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Measurements of the cosmic redshift drift—the change in redshift of a source over time—will enable
independent detection of cosmological expansion thanks to the immense precision soon reached by new
facilities such as the Square Kilometer Array (SKA) Observatory and the Extremely Large Telescope
(ELT). We conduct the first ever redshift drift computations in fully relativistic cosmological simulations,
with the simulations performed with the Einstein Toolkit. We compute the redshift drift over the full skies of
50 synthetic observers in the simulation. We compare all-sky averages for each observer—and across all
observers—to the Einstein–de Sitter (EdS) model which represents the large-scale spatially averaged
space-time of the simulation. We find that at z ≈ 0.2 the mean redshift drift across the sky for all 50
observers deviates from the EdS prediction at the percent level, reducing to ∼0.1% by z ≈ 1. However,
fluctuations in the redshift drift across the sky are ∼10%–30% at z ≈ 0.1 and a few percent at z ≈ 0.5. Such
fluctuations are large enough to potentially exceed the expected precision of upcoming redshift drift
measurements. Additionally, we find that along 0.48% of the light rays, the redshift drift becomes
temporarily positive at very low redshift of z≲ 0.02. This occurs despite our simulation data being based
on a matter-dominated model universe. By including a cosmological constant, we do expect a slower
growth of structures than in the leading-order EdS space-time, and this may reduce the anisotropy over the
observers’s skies, although we generally expect our results to hold as order-of-magnitude estimates.
Redshift drift is arguably one of the most important measurements to be made by next-generation
telescopes. Our results collectively serve as preparation for interpreting such a measurement in the presence
of realistic cosmic structures.

DOI: 10.1103/PhysRevD.110.063519

I. INTRODUCTION

One of the most exciting opportunities for cosmologists
this century is the direct measurement of the expansion of the
Universe. This can, for instance, be achieved through the
redshift driftwhich is the very slight change in the redshift of
a source as observed over time [1,2]. Due to its expected
small amplitude, it has only recently become feasible to build
telescopes that will eventually be able to detect this signal.
Such a measurement should become possible for the first
time with telescopes such as the Square Kilometer Array
(SKA) Observatory, which is anticipated to measure the
redshift drift out to redshifts of z ≈ 1–2 [3,4].
The standard cosmological model rests on the use of the

Friedmann-Lemaître-Robertson-Walker (FLRW) models—

from theoretical predictions to observational analyses. In
FLRW models, the redshift drift, δz, of a comoving source
measured by a comoving observer is

δz ¼ δt0½ð1þ zÞH0 −HðzÞ�; ð1Þ

where δt0 denotes the proper-time interval of observation
and HðzÞ is the Hubble parameter. If the Hubble constant
H0 is known from other cosmological data, an observation
of the redshift drift gives a direct measure of the Hubble
parameter as a function of redshift. Moreover, because
redshift drift reflects the change in expansion over time,
measuring the redshift drift amounts to directly measuring
whether the Universe is currently undergoing decelerated
or accelerated expansion. Other cosmological probes typ-
ically rely on indirect measurements of the cosmic expan-
sion by, e.g., determining the slope of the distance-redshift
relation from supernovae. Redshift drift is the first probe
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that will allow us to directly measure the acceleration of the
Universe.
Forthcoming measurements of the redshift drift represent

a significant landmark for cosmology. We therefore must
ensure that our analytical tools are sufficient to correctly
interpret future redshift drift observations. Cosmological
observations are known to be impacted by the presence of
structures in the Universe, i.e., the deviation from the pure
FLRW description of space-time. The effect of the large-
scale structures (LSS) on the redshift drift has been studied
using a variety of exact inhomogeneous cosmological
models [5–12] as well as anisotropic models (e.g.
[13,14]). The latter has become increasingly relevant with
the observational support of large-scale anisotropies (e.g.
[15–21]), though see, e.g., [22–25] which find consistency
with standard (isotropic) cosmology. See Kumar Aluri et al.
[26] for a recent review of such tensions. Fluctuations in the
redshift drift have also been studied analytically in terms of
perturbation theory [14,27–29], in Newtonian N-body
simulations [30], and in exact geometrical formulas for
general-metric theories with arbitrary structures [31–34].
There are at least three questions worth pursuing in the

theoretical and numerical study of redshift drift measure-
ments, namely understanding (i) how local structures affect
the redshift drift signal from individual sources, (ii) how
structures affect the mean redshift drift signal upon aver-
aging over many lines of sight, and (iii) whether the redshift
drift signal can be used to develop observational tests of,
e.g., cosmic inhomogeneity and/or anisotropy. In this work,
we will focus on (i) and (ii) which are important for
understanding potential biases in future redshift drift data
from, e.g., SKA.
The studies [35,36] showed that inhomogeneities can

have a significant effect on the redshift drift when cosmic
backreaction is non-negligible (see [37–39]] for reviews
of cosmic backreaction). On the other hand, studies based
on models with negligible backreaction indicate that local
structures along light paths only lead to small fluctuations
in the redshift drift [10,11,14,27–30]. Large inhomoge-
neities—such as a giant void—have been shown to
have a significant effect on the measured redshift
drift [5,6,11,40,41].
In this work, we will use numerical relativity to inves-

tigate redshift drift. Our simulations of large-scale structure
formation are performed with full general relativistic
evolution, under the assumption of a dust universe, begin-
ning with small initial fluctuations inspired by the cosmic
microwave background (CMB). We perform ray-tracing
within the same simulations without making any simplify-
ing assumptions of an FLRW background or a perturbative
expansion. This allows us to carry out realistic estimates of
inhomogeneities on the redshift drift measurements for
synthetic observers in the simulations. In Sec. II we
describe our model setup including the simulation data
and method for computing the redshift drift. We present our

results in Sec. III and give a summary and final comments
in Sec. V.
Notation and conventions: We use the Einstein summa-

tion convention and use the signature convention ð−þ
þþÞ for the spacetime metric gμν, where Greek letters
denote space-time indices. The covariant derivative, ∇μ, is
the Levi-Civita connection. A subscripted comma followed
by an index indicates partial derivatives with respect to the
indicated coordinate. Round brackets around indices
denote symmetrization while square brackets denote anti-
symmetrization. We use c ¼ 1 ¼ G throughout.

