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We include the effect of the frictional force caused by interactions between cosmic strings and the
particles of the background plasma in the computation of the Stochastic Gravitational Wave Background
generated by cosmic string loops. Although our results show that friction leads to a partial suppression of
the emission of gravitational radiation by cosmic string loops, we also find that loop production is very
intense in the early stages of the Kibble regime. We show that, in many instances, this leads to a prominent
signature of friction in the ultrahigh frequency range of the spectrum, in the form of a secondary peak. The
signature of friction is not only sensitive to cosmic string properties but also to the initial conditions of the
network and its surroundings. A detection of this signature would then allow us to extract information about
the physics of the early Universe that cannot be uncovered when probing the rest of the Stochastic
Gravitational Wave Background spectrum.

DOI: 10.1103/PhysRevD.110.063516

I. INTRODUCTION

We are swiftly moving into the era of Gravitational Wave
(GW) astronomy. The LIGO-Virgo Collaboration has
observed, over the past years, numerous compact object
coalescence events [1,2], and very recently major milli-
second pulsar timing arrays have announced the detection
of a Stochastic Gravitational Wave Background (SGWB)
[3–6] in the nanohertz frequency range. Gravitational
radiation, unlike electromagnetic radiation, travels freely
through spacetime even in the very early stages of the
evolution of the Universe and may then allow us to study
previously undetected sources. Cosmic strings may be one
such source. The early Universe is expected to have
undergone a series of symmetry-breaking phase transitions
that may lead to the production of these linelike topological
defects. Cosmic strings are generally expected to survive
until the present time, and since they concentrate a
significant amount of energy and move with relativistic
velocities, they may potentially leave different observatio-
nal signatures [7,8]. These remnants of the very early
Universe may then allow us to probe particle physics up to
very high energies, even beyond the reach of current and
future collider experiments.
Although standard observational probes have failed to

detect cosmic strings, with the onset of GW astronomy, we
have a new promising way to probe them: the SGWB they

generate [9,10]. The SGWB generated by cosmic string
networks is mainly sourced by the emissions of the closed
loops of string that are continuously produced in string
interactions. In the initial stages of the evolution of the
network, when the Universe is quite dense, strings are
damped by the frictional force caused by the frequent
interactions with particles of the surrounding plasma
[11–13]. Studies of the cosmic string SGWB [9,10,14–17]
often assume that loops created in this friction-dominated
era do not provide a significant contribution to this spectrum
and that GW production only starts once the Universe has
rarified enough for friction to become irrelevant for string
dynamics. However, although friction should in fact lead to
a decrease of the GWemission of loops, string networks are
expected to be quite dense in the friction era, which means
that many loops should be produced. As a result, the
contribution of the loops created in the friction era may
not, in fact, be negligible as is usually assumed. Here, we
study the impact of friction on the GW emission of loops
and on the number of loops produced, with the objective
of computing the contribution of the loops created in the
friction era to the SGWB.We show that friction may lead to
a distinct signature in the high-frequency range of the
spectrum, in the form of a secondary peak, and show that its
properties are dependent on cosmic string properties and on
the properties of the background plasma. The SGWB
generated by cosmic strings may then extend farther into
the ultrahigh-frequency range of the GW spectrum than
previously anticipated, allowing us then to look farther into
the early stages of the evolution of the Universe.
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This paper is organized as follows. In Sec. II, we
introduce the Nambu-Goto equations of motion for cosmic
strings with friction and outline how these may be used to
derive a model to describe the cosmological evolution of
cosmic string networks. Then, in Sec. III, we provide a brief
overview of the computation of the SGWB generated by
cosmic string networks. In Sec. IV, we describe the impact
of friction on the evolution of a cosmic string network. In
Sec. V, we study the impact of friction on the evolution of
cosmic string loops numerically and derive an analytical
approximation to describe the evolution of the length of
loops during this era. Finally, in Sec. VI, we characterize
the signature of friction on the SGWB and study its
dependence on the network and background plasma proper-
ties. We discuss the results and conclude in Sec. VII.
Throughout this paper, we will use natural units with

c ¼ ℏ ¼ 1, where c is the speed of light in vacuum and ℏ
is the reduced Planck constant. Moreover, we will use
cosmological parameters determined using Planck 2018
data [18], where the values of the density parameters for
radiation, matter, and dark energy at the present time are,
respectively, given by Ωr ¼ 9.1476 × 10−5, Ωm ¼ 0.308,
and ΩΛ ¼ 1 − Ωr −Ωm and the Hubble constant is
H0 ¼ 2.13 · h × 10−33 eV, with h ¼ 0.678.

II. EVOLUTION OF COSMIC STRING NETWORKS

The evolution of cosmic string networks is determined
mostly by four main physical processes. Strings have
tension that force them to move, and in the absence of
strong damping forces, this accelerates them to relativistic
velocities. Cosmological expansion also has a significant
impact throughout their evolution: it stretches long cosmic
strings, rarefies the network density, and decelerates the
strings. Also, as long strings move, they often collide
with other strings or self-intersect. When this happens, the
colliding strings exchange partners and reconnect, which
may lead to the formation of closed loops of string. These
loops detach from the network and evolve independently,
thus resulting in energy loss. Finally, since cosmic string
networks are expected to form deep in the early Universe,
strings inevitably interact with the particles of the back-
ground plasma in the early stages of their evolution. As a
result, strings also experience a frictional force, caused by
these interactions, which plays a key role in the early stages
of their evolution, when the Universe was very dense.
In this section, we provide a brief outline of cosmic

string dynamics in the presence of friction and of the
cosmological evolution of cosmic string networks. We refer
the reader to Refs. [7,8,13] for a more comprehensive
overview.

