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We propose a cosmological lingering phase for the initial state prior to inflation which would help
address the singularity problem of inflation. The Universe begins with a constant (Hagedorn) temperature
and then transitions into an inflationary universe while preserving the null energy condition (NEC). We first
consider the phase space of positive spatial curvature models within general relativity and with matter
sources that respect the NEC. Depending on the duration of the postlingering inflation, these models can
produce a small amount of observable spatial curvature in the cosmic microwave background. We also
discuss how lingering can arise with or without spatial curvature in theories of quantum gravity when
considering the thermodynamic scaling of particles and its impact on the early Universe. The string theory
dilaton is essential to the dynamics. There are many open questions that remain.
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I. INTRODUCTION

Cosmological inflation [1–3] provides a theoretically
motivated paradigm for the origin of large scale structure,
the origin of anisotropies in the cosmic microwave
background (CMB), and an explanation for a number of
puzzles about the initial conditions for the “big bang.” In
this paper, we present the background evolution of a
lingering universe that leads to cosmological inflation—
emphasizing that this does not violate the null energy
condition (NEC). In addition, we show that perturbations in
the hydrodynamical fluids sourcing the background evo-
lution grow during the lingering phase (which we will
present in more detail in a second paper), before the
transition to the inflationary phase. Since cosmic micro-
wave background (CMB) measurements provide the
amplitude of inhomogeneities at a given scale [4], any
growth of perturbations in the lingering phase must be
compensated by a corresponding decay in the period
following the lingering. It is important to note that since
lingering demands the existence of positive curvature
(i.e., the Universe is closed), we will already have a lower
bound on the duration of inflation. The matching of

inhomogeneities will provide a further restriction on the
duration of lingering and inflation.
A lingering phase in cosmic evolution was first consider

by Lemaître [5] while investigating the dynamics of a
closed universe with a cosmological constant. Such a phase
was reconsidered in more “recent” times to address the
age problem, i.e., a discrepancy in determining the age of
the Universe when comparing observations of the Hubble
to the age of the oldest globular clusters. A similar type
phase was suggested to provide a late-time mechanism
for generating large scale structure (following matter
domination) and could also lead to late-time cosmic
acceleration [6]. With improving observations and the
successful predictions of inflation, the late lingering (loiter-
ing) Universe fell out of favor. However, as we discuss
more below, such a phase is feasible for the very early
Universe and then leads to inflation.
In what follows we review the concept of a lingering

universe as it first arose in the work of de Sitter, Einstein,
and Lemaître in explaining a static universe. Then, in the
remainder of Sec. II we give an example of how this can be
realized in classical general relativity by introducing two
fluid models, along with spatial curvature, that eventually
leads to cosmic inflation. We speculate that this could be
motivated by the nonzero spatial curvature results of the
PLANCK 2018 data. In Sec. III, we then present how a
lingering universe can be realized within the context of
string theory. In Sec. IV we address the importance of not
violating the null energy condition. This is important for
both Secs. II and III if one is to realize an initial lingering
phase for inflation. In the final section we conclude
addressing how either of these approaches could help
address the initial conditions for inflation.
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II. A LINGERING UNIVERSE
IN CLASSICAL GRAVITY

We begin by considering the Friedmann, Lemaître,
Robertson, and Walker (FLRW) metric for a homogeneous
and isotropic universe,1

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − Kr2
þ r2dΩ2

�
; ð1Þ

allowing for spatial curvature K. Introducing the Hubble
parameter H ¼ ȧ=a and allowing for a cosmological
constant Λ, the Einstein equations can be written as

3H2 ¼ κ2ρ −
3K
a2

þ Λ; ð2Þ

Ḣ ¼ −
κ2

2
ðρþ pÞ þ K

a2
; ð3Þ

where κ2 ≡ 8πG. In (2) this is the statement of energy
conservation, also known as the Hubble constraint.
Combining the above equations we get the Friedmann
equation,

ä
a
¼ −

κ2

6
ðρþ 3pÞ þ Λ

3
: ð4Þ

The energy density ρ and pressure p obey the continuity
equation,2

ρ̇þ 3Hðρþ pÞ ¼ 0: ð5Þ

The above equations were considered in various limits in
the early days of cosmology to address observations of
extragalactic “nebulae” (see Table I). A particularly inter-
esting account was given by Lemaître [5] to resolve an
issue between models of de Sitter and Einstein. The upshot
of that work was that the Universe must expand in the

presence of matter and energy and these static solutions are
unstable. In modern terminology we can recast (2) as

HðtÞ2
H2

0

¼ ΩΛ;0 þΩr;0

�
a0
a

�
4

þΩm;0

�
a0
a

�
3

þΩK;0

�
a0
a

�
2

;

ð6Þ

where H0 is a constant value for the Hubble para-
meter (typically taken as its value today) when a ¼ a0,
and Ωi;0 are the corresponding critical densities in the
cosmological constant, radiation, matter, and curvature,
respectively. These values have been determined with great
precision [8] demonstrating—among other things—that a
static universe is not stable within the context of general
relativity.
In the remainder of this paper we revisit some of these

solutions. First, it is important to note that some of these
“states” for the Universe can be realized as asymptotic fixed
points of the dynamic flow from one state of the Universe to
another as time evolves—we make this more precise below.
As an example, if inflation is past-eternal (i.e., the Universe
is inflating at any given time in the past) it is typically
assumed that this would lead asymptotically to dS space-
time in the distant past. This would again imply that
the Universe began in a singularity (as in the standard
big bang theory) as it is expected dS is geodesically
incomplete in its infinite past implying the existence
of a true singularity [9]—for a more recent analysis we
refer to [10]. We also note that other authors have expressed
differing opinions [11]. We also note that bouncing uni-
verses, such as the cyclic/ekpyrotic universes, have also
been shown to suffer from these issues [12].
Moreover, many of the examples in Table I correspond to

models with nontrivial spatial curvature. Spatial curvature
is typically neglected in model building because the
observationally determined value today from CMB, lens-
ing, and BAO measurements is ΩK ¼ 0.0007� 0.0019 [8].
However, it is also interesting that in the 2018 Planck
results [8] it was suggested that a nonzero spatial curvature
might be favored by the data given Bayesian analysis.3

TABLE I. Solutions for FLRW cosmologies.

aðtÞ HðtÞ K Λ Ricci scalar Description

1 0 0 0 0 Minkowski ðM4Þ
expðH0tÞ

ffiffiffiffiffiffiffiffiffi
Λ=3

p
0 Λ 4Λ ¼ 12H2

0
de Sitter (dS)

a0 0 þ1 0 ð6KÞ=a20 Einstein static universe
a0 0 þ1 Λ ð6KÞ=a20 Lemaître (also known as lingering)

1For background material we suggest [7] and references
within.

2If we think of the cosmological constant term as a fluid we
would have pΛ ¼ −ρΛ ¼ −Λ=κ2 so that Λ has units of mass
squared. Similarly, we could think of spatial curvature (math-
ematically) as an energy density with pressure pK ¼ −ρK=3 ¼
K=ðκaÞ2 and ΩK ¼ −K=ðaHÞ2 is the critical density in spatial
curvature.