II. MODEL SETUP AND LIGHT PROPAGATION

A. Numerical relativity simulations

The simulation data we use in this work are obtained
using the open-source numerical relativity (NR) code the
Einstein Toolkit

1 [ET; [42,43]], which has been adapted and
used for cosmological simulations of large-scale structure
formation in recent years [e.g. [44–47]]. Initial conditions
for the simulations are generated using FLRWSolver [46],
which provide linear perturbations about an Einstein de
Sitter (EdS) background cosmology. The initial fluctuations
are drawn as random realizations of the matter power
spectrum at the surface of last scattering as output from
CLASS

2 [48] using h ¼ 0.45—where the Hubble constant is
H0 ¼ 100 h km=s=Mpc—and otherwise default Planck
parameters. We remove all power in our initial conditions
below a scale corresponding to ∼10 grid cells in each
simulation in order to minimise the numerical error
associated with under-sampling small-scale modes.
We evolve the initial conditions using the 3þ 1

Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism
of NR from z̄ ¼ 1000 to z̄ ≈ 0, where z̄ is the redshift
associated with the initial background EdS model. Note
that this redshift is distinct from the redshifts computed
along individual light rays with our ray tracing code (as
described in Sec. II B), which are not restricted to follow
the EdS model. The cosmological fluid is modeled as a
perfect dust fluid with negligible pressure with respect to
matter density, i.e. P ≪ ρ, which has been shown to be
sufficient to match an analytic EdS space-time evolution
[46]. Further computational details—such as gauge choices
and specific ET thorns used in the evolution—are as
discussed in Macpherson et al. [47]. In this work, we
use two simulations with cubic box lengths of L ¼
3072h−1 Mpc and 1536h−1 Mpc with numerical grid
resolutions of N ¼ 256 and N ¼ 128, respectively (where
the total number of grid cells isN3). Both simulations adopt
periodic boundary conditions. These simulations sample
the same minimum physical scale but have different
numerical resolutions, and they are thus suitable for

1https://einsteintoolkit.org.
2http://class-code.net.
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rough tests of the numerical convergence of our results. We
present such a test in Appendix B, while we will
present the results from the highest resolution simulation
(N ¼ 256) in the main text.
The simulation setup we use has been shown to exhibit

small cosmic backreaction in the context of global spatial
averages on the simulation hypersurfaces. Specifically, the
averaged cosmological energy densities match the initial
EdS background model predictions to within ∼2% [47]. We
thus will compare the results we obtain for variance in the
redshift drift to previous calculations based on analytic and
exact solutions which exhibit negligible backreaction ([30]
and the Appendix of [11]).

B. Light propagation

We calculate observables in our simulations using the
post-processing code MESCALINE [49]. We place a set of
present-epoch observers at random positions in the simu-
lation domain and choose lines of sight which isotropically
sample the sky for each observer. For each line of sight we
generate the corresponding null geodesic and trace it
backwards in time.

MESCALINE solves the geodesic and geodesic deviation
equations using the simulated metric tensor and the chosen
initial data (observer position and directions of observa-
tion). The observers are chosen to be comoving with the
fluid flow in the simulation; i.e., their 4–velocity uμ

coincides with the 4–velocity of the fluid at their location
in the simulation domain. All “sources” along each line of
sight are also comoving with the fluid flow in the
simulation, such that the photon energy (and subsequently
the redshift) along each geodesic is defined as E≡ −uμkμ
where uμ is the 4–velocity of the fluid at the position of the
geodesic, and kμ is the tangent vector of the null geodesic.
For details of the ray-tracing procedure, including tests
of the code and specifics on generating initial data, see
Macpherson [49].
For this work, we choose 50 randomly placed observers

with lines of sight coinciding with the directions of HEALPix3

pixelswithNside ¼ 8 [50].We propagate light rays fromeach
observer position until the redshift reaches z ≈ 1.

C. Redshift drift computation

MESCALINE computes the null geodesic tangent vector,
redshift, angular diameter distance, and Jacobi matrix along
each geodesic [details of these calculations can be found
in [49]]. In this section we detail the redshift drift compu-
tationwe have introduced intoMESCALINE.We have used the
multipole decomposition of the redshift drift introduced in
[32–34]. We thus consider an observer moving with
4–velocity uμ with corresponding proper time τ satisfying

τ̇ ¼ 1, with the overdot representing parallel transport along
uμ, i.e., ˙≡ uμ∇μ. For the corresponding congruencewe have
the following decomposition:

∇νuμ ¼
1

3
θhμν þ σμν þ ωμν − uνaμ;

θ ¼ ∇μuμ; σμν ¼ hβhνh
α
μi∇βuα;

ωμν ¼ hβνhαμ∇½βuα�; aμ ¼ u̇μ; ð2Þ

where hμν ¼ uμuν þ gμν projects onto the spatial hyper-
surfaces orthogonal to the 4–velocity of the observer; on
which it also plays the role of an adapted spatialmetric tensor.
In the above, ωμν is the vorticity, σμν is the shear, θ is the
expansion, and aμ is the 4–acceleration of the congruence.
We introduce eμ ¼ uμ − 1

E k
μ which is the viewing angle/

spatial direction vector of observation of the light ray as
seen by an observer in the frame of uμ. Thus, the photon
4–momentum can be decomposed as

kμ ¼ Eðuμ − eμÞ: ð3Þ

Since eμ represents the position of a given source on the
observer’s sky,we introduce theposition drift of the source as

κμ ¼ hμν ėν; ð4Þ

where the source is kept fixed under the time derivative. We
then write the redshift drift as an integral along the light ray
according to

dz
dτ

����
O
¼ EE

Z
λO

λE

dλΠ; z ¼ EE

EO
− 1; ð5Þ

where λ is an affine parameter along the light ray and O
and E represent the points of observation and emission,
respectively. Using the results of Heinesen [34] we can write
the integrand in full generality as

Π ¼ −κμκμ þ Σo þ eμΣe
μ þ eμeνΣee

μν þ eμκνΣeκ
μν; ð6Þ

where the coefficients are given by

Σo ¼ −
1

3
uμuνRμν þ

1

3
Dμaμ þ

1

3
aμaμ;

Σe
μ ¼ −

1

3
θaμ − aνσμν þ 3aνωμν − hνμȧν;

Σee
μν ¼ ahμaνi þDhμaνi − uρuσCρμσν −

1

2
hαhμh

β
νiRαβ;

Σeκ
μν ¼ 2ðσμν − ωμνÞ: ð7Þ

Here, Rμν is the Ricci tensor, Cρμσν is the Weyl tensor, and
Dμaν;¼ hανhσμ∇σaα is the spatial covariant derivative of the
fluid 4–acceleration.3http://healpix.sourceforge.net.
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We introduce some simplifications to the above equa-
tions both to make them easier to implement into
MESCALINE and to ensure reasonable computation time.
Since the simulation models the cosmic fluid as dust, the
4–acceleration and vorticity in the simulation are subdomi-
nant in (7) above.
We hence ignore all terms including the vorticity and

4–acceleration. Likewise, we neglect the Ricci term in Σee
μν,

as it represents the anisotropic stress of the fluid which is
conditioned to be zero in the perfect-fluid assumption of the
simulations.
Finally, we also neglect terms including the position drift