A. Cosmic string evolution with friction

In the cosmological context, local cosmic strings may be
regarded as infinitely thin and featureless objects. They

sweep, in their movement, a 1þ 1-dimensional worldsheet
in spacetime, represented by

xμ ¼ xμðσ0; σ1Þ; ð1Þ

where σ0 and σ1 are, respectively, a timelike and a spacelike
parameter of the worldsheet. Cosmic string dynamics may
then be described by the Nambu-Goto action

S ¼ −μ
Z ffiffiffiffiffiffi

−γ
p

d2σ; ð2Þ

where μ is the cosmic string mass per unit length (which, in
this case, coincides with the cosmic string tension); γ is the
determinant of the worldsheet metric γab ¼ gμνx

μ
;axν;b, with

a, b ¼ 0, 1; and gμν is the spacetime metric. This action,
however, does not provide a full description of the
evolution of cosmic strings in the early Universe, as it
does not take the interactions with particles of the back-
ground plasma into account. The frequent scattering of
particles by cosmic strings leads, in fact, to a frictional force
per unit length of the form [11]

F ¼ −
μ

lf

vffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð3Þ

where v is the string velocity. Here, we also introduced the
friction length lf that describes the characteristic length
scale for which friction plays an important role in the
dynamics of cosmic strings. For gauge strings, friction is
mainly caused by Aharonov-Bohm scattering [19], and this
length scale assumes the form

lf ¼
μ

βT3
; ð4Þ

where T is the background temperature and β is a
parameter that depends on the number of particle
species that interact with the string. Including the effect
of friction, the equation of motion for a cosmic string is of
the form [11]

xν;a;a þ Γν
σμxσ;axμ;a ¼

1

lf
ðUν − xν;axσ;aUσÞ; ð5Þ

where Uν is the 4-velocity of the background fluid and
xν;a;a ¼ ∂að ffiffiffiffiffiffi−γp

γabxν;bÞ=
ffiffiffiffiffiffi−γp

is the covariant Laplacian.
In a Friedmann-Lemaitre-Robertson-Walker (FLRW)

background, the line element is given by

ds2 ¼ aðηÞ2ðdη2 − dy · dyÞ; ð6Þ

where a is the cosmological scale factor, dη ¼ dt=a is the
conformal time, t is the physical time, y are Cartesian
coordinates, and the 4-velocity of radiation is given by

S. MUKOVNIKOV and L. SOUSA PHYS. REV. D 110, 063516 (2024)

063516-2



Uν ¼ ða−1; 0; 0; 0Þ. In this case, it is convenient to choose
the temporal-transverse gauge, in which

σ0 ¼ η and ẋ · x0 ¼ 0; ð7Þ

where xμ ¼ ðη;xÞ and dots and primes represent, respec-
tively, derivatives with respect to η and σ ≡ σ1. The
equations of motion for a cosmic string take then the
form [11,20]

ẍþ
�
2
ȧ
a
þ a
lf

�
ð1 − ẋ2Þ ¼ ϵ−1ðϵ−1x0Þ0; ð8Þ

ϵ̇þ
�
2
ȧ
a
þ a
lf

�
ẋ2ϵ ¼ 0; ð9Þ

where ϵ2 ¼ x02=ð1 − ẋ2Þ.

B. Velocity-dependent one-scale model

The cosmological evolution of a cosmic string network
may be described, on sufficiently large scales, using the
velocity-dependent one-scale (VOS) model [13,21]. This
model provides a quantitative description of the cosmo-
logical evolution of cosmic string networks by following
the evolution of two variables: the rms velocity v̄ of the
network, defined as

v̄2 ≡ hẋ2i ¼
R
ẋ2ϵdσR
ϵdσ

; ð10Þ

and its characteristic length scale L, defined in terms of the
energy density of long strings ρ as

ρ ¼ μ=L2: ð11Þ

For standard strings, without internal degrees of freedom,
L also measures roughly the average distance between
long strings. An evolution equation for v̄ may be found
by averaging Eq. (8) over the whole network and
using Eq. (10).1 Moreover, the total string energy in the
network is given by E ¼ μaðηÞ R ϵdσ, and one should have
that ρ ∝ Ea−3. By differentiating the latter expression and
using Eq. (9) as well as the definition of v̄ and L, one may
also derive an equation to describe the evolution of the
characteristic length. Note, however, that the Nambu-Goto
action does not describe the impact of collisions between
strings and their subsequent interactions and, as a result,
one needs to add a phenomenological term to the evolution
equation for L to account for this effect. These interactions
lead, as previously explained, to the production of cosmic

string loops that detach from the Hubble flow and that
are expected to decay and evaporate. Loop production then
results in an energy loss of the form [22]

dρ
dt

����
loops

¼ c̃v̄
ρ

L
; ð12Þ

where c̃ ¼ 0.23� 0.04 [21] is a phenomenological param-
eter that quantifies the efficiency of loop chopping. The
evolution of a cosmic string network on cosmological
scales may then be described by [13,21]

dv̄
dt

¼ ð1 − v̄2Þ
�
kðv̄Þ
L

− v̄

�
2H þ 1

lf

��
; ð13Þ

2
dL
dt

¼ 2HLð1þ v̄2Þ þ Lv̄2

lf
þ c̃v̄; ð14Þ

where kðv̄Þ is a phenomenological parameter that accounts,
to some extent, for the effects of small-scale structure on
long strings (here, we will use the ansatz proposed in
Ref. [21]) and H ¼ da=dt=a is the Hubble parameter. The
last term in Eq. (14) describes the impact of loop produc-
tion and may be found by combining Eqs. (12) and (11).
These equations enable us to describe quantitatively the
cosmological evolution of cosmic string networks from
early to late cosmological times. We briefly outline this
evolution, with particular focus on the impact of friction in
early cosmological times, in Sec. IV.