3There are many degeneracies in the data and we are in no way
stating there is strong evidence for this. Further data will help
clarify the situation.
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A. Dynamics in a lingering universe

In what follows it will be useful to work in conformal
time dη ¼ dt=aðtÞ and we will consider matter and energy
with equation of state pi ¼ wiρi, where with pi is the
pressure and ρi is the energy density of the ith fluid. Wewill
consider two types of fluids, one that is Standard Model-
like ws ≥ 0, and another that scales slower than curvature
with we ≤ −1=3. The equations for the background are

H2 ¼ κ2

3
a2ρtot − K; ð7Þ

H0 þH2

2
¼ −

1

2
ðκ2a2ptot þ KÞ; ð8Þ

whereH≡ a0=a is the conformal Hubble parameter, ρtot ¼P
i ρi is the total energy density of the multiple sources,

and ptot is the corresponding total pressure. We will find it
more convenient to rescale our space-time coordinates by
the spatial curvature. We can do this without changing the
form of (7) and (8) since the FLRW metric is invariant
under the scaling,

η → Lη; x⃗ → Lx⃗

K → L−2K

aðηÞ → L−1aðηÞ:

This means we can choose L ¼ ffiffiffiffi
K

p
such that wework with

variables η̃ ¼ ffiffiffiffi
K

p
η, etc.4 We drop the tildes in what follows

unless more context is necessary. Solutions follow from
solving (7) and (8) with K ¼ 1, along with the continuity
equation for each fluid,

ρ0i þ 3Hð1þ wiÞρi ¼ 0: ð9Þ

Assuming a constant equation of state wi for each fluid,
the energy density scales as ρi ∼ a−3ð1þwiÞ. Using (7) in (8)
we have

H0 ¼ −
κ2a2

6
ðρtot þ 3ptotÞ: ð10Þ

Another useful combination of (7) and (8) results in a
second-order equation for the scale factor,

a00 þ a ¼ −
κ2a3

6
ðρtot − 3ptotÞ: ð11Þ

1. The lingering fixed point

A strictly lingering phase corresponds to a constant scale
factor and vanishing Hubble parameter. While in conformal
time we have a0 ¼ a00 ¼ 0, the conformal Hubble radius
H−1 diverges. Using (10) and (11), a lingering phase implies

ρ̄s
am

þ ρ̄e
an

−
3

κ2a2
¼ 0; ð12Þ

ðm − 2Þ ρ̄s
am

þ ðn − 2Þ ρ̄e
an

¼ 0; ð13Þ

where ρ̄s corresponds to standard matter and radiation, and
ρ̄e corresponds to an additional sector with −1 ≤ we ≤
−1=3, which does not violate the NEC. We use a bar to
represent these quantities in the strictly lingering phase.
For later convenience we have defined n≡ 3þ 3we and
m≡ 3þ 3ws, which are related to the scaling ρe ∼ 1=an

and ρs ∼ 1=am in the case of constant equation of state. The
constraints then imply −2 ≤ n ≤ 2 and m ≥ 3. We empha-
size that the conditions (12) and (13) are true for a strictly
lingering universe where the first and second time deriv-
atives of the scale factor vanish at all times.
As mentioned above, in [6] the authors considered a

period of cosmic lingering. They were seeking lingering
solutions at low redshift (late in matter domination) to
address discrepancies in measured values ofH0 from CMB
observations and those from clustering.5 They also con-
sidered if their model could provide a possible mechanism
for dark energy. To do this they decided upon initial
conditions based on observations that would give appro-
priate amounts of spatial curvature, exotic matter, and
clustering matter. Given these considerations they deter-
mined at which specific redshift the Universe must linger.
Our approach here is very different—we want to impose

lingering as an initial condition for the beginning of
inflation. Thus, rather than finding specific values of ρ̄s
and the scale factor such that the Universe stalls, we
determine the values of ρ̄s and ρ̄e that are allowed by a
given scale factor and curvature. We find that for

ρ̄s ¼ ρ̄�s ≡ 2− n
m− n

3

κ2
am−2� and ρ̄e ¼ ρ̄�e ≡m− 2

m− n
3

κ2
an−2� ;

ð14Þ

the Universe will linger at scale factor a�. Notice that our
assumptions on the equations of state imply that both
energy densities remain positive; ρ̄i ≥ 0. It is important to
emphasize that the spatial curvature is essential for these
conditions to be realized.
We should immediately note that the n ¼ 2 case is

special. In that case, the Universe can linger at any scale4Note that this means our scale factor now carries units of
length, while our coordinates are unitless. Typically, one then
uses the notation RðηÞ for the scale factor, but we use a for
simplicity.

5It may be interesting to revisit this idea to address the current
Hubble tension.
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factor as long as ρ̄s ¼ 0 and ρ̄e ∼ constant. The resulting
dynamics can be seen from the phase space plots in Figs. 1
and 2. The first figure illustrates the flow for a universe
from lingering in the presence of matter and vacuum
energy, asymptotically leading to inflation. Positive spatial
curvature is essential for this solution to be consistent.
Figure 2 is an alternative situation where we consider
radiation and a cosmic string network—again leading to
inflation. An important question we cannot answer is the
duration of the lingering phase as we elaborate on below.
Our interest now lies in the amount of matter for which

the lingering phase ends in a finite amount of time,

i.e., ρ̄s ≠ ρ̄�s and ρ̄e ≠ ρ̄�e. We can characterize the length
of the lingering phase by tracking “nearby” scale factor
trajectories. To this end, we suppose that ρ̄e ¼ ρ̄�eð1þ ΔeÞ
and aðηÞ ¼ a�ð1þ ΔðηÞÞ. If the additional sector ρ̄e scales
like curvature (we ¼ −1=3 corresponding to n ¼ 2), we
must remember that the lingering amount of clustering
matter is zero. In that case, we cannot parametrize the
deviation of the energy density as a fraction of what is
required for lingering. We must include two possible
changes to the clustering matter: ρ̄s ¼ ρ̄�sð1þ ΔsÞ þ Δρs,
where Δs will vanish in the n ¼ 2 case. Expanding (7)
and (8) to first order in the departure from lingering
we have

ðm − 2ÞΔe þ ð2 − nÞΔs ¼ 0; ð15Þ

Δ00 þ 1

2

�
ðm − 2Þðn − 2ÞΔþ ðm − 2Þðn − 3Þ

m − n
Δe −

ðm − 3Þðn − 2Þ
m − n

Δs

�
¼ 0: ð16Þ

The first of these equations ensures that κ2a2�ρtot=3 ¼
K ¼ 1. Assuming the new trajectory exactly matches the
perfect lingering solution at some starting point η0, the
above equations are solved by

Δ ¼ Δe

2 − n

�
cosh

�
Δη

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðm − 2Þð2 − nÞ

r �
− 1

�
; ð17Þ

where Δη ¼ η − η0. When n ¼ 2 the resulting equations
are instead

Δe þ
κ2

3am−2�
Δρs ¼ 0; ð18Þ

Δ00 þ 1

6

�
κ2

am−2�
ðm − 3ÞΔρs − 3Δe

�
¼ 0; ð19Þ

which is easily solved for

Δ ¼ m − 2

4
ΔeΔη2: ð20Þ

FIG. 1. Lingering fixed point. The plot shows the flow lines in
the Hubble parameter–scale factor phase space for a positively
curved universe with standard matter and a fluid that scales like
the cosmological constant. The red dot is an unstable (hyperbolic)
fixed point in the evolution; it corresponds to initial conditions for
exactly reaching the lingering phase. The black curves in both
figures correspond to the enforcement of the Hubble constraint
(energy conservation). The blue region emphasizes we are
interested in a positive expansion rate.

