray satellites [33,34] with θ2≃ð0.8–5Þ×10−11, the choice
θ ¼ 1.5 × 10−11, tPT ≃ tH=4, and ηB ≃ 1=2 does the job.
An interesting feature of the sterile DM distribution is
that it can be much cooler than that of the typical active
neutrino with hωi ≃ 3.15T. Indeed, according to (3.10)
ωres=hωi ¼ xres=3.14 ≃ 0.1 for ηB ≃ 1=2, making it essen-
tially the cold dark matter particle, which satisfies easily all
the Lyman-α [35] and the strongest structure formation
constraints of [93–96].

D. Sterile neutrino production in nonuniform
medium with large QGP droplets

Let us assume now that the QCD phase transition goes as
described in Sec. II B via the formation of QGP droplets
with enhanced baryon number. Also, we take that the
average value of the leptonic asymmetry is much larger
than the baryon asymmetry but smaller than the critical
value Lcrit ≃ 6.6 × 10−5. In this case, 7 keV sterile neu-
trinos with the mixing angle θ2 ¼ 5 × 10−11 cannot accom-
modate all DM in the Universe if the QCD phase transition
were absent.
The key feature of this scenario is that the droplets of

QGP shrink, and consequently, the baryon number density
in them increases. That is, soon after the time of formation
of droplets t0 (percolation time of hadron bubbles), the
baryon number density inside the droplets, ndB, grows like
in Eq. (2.13), with omitted first term. The last term in the
bracket gives

ndBðtÞ ¼ ndBðt0Þ
�
rðt0Þ
rðtÞ

�
3

; ndBðt0Þ ¼ ΔP0nq: ð3:37Þ

For later times, the baryon density would follow (2.16).
Depending on the initial size of the QGP droplets at the

percolation t0, computations of the sterile neutrino yield
proceed in two different ways.
If the initial droplet sizes rd are much larger the neutrino

mean free path λν (say r0 ∼ 1 m while λν ∼ 0.4 cm (see
Sec. II B)), the processes of sterile neutrino production
described in the previous subsection take place inside the
droplet. We will assume that the baryon number density
inside the droplets does not depend on distance and surface
effects are negligible. Also, we will neglect oscillations
between the droplets, since the baryon and lepton

8Anyway, the polarization of sterile neutrinos is “forgotten” in
the course of further evolution of the Universe due to their
interaction with the gravitational field of galaxies and clusters of
galaxies [92].
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asymmetries there are assumed to be below the critical
value. Thus, these domains cannot produce enough sterile
neutrino DM.
To get the number of sterile neutrinos produced

inside the droplets, one can repeat the procedure
leading to (3.30), but accounting for the fact that only
the part of space occupied by the droplets, VQGP, leads to
N- creation. Furthermore, this part decreases with time.
The total volume can be presented as V tot ¼ VQGP þ Vh ≈
2VQGPðt0Þ, that is, in the initial moment about half of the
space is occupied by droplets. Then the QGP part as a
function of time equals

VQGPðtÞ
V tot

¼ VQGPðtÞ
2VQGPðt0Þ

≡ 1

2
FðtÞ; ð3:38Þ

and consequently, according to (3.30)

nNðtÞ ¼
θ2M2

1T
2

4π

Z
t

t1

dtx2resnFðxresÞFðtÞ; ð3:39Þ

where we neglected the sterile neutrino production between
t0 and t1.
Now the resonance energy depends on the baryon

number density in the droplets and therefore on time
due to droplet contraction. Indeed, we have

xresðtÞ ¼ xresðt1Þ
ndBðt1Þ
ndBðtÞ

¼ xresðt1ÞFðtÞ1þκ1 ; ð3:40Þ

where the initial value of the resonance parameter can be
taken at time t1 defined below Eq. (2.14) and κ1 in (2.15),
and is equal to

xresðt1Þ ¼
M2

1ffiffiffi
2

p
GFndBðt1ÞT

¼ M2
1ffiffiffi

2
p

GFnqΔP0T
: ð3:41Þ

Here the total density of hadrons nq is defined in (2.11)
while the difference of reflection coefficients ΔP0 ∝ κ—
in (2.9) and (2.15).
Thus, the number of created sterile neutrinos depends

in an essential way on the evolution of the fraction of
the QGP, which is largely unknown. The ratio ΩN