III. STOCHASTIC GRAVITATIONAL WAVE
BACKGROUND GENERATED BY COSMIC

STRING NETWORKS

After cosmic string loops are created, they detach
from the Hubble flow and start to evolve under the effect
of their tension. As a result, they oscillate periodically with
relativistic velocities, and they are then generally expected
to decay by emitting GWs.2 The superimposition of the
GW bursts generated by the copious amounts of loops that
are created throughout the evolution of the cosmic string
network gives rise to a SGWB [8–10,27] (see also Ref. [17]
for a recent review). This SGWB is generally characterized
by the spectral energy density of GWs,

ΩgwðfÞ ¼
1

ρc

dρgw
d log f

; ð15Þ

1Note, however, that, in the derivation it is assumed that
hẋ4i ¼ hẋ2i2 ¼ v̄4.

2The potential role of the emission of scalar and gauge
radiation is currently still a matter of debate [23–26]. Abelian-
Higgs simulations indicate that this radiation may lead to the
fast decay of the majority of loops [23] and that less than 10% of
the loops produced would decay by emitting GWs [24]. It is
argued in Refs. [25,26], however, that this may be a transient
phenomenon.

ULTRAHIGH FREQUENCY GRAVITATIONAL WAVES FROM … PHYS. REV. D 110, 063516 (2024)

063516-3



where ρgw is the energy density of gravitational radiation
and ρc ¼ 3H2

0=ð8πGÞ is the critical density of the Universe
at the present time t0 (for the remainder of this paper, the
subscript 0 is used to refer to the value of the corresponding
quantity at t ¼ t0).
The frequency of the GWs emitted by cosmic string

loops is determined by harmonics of their length l at the
time of emission t. They then arrive to an observer at the
present time t0 with a frequency

fj ¼
2j
l
aðtÞ
a0

; ð16Þ

where j is the harmonic mode of emission and the subscript
j is used to label the contribution of the jth mode of
emission to the corresponding quantity. The spectrum of
emission of cosmic string loops follows roughly a power
law [28–32] of the form

dEj

dt
¼ ΓjGμ2; with Γj ¼

Γ
ζðqÞ j

−q; ð17Þ

where E ¼ μl is the energy of the loops, ζðqÞ is the
Riemann Zeta function, and Γ ∼ 50 [28,30,32–35] is the
GW emission efficiency.3 The spectral index q depends
on the small-scale structure present in the cosmic string
loops. Loops are generally expected to have points that
move instantaneously at the speed of light, known as cusps,
that give rise to a spectrum characterized by q ¼ 4=3.
Moreover, collisions between strings lead to discontinuities
in the string that travel along the string at the speed of light.
These kinks generate a spectrum characterized by q ¼ 5=3
and, when two kinks collide, by q ¼ 2.
The amplitude of the SGWB generated by cosmic string

loops is then given by (see, e.g., Ref. [8]):

ΩgwðfÞ ¼
Xþ∞

j¼1

ΓjΩ
j
gwðfÞ; ð18Þ

where

Ωj
gwðfÞ ¼ 16π

3f

�
Gμ
H0

�
2
Z

t0

ti

jnðljðtÞ; tÞ
�
aðtÞ
a0

�
5

dt ð19Þ

is the contribution of the jth harmonic mode of emission
and lj ¼ 2jaðtÞ=ðfa0Þ is the length of loops that radiate,
in the jth harmonic, GWs that have a frequency f at the
present time. Moreover, ti is the time in which significant
emission of gravitational radiation by cosmic string
loops starts, which is often assumed to be the end of the

friction-dominated era. In this paper, we will study the
validity of this assumption and examine whether there are
signatures of friction on the SGWB. We will then generally
assume that ti coincides with the time of creation of the
network tc. We will also consider the contribution of the
fundamental mode of emission (and drop the superscript 1
that denotes this mode). Note, however, that it is straight-
forward to compute the contribution of any mode of
emission once that of the fundamental mode is known,

Ωj
gwðjfÞ ¼ Ω1

gwðfÞ; ð20Þ

and thus considering j ¼ 1 is sufficient to fully characterize
the SGWB.
The crucial ingredient to compute the SGWB generated

by cosmic string loops is then the loop distribution
function, nðl; tÞdl, which describes the number density
of string loops with lengths between l and lþ dl that
exist at the time t,

nðl; tÞ ¼
Z

t

ti

dtbfðlb; tbÞ
�
aðtbÞ
aðtÞ

�
3

; ð21Þ

where lb is the length of the loop at the time of birth tb.
Here, fðl; tÞdl is the loop production function, which
represents the number density of loops with lengths
between l and lþ dl produced per unit time. The amount
of energy that is lost as a result of loop production may be
inferred from the large-scale dynamics of the cosmic string
network using Eq. (12). If one assumes that the length
of loops at the moment of creation is proportional to the
characteristic length of the long string network at that
instant of time,

lðtbÞ ¼ αLðtbÞ; ð22Þ

where α < 1 is a constant loop-size parameter, we then
have that [16,17,37]

fðl; tÞ ¼ c̃ffiffiffi
2

p
l

v̄ðtÞ
LðtÞ3 δðl − αLÞ; ð23Þ

where the factor of
ffiffiffi
2

p
was introduced to account for the

effect of the peculiar velocities of loops [8]. Note that,
although the assumption that all loops are created with the
same length seems rather strong, this form of the loop
production function may be used to construct the loop
production function for any distribution of loop lengths at
birth [15,37]. Moreover, the impact of the length of loops
following a distribution at the moment of creation on the
SGWBmay also, to some extent, be described by including
a factor F < 1 in Eq. (22) [17,37]. Such a factor could also
account for the possibility that not all loops decay by
emitting GWs. Here, for simplicity, we take F ¼ 1. We
then have that the loop distribution function is given by [16]

3Note that these studies only apply to cosmic strings without
internal degrees of freedom. If strings carry currents, for instance,
Γ should be suppressed, and the spectrum of emission may be
altered [36].
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nðl; tÞ ¼ dtb
dlb

c̃v̄ðtbÞffiffiffi
2

p
αLðtbÞ4

�
aðtbÞ
aðtÞ

�
3

; ð24Þ

where tbðl; tÞ is the time of birth of the loops that have a
length l at the time t.