κμ defined in (4).
This approximation is more subtle, as there are no

constraints built into the ET simulations that a priori forces
these terms to be small. An earlier study [30] of Lemaître-
Tolman-Bondi [LTB; [51–53]] models indicates that by
dropping terms containing κμ, one neglects contributions of
the order ≲1% of the total redshift drift signal for light
propagation out to z ∼ 0.02, corresponding to the size of the
void in the particular model. We expect this to represent an
upper bound on the position drift for similar redshifts (with
a relative decrease towards higher redshifts) in models with
more modest structures and a notion of statistical homo-
geneity. In linearized FLRW models, typical values of
position drift at cosmological distances are of order vH,
where v is the size of the velocity of the source relative to
the Poisson frame and H is the Hubble parameter [54].
Since κμ enters the redshift drift formula either in terms
involving its quadrature or in terms where it is multiplying
shear/vorticity, the contributions involving κμ are expected
to be second order in regions where density contrasts
may be considered perturbative. These considerations,
together with the upper bound estimates provided by [30],
motivate us to neglect terms involving κμ in our present
investigations.
Under the above approximations, (6) reduces to

Π ≈ −
1

3
uμuνRμν − eμeνuρuσCρμσν: ð8Þ

We will in the following refer to these two terms as the
Ricci and Weyl contributions, respectively.
We substitute (8) into (5) to obtain the following

discretized integral-formula for the redshift drift:

δz ¼ δτOEE

XλE
λ¼λO

�
−
1

3
uμuνRμν − eμeνuρuσCρμσν

�
Δλ; ð9Þ

which is the computation we add into the MESCALINE ray
tracer [49]. For all cases in this work we choose the
observation period δτO ¼ 30 years since it represents a
typical value of the observation time interval expected for
surveys (see, e.g. [55]) but note that δτO simply represents a
scaling of the redshift drift signal. In relation to this, we

note that the individual terms in Eq. (9) are typically of
absolute order 10−4–10−2 up to the scaling by δτO, energy
and dλ. Thus, although the final redshift drift is roughly of
order 10−10 (because we multiply with δt0 ∼ 10−8 at the
very end), much lower absolute precision is required for the
actual computations. We verify that the numerical noise for
the individual terms along the rays is much smaller than the
size of the terms by e.g. controlling that the null condition is
fulfilled to high precision along the light rays and by
verifying (in Appendix A) that our code can accurately
reproduce known results for specific inhomogeneous
metrics.
We calculate the affine interval Δλ via the Jacobian,

dt
dλ

¼ −
1

α
kμnμ ¼

En

α
; ð10Þ

where α is the lapse function, nν ¼ ð−α; 0Þ is the normal
vector of the spatial hypersurfaces, t is the simulation
coordinate time, and En is the photon energy in the
simulation hypersurface frame.
The Ricci and Weyl tensor components are calculated

using existing routines in MESCALINE [47,49] and interpo-
lated to the exact position of the geodesic. We set observers
and emitters comoving with the fluid flow; i.e., we set uμ to
coincide with the 4–velocity of the fluid at the position
of the geodesic in the simulation. We use the photon
4–momentum kμ—which is evolved using the geodesic
equation in MESCALINE—and (3) to calculate the direction
vector eμ along the geodesic.

III. RESULTS

In this section, we will present results from propagating
light rays through the simulation data with box length L ¼
3072h−1 Mpc and a grid resolution of N ¼ 256. We
consider 50 observers each with 768 lines of sight propa-
gated until z ≈ 1. We are interested in studying the variance
in the redshift drift along different lines of sight for a
particular observer, as well as the mean of the redshift drift
across each observer’s sky. Although not observable, we
will also assess the mean across all observers at different
positions in the simulation. In particular, we will assess
whether these mean values coincide with the prediction
from the initial background EdS model of the simulation.
In Fig. 1 we show the redshift drift normalized to the EdS

prediction. We show the mean and variance in terms of
68.1% and 95.4% percentiles when considering all lines of
sight for all observers (38400 total lines of sight). These
percentiles correspond to the 1 − σ and 2 − σ confidence
intervals in the limit of a Gaussian distribution. For
z≳ 0.03, the mean of the redshift drift deviates from the
EdS model by less than 0.2%. This is in good agreement
with work using LTB models [11] and Newtonian N-body
simulations [30] in the sense that these studies similarly
indicate that structures of realistic size have only small
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impact on the mean redshift drift. The maximum fluctua-
tions across all light rays we find are ∼10% at z ≈ 1. The
95.4% percentiles are ∼� 2%–3% about the mean at this
same redshift. The ∼10% maximum fluctuations are more
than an order of magnitude larger than the < 1% variance
found using NewtonianN-body simulations combined with
a perturbative scheme [30]. This indicates that such an
approximate procedure may be insufficient for quantifying
fluctuations in the redshift drift. However, this difference in
results could also reasonably be due to, e.g., the different
physical resolutions as well as differences in modeling
of the matter field: in our ET simulations there is a
hydrodynamic model of the matter whereas the matter is
simulated as a particle ensemble in Koksbang [30]—thus
the latter necessitates a smoothing procedure.
Notably, the maximum fluctuations obtained with the

Newtonian simulation lie below the expected precision of
SKA; however, the maximum fluctuations we find here are
above the survey’s expected precision of 1%–10% [3].
Further, even our 68.1% fluctuations in the redshift drift
may lie above this level of precision and thus could be
relevant to consider.
In Fig. 2 we show the two individual components of the

redshift drift in Eq. (8). The Ricci component (the approxi-
mation to Σo) is shown relative to the EdS value (the EdS
contribution is zero for the Weyl component). The mean
value of the Ricci contribution is shown with a solid blue
curve and the Weyl contribution is shown with a dashed
pink curve. The 68.1% and 95.4% confidence intervals
across all light rays for all observers are shown as dark and
light gray shaded regions for the Ricci and as dashed black
curves for the Weyl contribution. We find the mean value of
these contributions is dependent on the numerical reso-
lution of the simulation (see Appendix B). However, the

order of magnitude of the variances we find is robust to
resolution changes. Further, the slight skew of the Ricci
contribution towards negative values and the Weyl con-
tribution towards positive values is also consistent between
resolutions. We also notice that the Weyl and Ricci
contributions are not perfectly symmetric, indicating that
they do not cancel each other perfectly along individual
light rays. In comparison, these were found to cancel
almost completely in the study based on N-body simu-
lations combined with perturbation theory in Koksbang
[30]. From Eq. (15) in Koksbang [30], this indicates larger
spatial derivatives of the metric components in our simu-
lation setup with respect to those N-body simulations.
Figure 3 shows the redshift drift averaged along 768 light

rays for all 50 observers. The dashed curve shows the mean
and the gray shaded region shows the maximum to
minimum variance across all light rays. Most notably,
the redshift drift along 185 light rays (corresponding to
0.48% of the 38400 light rays) spread over 5 of the 50
observers is positive at very low redshifts (z≲ 0.01). This is
possible because the Weyl contribution to the redshift drift
can be positive, and in some cases it dominates the total
redshift drift signal at low redshifts. Physically, redshifts of
z ∼ 0.01 roughly correspond to a distance scale comparable
to the largest walls/voids in the simulations. At low
redshifts, the EdS background redshift drift is of order
zH0, while peculiar acceleration (in an estimate based on
linearised perturbation theory) is of order vH0 where v is
the size of the velocity of the source relative to the Poisson
frame. Thus, roughly, we expect the peculiar acceleration
contribution to be dominant when v≳ z. Since velocities in
the simulation are of order ≪ 0.01 in units of the speed of
light, we expect some light rays to have positive redshift

FIG. 1. Mean and fluctuations of the redshift drift along 768
random light rays each for 50 randomly placed present-time
observers. The redshift drift is shown relative to the EdS redshift
drift. The dark and light shaded regions show the 68.1% and
95.4% percentiles across all light rays, respectively.