FIG. 2. Exact lingering. The plot shows the flow lines in the
Hubble parameter–scale factor phase space for a positively
curved universe with radiation and a fluid that scales like a
string network. The red dot is an unstable (hyperbolic) fixed point
in the evolution; it corresponds to exact lingering. The black
curve corresponds to the enforcement of the Hubble constraint
(energy conservation). The blue region emphasizes we are
interested in a positive expansion rate.
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Note that one can pass from the n ≠ 2 solution to the n ¼ 2
solution via the formal limit n → 2.
Of course, this linear approximation breaks down when

Δ approaches one; this signals the exit from the lingering
phase. Via inspection of the solutions above, one finds
that with energy densities closer to their exact lingering
values, the longer the duration of the quasilingering phase
lasts. This is shown in Fig. 3. We can estimate the end of
lingering as

Δηe ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ðm − 2Þð2 − nÞ

s
ln

�
ð2 − nÞ 2

Δe

�
ð21Þ

when n < 2. We assumed thatΔe ≪ 1 to arrive at the above
expression. When n ¼ 2,

Δηe ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm − 2ÞΔe

p : ð22Þ

Both of these time durations obey Δηe → ∞ for Δe → 0,
which is the perfectly lingering limit.
To this point, we made no assumptions on Δe, Δs, or

Δρs. The forms of (15) and (18), as well as the interesting
ranges for m and n, require the changes in the energy
density of the fluids to be opposite signed. The Universe,
desiring to stall at the same scale factor as in its perfect
lingering form, must compensate any additional energy in a
given fluid by a corresponding loss in the other. Simple
inspection of the solutions to the deviated lingering
equations reveals that when we have reduced the amount
of energy in the additional sector, the Universe tends to

recollapse, as expected for a closed universe filled with
standard matter.
The n ¼ 2 case introduces further complications that

necessitate extra elucidation. Note that the perfect lingering
scenario requires zero standard matter to achieve a steady-
state universe. Thus, any additional matter sector inserted
to break lingering requires the corresponding reduction of
standard matter. In other words, the Universe needs negative
energy density in the standard matter sector to obtain an
initially lingering solution followed by an exponentially
expanding inflationlike solution. This case appears to be
challenging unless one considers quantum effects such as
Casimir energy.
We note that these considerations qualitatively and

quantitatively change the nature of the postlingering behav-
ior of the scale factor. Below, we consider the Universe to be
dominated by the additional sector fluid after lingering, a fact
which depends on the additional sector diluting slower, with
cosmic expansion, than the standard matter. If, instead of
continuing to expand, the Universe shrinks, the reverse
situation holds. With cosmic contraction, standard matter
concentrates faster than the additional sectors. It would only
be a short time before the standard matter dominated over the
additional sector. Since our current Universe appears to be
expanding at an accelerated rate, we ignore the options of a
collapsing universe in what follows.

B. Postlingering and the exit to inflation

By their scaling, matter and radiation dilute with the
cosmic expansion faster than the dS-like sector. Neglecting
the standard model-like sector then provides us with the

FIG. 3. Departure from lingering. The left plot shows the cosmic-time evolution of the scale factor for different Δe in a positively
curved universe containing standard matter and a fluid that scales like the cosmological constant. A smaller Δe corresponds to a longer
lingering period. The right plot shows the corresponding variation of the Hubble parameter, demonstrating the transition from lingering
to dS. The scale factor and time coordinate at the closest proximity to lingering are given by a� and t�, respectively.
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equations that determine the evolution of the scale factor in
the postlingering era. In this limit, (11) takes the form

a00 þ a ¼ ðm − 2Þðn − 4Þ
ðn −mÞ

ð1þ ΔeÞ
2a2−n�

a3−n ≡ Ca3−n; ð23Þ

where we have inserted the ansatz for ρ̄e discussed above.
The first Friedmann equation then takes the form

H2 ¼ 2ðn −mÞC
ð3 − nÞðm − 2Þðn − 4Þ a

2−n − 1: ð24Þ

The above equations can be solved for aðηÞ for the relevant
values of n. We denote byΔηpl the conformal time duration
since the postlingering transition. The general solution for
(23) and (24) is

an ¼
�
−
m − 2

n −m
1þ Δe

a2−n�

�
1=ðn−2Þ

× sin

�
n − 2

2
Δηpl þ η1

�
2=ðn−2Þ

; ð25Þ

where η1 is the remaining constant of integration set by the
initial value of the scale factor at the start of the post-
lingering phase of evolution. From this solution, it is clear
that we need to treat the n ¼ 2 case separately. For n ¼ 2,
using the exponentially expanding solution of (23) in (24),
we find

a2 ¼ apl exp ðΔηpl
ffiffiffiffiffiffi
Δe

p
Þ; ð26Þ

where apl is the scale factor at the lingering to postlingering
transition. For an example with different initial conditions
see Fig. 4.

III. COSMOLOGY FROM A HAGEDORN PHASE

In this section, we present the motivation from string
theory for an initial phase of cosmological lingering.
We then demonstrate how this can lead to a period of
inflation without a NEC violating transition. In regards to
the presentation thus far, within the context of string theory
(quantum gravity) we address the question: Is spatial
curvature an essential component for a NEC preserving,
lingering universe?6 We also discuss how our approach
relates and differs from previous considerations in the
literature.

A. Model independent string cosmology

Essentially all string theory compactifications give rise to
the following terms in the effective action (written in the
four-dimensional string frame) [13–15]:

S ¼ 1

2κ24

Z
d4x

ffiffiffiffiffiffiffi
−G

p
e−ϕs

�
Rþ ð∂ϕsÞ2 −

1

12
H2

3

�

þ 1

2

Z
d4xLmðϕs; Gμν;…Þ;

e−ϕs ¼ VolM6

ð2π ffiffiffiffi
α0

p Þ6
1

g2s
; 2κ24 ¼ 2πα0 ≡ 1

M2
s
; ð27Þ

where (for simplicity) we have assumed a string compac-
tification from ten to four dimensions (Vol M6 is the
volume of the extra dimensions in string units), Gμν is the
string frame metric, R is the corresponding Ricci scalar, gs
is the string coupling, and Ms is the string scale. We have
focused on the bosonic string spectrum assuming weak
coupling and small space-time curvature. We have also
neglected fermions, tachyons, critical dimensions, world-
sheet curvature, Ramond-Ramond fluxes, and the possibil-
ity of supersymmetry as including these effects would not
alter our main conclusions. However, we have included a
term Lm which can account for arbitrary sources of the
dilaton. Finally, H3 is the three-form flux (an Einstein-
Maxwell field) and ϕs a scalar field—the dilaton.
Given our analysis in the previous sections, it will be

useful to recast this theory in the Einstein frame. We
emphasize that it is in the Einstein frame that one should
invoke the NEC if one is interested in the stability of the
theory and the presence of singularities. There is a notion
of these issues in the string frame (physics does not depend
on the frame; however, the singularity theorems were
originally formulated in the Einstein frame [16], and are

FIG. 4. Exiting to inflation. The plot shows the flow lines in the
Hubble parameter–scale factor phase space for a positively
curved universe with standard matter and a fluid that scales like
the cosmological constant. The dotted trajectory corresponds to
the enforcement of the Hubble constraint with Δe ¼ 0; it passes
through the red dot which corresponds to the fixed point of
lingering. The colored curves are trajectories with Δe ≠ 0, which
correspond to an exit from the lingering phase to inflation.
The further away a curve is from exact lingering, the larger the
value of Δe.