IV. IMPACT OF FRICTION ON THE EVOLUTION
OF COSMIC STRING NETWORKS

In this section, we review the evolution of cosmic string
networks throughout cosmological history, from the early
friction-dominated era up to late cosmological time (see
also Refs. [7,8,13,38] for more details).
Cosmic string networks are expected to form in the early

Universe at a critical temperature Tc that determines their
mass per unit length: μ ∼ T2

c [39]. The time of string
formation is then roughly given by

tc ¼
1

χðtcÞ
tpl
Gμ

; with χðtÞ ¼ 4π

�
πg�ðtÞ
45

�
1=2

; ð25Þ

where tpl ¼ G1=2 is the Planck time and g�ðtÞ is the
effective number of massless degrees of freedom (see,
e.g., Ref. [40]). The friction epoch happens, in general,
long before the first change g�ðtÞ predicted by the Standard
Model of particle physics (which is assumed throughout
our calculations). For the remainder of this paper, we
will then assume that χðtÞ ¼ χðtcÞ≡ χ throughout the
friction era.
Cosmic string networks, however, are generally

expected to survive throughout cosmic history, and
depending on what damping mechanism dominates their
dynamics, they can go through different scaling regimes
in their evolution. In the early Universe, interactions
between cosmic strings and the particles of the surround-
ing plasma should be quite frequent, and as a result, their
dynamics should be dominated by friction. In this case,
string movement is heavily damped; they are expected
to move with nonrelativistic velocities; and as can be
inferred from Eq. (13), their velocity is roughly given by
v̄ ≃ kclf=L, where kc ≡ kð0Þ ¼ 2

ffiffiffi
2

p
=π. During this fric-

tion-dominated era, two different scaling regimes may
emerge. The first is the stretching regime, during which
strings are frozen in comoving coordinates and stretched
by expansion:

L ∝ a and v̄ ∝ a2: ð26Þ

Assuming that the friction-dominated epoch occurs deep
in the radiation era (which, as we shall see, should in
general be the case), we should have that, during this
regime,

L ¼ Lc

�
t
tc

�
1=2

; and v̄ ¼ v̄c

�
t
tc

�
; ð27Þ

where Lc and v̄c ¼ kclfðtcÞ=Lc are the initial character-
istic length scale and the rms velocity, respectively. Note
that, in general, we should have that lfðtcÞ < Lc < tc [13].
During the stretching regime, the movement of strings

is so damped by friction that there are almost no
interactions between strings. However, as the Universe
expands and cools, the friction length scale lf grows
much faster than the characteristic length L [cf. Eqs. (4)
and (27)] and interactions become increasingly relevant.
As the Hubble damping and friction terms in Eq. (14)
become comparable (i.e., when lf=L ∼HL), the Kibble
regime, characterized by

L ∝
�
lf
H

�
1=2

and v̄ ∝ ðlfHÞ1=2; ð28Þ

emerges. In the Kibble regime, although friction still plays
a significant role in the dynamics, a considerable amount
of energy is lost as a result of interactions since HL ∼ c̃v̄
(which explains why the network evolves differently).
During this regime, loop production is not negligible, and,
as a matter of fact, as we will show, it is quite significant,
since networks are expected to be quite dense during
this stage.
More precisely, the Kibble regime should emerge when

the following condition is satisfied,

AHL ¼ lf
2L

kcðkc þ c̃Þ; ð29Þ

where A is a constant of order unity that was introduced
to obtain a better fit to the numerical evolution. During
the radiation era, we may express the friction length
scale as [13]

lf ¼ 1

θ

t3=2

t1=2c

; with θ ¼ β

χ
ffiffiffiffiffiffiffi
Gμ

p : ð30Þ

We then have that, during the Kibble regime,

L
tc
¼

�
kcðkc þ c̃Þ

θA

�
1=2

�
t
tc

�
5=4

; ð31Þ

v̄ ¼ kc

�
A

θkcðkc þ c̃Þ
�

1=2
�
t
tc

�
1=4

: ð32Þ

These equations may be confronted with the full numeri-
cal evolution during the Kibble regime—described by
Eqs. (13) and (14)—to determine the value of the constant
A in Eq. (29). Our analysis indicates that A ¼ 3=2
provides an excellent fit for the relevant range of initial
conditions and for different values of β.
To estimate the time in which the network enters the

Kibble regime, we may assume that the transition between
the stretching and Kibble regimes happens suddenly at a
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time tk, corresponding to the time in which the condition in
Eq. (29) is first satisfied. Assuming that the network is in
the stretching regime characterized by Eq. (27) for t ≤ tk,
we have that

tk ¼
�

3θ

2kcðkc þ c̃Þ
�2

3

�
Lc

tc

�4
3

tc: ð33Þ

This expression shows that the time of emergence of the
Kibble regime depends on the initial conditions and thus so
does the duration of the stretching regime. As a matter of
fact, the network only goes through the stretching regime
if the conditions of existence of the Kibble regime are not
met initially (or, in other words, provided that the initial
characteristic length is not significantly smaller than the
horizon). However, the cosmic string network necessarily
goes through the Kibble regime in the early Universe, either
following the stretching regime or right after creation if its
initial density is large enough. This may be seen clearly in
Fig. 1, where the evolution of L=t and v̄ are plotted for