ΩDM
is

given by (3.32) where nN is to be taken from (3.39) and
xresðt1Þ from (3.41).
A very rough estimate can be derived with a function

FðtÞ which starts at 1 at t ¼ t1, quickly decreases to a
constant F0, and then at the end of the phase transition falls
to FðtÞ ¼ 0, reproducing the initial growth of the baryon
density, then slowing down the droplet shrinking because
of the extra pressure acting from inside, and finally the
droplet disappearance. For numeric computations below
we use FðtÞ ¼ F0 in the range t0 − tf. The dependence of
the sterile neutrino DM abundance defined in (3.39) on F0

then is given by

nN ¼ θ2M2
1T

2

4π

F3þ2κ1
0 x2resðt1ÞtPT

exp½xresðt1ÞF1þκ1
0 � þ 1

: ð3:42Þ

The ratioΩN=ΩDM determined by nN according to (3.32) is
shown in Fig. 2. It demonstrates that nN can exceed the
required DM abundance for ΔL ¼ Lcrit for a wide range
of parameters characterizing the unknown dynamics of the
droplet shrinking. In other words, the QCD phase transition
may enhance the sterile neutrino production and lead to
100% of its abundance even if the lepton asymmetry is
smaller than the critical one, though to see if this indeed
happens would require the precise knowledge of the droplet
dynamics. As follows from Fig. 2, in the wide ranges of
values of κ1 and F0, one has ΩN=ΩDM ≫ 1, which means
that ΩN ¼ ΩDM can be obtained for much smaller lepton
asymmetry than Lcrit.
To get a feeling of how small the required asymmetry

could be, we present in Fig. 3 the dependence of the sterile
neutrino abundance following from Eq. (3.42) on F0 for
different values of the ratio ΔL=Lcrit, κ and κ1, which are
chosen in such a way that the maxima of the corresponding
curves reach one at some value of F0. Even the asymme-
tries smaller than the critical one by a factor of 100 are
possible for the specific choice of F0 ≃ 0.04.
A somewhat more involved time dependence of the QFP

fraction can be written as

FðtÞ ¼
�
tf − t

tPT

�
α

; ð3:43Þ

where t is time, tf (ti) corresponds to the end (beginning)
of the phase transition so that tPT ≡ tf − ti. We leave the
power α to vary between 1 and 3: α ¼ 1 corresponds to the
behavior found in [54] by solving FRW equations during
the QCD phase transition assuming the entropy conserva-
tion, whereas α ¼ 3 would correspond to the motion of the

FIG. 2. Dependence of the ratio ΩN
ΩDM

(vertical axis) on F0

(horizontal axis) forM1¼7 keV, θ2 ¼ 5 × 10−11, and ΔL ¼ Lcrit.
Red, green and blue curves correspond to κ ¼ κ1 ¼ 1; 1=2
and 1=4 respectively.
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bubble walls with the constant velocity, accounting
for friction, often found in electroweak baryogenesis
(see, e.g., [97]). It is difficult to argue that the QGP fraction
is indeed described by (3.43) because of poor knowledge of
the dynamics of the phase transition.
After straightforward manipulations with Eqs. (3.38)

and (3.43) we get

nN ¼ θ2M2
1T

2

8π

� ffiffiffi
2

p
GFTΔPnq
M2

1

� αþ1
αð1þκ1Þ

IðαÞtPT; ð3:44Þ

where the integral I is given by

I ¼ 1

ð1þ κ1Þα
Z

xresðtiÞ

xresðtfÞ
dxresx

1þ αþ1
αð1þκ1Þ

res nFðxresÞ: ð3:45Þ

The limits of integration can be safely extended from zero
to infinity. Indeed, since we take ΔL < Lcrit, the upper limit
in (3.45) exceeds considerably 1, and at the end of the
phase transition the baryon asymmetry inside the droplet
formally diverges, making xresðtfÞ ¼ 0.
In Fig. 4 we show the sterile neutrino DM abundance

following from Eq. (3.44) as a function of α for
ΔL ¼ Lcrit=4, demonstrating that certain droplet dynamics
can generate enough sterile neutrinos for asymmetries
smaller than the critical one, in this case for α ≃ 1.5.