6Spoiler alert: Our results respect Betteridge’s law of
headlines.
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most easily interpreted in the context of general relativity.7

In the four-dimensional Einstein frame, defined by the
conformal transformation (which does not affect experi-
mental observations)

ds2s → ds2E ¼ e−ϕsds2s ; Gμν → gμν ¼ e−ϕsGμν;

ϕs → ϕE ¼ ϕs; ð28Þ

(27) becomes

S ¼
Z

d4x
ffiffiffi
g

p �
R½gμν�
2κ2

−
1

2
ð∂ϕEÞ2 −

1

2
e2ϕEð∂χÞ2

�

þ 1

2

Z
d4xL̃m

�
ϕE; gμνeϕE ;…

�
; ð29Þ

where κ2 ¼ 1=M2
p as in previous sections, and the fields ϕE

and χ have been rescaled, the gravitational term has the
usual Einstein-Hilbert form, and the dilaton source L̃m now
has dilaton dependent coupling. Except in type I string
theory, H3 is the four-dimensional part of the field strength
of the Neveu-Schwarz two-form, and χ is defined via the
equation dχ ¼ e−ϕs �H3. The dilaton ϕs and the axion χ
are common to nearly all string theories and this simple
model captures many aspects that string compactifications
and the resulting cosmologies have in common. We might
immediately suppose that there are FLRW solutions where
χ þ ie−ϕs approximately describes a semicircular geodesic
in the upper half plane (with a relevant field-space metric),
and that by making gs small, we can avoid significant
backreaction of the scalars on the geometry. Again, the
action becomes more involved in the presence of super-
symmetry (and its breaking), additional fields, branes, extra
dimensions, etc.—but these can (and have) been accounted
for in the literature to a large extent (see, e.g., [18,19]).
Here we will focus on the 3þ 1 dimensional cosmologies
as we did above, and in the simplest terms to reach our
conclusions.
The role of ℏ in string theory is played by the vacuum

expectation value (VEV) of the dilaton, which is related to
the string coupling g2s ∼ exphϕsi and in the dimensionally
reduced theory this would also include the extra dimen-
sions as expressed in (27). The role of gravitational
corrections is controlled by the string scale Ms—which
here we will take parametrically below the Planck scale
(1=κ ¼ Mp ¼ eϕs=2Ms). In particular, the Planck scale is
a derived quantity which involves the dynamics of the
dilaton (its resulting VEV), the value of the string scale, and
the size and dynamics of any extra dimensions (here

assumed six-dimensional8 M6). An important conse-
quence of this is that when one considers decoupling
limits one must take into account the other scales (and
dynamics) involved. Looking into these consequences has
led to interesting conjectures—such as the weak gravity
conjecture and notion of the swampland of quantum field
theories [21–24].
Moreover, string theory comes with a number of dual-

ities [13–15] resulting from the world-sheet theory and
manifested in the low-energy action (27). These sym-
metries can be used to relate the weak coupling limit of
one realization of the theory with the strong coupling of
another. When applied to the geometry they also imply a
theoretical correspondence between the large volume limit
of one theorywith the small volume limit of another theory.
Finally, when applied to cosmology this would imply a
“scale-factor” duality [25–27]. Given the latter, string
theory was used to motivate alternatives to standard
inflation resulting from a bouncing universe—examples
include string gas cosmology (SGC) [25,28] and the pre–
big bang (PBB) [17].

1. What we are not considering in this paper

In SGC and PBB models, the goal is to produce an
alternative to standard inflation to resolve the classic issues
of the background (the horizon, flatness, entropy problems,
etc.), while also (causally) generating cosmological per-
turbations to provide seed perturbations for the CMB and
large-scale structure.9 One challenge for these approaches
is that they invoke a “bounce” before or near the cosmo-
logical singularity, and in perturbation theory [required to
trust the effective action (27)] this implies a violation of the
NEC. Also, as mentioned above, such approaches can also
suffer from singularity issues as established in [9,10,12].
We will return to these points, but first we further
discuss the motivation for a new phase of early universe
cosmology—a lingering phase.

B. The Hagedorn phase

In addition to (27), another robust prediction of string
theories is their thermodynamic properties at high energy.
An important first step for understanding the high temper-
ature behavior resulted from considerations of Hagedorn
while exploring quark deconfinement and its dependence
on temperature in [30]. In particular, this study led

7One can consider the NEC in both frames but it is simpler to
interpret in the Einstein frame [17] where violations can be
interpreted through energy and matter following geodesics in a
clear way as originally stated by Hawking and Ellis [16].

8Strictly speaking, string theories do not require 10 or 11
dimensions to be consistent, nor do they require supersym-
metry [13–15]. This may be an important clue on how to realize
realistic models of cosmology from string theory—such as quasi-
but not exact dS space-time [20].

9One possible exception to this appears in [29]. However, our
approach differs in that those authors again considered a
bouncing cosmology in the context of SGC that then led to
inflation.
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Hagedorn to the idea of a cosmic and phenomenological
limiting temperature. Such thermodynamical behavior
signals a departure from standard quantum field theory
(QFT), the partition function will have an exponentially
diverging degeneracy of states (hence, the mass spectrum)
at high energy and temperatures. When interpreted within
string theory, this implies a maximum temperature TH for a
fluid of strings—the so-called Hagedorn temperature [31].
Cosmologically, the epoch in which the limiting temper-

ature is achieved, T ≈ TH, implies a phase where the
temperature remains roughly constant—a result from the
fact that the energy of a string does not increase [31].
Naively, for FLRW cosmology this would imply that a gas of
strings would evolve like pressureless matter—ρH ∼ E=a3

with E constant. However, an important consideration is the
string dilaton, which would also be present within string
theory [27]. The resulting dynamics implies a departure
from standard FLRW intuition as manifested in the string
frame (27). Moreover, in addition to the Hagedorn phase and
the dilaton, string theory also generically leads to extra
dimensions and “winding strings.” In a simple realization,
we can consider extra dimensions in the form of a six-
dimensional torus (a simple example of a Calabi-Yau
manifold) with strings wrapping the cycles of these dimen-
sions10 in addition to unwrapped strings [particles—the low-
energy states being the graviton, Einstein-Maxwell fields
(model independent axions), and the dilaton]. A cosmologi-
cal consequence of the dilaton and the wrapped states is they
do not lead to inflation (as in standard FLRW) but instead
preserve the Hagedorn phase dynamics.
To study the dynamics, we start by considering a

homogeneous but anisotropic metric,

ds2 ¼ nðtÞ2dt2 þ
XN
i¼1

eλ
i
sðtÞdx2i ; ð30Þ

where n is the lapse function which we gauge fix to 1 in

what follows; aðiÞs ¼ eλ
i
sðtÞ are string frame scale factors for

the N spatial directions. Specializing to isotropic cosmol-
ogies [λisðtÞ ¼ λsðtÞ ∀ i] with N ¼ 3, the equations of
motion resulting from (27) are

ϕ̇s ¼ 3Hs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3H2

s þ eϕsρs

q
;

Ḣs ¼ �Hs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3H2

s þ eϕsρs

q
þ 1

2
eϕsðps þ ΔϕLmÞ;

ρ̇s þ 3Hsðρs þ psÞ ¼ −ϕ̇sΔϕLm; ð31Þ

where ρs and ps are the string frame energy density and
pressure, Hs is the string scale Hubble parameter, and
ΔϕLm is the variational derivative of Lm with respect to the
dilaton, which we set to zero for now. We work in units
2κ24 ¼ 1. We note that these equations become the same as
the Einstein frame equations in Sec. II if we take the
(unshifted) dilaton to be constant and include spatial
curvature through the energy density. The energy and
pressure of sources are defined in the string frame and
given by11 the comoving free energy as

Es ¼ −ðF þ β∂βFÞ P ¼ ∂λsF ¼ −∂λsEjβ¼const; ð32Þ

where β is the inverse temperature and λs ¼ ln as. The
sources obey the conservation equation

Ės þ 3HsP ¼ 0: ð33Þ

We will focus on the sources of the form Es ¼ E0e−3γλs
with equation of state parameter γ ¼ Ps=Es ¼ ps=ρs, ρs
and ps are the energy and pressure density derived from the
comoving quantities Es and Ps, respectively. Given the
considerations above, we will be interested in two cosmo-
logical phases. One phase corresponds to the Hagedorn
phase of strings where their energy does not increase and
the temperature remains nearly constant. This implies an
equation of state for the Hagedorn phase—γ ¼ 0; whereas,
below the Hagedorn phase (but still at relatively high
temperatures T ≲ TH) strings have two types of scaling
behavior12 corresponding to radiation (γ ¼ 1=3) and wind-
ing strings (γ ¼ −1=3). In both epochs we will see the
dilaton plays a crucial role in the dynamics.