FIG. 2. Mean and fluctuations of the Weyl and Ricci contri-
butions to the redshift drift for 50 observers with 768 lines of
sight each. The dark and light shaded area shows the 68.1% and
95.4% percentiles across all light rays for the Ricci component,
respectively, while the same is shown for the Weyl component
with dashed curves.
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drift for z≲ 0.01 which is exactly what is seen in Fig. 3.
The mean redshift drift is, however, always nonpositive as
expected since our simulations do not contain any dark
energy component [33]. We also note that positive redshift
drift due to structures have earlier been found in LTB
models in [5], when placing an observer in a large central
overdensity surrounded by a steep transition to a deep
undersensity.
Figure 4 shows the mean redshift drift averaged over 768

lines of sight for each of our 50 observers. The mean values
all tend towards the EdS result at z → 1. However, the
deviation from the EdS prediction remains of order ∼1% at
z ≈ 0.2. These deviations average out to < 0.1% when we
take the mean of all observers (see Fig. 1). Real observa-
tions are of course based on measurements from only a
single observer, and the ∼1% fluctuations could be of
importance for measurements of high enough precision.

We see a difference at the ∼1% level at cosmological
redshifts across observers in Fig. 4, and determining where
our observations might lie in such a distribution is
important for any future measurements approaching this
level of accuracy. Measuring the redshift drift to percent-
level precision may be feasible with Phase 2 of SKA [3].
Making use of, e.g., constrained cosmological simulations
[e.g. [56,57]] combined with relativistic ray tracing could
enable us to study these variances realistically in our local
environment.

A. Skymaps and power spectra

In addition to the variances in the mean redshift drift for
observers in different physical environments, the variance
across individual lines of sight could also impact future
measurements. In particular, many surveys do not cover the
entire sky due to, e.g., the galactic centre or simply the
survey footprint. Anisotropic variance of cosmological
parameters is expected due to inhomogeneities, especially
at low redshifts (e.g. [58,59]), and this naturally extends to
the redshift drift [34].
In our analysis so far, we used relatively low-resolution

skies of Nside ¼ 8 for the N ¼ 256 resolution simulation
because of the increased computational cost of propagating
many light rays for this data. With the lower-resolution
simulation of N ¼ 128, we can use higher-resolution skies
with Nside ¼ 32 to enable us to study the angular distri-
bution of the redshift drift in better detail. For this case, we
use ten randomly placed observers and propagate light rays
to z ≈ 0.5. In Appendix B we show that the variance of δz is
robust to this change in numerical resolution.
In Fig. 5 we show the all-sky redshift drift signal for

three sample observers (panels; top to bottom) and for two
redshift slices of z ≈ 0.1 (left panels) and z ≈ 0.5 (right
panels). For each panel we are showing the redshift drift
relative to the EdS value, δz=δzEdS − 1. The EdS value is
calculated using Eq. (1) with the mean redshift of each slice
for each observer as z, the globally averaged Hubble
constant for the simulation as H0, and the EdS relation
for the Hubble parameter, HðzÞ ¼ H0ð1þ zÞ3=2. At red-
shifts of z ≈ 0.1, our observers see a variance in the redshift
drift of tens of percent, with large-angle multipoles visibly
dominating the signal. For z ≈ 0.5, the sky-variance has
reduced to several percent with respect to the EdS signal,
with a visible dipole anisotropy present.
We can further explore the multipole contributions to the

redshift drift signal by calculating the angular power
spectra of the maps in Fig. 5 for all ten observers.
Figure 6 shows the angular power spectra, Cl, as a function
of multipole l for δzrel ≡ δz=δzEdS − 1. The maximum l
shown on the plot is lmax: the smallest angular scale we can
resolve for our ray-tracing maps with Nside ¼ 32. Solid
curves show the Cl for all observers on a redshift slice of
z ≈ 0.1 and dashed curves of the same colour show the
same observers for z ≈ 0.5. Thick curves for both slices

FIG. 3. The curve shows the mean of the redshift drift along
768 light rays for 50 observers. The gray shaded region shows the
maximum to minimum fluctuations of δz across all light rays.

FIG. 4. Mean redshift drift across 768 lines of sight for 50
observers as a function of redshift, z. We show the absolute value
of δz normalized by the background EdS prediction, δzEdS.
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indicate the same observers shown in Fig. 5. We can see the
power in deviations from EdS reduces at almost all multi-
poles (except those which are close to lmax) as we go to
higher redshift. At z ≈ 0.5, we see a relative increase in
power in small angular scales with respect to lower redshift.
However, the dipole remains a dominant contribution to the
signal—an order of magnitude larger than the quadrupole

for most observers. This is perhaps expected in our
simulations because gradients of expansion (contribution
to the dipole of δz) dominate over the local shear (con-
tribution to the quadrupole) [34,59].
We can quantify the amplitude of the low-lmultipoles of

the angular power spectrum of the redshift drift, Cδz
l ,

relative to the monopole component. This amplitude is

Al ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞCδz

l

Cδz
l¼0

s
: ð11Þ

At z ≈ 0.1, we find that the mean dipole amplitude across the
ten observers in theN ¼ 128 simulation is 3.7%, and that the
mean quadrupole amplitude is 1.1%. At a higher redshift of
z ≈ 0.5, the mean dipole and quadrupole amplitudes are
0.8% and 0.1% of the monopole, respectively.
We note that the power spectra for the relative redshift

drift were investigated in [27] within linearized perturba-
tion theory. There are qualitative similarities between the
power spectra shown here and those presented in [27], such
as the power spectra for z ≈ 0.1 being above the z ≈ 0.5
curve at low l, but vice versa at higher l. Quantitatively,
there is a difference in scale between the power spectra in
Fig. 6 and those at similar redshifts in [27], with the power
spectra in [27] being significantly suppressed relative to
ours. This is primarily because the expression for redshift
drift used in [27] to calculate the power spectra is in fact not
the full redshift drift. In particular, it neglects the term,
ð1þ zÞH0, which is one of the two counteracting leading-
order monopole terms in the FLRW expression. As a
consequence their power spectra of their normalized red-
shift drifts δzrel ≡ δz=δzFLRW − 1 get suppressed, espe-
cially at small redshifts, where the suppression at z ≈ 0.1
is more than 2 orders of magnitude relative to the power
spectrum for the true redshift drift signal. After accounting
for this issue with normalization, the power spectra of [27]
are largely consistent with our results. Any additional
difference we expect to come from a difference in choice
of background cosmology of the two studies, and towards
high l we also expect the nonlinearities—which are
incorporated in our investigations but neglected in [27]—
to play a role. To confirm that the power spectra presented
in Fig. 6 do not represent noise, we have compared the
z ≈ 0.1 power spectra with different values of N and Nside,
i.e. different resolutions of the sky and simulation. The
comparison (presented in Appendix D) shows very similar
behavior in all three cases.