E. Oscillations in medium with small droplets

Let us consider now the situation in which the initial size
of the droplets is smaller than the neutrino mean free
path λν. Since λν ∝ 1=ntot and inside the droplets total
number density ntot may only weakly increase the inequal-
ity rd < λν will maintain during phase transition. In this
case, a given active neutrino can cross two or more droplets.

Now we have the following relation between the scales

lν ∼ l0 ≪ rd ≪ lRν ; ð3:46Þ

where rd is the radius of the droplet. If the droplets have a
spherical form the average distance crossed by neutrinos is
r̄ ¼ ðπ=2Þrd. At the conditions (3.46) the oscillation phase
in the MSW resonance: ϕRðr̄Þ ≪ 1, while in the tails above
and below resonance energy ϕ ≫ 1. Therefore the prob-
ability of the ν → N conversion in the energy range close to
the resonance energy E ≃ Eres is given by

P ≈ sin2θ

�
πr̄
lν

�
2

; ð3:47Þ

RMSW cancels and the probability does not depend on
the matter density (the so-called “vacuum mimicking”
regime [98,99]). Exactly at ω ¼ ωres

Pres ≈ 4π2θ2
�

r̄
lνðωresÞ

�
2

: ð3:48Þ

The probability as a function of energy has a peak
inscribed into the MSW resonance peak with maximal
value ≈Pres (3.48). The width of the peak, δω ¼ ωW − ωres,
is determined approximately by the condition that the
oscillation phase in matter equals π=2:

ϕmðωWÞ ¼
r̄M2

1RMSWðωWÞ
4ωW

¼ π

2
: ð3:49Þ

The solution of equation (3.49) is

δω

ω
≡

�
1 −

ωW

ωres

�
≈� lνðωresÞ

r̄
≈
�
lν
2r̄

�
: ð3:50Þ

At ωW the peak touches the MSW resonance line. The
probabily is zero at ϕm ¼ π, i.e. at δω=ω ¼ lν=rd. At the

FIG. 3. Dependence of the ratio ΩN
ΩDM

(vertical axis) on F0

(horizontal axis) for M1 ¼ 7 keV, θ2 ¼ 5 × 10−11 for different
values of the ratio ΔL=Lcrit and κ; κ1. Red, green, and blue curves
correspond to κ ¼ κ1 ¼ 1; ΔL=Lcrit ¼ 0.008, κ ¼ κ1 ¼ 1=2;
ΔL=Lcrit ¼ 0.08, and κ ¼ κ1 ¼ 1=4; ΔL=Lcrit ¼ 0.4 respectively.

FIG. 4. Dependence of the ratio ΩN
ΩDM

(vertical axis) on α
(horizontal axis) for M1 ¼ 7 keV, θ2 ¼ 5 × 10−11, and
ΔL ¼ Lcrit=4.
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points ω ¼ ωW , the probability equals PW ¼ 16θ2ðr̄=lνÞ2.
Consequently, Pres=PW ¼ π2=4 ¼ 2.46, that is, δω=ω is the
width at approximately half of the height of the peak.
Notice that in contrast to the case of big droplets here the
biggest energy scale 1=r̄ plays the role of Γ and determines
the properties of the peak.
The ν → N oscillation probability averaged over the

spectrum of active neutrinos equals

hPNi ¼
1

nν
4π

Z
dωω2

nFðωÞ
ð2πÞ3 PNðωÞ ≈ Preszð2δωÞ;