1. Cosmological solutions

Solutions of the system (31) can be found for constant
equation of state by introducing a time x such that

dx ¼
�
E
E0

�
dt; ð34Þ

where E0 is a constant reference energy. Using (34), the
equations of (31) are equivalent to

φ02
s − 3λ02s ¼ E0eφsþγ3λs ;

φ00
s − 3γφ0

sλ
0
s − 3λ02s ¼ 1

2
E0eφsþ3γλs ;

λ00s − 3γλ02s − φ0
sλ

0
s ¼

1

2
γE0eφsþ3γλs ; ð35Þ

10We note that this may seem rather exotic to the unfamiliar,
however the extra dimensions can also be used to understand
important problems in particle phenomenology and cosmic
inflation—where it has been crucial in providing a systematic
way to calculate corrections to the low-energy effective field
theory.

11See Ref. [32] for more detail.
12One may ask about the importance of string oscillations, but

it has been shown that these can be neglected relative to the
sources we consider [33].
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where primes denote derivative with respect to x, φs ¼
ϕs − 3λs is the shifted dilaton, and energy scales as
E ¼ E0 exp ð−3γλsÞ.
Looking for isotropic solutions with constant equation of

state p ¼ γρ, one finds [34]

λs ¼ λs0 þ
γ

α
ln ½ðx − x−Þðx − xþÞ� þ

1

α
ffiffiffi
3

p ln

�
x − xþ
x − x−

�
;

ð36Þ

φs ¼ φs0 −
1

α
ln ½ðx − x−Þðx − xþÞ� −

γ
ffiffiffi
3

p

α
ln

�
x − xþ
x − x−

�
;

ð37Þ

ϕs ¼ ϕs0 − ln ½ðx− x−Þðx− xþÞ�−
ðγ − 1Þ ffiffiffi

3
p

α
ln

�
x− xþ
x− x−

�
;

ð38Þ

with singularities at

x� ¼ 1

α

�
3γx1− x0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3γx1− x0Þ2þαð3x21− x20Þ

q �
; ð39Þ

where α ¼ 1 − 3γ2 and λs0, φs0, ϕs0, x0, and x1 are
integration constants. x− < x < xþ is a classically forbid-
den region.

2. Hagedorn phase at T ≃ TH

For the Hagedorn phase with T ≃ TH, the energy density
is dominated by a fluid with constant energy E ¼ E0 and
vanishing pressure P ¼ 0, so that γ ¼ 0 (α ¼ 1), in which
case Eqs. (36)–(38) become

λs ¼ λs0 þ
1ffiffiffi
3

p ln

�
1 −

x�
x

�
; ð40Þ

φs ¼ φs0 − ln ½xðx − x�Þ�; ð41Þ

ϕs ¼ ϕs0 þ
ffiffiffi
3

p
ln

�
1 −

x�
x

�
− ln ½xðx − x�Þ�; ð42Þ

where we have set the integration constants so that x− ¼ 0
and xþ ¼ x�. Using (34), the solution in coordinate time is
obtained by replacing x with t:

λs ¼ λs0 þ
1ffiffiffi
3

p ln

�
1 −

t�
t

�
; ð43Þ

φs ¼ φs0 − ln ½tðt − t�Þ�; ð44Þ

ϕs ¼ ϕs0 − 2 ln tþ � ffiffiffi
3

p
− 1

�
ln

�
1 −

t�
t

�
; ð45Þ

where t� ¼ x� (again, the moment of the singularity) and
the string coupling is

g2s ¼ ehϕsi ¼ eϕs0t−2
�
1 −

t�
t

� ffiffi
3

p
−1
: ð46Þ

From (31), we see there are two branches of solutions,

φ̇s ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3H2

s þ eφsE0

q
; ð47Þ

Ḣs ¼ �Hs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3H2

s þ eφsE0

q
; ð48Þ

corresponding to the sign of φ̇s. Differentiating Eqs. (43)–(45)
gives

φ̇s ¼ −
ð2t − t�Þ
tðt − t�Þ

; ð49Þ

Hs ¼
t�ffiffiffi
3

p
�

1

tðt − t�Þ
�
: ð50Þ

As emphasized in [32], these solutions represent different
superselection sectors of the theory and are topologically
distinct solutions categorized by the sign of φ̇s. The
solution branches are summarized in Table II where we
present the four physically distinct solutions.

3. Phase space analysis of the Hagedorn phase

Here we want to understand the phase space of solutions
for the Hagedorn phase. To do this it is useful to introduce a
coordinate transformation,

dτ ¼
ffiffiffiffiffiffi
E0

p
eðφs−3γλsÞ=2dt ð51Þ

(note, in this section primes represent the derivative with
respect to τ). Then the equations are

φ02
s − 3λ02s ¼ 1;

φ00
s þ

1

2
φ0
sð−3γλ0s − φ0

sÞ ¼ −
1

2
;

λ00s þ
1

2
λ0sð−3γλ0s − φ0

sÞ ¼
γ

2
: ð52Þ

TABLE II. The four regions of the Hagedorn solution (as
discussed in the text and Fig. 5).

Region Branch Expansion Shifted dilaton Dilaton

I (þ) Hs > 0 φ̇s > 0 ϕ̇s > 0
II (þ) Hs < 0 φ̇s > 0 ϕ̇s > 0 or ϕ̇s < 0
III (−) Hs > 0 φ̇s < 0 ϕ̇s > 0 or ϕ̇s < 0
IV (−) Hs < 0 φ̇s < 0 ϕ̇s < 0
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Introducing lðτÞ ¼ λ0s and fðτÞ ¼ φ0
s the above equations

can be taken as a first order system with fixed points

ðl; fÞ ¼
0
@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2

ð1 − 3γ2Þ

s
;�sgnð−γÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð1 − 3γ2Þ

s 1
A; ð53Þ

where sgnðγÞ ¼ �1 is the sign of γ. Near the critical
temperature γ ¼ 0 as discussed earlier.
The phase space for Hagedorn cosmologies near the

critical temperature TH is given in Fig. 5. There we plot the
string frame Hubble parameter in the conformal time τ
versus the derivative of the shifted dilaton. All physically
relevant trajectories are restricted by the Hamiltonian
constraint (conservation of energy) to begin and end on the
black (codimension one) hyperbolae. This is an important
observation in that a trajectory that starts in region I or II
cannot energetically go to region III or IV. We performed
the conformal transformation to make this manifest (we
also note this transformation is not singular). Thus, there
are two distinct branches again separated by the sign of the
shifted dilaton. The green trajectory provides an example
of an (unphysical) observer that respects the phase space
flow but does not satisfy conservation of energy. The blue
(dot-dashed) trajectories are lines of constant (in conformal
time) φ0

s, whereas pink (dashed) trajectories correspond to
constant (in conformal time) HsðτÞ. Their intersection
occurs at the causal (hyperbolic) fixed points of the phase
space flow ð�1; 0Þ. In summary, our results agree with
those of [32].
In the Appendix we discuss how the Hagedorn phase in

the string frame relates to that in the Einstein frame.