different initial conditions. Therein, one may see that, if
the initial characteristic length of the network is smaller,
the Kibble regime starts earlier and the duration of the
stretching regime decreases.
The friction-dominated era of cosmic string evolution is,

however, necessarily transient. As the friction length scale
continues to increase rapidly, it will eventually become
larger than the characteristic length of the network, and the
impact of friction on the dynamics of cosmic string net-
works will become negligible. Assuming as before that this
transition to the frictionless epoch happens suddenly at a
time tf in which the Hubble damping term 2H becomes
comparable to the friction damping term l−1f , we have that

tf ¼ θ2tc: ð34Þ

Using this one may show that, unless cosmic string tension
is very small, string dynamics should become frictionless
before any variation of χðtÞ (according to the Standard
Model of particle physics) and well before the radiation-
matter transition, which justifies our assumption that
friction happens deep in the radiation era.
After tf, when friction becomes negligible to cosmic

string dynamics, the movement of strings is no longer so
heavily damped, and the network evolves toward a linear
scaling regime characterized by

L ¼ ξt;
dv̄
dt

¼ 0; ð35Þ

with

ξ2 ¼ kðkþ c̃Þ
4νð1 − νÞ ; v̄2 ¼ k

kþ c̃
1 − ν

ν
: ð36Þ

This regime is an attractor solution of the VOS equations
when a ∝ tν, with 0 < ν < 1, and its existence has been
verified in numerical simulations. In this regime, cosmic
strings reach relativistic velocities, and as a result, inter-
actions between strings and loop production are quite
frequent. As Fig. 1 illustrates, the evolution of the cosmic
string network during the frictionless epoch, for t > tf,
does not depend on the initial conditions. Note that the
cosmic string network is temporarily “knocked out” of
the linear scaling regime as a result of the decrease in the
effective number of massless degrees of freedom, as the
Universe cools. This is the cause of the small bumps seen,
during the radiation-era linear scaling regime, in Fig. 1
(these are more evident in the plot for L due to the scale of
the plot but also show up in the plot for v̄ in the form of a
small temporary decrease). Also, later, the Universe tran-
sitions to the matter-dominated era, and the network starts
to evolve toward a new linear scaling regime. However,
this regime is not reached before the present time due to
the emergence of dark energy. Once this happens, cosmic

FIG. 1. Evolution of a cosmic string network with friction for
Gμ ¼ 10−12. The top panel displays the characteristic length
divided by the physical time, and we plot the rms velocity on the
bottom panel. The solid lines of different colors correspond to
different initial conditions. The vertical dashed line represents the
value of the scale factor at the end of the friction dominated
epoch, af.
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string movement is heavily damped by the fast expansion,
which leads to a new stretching regime of the form L ∝ a
and v̄ → 0. In this case, the stretching regime is sustainable
because the accelerated expansion ensures that the network
remains frozen, with nonrelativistic velocities.

V. IMPACT OF FRICTION ON THE EVOLUTION
OF COSMIC STRING LOOPS

To include the contribution of the loops created during
the friction-dominated regime in the computation of the
SGWB, we need to start by studying the evolution of a
cosmic string loop in the presence of friction. Although this
has been studied previously in Ref. [41], therein the impact
on gravitational wave emission—which is crucial for our
study—was not considered. Here, we follow a similar
approach and consider a circular loop with a coordinate
radius q,

x ¼ qðηÞðsinϕ; cosϕ; 0Þ; ð37Þ

and choose the spacelike worldsheet parameter to be ϕ. In a
FLRWuniverse, the physical length of the loop l—defined
such that E ¼ μl, where E is the energy of the loop—is
given by

l ¼ 2πγjqja; ð38Þ

where v ¼ q̇ is the velocity of the loop and γ¼ð1−v2Þ−1=2.
Cosmic string loops are usually assumed to emit GWs at

a roughly constant rate given by

dl
dt

����
gw

¼ ΓGμ; ð39Þ

with Γ ¼ 50 [as may be seen from Eq. (17), by summing
over all the harmonic modes of emission]. However, more
generally, the energy loss caused by the emission of
gravitational radiation, which may be estimated using
the quadrupole formula, may be written in the form [13]

dl
dt

����
GW

¼ −Γ0Gμv6; ð40Þ

where Γ0 is a parameter evaluating the efficiency of GW
emission. The approximation in Eq. (39), in fact, only
describes the decrease of the length of loops caused by the
emission of gravitational radiation in an averaged sense.
Cosmic string loops, in the absence of friction and provided
that expansion has a negligible impact, oscillate periodi-
cally with an average squared velocity of hv2i ¼ 1=2. In
these oscillations, they reach ultrarelativistic velocities
periodically, and they should, in fact, emit GWs dominantly
in the stages of the oscillation in which their velocities are
significant. In general, for these freely oscillating loops,
assuming a constant rate of GW emission provides an

adequate description of their evolution on timescales
much larger than their oscillation period. Here, since we
are including the impact of friction, which damps the
movement of loops and may significantly delay their
oscillations [41], we use the form in Eq. (40) to account
for the possibility that the rate of GW emission can no
longer be assumed to be constant. As proposed in Ref. [13],
for consistency, given the fact that for freely oscillating
loops hv6i ¼ 5=16, we take Γ0 ¼ 16=5 · Γ ¼ 160.4

By introducing Eq. (37) into Eqs. (8) and (9) and using
Eqs. (38) and (40), one finds that the equation of motion
for q is given by

q̈¼ð1− q̇2Þ
�
−2Haq̇−

aq̇
lf

−
1

q
−

1

2πjqj
ffiffiffiffiffiffiffiffiffiffiffiffi
1− q̇2

q
Γ0Gμq̇5

�
:

ð41Þ

To study the impact of friction on the evolution of cosmic
string loops and on their GW emission, we solved this
equation numerically, with initial conditions of the form

qb ¼
αLðtbÞ
2πab

and vb ¼ q̇b ¼ 0; ð42Þ

for a wide range of the loop-size parameter α and of the
birth time of loops tb. This choice of initial conditions is
natural since it is well known that a free circular loop will
oscillate with amplitude qb having vanishing velocity when
the loop radius is at a maximum. This extensive study was
done with the objective of determining which physical
processes play an important role in the evolution of
subhorizon loops—the main contributors to the SGWB—
and to aid us in the development of an analytical approxi-
mation to the evolution of l.
Our results have shown that for very large loops (with

lengths larger or comparable to the horizon) the expansion
of the background stretches loops, significantly thereby
increasing their energy—and particularly so in the presence
of friction as was also found in Refs. [12,42]—but small
enough loops do not feel its effects even when friction is
present. Here, since we are considering subhorizon loops,
we will then neglect the expansion term in Eq. (41), as is
usually done in the absence of friction. Notice, however,
that the impact of expansion on the evolution of the friction
length scale cannot be neglected, as it is determined by
the density of the background plasma which is strongly
dependent on the expansion.
We have also verified numerically that, for subhorizon

loops, even deep in the friction-dominated regime, we have
hv2i ≈ 1=2 as for free loops evolving in the absence of
expansion, friction, and GW emission. One may then

4In Ref. [13], the authors take Γ0 ¼ 8Γ since, by mistake, they
assume that hv6i ¼ hv2i3.
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conclude that, during the friction era, subhorizon loops also
emit GWs at a roughly constant rate, with Γ ¼ 50, and in
fact, we have verified numerically that the average energy
lost in the form of gravitational radiation in a period of
oscillation computed using Eq. (40) is well described by the
simpler expression in Eq. (39).
Finally, our results also show that the dynamics of any

loop will eventually become frictionless. This may be
explained by the fact that l decreases over time as a result
of the energy loss caused by friction and by the emission of
gravitational radiation, while the friction length scale
increases [see Eq. (4)]. Thus, as time goes by, the impact
of friction becomes smaller and smaller until loop dynam-
ics becomes frictionless, and once this stage is reached, the
rest of the energy of the loop will be radiated in the form of
GWs. Notice that the later in the friction era a loop is
created, the sooner this frictionless regime will be reached,
and then an increasingly larger fraction of the energy of
loops will be converted into GWs as time elapses. For
instance, for a loop with Gμ ¼ 10−12 and α ¼ 0.1 created
deep in the friction era (tb ¼ 10−5 · tf), only about 0.2% of
its energy will remain by the time this frictionless stage is
reached. However, closer to the end of the friction epoch
(for tb ¼ 10−2 · tf), without the inclusion of GW emission,
the loop still has about 56% of its initial energy at this stage.
This shows that, in fact, there is GW emission throughout
the friction regime.
To calculate the number density of loops with a length l

at a time t, we need to find the time of formation of these
loops, which means that we need to follow their evolution
since the time of birth. However, for the physically relevant
values α andGμ, loops lose energy very slowly during most
of the evolution and undergo a very large number of
oscillations before evaporating. As a result, the numerical
computation of their evolution is time costly. It is then
convenient to find an analytical approximation to describe
the evolution of cosmic string loops, including the effects
of friction and GW emission, to make the computation
of the SGWB more efficient. Neglecting, as suggested by
our analysis, the Hubble damping term in Eq. (41) and
assuming that GW emission happens with the constant rate
given by Eq. (39), the evolution of l should then be well
described by

dl
dt

¼ −
lv2

lf
− ΓGμ; ð43Þ

as may be found by combining Eqs. (38) and (41) under
these assumptions. Let us start by considering the case of a
loop evolving only under the effect of friction and curvature
and drop the GW emission term in Eq. (43). To find an
analytical approximation to describe the evolution of l on
timescales much larger than a period of oscillation, we may
then average this expression over one period of oscillation
and assume that hv2i ¼ 1=2. We then find that

l ¼ lb exp ½t1=2f ðt−1=2 − t−1=2b Þ�: ð44Þ

This expression is equivalent to the expression found in
Ref. [41] and also supports the observation that the effect of
friction will eventually become negligible. Indeed, when
t → ∞, we see that l does not vanish. The loop then does
not evaporate completely as a result of friction and at least a
fraction of exp ð−t1=2f =t1=2b Þ of the initial length of the loop
should be converted into GWs.
Introducing the energy loss caused by the emission of

gravitational radiation in Eq. (44), we have

l ¼ lb exp ½t1=2f ðt−1=2 − t−1=2b Þ� − ΓGμðt − tbÞ: ð45Þ

We have compared this approximation extensively to the
full numerical evolution described by Eq. (41), including
the curvature, friction, and GW radiation terms in their
complete form. Our results show that this approximation
provides a good description for the evolution of the length
of the loops produced during the Kibble regime—which is
enough since the contribution of the loops created during
the stretching regime to the SGWB is negligible (as we
shall see later). In Fig. 2, we display some examples of the
evolution of the length of the loops throughout their
lifetime (computed numerically) alongside the analytical
approximation derived here. We plot ðlb − lÞ=lb as a
function of ðt − tbÞ=ðtev − tbÞ, where tev denotes the
moment of evaporation of the loop, since this choice
allows us to reflect all stages of their evolution and to