ð3:51Þ

where nν ¼ 3ζð3Þ=ð4π2ÞT3 is the neutrino concentration
(one chiral degree of freedom) and

zð2δωÞ ¼ 1

nν
4π

Z
2δω

dωω2nFðωÞ

¼ 4

3ζð3Þ
�
ωres

T

�
3

nFðωÞ
δω

ω
ð3:52Þ

is the fraction of active neutrinos in the energy interval 2δω.
Here we have taken into account the contribution of the
peak of PðωÞ to the integral. The contribution of the
nonresonance tails can be estimated using the averaged
oscillation probability in a vacuum taking δω=ω ∼ 1. This
gives hPNi ∼ 2θ2, smaller than resonance contribution by a
factor 2π2r̄=lν ≫ 1 and can be neglected. Inserting the
fraction (3.52) into (3.51) we obtain

hPNi ≈
2π

3ζð3Þ
θ2M2

1r̄
T

�
ωres

T

�
2

nFðωresÞ: ð3:53Þ

This is averaged over the energy probability that the
active neutrino produces a sterile neutrino while crossing
a droplet.
Using hPNi the total production rate of sterile neutrino

number density RN can be obtained in two different ways.
1. Consider a given active neutrino propagating in a

medium with QGP droplets with number density
ndrop. The rate of N- production equals

RN ¼ hPNiPdropnν; ð3:54Þ

where Pdrop is the probability that active neutrino
hits the droplet in the unit of time

Pdrop ¼ σdropndrop: ð3:55Þ

Here σdrop ¼ πr2dðtÞ is the area (cross section) of the
droplet. Inserting all the factors into (3.54) gives

RN ¼ hPNiπr2dðtÞndropnν: ð3:56Þ

This computation is similar to the computation of the
process of scattering νþ droplet → N þ droplet.

2. Consider a given droplet and compute the number
of sterile neutrinos produced in this droplet in the
unit of time

nN ¼ hPNiFνndrop; ð3:57Þ

where Fν is the active neutrino flux entering the
droplet: Fν ¼ 0.5nνSdrop ¼ 2πr2dðtÞnν. Here Sdrop is
the surface of a droplet and factor 0.5 accounts that
only half of neutrinos in a given point of the surface
enter a droplet. Collecting all the factors we obtain
from (3.57)

nN ¼ hPNi2πr2dðtÞnνndrop; ð3:58Þ

which coincides with expression (3.56).
The number density of droplets ndrop ¼ 1=d3. Here d is

the distance between the centers of droplets. It does not
change with time, while the radius of the droplet decreases
with time d ≈ 2rdðt0Þ, where rdðt0Þ is the initial radius of
the droplet. Inserting expression for ndrop into (3.56) and
integrating over time we obtain

nN ¼ πnν

Z
dthPNir2dðtÞ

1

ð2rdðt0ÞÞ3
: ð3:59Þ

Then using explicit expression for hPNi from (3.53) we find

nN ¼ θ2M2
1

16

Z
dtω2nFðωÞ

�
rdðtÞ
rdðt0Þ

�
3

: ð3:60Þ

This result coincides up to a factor of the order one with
expression for nN in the case of large droplets (3.39) (16 in
the denominator should be substituted by 4π), which is not
accidental. Consequently, further integration over t pro-
ceeds in the same way as in the Sec. III D. Therefore, the
oscillations of active neutrinos in the small droplets of QGP
with large baryon density may also lead to enhanced sterile
neutrino production.
As previously, the required lepton asymmetry to accom-

modate the totality of DM may be considerably smaller
(say, a factor of 10 or even 100, as we saw in the previous
section) than the critical one, though a reliable estimate of
the lower bound on ΔL is hardly possible with the current
uncertainties. In comparison with the resonant production
in the homogeneous universe (3.33), the gain is explained
by the interplay of different factors, such as an increased
neutrino potential in the droplets of the QGP at the QCD
phase transition, and distinct time evolution of the neutrino
potential. As a result, the parametric dependences of the
abundance on the mass of the sterile neutrino and asym-
metry in both cases are different.
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IV. DISCUSSION AND OUTLOOK