C. Post-Hagedorn phase T ≲ TH

We now turn to the cosmology when the temperature has
decreased below the Hagedorn temperature. Such behavior
is expected due to the fact that the lingering solution of the
Hagedorn phase is a hyperbolic (unstable) fixed point
for φ0

s > 0 as can be seen from Fig. 5. We will see in
the next section that these solutions are the ones of interest
for lingering cosmologies that respect the NEC. As
mentioned above, the stringy nature of particles will
manifest itself as both radiation and string winding modes
below the Hagedorn temperature—and the dilaton will play
a crucial role until stabilized. From the discussion above,
we can use the solutions from (36)–(38), where we have
γ ¼ þ1=3ð−1=3Þ for radiation (winding modes). The
solutions are

λs ¼ λs0 �
1

2
ln ½xðx − x�Þ� þ

ffiffiffi
3

p

3
ln

�
1 −

x�
x

�
; ð54Þ

φs ¼ φs0 −
3

2
ln ½xðx − x�Þ� −

ffiffiffi
3

p

2
ln

�
1 −

x�
x

�
; ð55Þ

ϕs ¼ ϕs0 þ
ffiffiffi
3

p
ln

�
1 −

x�
x

�
; ð56Þ

where again we set x− ¼ 0 and xþ ¼ x�. The upper sign
in (54) corresponds to radiation (momentum modes) and
the lower sign to winding modes. When considering the
behavior far from the singularities (i.e., jxj → �∞), the
energy for the momentum modes is given by E ∼ e−λs, and
noting the relation to the original coordinate time, we find
that jxj ∼ jtj1=2 and the solutions in this limit approach

λs → λs0 þ
1

2
lnðtÞ; ð57Þ

φs → φs0 −
3

2
lnðtÞ; ð58Þ

ϕs → ϕs0; ð59Þ

which is the standard FLRW radiation dominated universe.
In general, the radiation phase leads to four physically
distinct solutions which are expressed in Table III. Like-
wise, we can find the solutions for the winding strings
using T duality λs → −λs;φs → φs, and oscillations of the
strings can be neglected cosmologically. For more details
we refer the reader to [32]. Here we want to emphasize the
analysis of the phase space.
To analyze the phase space of the sub-Hagedorn regime,

we again use the time redefinition (51) with γ ¼ �1=3
for (þ) radiation=ð−Þ winding strings. Then the equa-
tions are given by (52) with the relevant values of γ.

FIG. 5. The phase space (φ0
s; Hs) for Hagedorn cosmologies at

the critical temperature. The black curves enforce the Hamil-
tonian constraint. The green trajectory is an example of an
unphysical observer. The blue (dot-dashed) trajectories are lines
of constant φ0

s, whereas pink (dashed) trajectories correspond to
constant HsðτÞ. Their intersection occurs at the causal fixed
points of the phase space flow ð�1; 0Þ.
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We again introduce lðτÞ ¼ λ0s and fðtÞ ¼ φ0
s and the

equations can be taken as a first order system with fixed
points given by (53).
The phase spaces are given in Fig. 6. There we plot the

string frame Hubble parameter in the conformal time τ
versus the derivative of the shifted dilaton. All physically
relevant trajectories are restricted by the Hamiltonian
constraint to begin and end on the black (codimension
one) hyperbolae and any branch change would violate the
conservation of energy. The green trajectory provides an
example of an (unphysical) observer that respects the phase
space flow but does not satisfy conservation of energy.
The blue (dot-dashed) trajectories are lines of constant (in
conformal time) φ0

s, whereas pink (dashed) trajectories
correspond to constant (in conformal time) HsðτÞ.
Their intersection occurs at the causal (hyperbolic) fixed
points ð� ffiffiffiffiffiffiffiffi

3=2
p

;� ffiffiffiffiffiffiffiffi
1=6

p Þ and ð∓ ffiffiffiffiffiffiffiffi
3=2

p
;� ffiffiffiffiffiffiffiffi

1=6
p Þ corre-

sponding to the phase space flow of winding strings and
radiation, respectively. We note that the mirror sym-
metry of the two plots is an example of T duality in the
theory.

IV. EXIT FROM LINGERING AND THE NULL
ENERGY CONDITION

In this section we review the importance of the egg
function13 in describing violations of the NEC and the
viability of models. The importance of this constraint is that
NEC violations imply fine-tuning in cosmological models.
Inflation does not have this type of fine-tuning, but does
have a past singularity (geodesic incompleteness) [10,12]
which, again, is what we are trying to address in this paper.
We discuss both the classical model with spatial curvature
(Sec. II) and the Hagedorn motivated model (Sec. III).
Considering whether a cosmological model violates

the NEC is important for determining its viability and
predicability. NEC violations signal the presence of cos-
mological singularities and a breakdown of general

relativity [16]. In the context of the evolution of cosmo-
logical perturbations NEC violations are not detrimental,
a priori, but imply the presence of fine-tuning of initial
conditions especially when considering causality of obser-
vers [35] and the evolution of cosmological pertur-
bations. NEC violations do not have to be catastrophic,
if localized in space-time and in a controlled manner
respecting the limited range of validity of the effective
field theory [36]. However, for a complete picture of the
Universe we will need to assume that the NEC is respected
globally.
In the absence of a complete theory of quantum gravity we

are forced to assume what is to be known as “reasonable”
properties of matter and energy. A conservative assumption
is that sources should lead to positive or zero curvature so
that geodesics of the space-time converge along a null vector
nμ (matter/energy is always attractive) [16]. This null con-
vergence condition requires Rμνnμnν ≥ 0; using Einstein’s
equation this implies

Tμνnμnν ≥ 0: ð60Þ

For the FLRW type universes we are considering here, this
implies ρþ p ≥ 0.
In our analysis thus far, we have respected the NEC as

we required our second sector to respect pe ≥ −ρe=3 as
discussed in Sec. II A 1. In particular, the lingering con-
ditions were

ρ̄s
am

þ ρ̄e
an

−
3

κ2a2
¼ 0;

ðm − 2Þ ρ̄s
am

þ ðn − 2Þ ρ̄e
an

¼ 0; ð61Þ

and these preserve the NEC at all times but also lead to
interesting dynamics due to the presence of spatial curva-
ture. Indeed, as can be seen from Fig. 7, the spatial
curvature term leads to a saturation of the NEC as can
also be deduced from the equations above.
Our classical analysis of Sec. II implies that the lingering

phase can
(i) be realized in a universe with positive spatial

curvature while preserving the NEC, and
(ii) can exit to a period of inflation without violating

the NEC.
We now turn to the analysis in Sec. III and review the
challenges for a string gas approach as discussed in [32].

A. Branch change and the egg function

We reconsider the equations of (31), now allowing for
additional contributions that could arise from other stringy
matter, α0 or gs corrections, spatial curvature, etc. which
may be nontrivially coupled to the dilaton. These can be
included in the effective Lagrangian Lm ¼ Lmðϕ; gμν;…Þ
and in order to preserve spatial isotropy these sources

TABLE III. The four regions of the post-Hagedorn phase
ðT ≲ THÞ for dynamical solutions that do not have a bounce. The
first two regions (1 and 1TR) correspond to string radiation, the
superscript TR implies the time reversed solution (x → −x and
x� → −x�). The last two rows correspond to the winding model
duals (3 and 3TR). We have respected the conventions of [32].