FIG. 2. Comparison between the analytical approximation to
the evolution of loops and the full numerical computation. Here,
we display loops with α ¼ 10−3 and tb ¼ tk in the presence of
friction for different values of cosmic string tensionGμ. The solid
lines correspond to the evolution predicted by the analytical
approximation in Eq. (45), while the dashed lines represent that
computed numerically by solving Eq. (41).
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plot several cases on the same figure. We display loops with
α ¼ 10−3 for four different values of cosmic string tension
so that, as tension decreases, the impact of friction becomes
stronger. Since the period of oscillation of loops is propor-
tional to their length and, for small values of Gμ, they lose
energy very slowly, the numerical study of the later stages
of their evolution is computationally costly. For this reason,
for illustration purposes, we opted to display the evolution
of loops with unphysically large tensions, too (Gμ ¼ 10−3

andGμ ¼ 10−6), as this allows us to follow the evolution of
loops numerically until tev in the case of strong GW
emission. The slope of the tangent vector of each curve
at the time of evaporation characterizes the fraction of
energy which was lost in the form of GWs, reaching its
maximum when GW emission is at its strongest for the
largest Gμ. This figure clearly shows that our approxima-
tion provides an excellent description of the evolution of a
loop when friction is strong (the beginning of the evolution
for the lowest tension)—which demonstrates the validity of
our assumption that hv2i ≈ 1=2—and when its effects are
negligible and the evolution is determined by the emission
of GWs instead (high tensions). When the impacts of
friction and GW emission becomes comparable, however,
our approximation predicts a slightly faster decay of the
loops, which results in an underestimation of the time of
evaporation of the loop. Note, however, that this does not
have a significant impact on the quality of the results we
will derive since assuming a faster decay leads, in general,
to smaller contributions to the SGWB. These results are
then conservative and may then be seen as a lower bound
on the amplitude of the spectrum.

VI. SIGNATURE OF FRICTION ON THE SGWB

It is usually assumed in the literature that the loops
created during the friction-dominated epoch do not provide
a significant contribution to the SGWB, since their motion
would be effectively damped by friction. However, during
this era, the network is very dense, which makes inter-
sections and, consequently, the creation of loops more
probable. Also, as we have seen, although friction is
effective in the initial stages; the evolution of loops
eventually becomes frictionless; and from this point on,
their energy is lost only in the form of gravitational
radiation. The combination of these two effects may result
in a significant contribution to the SGWB.
In this section, we fully characterize the signature of

friction on the SGWB, which involves a detailed compu-
tation of the loop distribution function during this era.
Notice that the impact of friction on nðl; tÞ is twofold. On
the one hand, friction, by significantly affecting the large-
scale evolution of the cosmic string network (so much so
that it can no longer be assumed to evolve in a linear scaling
regime), affects the loop production function. Here, we use
the method introduced in Ref. [16] (and summarized in
Sec. III) and solve the VOS equations (13) and (14),

coupled with the Friedmann equation, to fully characterize
fðl; tÞ throughout the evolution of the cosmic string
network. Our results show that indeed there is an intensive
loop production during the friction epoch. For instance, for
Gμ ¼ 10−12, the number of loops produced at the begin-
ning of the Kibble regime is 400 times larger than what one
would have if the network were in a linear scaling regime.
On the other hand, nðl; tÞ is also affected by the change in
the rate of energy loss of the loops caused by this additional
decay mechanism, which may reduce the lifetime of the
loops significantly. Here, we use the analytical approxi-
mation in Eq. (45) to find the Jacobian dtb=dlb needed to
fully characterize the loop distribution function in Eq. (24),

dtb
dlb

¼
�
α
dL
dt

����
tb

þ αLðtbÞ
2t3=2b

t1=2f þ ΓGμ
�

−1
; ð46Þ

and to find the time of birth tb of the loops that contribute to
the given frequency.

A. Signature of friction

We now have all the ingredients to characterize the
signature of friction on the SGWB. Since the friction-
dominated era of cosmic string dynamics happens right
after the formation of the network, and thus in the very
early Universe, this will result in a contribution in the
ultrahigh-frequency range. As a matter of fact, as illustrated
by Fig. 3, the inclusion of the GWs emitted by the loops
that are produced during the friction era extends the range
of the spectrum significantly, typically leading to a promi-
nent bump at very high frequencies that may be regarded as
a secondary peak. Since friction is often assumed to
completely suppress the emission of loops, it is generally

FIG. 3. The Stochastic Gravitational Wave Background gen-
erated throughout the full evolution of a cosmic string network
with Gμ ¼ 10−10, α ¼ 10−9, β ¼ 1, Lc ¼ tc. Here, the solid line
represents the spectra including the contribution of the loops
created during the friction-dominated era of cosmic string net-
work evolution, while the dashed line corresponds to the spectra
one obtains by assuming that significant GWemission by cosmic
string loops starts only at the beginning of the frictionless regime.
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assumed that cosmic string networks start contributing to
the SGWB in the end of the friction era (at t ¼ tf). As a
result, a cutoff is introduced artificially in the high-
frequency range of the spectrum, and this secondary peak
is neglected. However, as the results of Sec. V show, the
GW emission of loops during the friction era, although
partially reduced, is not completely suppressed (especially
during the end stages of the life of the loops and/or toward
the end of this era). This partial reduction of the GW
emission in many instances does not lead to a complete
suppression of the SGWB, since a large number of loops
may be created during the friction era. This is well illustrated
by Fig. 4, where we plot the SGWB sourced during the
friction erawith andwithout the inclusion of the suppression
of GWemission caused by friction (the latter case was also
briefly discussed in Ref. [43]). Therein, one may see that,
although this suppression may indeed lead to a significant
reduction of the amplitude of the friction signature on the
SGWB, the increase in the number of loops may be so
significant that this signature may still survive.
The signature of friction is, as shown in Fig. 5, generated

mostly in the Kibble regime, and in fact, the contribution of
the loops created in the stretching regime may be consid-
ered generally negligible. During the latter, cosmic strings
are so effectively damped that their velocities are extremely
small, which makes collisions and intercommutations
unlikely. In the beginning of the Kibble regime, however,
not only the rms velocity is somewhat larger but the

networks are also denser (in comoving coordinates),
resulting in loops being profusely produced. Because of
that, the dominant contribution to the peak generated by
friction is, in fact, sourced in the earlier stages of the Kibble
regime—when the number of loops produced per unit
volume is quite large and friction is still quite strong—and
not when friction is at its weakest. This shows that the
number of loops produced may, in some instances, be the
determinant aspect in having a signature of friction and not
how strong the suppression of GW emission is.