IV. CAVEATS

Here we outline some important caveats to the results we
have presented in this work. These caveats should be care-
fully considered when physically interpreting our results.
In this investigation, the cosmological constant is zero

due to the fact that the ET does not currently include a

FIG. 5. All-sky maps of the redshift drift, δz, relative to the
background EdS value for three sample observers at two redshift
slices z ≈ 0.1 and z ≈ 0.5. Each observer has Nside ¼ 32 lines of
sight in directions of HEALPix indices.

FIG. 6. Angular power spectra of the redshift drift maps for all
ten observers at two redshift slices z ≈ 0.1 (dashed curves) and
z ≈ 0.5 (solid curves). We show the power spectra of
δzrel ≡ δz=δzEdS − 1. Colors of each line are the same for
individual observers between redshifts. Thick curves for both
redshifts indicate the observers shown in the sky maps in Fig. 5.
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cosmological constant in Einstein’s equations. Therefore,
inhomogeneities in our simulations are enhanced with
respect to a model universe with a cosmological constant.
As a result, the fluctuations in the redshift drift that we find
are most likely larger than would be expected in simu-
lations based on the ΛCDM (Lambda Cold Dark Matter)
model.
Further, we did not incorporate the position drift of the

source into our calculation of the redshift drift in the
simulations. A combination of earlier studies [10,30] of
the effect within extreme LTB structures combined with
arguments from perturbation theory allows us to make
plausible that this effect is small. Computing the position
drift is significantly more complicated than computing the
Ricci andWeyl components which we have focused on here.
Including the position drift would involve solving an addi-
tional 20 differential equations along the light paths, and
given that the effect is likely small we neglect it in our
analysis. Alternatively, future work might consider using the
code BigOnLight [60] to study the redshift drift in ET
simulations.

V. SUMMARY AND CONCLUSION

We have studied redshift drift along light rays in
simulation data sets generated using the Einstein Toolkit

and MESCALINE. The simulation data represent fully gen-
eral-relativistic matter-dominated cosmologies with initial
fluctuations based on standard perturbation theory.
We find that themean redshift drift of individual observers

is very close to the EdSmodel, typically of order≲1% in the
redshift interval 0.2≲ z≲ 1.0, which is consistent with
large-scale spatial averages in the simulations. The maxi-
mum fluctuations around themean are above 10% at z ¼ 0.5
and still over 5% at z ¼ 1. These fluctuations represent the
maximum and minimum across many light rays and many
observers. In reality, most light rays will not experience this
level of variance. The 95.4% confidence interval is �2.5%
fluctuations about the mean and the 68.5% confidence
interval is �1% at z ≈ 1.
We compute the redshift drift as an integral over two

separate contributions from theWeyl and Ricci tensors. The
fluctuations about the mean of the Weyl and Ricci
components both increase with redshift. However, on
average, the two components largely cancel with each
other, yielding a mean redshift drift signal which deviates
from the EdS signal at the subpercent level.
We have shown that the redshift drift becomes positive at

very low redshifts along 0.48% of the light rays. This is
made possible by a slight dominance of the Weyl con-
tribution at low redshift. The positivity of the redshift drift
signal is interesting because it is a signature for an
accelerating space-time in FLRW geometry. However, this
only occurs at low redshift where inhomogeneity is more
significant. We find no “apparent dark energy signature” at
cosmological redshifts in our simulations.

We also investigated the variance of the redshift drift
across the sky for a set of ten observers with well-sampled
skies. Such a variance is of relevance for surveys with
incomplete sky coverage. We found a ∼10%–30% sky-
variance at z ≈ 0.1 which reduces to several percent by
z ≈ 0.5. Studying the angular power spectra at these red-
shifts, we find the dipole to be a dominant contribution to
the signal for most observers. The sky-variance we find
here is of same order of magnitude as the anticipated
precision for future surveys intending to measure the
redshift drift at percent precision such as Phase 2 of
SKA [3].
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APPENDIX A: PRECISION AND ACCURACY
TEST USING THE LEEMAÎTRE-TOLMAN-BONDI

METRIC

In this appendix we test our implementation of redshift
drift computations in MESCALINE by verifying that the
computations can reproduce known results for the
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Lemaître-Tolman-Bondi (LTB) metric. The LTB models
are spherically symmetric dust solutions to Einstein’s
equations which may include a nonvanishing cosmological
constant. The line element of the LTB models can be
written in spherical coordinates as

ds2 ¼ −dt2 þ Rðt; rÞdr2 þ A2ðt; rÞdΩ2; ðA1Þ

where Rðt; rÞ ≔ A2
;rðt; rÞ=½1 − kðrÞ�, kðrÞ is the spatial

curvature, and dΩ≡ dθ2 þ sin2ðθÞdϕ2. Ignoring a possible
cosmological constant, the metric function Aðt; rÞ fulfills
the dynamical equation,

A2
;tðt; rÞ ¼

2MðrÞ
Aðt; rÞ − kðrÞ; ðA2Þ

where MðrÞ is a constant of integration in the time
coordinate and is related to the dust rest-frame density
according to

ρðt; rÞ ¼ M;rðrÞ
4πA2A;r

: ðA3Þ

To specify a particular LTB model we adopt the following
curvature function:

kðrÞ ¼
8<
:−kmaxr2

h�
r
rb

�
n
− 1
i
m

if r ≤ rb

0 if r > rb
; ðA4Þ

with different values of n, m (either equal to 4 or 6) and
with varying values of kmax around the order of 10−8, and
varying values of rb. To uniquely specify the models we set
Aðt0; rÞ ¼ aEdSðt0Þ · r, where aEdS is the EdS scale factor
with reduced Hubble parameter h ¼ 0.45. To find the
function MðrÞ which corresponds to our chosen model,
we will use the relation [62],

t − tB ¼ M

ð−kÞ3=2
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

1 −
kA
M

�
2

− 1

s
− cosh−1

�
1 −

kA
M

�#
;

ðA5Þ
where all functional dependence on the coordinates t and r
is from now on left implicit in the equations. The function
tB is the r–dependent time of the big bang in the model,
here set to vanish identically. To solve the above equation,
given our initial function Aðt0; rÞ, kðrÞ, and tB ¼ 0, we use
a Newton-Raphson root finding method to find the M
which satisfies this relation at each value of r to within a
tolerance of 10−8 times the typical size of terms in the
equation. This fully specifies the metric functions for the
LTB model, which can then be integrated back in time
alongside the MESCALINE ray tracer. To minimise finite-
difference derivatives, we evolve A;rðt; rÞ alongside Aðt; rÞ
using the following equation:

A;tr ¼
�
M;r

AA;t
−
MA;r

A2A;t
−

k;r
2A;t

�
: ðA6Þ

We additionally make use of the above relation and

A;ttr ¼
�
−
M;r

A2
þ 2MA;r

A3

�
ðA7Þ

to obtain A;tr and A;ttr without having to resort to finite
differences.
To advance the LTB metric we specify initial data for

Aðt0; rÞ as above and choose values of rb, kmax and the
exponents n, m to specify the curvature kðrÞ (which is
constant in time). These functions are set up on a Cartesian
cubic grid using the coordinate transforms given in
Appendix C below. We then use these functions, alongside
our root finder, to converge to a functionMðrÞ at each point
on the grid. All functions are set to zero at the origin r ¼ 0.
This forms our complete initial data for the LTB metric.
Next, we advance the system of equations (A2), (A6), and
(A7) using a Runge-Kutta fourth order (RK-4) integration
scheme backwards in time from redshift z ¼ 0. The LTB
metric functions are used to fill the components of the
metric and extrinsic curvature tensors, the latter having
nonvanishing components,

Krr ¼ −
A;rA;tr

1 − k
ðA8Þ

Kθθ ¼ −AA;t ðA9Þ

Kϕϕ ¼ −AA;tsin2ðθÞ: ðA10Þ

Once computed in spherical coordinates, these are trans-
formed to the Cartesian grid (see Appendix C). The metric
on the cubic grid is sent into the test version of the
MESCALINE ray tracer (see [49]), including the redshift
drift calculation discussed in the main text.
We wish to test our redshift drift calculation compared to

the analytic LTB redshift drift. For radial light rays in LTB
models, the redshift drift can be computed by solving the
following coupled set of equations [6]:

dz
dr

¼ ð1þ zÞ A;trffiffiffiffiffiffiffiffiffiffiffi
1 − k

p ;

dt
dr

¼ −
A;rffiffiffiffiffiffiffiffiffiffiffi
1 − k

p ;

dδz
dr

¼ A;trδzffiffiffiffiffiffiffiffiffiffiffi
1 − k

p þ ð1þ zÞ A;ttrδtffiffiffiffiffiffiffiffiffiffiffi
1 − k

p ;

dδt
dr

¼ −
A;trδtffiffiffiffiffiffiffiffiffiffiffi
1 − k

p ; ðA11Þ
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where we have enforced r of the observer to be smaller than
r of the emitter in choosing sign conventions. We choose
initial data for our semianalytic solution as z ¼ δz ¼ 0 and
δt ¼ 30 years and evolve the equations above using an
RK-4 integrator. The precision of the main redshift drift
calculations is first order (since we approximate the integral
using a sum), so we can treat our semianalytic redshift drift
computations as the “true” analytic solutions since they
have far subdominant error for the same resolution.
For all test cases here, we place the observer several grid

cells from the origin at r ¼ 0. This is to avoid the origin being
used in finite-difference derivatives for quantities involved in
our calculation. Since themetric is spherically symmetric,we
shoot only one light ray for this test and use only one
observer.We test three specific choices of the size of the LTB
structure, namely: rb ¼ 50, 700, and 1000 h−1Mpc. For all
cases we use kmax ¼ 9.9 × 10−8 and n ¼ 4 ¼ m except for
the case with rb ¼ 1000h−1 Mpc where we use a steeper
density profile by setting n ¼ 6 ¼ m. We change the size of
the structure primarily to adjust the amount of time the light
ray spends inside and outside the LTB structure before it
reaches the observer. We perform tests for three Cartesian
grid resolutions of N ¼ 32, 64, and 128, each with a cubic
box length of L ¼ 1h−1 Gpc. In each case, we calculate the
redshift drift using MESCALINE with the LTB metric, δznum,
and compare to the semianalytic from advancing (A11),
δzana, to get the error at resolution i: δi ≡ δznum=δzana − 1.
We assess the convergence of the error when increasing
resolution by calculating the convergence factor ðδ1 −
δ2Þ=ðδ2 − δ3Þ where resolution indices i ¼ 1, 2, 3 represent
grid resolutions of N ¼ 32, 63, 128, respectively. For our
first-order approximation of the sum for the redshift drift, the
rate of convergence should be equal to 2 (see also
Appendix B of [63]). We note that in each resolution, the
observer is placed at a slightly different location. For each
case, we place the observer ∼10 grid cells from the origin at
r ¼ 0 to ensure our finite-difference stencils do not ever
overlap the r ¼ 0 point.
Figure 7 shows the redshift drift error as a function of

redshift for three resolutions N ¼ 32, 64, and 128 (solid,
dashed, and dot-dashed curves in the top panel, respec-
tively) for an LTB structure with rb ¼ 50h−1 Mpc andm ¼
n ¼ 4 in (A4). In this case, since the observer is slightly off
center, the structure is so small that the observer actually
lies in a pure FLRW region. This represents a sanity check
of our code that the metric is accurately being set to the
FLRW region in this case. In the bottom panel, the
convergence factor is always ≈2, as expected for our
first-order scheme.
The top panel of Fig. 8 shows the redshift drift error for

an LTB structure with rb ¼ 700h−1 Mpc andm ¼ n ¼ 4 in
(A4). In this case, the observer is inside the LTB structure
but quite close to the edge, such that there is only a little
propagation inside the structure before the ray moves into
the FLRW region. The middle panel shows the convergence

rate and the bottom panel shows a zoomed-in y-axis of the
middle panel.
The LTB functions we set up are effectively discontinu-

ous at the edge of the structure, due to the step function we
define for kðrÞ. Such a function affects the calculation of
finite-difference derivatives—an important part of the red-
shift drift calculation to get the Ricci and Weyl tensors—
when they cross over such a boundary. At z < 0.03, we see
the expected convergence rate of 2. However, between z ≈
0.04–0.06 we see the convergence is spoiled due to the
overlapping of our finite-difference stencil with the boun-
dary of the LTB structure. After the ray passes outside the

FIG. 7. Top panel: redshift drift error for the LTB model with
rb ¼ 50h−1 Mpc and m ¼ n ¼ 4 in kðrÞ for three resolutions
N ¼ 32, 64, and 128. Bottom panel: convergence factor for the
three lines in the top panel. The expected convergence rate is 2.