Region Branch Expansion Shifted dilaton

1 (−) Hs > 0 φ̇s < 0

1TR (þ) Hs < 0 φ̇s > 0

3 (−) Hs < 0 φ̇s < 0

3TR (þ) Hs > 0 φ̇s > 0

13We would like to emphasize that no chickens were harmed in
performing this research, however our eggs are not free range due
to the constraints of the NEC.
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must be of the perfect fluid form,14 namely Tμν ¼
diagðρs; ps;…; psÞ. We rewrite the equations of (31),

φ̇s ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ̇2s þ eϕsρs

q
; ð62Þ

Ḣs ¼ �λ̇s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ̇2s þ eϕsρs

q
þ 1

2
eϕsðps þ ΔϕLmÞ; ð63Þ

ρ̇s ¼ −3λ̇sðρs þ psÞ − ϕ̇ΔϕLm; ð64Þ

where 2
ffiffiffiffiffiffi−gp ΔϕL≡ δLm=δϕs results from the possible

coupling of sources to the dilaton. Combining the above we
find an equation that will prove useful below:

φ̈s − 3λ̇2s ¼
1

2
eϕsðρs − ΔϕLmÞ: ð65Þ

From (62) we immediately see that in order for a branch
change to occur the so-called egg function,

FIG. 7. The NEC condition (60) recalling the importance of spatial curvature in (3). Above (left) is the NEC as a function of scaled
time for a universe with positive spatial curvature, a standard matter component, and positive vacuum energy as it evolves to
the inflationary phase. The initial conditions are set by the lingering conditions (61) and allowing a perturbation of Δe as discussed in
Sec. II B. The right plot is the same configuration; however instead of a cosmological constant we consider a string network with
equation of state we ¼ −1=3. We see that the NEC is never violated in both models.

FIG. 6. The phase space (φ0
s; Hs) of Hagedorn cosmologies below the critical temperature. The black curves enforce the Hamiltonian

constraint. The green trajectory is an example of an (unphysical) observer. The blue (dot-dashed) trajectories are lines of constant φ0
s,

whereas pink (dashed) trajectories correspond to constantHsðτÞ. Their intersection occurs at the causal fixed points ð�
ffiffiffiffiffiffiffiffi
3=2

p
;� ffiffiffiffiffiffiffiffi

1=6
p Þ

and ð∓ ffiffiffiffiffiffiffiffi
3=2

p
;� ffiffiffiffiffiffiffiffi

1=6
p Þ corresponding to winding strings and radiation, respectively. The labeled lines correspond to the solutions in

Table III. They represent nonbouncing cosmologies in the phase space.

14Although we consider the isotropic case here, given our
assumption of spatial homogeneity the presence of anisotropy
will not change our conclusions. As discussed in, e.g., [37], we
could equivalently work in the 4D effective theory and then the
anisotropies would simply appear as sources in the 4D effective
“matter” Lagrangian. For our arguments to follow, it is enough
to note that such sources (anisotropies) will not violate the null
energy condition.
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e ¼ 3λ̇2s þ eϕsρs ð66Þ

must vanish, implying that ρs < 0 is required. Hence, the
sign of φ̇s acts as a kind of topologically conserved charge,
in the sense that for positive energy solutions a branch
change cannot occur classically.
One might optimistically hope that the addition of string

corrections, nontrivial coupling to the dilaton, and/or other
contributions to the effective action that appear in Lm might
allow for ρs < 0 and a successful exit from the Hagedorn
phase. Entertaining such a possibility lets us continue
assuming that ρs < 0 is achieved and ask whether this is
sufficient to achieve an exit from the Hagedorn phase.
A useful relation can be found by using φ̇s ¼ � ffiffiffi

e
p

and (65),

� d
dt

ð ffiffiffi
e

p Þ ¼ 3λ̇2 þ 1

2
eϕsðρs − ΔϕLmÞ; ð67Þ

¼ eþ 1

2
eϕs jρsj −

1

2
eϕsΔϕLm; ð68Þ

where in the last step we have used the definition of the egg
function (66) and the fact that ρs < 0 as we approach the
egg (e ¼ 0). (�) refers to the branch on which this evolves.
First, let us consider the case when the sources are

trivially coupled to the dilaton in the string frame, so that
ΔϕLm ¼ 0. We are interested in the possibility that we
initially approach the egg from the Hagedorn (þ) branch
and then make a transition to the radiation dominated
universe (−) branch. Requiring φ̇ to be real implies e ≥ 0.
A branch change requires e to vanish and hence e has to
decrease over time, i.e, d

dt ð
ffiffiffi
e

p Þ < 0. In the case of trivial
dilaton coupling (i.e. ΔϕLm ¼ 0) we find
First let us consider the case when the sources are trivially

coupled to the dilaton in the string frame, so thatΔϕLm ¼ 0.
We are interested in the possibility that we initially approach
the egg from the Hagedorn (þ) branch and then make a
transition to the radiation dominated universe (−) branch.
Because we have seen that requiring analyticity implies
e ≥ 0 (classically allowed region), it follows that ddt ð

ffiffiffi
e

p Þ < 0

in order for the transition to occur. In the case of trivial dilaton
coupling (i.e., ΔϕLm ¼ 0), we find

d
dt

ð ffiffiffi
e

p Þ ¼ eþ 1

2
eϕs jρsj > 0; ð69Þ

where we have used ρs < 0 before the transition. We
immediately see that a branch change cannot occur, since
the egg is repulsive, i.e., the point e ¼ 0 is a repeller in the
phase space and trajectories will not lead to successful
transitions. On the (þ) branch we have used ρs < 0 before
the transition. Hence, the above transition cannot occur.
Let us now consider the case of nontrivial coupling to the

dilaton. From (þ) branch solutions of (67), we might

naively expect that a branch change could occur if con-
tributions from ΔϕLm are negative enough to change the
overall sign. We will now show that is not the case, and will
prove a no-go theorem for the Hagedorn exit.

B. A no-go theorem for Hagedorn exit

Using (63), we eliminate ΔϕLm from (67) giving

� d
dt

ð ffiffiffi
e

p Þ ¼ − ̈λs þ λ̇sϕ̇s þ
1

2
eϕsðρs þ psÞ: ð70Þ

We integrate the above equation from the moment of the
branch change th when e ¼ 0, to the moment of escape te
when ρs ¼ 0 (ρs > 0 thereafter) and e ¼ 3λ̇2s . For evolution
along the (−) branch, this gives
Z

te

th

dt
�
d
dt

�
−

ffiffiffi
e

p þ λ̇s

�
− λ̇sϕ̇s

�
¼ 1

2

Z
te

th

dt eϕðρs þ psÞ:

ð71Þ

Evaluating the integral, we find

� ffiffiffi
3

p
− 1

�
λ̇sðteÞ þ λ̇sðthÞ þA ¼ −

1

2

Z
te

th

dt eϕðρs þ psÞ;

ð72Þ

where A ¼ R
λ̇sdϕ > 0 is the positive definite volume in

the phase space. The left-hand side is always positive, since
λ̇s > 0 on both branches. This implies that an exit from the
Hagedorn phase requires ρs þ ps < 0, i.e., a violation of
the NEC. One way to avoid this constraint is to introduce
spatial curvature as we discussed in the “classical situa-
tion.” In previous results of string gas cosmology spatial
curvature was ignored because inflation did not take place
(it was posed as an alternative to inflation). But considering
a lingering phase leading to inflation means that this is no
longer an issue and could resolve the problems with NEC
violation that we have discussed above.
In the string based models we are discussing here, they

would simply start in the lingering phase and then evolve
into dilaton led inflation. This can be seen from Fig. 5.
The phase space flow leads to a repeller (hyperbolic) fixed
point, which then leads to inflation—there is no branch
change. There are many open questions we must address.
How long does loitering last—how does inflation end?
These are challenging questions we must address in future
research. The promising aspect of this work is it suggests a
new way to look at the beginning of inflation.