In this paper, we considered the production of DM sterile
neutrinos in an inhomogeneous Universe, temporarily filled
by matter-antimatter domains at temperatures of the order
of the QCD scale. For this, we assumed that the QCD phase
transition is of the first order. Recent NANOGrav results on
stochastic gravitational waves give some hint in favor of
such a possibility.
We argued that the QCD phase transition may lead to

matter-antimatter separation. This is a speculation about the
complicated strong dynamics: the existence of the phase
transition is a strong assumption, whereas neither the
existence of the Omnes-type phase transition nor the
CP-breaking properties of the interphase tension between
the hadronic phase and the QGP in the presence of lepton
asymmetries were derived from the first principles and are
simply assumed.
The most robust part of our work is associated with

sterile neutrino DM production in the nonhomogeneous
situation. The consideration includes several parameters of
the phase transition and bubble evolution such as the initial
size of the bubbles, the exponent α, etc. The values of these
parameters should follow from a quantitative description of
the dynamics of the transitions which is not known yet.
Therefore we assumed certain intervals for these parame-
ters and considered different cases. We have found however
that final results depend on these uncertainties weakly. If
the matter-antimatter separation takes place by the consid-
ered here or some other mechanisms (for instance, due to
the possible existence of stochastic hypermagnetic fields
[47]), the production of sterile neutrino dark matter may be
enhanced in comparison with the homogeneous situation.
For the very speculative Omnes-type phase transition, we
found that one can easily accommodate all DM in sterile
neutrinos. In another, more realistic scenario (with two
coexisting phases and a CP-violating boundary due to the
presence of lepton asymmetry) the DM sterile neutrinos
may be effectively produced even if the lepton asymmetry
is ∼4–5 orders of magnitude larger the average baryon
asymmetry in the Universe ΔL ∼ 10−6, that is two orders of
magnitude smaller than the critical value for uniform
medium.
Let us underline that the lepton asymmetry plays in the

standard scenario of uniform medium and in our case
different role. In the usual case, this asymmetry determined

immediately the matter potential V ∝ L which leads to the
resonance production of sterile neutrinos. In our case, the
potential is given by baryon asymmetries in the bubbles.
The lepton asymmetry is needed for matter-antimatter
separation on the bubble walls between two phases.
The result on smaller required lepton asymmetry may

shed light on the mass scale of the heavier HNL’s in the
νMSM. If the distribution of the lepton number is homo-
geneous, the asymmetry Lcrit, necessary for the sterile
neutrino DM production can be generated in out-of-
equilibrium decays of N2;3 [38–40]. This requires, how-
ever, a delicate fine-tuning between the Majorana mass
splitting and the Higgs-induced HNL mass splitting due to
mixing with active neutrinos [100], to make the physical
mass difference between N2;3 small and enhance the CP-
violating effects. If this fine-tuning, which may not seem to
be natural, is absent, the νMSM interactions are not capable
of generating asymmetries as large as Lcrit [75]. However,
the production of asymmetries ΔL ∼ 10−6 is possible at the
freeze-out of the HNL’s without the above-mentioned fine-
tuning in the limited domain of the HNL masses. Indeed,
Figs. 8 and 9 of [75] show that the asymmetry, ΔL ≳ 10−5

can be generated in the νMSM only for HNL masses in the
interval [1–2.5] GeV if the neutrino mass ordering is
normal and no viable interval exists for the inverted
ordering. The asymmetry larger than ΔL ∼ 10−6 can be
generated for somewhat larger intervals of HNL masses:
[0.2–4.5] GeV for normal ordering and [0.2–1.5] GeV for
inverted one. This may serve as the very first indication of
the scale of the mass of HNLs: the explanation of neutrino
masses and baryogenesis, together with BBN constraints
only provides a lower bound on their mass, MN >
140 MeV (for a review see [101]). Generation of the sterile
neutrino Dark matter without mass fine-tuning puts the
upper bound at 4–5 GeV. The search for HNL’s in this mass
domain is potentially possible at the intensity frontier of
particle physics, in the experiments like SHiP at CERN
SPS [102].
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