FIG. 8. Top panel: redshift drift error for the LTB model with
rb ¼ 700h−1 Mpc and m ¼ n ¼ 4 in kðrÞ for three resolutions
N ¼ 32, 64, and 128. Middle and bottom panel: convergence
factor for the three lines in the top panel (the bottom panel shows
a zoomed-in version of the middle panel). The expected con-
vergence rate is 2.
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structure into the FLRW region, the convergence is still
spoiled. Since the redshift drift is calculated as a sum over
the line of sight, any error introduced earlier in the
calculation (i.e., at lower redshift) will propagate to the
rest of the calculation (i.e., higher redshift). In this case, we
see some convergence from N ¼ 64 to N ¼ 128, though
not for N ¼ 32. A potential explanation for this could be
because the observer is quite close to the LTB structure, the
contribution from the early steps of the calculation (and
thus, the error in crossing the boundary), is subdominant
with respect to the redshift drift signal at z > 0.1. However,
it could be that the error for the case of N ¼ 32 is sufficient
in this case to spoil the convergence even at higher z.
Figure 9 shows the error in the redshift drift (top panel)

and convergence rate (bottom panel) for the LTB metric
with rb ¼ 1000h−1 Mpc and m ¼ n ¼ 6 in (A4). In this
case the observer is quite far from the LTB structure
boundary so a large portion of the rays propagation is
inside the structure itself. In this case, we see good
convergence for the first few steps which is quickly spoiled
by the N ¼ 32 test case. We see good convergence for
N ¼ 64 to N ¼ 128 until our finite-difference derivatives
overlap the LTB structure at z ≈ 0.15–0.2. The convergence
is also spoiled after the ray has passed through the structure
boundary. The nonconvergence of the N ¼ 32 test inside
the LTB structure is most likely due to the fact that this is
simply too low a numerical resolution to accurately resolve
the steep gradients of this structure. The fact that the
N ¼ 64 and N ¼ 128 errors are more well-behaved sup-
ports this explanation. We expect that if a third, higher
resolution run was included in place of the N ¼ 32 test that
in this final case the convergence would be equal to 2 inside
the LTB structure before the boundary is reached.

In this appendix, we have shown that the redshift drift
calculation we present in the main text matches the analytic
LTB solution when expected. Our results are satisfactory in
terms of their convergence rate in most cases when the LTB
structure boundary does not influence the calculation. Since
this boundary is artificial, we will not encounter these kinds
of issues with our calculations in the simulations presented
in the main text. Of importance is also the magnitude of the
relative error in the redshift drift: in all cases with the
highest resolution we use here (N ¼ 128) the error is less
than ∼0.02%–0.1% depending on the structure we test. We
expect the error on our redshift drift calculations in the ET
simulations to be even below this value for two reasons.
Firstly, we use an even higher resolution ofN ¼ 256 for the
calculations in the main text. Secondly, the LTB structure
we test here is extreme in its density contrasts. This implies
that derivatives of metric functions will be less accurately
approximated than if the structure had lower density
fluctuations. Our ET simulations do not contain structures
as extreme as the LTB model we study here, so we expect
our finite-difference derivatives to be better approximations
of metric derivatives. However, in the case of our simu-
lations we have an additional source of error from the
evolution of the metric itself. In the next section, we
perform a rough convergence test to show that this error
is subdominant with respect to our results.

APPENDIX B: CONVERGENCE
OF SIMULATION RESULTS

In the previous appendix, we isolated the error on our
redshift drift calculations with MESCALINE and showed that
we find satisfactory errors which converge with resolution
as expected in the case of an LTB test metric.
We would like to quantify the numerical errors for the

main simulations of this paper. However, the resolution of
the simulations set a scale of truncation below which
structures cannot form. In our case, due to the nonlinear
nature of our simulations, an increase in resolution will
allow structures to form at scales below the initial reso-
lution scale, making a strict Richardson extrapolation test
invalid for placing error bars on our calculations. This also
makes the identification of “the same observer” across
different resolutions of the simulations ill defined.
In place of such a test, in this appendix we ensure that

our simulations have statistically converged. Concretely,
we want to ensure that the values of the redshift drift
measurements across different lines of sights and synthetic
observers are robust in a distributional sense (mean and
variance) towards an increase in resolution. We thus
perform a lower-resolution simulation (N ¼ 128) which
is statistically similar to the N ¼ 256 simulation presented
in the main text. The higher-resolution simulation contains
more small-scale structure than the lower-resolution

FIG. 9. Top panel: redshift drift error for the LTB model with
rb ¼ 1000h−1 Mpc and m ¼ n ¼ 6 in kðrÞ for three resolutions
N ¼ 32, 64, and 128. Bottom panel: convergence factor for the
three lines in the top panel. The expected convergence rate is 2.
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simulation. However, on the scales where we are sampling
the redshift drift (z ≈ 0.5) the structures should be sta-
tistically similar. We perform the redshift drift calculation
for a set of observers in each simulation (ten observers with
Nside ¼ 32 for the N ¼ 128 simulation and 50 observers
withNside ¼ 8 in theN ¼ 256 simulation) and compare our
main results: the mean and variance of the redshift drift
over all lines of sight and the separate contributions from
the Ricci and Weyl components of the signal. Potential
differences between the calculations in the two simulations
can be attributed to (a) differences in numerical resolution
(i.e., an increased truncation error in the N ¼ 128 simu-
lation) and/or (b) differences in physical structure (i.e., an
increased amplitude of small-scale fluctuations in the N ¼
256 simulation). When integrating over the intermediate
redshifts we study here (z ≈ 0.5–1) to calculate the redshift
drift, we expect (b) to be subdominant/average out [due to
the fact that similar simulations contain little backreaction
on these scales; see [47]]. Thus, we expect the main source
of differences between the simulations to be due to (a).
However, it is important to note on small scales (low
redshifts), that (b) can become important.
Figure 10 shows a comparison of the mean (curves) and

variance (curves and shaded areas) of the redshift drift in
the two simulations. The redshift drift is shown relative to
the EdS prediction and the variance is shown as 68.1% and
95.4% intervals. Comparing the mean values for both
simulations as a function of redshift (inset in Fig. 10),
we can see that the low-redshift fluctuations in the mean
redshift drift are not robust to the resolution changes in this
test. The most likely cause for this is the increased
amplitude of small-scale fluctuations in the N ¼ 256

simulation (mostly due to additional modes below the
minimum resolution scale of the N ¼ 128 simulation).
However, already at z ≈ 0.1, the difference in mean has
dropped to below 1%. Overall, we should thus be wary in
attributing physical meaning to the fluctuation visible in the
mean redshift drift below z ≈ 0.2. Beyond this redshift, to
the maximum z ¼ 0.5 studied here (due to the smaller box
size of the N ¼ 128 simulation), the mean redshift drift
agrees between the two simulations. We thus conclude that
our main results for z≳ 0.2 are robust to changes in
resolution.
The fluctuations in the redshift drift are robust to the

resolution changes in this test for z≳ 0.02. Thus, our main
text results of the fluctuations in the redshift drift should
also only be considered meaningful beyond this redshift.
In Fig. 11 we compare theWeyl and Ricci contributions to

the redshift drift for the two simulations. Themeanvalues for
each term are very close to zero for both resolutions. We see
these mean values change sign (yet maintain the same order
of magnitude amplitude of ∼0.5%–1%) with a change in
resolution. This could be explained simply by our relatively
low number of lines of sight in this study when comparing
resolutions. Specifically, the expected error from finite
number of lines of sight is 1=