V. CONCLUSIONS

A. What we are not proposing

In the models we have presented above, we considered
solutions where the cosmological evolution moves toward a
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state of inflationary cosmology (quasi-dS space-time). That
is, thus far we are relying on inflation to address the
horizon, relic, flatness, etc. problems [1–3]. We are not
proposing a complete alternative to inflation. Instead, we
are proposing an alternative way to look at the beginning of
inflation—the Universe lingered. For minimal inflation
there is an interesting possibility of small, but nonzero
spatial curvature which would be clarified by CMB-S4 [38]
and other future observations. The motivation for this
approach was to provide a new way to address the past
cosmological singularity of inflation and the initial state of
the Universe. In future work we will consider the effect
(if any) on the cosmological perturbations in the model.
We discussed a more provocative motivation in Sec. III.

In string theory approaches to early universe cosmology,
string dynamics can lead to a Hagedorn phase which
cosmologically implies a lingering phase. As discussed
above, the lingering phase does not demand the presence of
spatial curvature and can instead arise from the dynamics of
a string gas and an evolving dilaton. Thus far, the only
known solution that would not violate the NEC naturally
leads to inflation, as shown in [32]. Our analysis here has
used spatial curvature as a proxy for the string dynamics
discussed above which will be considered in future work.
We have seen that the initial state of the Universe can

differ from that of a dS space-time and then evolve into an
inflationary state without violating the null energy con-
dition. This suggests a new class of models for addressing
the problem of initial conditions for inflation and related
issues. We only briefly mentioned the geodesic incom-
pleteness of inflation (suggesting a singularity) as first
discussed in [9] and more recently in [10,11]. It is work in
progress to demonstrate that the lingering phase can
address this challenge. In particular, the lingering phase
and transition are motivated by the Hagedorn phase of
string theory when applied to cosmology. Although this
shares many similarities with models of string gas cosmol-
ogy, it differs in that the transition from the initial state is to
inflation and this transition does not violate the null energy
condition. The latter is crucial for preserving the predic-
tiveness and causality of the theory, particularly in calcu-
lating the initial state of the inflationary cosmological
perturbations. Again, this is work in progress.
Points of enhanced symmetry can act as dynamic

attractors like the lingering point we have discussed
above [39–42]. If all moduli were stabilized in this way
the theory would be at strong coupling. New analytic
techniques are needed to explore such a regime, however
the situation is not that different from QCD. In the case of
an enhanced symmetry point associated with the radii of the
spatial dimensions, one could view this as a confining
gauge theory. That is, at the duality point there are addi-
tional light degrees of freedom and the associated gauge
group is promoted to an SUð2Þ gauge theory. It was shown
in [41] that considering the backreaction of these particles

on the dynamics would lead to a confining potential or
“moduli trapping.” That is, as the dimensions evolve away
from the fixed point the gauge bosons become Higgsed
which is not energetically favored (see also [42,43]).
We leave exploring these ideas and the physics of the
Hagedorn/lingering phase to future publications.
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APPENDIX: EINSTEIN FRAME HUBBLE
PARAMETER AND SCALE FACTOR

ASYMPTOTICS

One can move between the Einstein and string frames as
(see, e.g., [28])

geμν ¼ e−2ϕs=ðN−1Þgsμν; ϕe ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

N − 1

r
ϕs: ðA1Þ

One then finds that

ln ae ≡ λe ¼ −
λs þ φs

N − 1
; ðA2Þ

He ≡ dλe
dτe

¼ dλe
dx

dx
dt

dt
dτe

¼ dλe
dx

dx
dt

dt
dτe

: ðA3Þ

Using (A1) and the definitions of E and φs, the expression
for the Einstein frame Hubble parameter, in terms of the
variable x, becomes

He ¼
dλe
dx

E0e−γNλseϕs=ðN−1Þ

¼ dλe
dx

E0 exp

	
1

N − 1
ðφs þNλsð1− γðN − 1ÞÞÞ



: ðA4Þ

For convenience, we define λ̃e ≡ ðN − 1Þλe, H̃e ≡ dλ̃e
dτe
, and

ΘðA;BÞ ¼ Aλs þ Bφs

¼ Aλs;0 þ Bφs;0 þ lnðxðx − x�ÞÞ
�
γA
α

−
B
α

�

þ ln

�
1 −

x�
x

��
A

α
ffiffiffiffi
N

p −
γB

ffiffiffiffi
N

p

α

�
¼ XðA;BÞ þ l1ðx; x�ÞYðA; BÞ þ l2ðx; x�ÞZðA; BÞ:
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We note H̃e ¼ He and ΘðϵA; ϵBÞ ¼ ϵΘðA;BÞ. Given this
we have

λ̃e ¼ −Θð1; 1Þ; ðA5Þ

H̃e ¼ −
dΘð1; 1Þ

dx
E0 exp

�
1

Ñ
Θð1; ðÑ þ 1Þð1 − γÑÞÞ

�
;

ðA6Þ

where Ñ ¼ N − 1.
Our goal is to find the Hubble parameter power-law

relation with the scale factor, as seen in the Einstein frame.
Because of the disconnected nature of the allowed range of
x for the solutions in the text, we have four limits of
interest. Two are the limits of the behavior in the infinite
past of one solution and the infinite future of the same
solution on another branch. The second two limits are the
approach to x ¼ 0 or the transit away from x → x�. In the
dilaton-dominated Hagedorn phase, γ ¼ 0 and α ¼ 1. One
can show that

a ¼ ã1=Ñ ¼ eλ̃e=Ñ ¼ a0ðxðx − x�ÞÞσ
�
1 −

x�
x

�
λ

; ðA7Þ

where a0 ¼ expð−ðλs;0 þ φs;0Þ=ÑÞ, σ ¼ Ñ−1, and λ ¼
−ðÑ

ffiffiffiffiffiffiffiffiffiffiffiffi
Ñ þ 1

p
Þ−1. A number of further substitutions and

expansions also lead to

He ¼ H0ðxðx − x�ÞÞ−γ
�
1 −

x�
x

�
δ

ðx − Γx�Þ; ðA8Þ

where we have defined

H0 ¼ 2E0 exp

�
1

Ñ
ðλs;0 þ ðÑ þ 1Þφs;0Þ

�
; ðA9Þ

γ ¼ 1þ 2Ñ

Ñ
; ðA10Þ

δ ¼
�
Ñ

ffiffiffiffiffiffiffiffiffiffiffiffi
Ñ þ 1

p �
−1
; ðA11Þ

Γ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Ñ þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
Ñ þ 1

p : ðA12Þ

When x → �∞, we find that

a
a0

∼ x2σ;

He

H0

∼ x1−2γ ⇒
He

H0

∼
�
a
a0

�1−2γ
2σ ¼

�
a
a0

�1
2
ð1−3NÞ

: ðA13Þ

When x → 0, we find that

a
a0

∼ xσ−λ;

He

H0

∼ x−ðγþδÞ ⇒
He

H0

∼
�
a
a0

�γþδ
λ−σ ¼

�
a
a0

�
−ð1−2 ffiffiffi

N
p þ2NÞ

:

ðA14Þ

When x → x�, we find that

a
a0

∼ ðx − x�Þσþλ;

He

H0

∼ ðx − x�Þδ−γ ⇒
He

H0

∼
�
a
a0

�δ−γ
σþλ ¼

�
a
a0

�
−ð1þ2

ffiffiffi
N

p þ2NÞ
:

ðA15Þ

For a universe dominated by a perfect fluid with equation
of state w, standard cosmology implies that H ∼ a−

3
2
ð1þwÞ.

The effective equations of state for the dilaton dominated
Universe are

x → �∞∶ w ¼ N −
4

3
; ðA16Þ

x → 0∶ w ¼ −
1

3
ð1þ 4

ffiffiffiffi
N

p
− 4NÞ;

x → x�∶ w ¼ 1

3
ð4N þ 4

ffiffiffiffi
N

p
− 1Þ: ðA17Þ
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