ffiffiffiffiffiffiffiffiffiffiffi
NLOS

p
≈ 0.005 here, which

is the same amplitude as the mean values of the Ricci and
Weyl contributions in the inset of Fig. 11. Further, the mean
value of these contributions could be dominated by numeri-
cal error from the simulations due to their small amplitude.
However, the cancellation of the two contributions is robust
to resolution changes (resulting in the consistent mean
redshift drift we find in Fig. 10).
In Fig. 11 the 68.1% and 95.4% confidence intervals

across all light rays for the Ricci (left panel) and Weyl (right
panel) components are indicated with dark and light gray
shaded regions for N ¼ 256 and black dashed curves for
N ¼ 128. A general trend we see here is that the Ricci
fluctuations are skewed towards negative values and the
Weyl fluctuations are skewed towards positive values. This
quality is robust to the changes in resolution we see here, as
well as the order of magnitude of the fluctuations we find. Of
note is the fact that the maximum of the Ricci contribution
and the minimum of the Weyl contribution is consistent
between the simulations.However, theminimumof theRicci
and the maximum of the Weyl—corresponding to the light
raywith the largest absolute value for each case—changes by
a factor of up to ∼1.5 with changes in resolution. This
difference is most likely to be due to sample variance since
we find that the confidence intervals are very similar for the
two simulations. The differences could also be partially
attributed to the increased numerical error in the N ¼ 128
simulation.
Due to the nature of this rough convergence test, we are not

able to fully determine the importance of these possibilities.
An important point in this test is the different numbers
of observers and lines of sight from the two simulations.

FIG. 10. Mean redshift drift for the N ¼ 128 (dotted curve) and
the N ¼ 256 (dashed curve) resolution simulations as a function
of redshift. The variance from the maximum to minimum
fluctuation is shown as a shaded region for N ¼ 256 and a
hatched region for N ¼ 128. The inset shows a zoomed-in
version of the y-axis. The redshift drift mean and fluctuations
are shown relative to the EdS prediction.
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The lower-resolutionN ¼ 128 simulation contains∼3 times
more total lines of sight over all observers, in addition to a
larger total number of observers—implying more indepen-
dent lines of sight. This difference could contribute to the
differences we see in Fig. 11. We could potentially test the
significance of light ray statistics on our results by comparing
equal numbers of light rays and observers between the
simulations. Due to the computational expense of adding
more observers to the N ¼ 128 simulation, this would
require analysing a subset of observers for N ¼ 256 and
down-grading the number of lines of sight for the ten
observers in theN ¼ 128 simulation. In this case, we would
be studying only a total of 7680 lines of sight for each
simulation, which may not be sufficient statistics for a
meaningful comparison.
For now, we conclude that the qualitative aspect of the

overall order-of-magnitude of the separate Ricci and Weyl
fluctuations (and not their mean values), as well as the
skewness of both distributions, is robust to changes in
resolution. We leave a thorough investigation into the
precise amplitude of these individual effects to future work.

APPENDIX C: SPHERICAL TO CARTESIAN
COORDINATE TRANSFORMS

Since the LTB metric is spherically symmetric about the
origin, it is easier to describe and initialize an LTB model
using spherical coordinates. MESCALINE assumes a cubic
grid in Cartesian coordinates as input, so to introduce the
LTB spacetime into MESCALINE, we need to make a
transformation from spherical to Cartesian coordinates.
For this we use the relations,

x¼ r sinðθÞ cosðϕÞ;
y¼ r sinðθÞ sinðϕÞ;
z¼ r cosðθÞ;

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q
;

θ ¼ 2 · atan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
þ z

!
¼ atan2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
; z

�
;

ϕ¼ 2 · atan

 
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

þ x

!
¼ atan2ðy;xÞ: ðC1Þ

We then use the standard tensor transformation rule, e.g.,
gμν ¼ ∂xμ̃

∂xμ
∂xν̃
∂xν gμ̃ ν̃. The partial derivatives of the coordinates are

∂x
∂r

¼ sinðθÞ cosðϕÞ ¼ x
r
¼ ∂r

∂x
∂y
∂r

¼ sinðθÞ sinðϕÞ ¼ y
r
¼ ∂r

∂y
∂z
∂r

¼ cosðθÞ ¼ z
r
¼ ∂r

∂z
∂θ

∂x
¼ x

r2
cosðθÞ
sinðθÞ

∂ϕ

∂x
¼ −

�
y
r2

þ 1

r
cos2ðθÞ
sinðθÞ sinðϕÞ

�

¼ −y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þ x

ðx2 þ y2Þ3=2 þ x3 þ y2x

FIG. 11. Mean and fluctuations of the Ricci (δτOEE

R
dλΣo − Σo

EdS; left panel) and Weyl (δτOEE

R
dλeμeνΣee

μν; right panel)
contributions to the redshift drift. Mean values are shown as curves, with a zoom-in of the y-axis shown in the inset to emphasize
the difference in mean values. The 68.1% and 95.4% confidence intervals are shown as dark and light gray shaded regions for N ¼ 256
and dashed black curves for N ¼ 128 in both panels.
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∂θ

∂y
¼ y
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cosðθÞ
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r

∂ϕ
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¼ x
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þ 1

r
cos2ðθÞ
sinðθÞ cosðϕÞ

¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þ x

ðx2 þ y2Þ3=2 þ xy2 þ x3

∂θ

∂z
¼ 1

r sinðθÞ
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z
r
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�

¼ cosðϕÞ
x

�
z
r
cosðθÞ − 1

�
¼ sinðϕÞ

y

�
z
r
cosðθÞ − 1

�
∂x
∂θ

¼ r cosðθÞ cosðϕÞ ∂x
∂ϕ

¼ −r sinðθÞ sinðϕÞ ¼ −y

∂y
∂θ

¼ r cosðθÞ sinðϕÞ ∂y
∂ϕ

¼ r sinðθÞ cosðϕÞ ¼ x

∂z
∂θ

− r sinðθÞ ∂z
∂ϕ

¼ 0 ¼ ∂ϕ

∂z
: ðC2Þ

APPENDIX D: POWER SPECTRUM
CONVERGENCE TEST

In this appendix, we present a convergence test of the
redshift drift power spectra in order to verify that the results
presented in Fig. 6 are not dominated by noise. Figure 12
compares the power spectra for ten observers for each of
three combinations of N and Nside. The first combination
corresponds to the results shown in Fig. 6 and thus
correspond to N ¼ 128 and Nside ¼ 32. We remind that
Nside ¼ 32 means that each observer has 12 × 322 lines of
sight and that the maximum value of l in the corresponding
power spectrum is 4 · Nside. The second combination of N
and Nside are N ¼ 128 and Nside ¼ 16 while the third
combination is N ¼ 256 and Nside ¼ 8. All power spectra
are for z ≈ 0.1. The power spectra are shown in Fig. 12. The
power spectra overall agree very well for all three combi-
nations of N and Nside. We therefore conclude that the
power spectra in Fig. 6 are not dominated by noise.
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