B. Impact of cosmic string parameters
on the signature of friction

As we have seen, a clear signature of friction is expected
if the loops created in the early stages of the Kibble regime,
when the network is very dense and copious amounts of
loops are created, lose a considerable amount of energy in
the form of gravitational radiation. This signature should
then depend not only on the size of loops, parametrized by
α, but also on the large-scale properties of the cosmic string
network during this regime, which are determined by
cosmic string tension, the initial characteristic length,
and the strength of friction (characterized by β). In this
section, we investigate these dependencies in detail. Since
the friction-dominated era happens early in the evolution of
the cosmic string network (and, in fact, quite early in
cosmic history) and the characteristic length scale may be
quite small at this stage, some care must be taken to avoid
considering unphysical scenarios. Here, we only consider
the potential emissions of the loops that are created with

FIG. 4. The impact of the inclusion of friction in the evolution
of cosmic string loops on the signature of friction. The solid line
represents the full SGWB generated by a cosmic string network
during the friction era for Gμ ¼ 10−10, α ¼ 10−8, β ¼ 1, Lc ¼ tc.
The dashed line corresponds to the SGWB one would obtain by
completely neglecting the contribution of the loops created
during the friction-dominated era of cosmic string network
evolution, while the dot-dashed line represents that one would
obtain if the impact of friction on cosmic string loops was not
included.

FIG. 5. The signature of friction on the SGWB generated by a
cosmic string network with Gμ ¼ 10−10, α ¼ 10−9, β ¼ 1,
Lc ¼ tc. The shaded areas with different colors correspond to
the contributions to the spectrum generated by loops that where
produced before different instants of time in the friction-
dominated era. Here, Δt ¼ tf − tk.
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lengths that are larger than the Planck length lpl and assume
that GW emission starts only once the gravitational back-
reaction scale is well defined, with ΓGμL > lpl.
Let us start by considering the impact of the loop-size

parameter α on the signature of friction. As previously
explained, as loops evolve and their length decreases, they
eventually reach a regime in which their dynamics becomes
essentially frictionless. This happens, roughly, once their
length becomes smaller than the friction length scale, and
therefore loops with a smaller α will reach this regime
earlier and consequently lose a larger portion of their
energy in the form of GWs. This generally results in a
stronger signature of friction as α decreases, as is clearly
shown in Fig. 6, and this signature is at its strongest in the
small-loop regime, with α ≪ ΓGμ. In this case, in fact, GW
emission leads to the evaporation of the loops effectively
immediately on cosmological time scales [44], and as a
result, they are barely affected by friction.5 The secondary
peak caused by friction is then only present for small
enough loops, but how small these loops actually need to be
also depends, as we shall see, on the other parameters of the
model. In this particular case, the peak starts to form only
when loop size approaches the gravitational backreaction
scale. However, for larger loops, there is also a signature of
friction, although more subtle: the transition between the
cutoff of the spectrum and the linear-scaling radiation era

plateau is somewhat slower than in the frictionless case.
Note also that at the beginning of this transition the
spectrum without friction exceeds the spectrum with
friction. This is explained by the fact that, around tf, loops
still experience a weak frictional force that is not taken into
consideration in the computation of the spectrum without
friction, which causes a slight suppression of their GW
emission (recall that tf corresponds to the instant of time
in which the Hubble and friction damping terms become
comparable).
The impact of varying cosmic string tension is slightly

more complex. As tension is decreased and strings become
lighter, friction damps strings more efficiently [see, e.g.,
Eq. (4)]. Although one would naively expect this to lead to
a progressive suppression of this signature, the network
also becomes significantly denser during the Kibble regime
[as may be seen in Eq. (31)], and the number of loops then
increases with decreasing Gμ, leading to a more prominent
signature instead. Moreover, GWemission becomes slower
when we decrease Gμ, which means that, for a fixed α, we
are moving further into the large-loop regime, in which the
signature becomes less visible. These contradictory effects
may be seen in Fig. 7, which shows the signature of friction
in the SGWB for different values of Gμ and a fixed α.
Although initially a decrease of tension leads to an increase
of the relative height of the friction peak,6 the friction

FIG. 7. The SGWB generated by cosmic string networks with
α ¼ 10−10, β ¼ 1, Lc ¼ tc for different values of Gμ. The solid
lines represent spectra with friction, while the dashed lines
correspond to spectra without friction.

FIG. 6. The SGWB generated by cosmic string networks with
Gμ ¼ 10−10, β ¼ 1, Lc ¼ tc for different values of α. The solid
lines represent spectra with friction, while the dashed lines
correspond to spectra without friction.

5Note that, in the small-loop regime, if α is decreased further,
the shape and amplitude of the spectrum are no longer affected
and the spectrum is merely shifted toward higher frequencies
(see, e.g., Refs. [16,44]). Recall, however, that loops cannot be
made to be arbitrarily small.

6The very pointy peak and sharp cutoff seen in the spectra
with Gμ ¼ 10−10 and Gμ ¼ 10−8 are caused by the conditions
imposed to ensure that gravitational backreaction scale and the
length of loops are physical and well defined. We have, however,
verified that the behavior is qualitatively similar if these con-
ditions are not enforced.
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signature starts to become less prominent as the tension is
decreased further. Moreover, since tk ∼ ðGμÞ−4=3, decreas-
ing of the tension also causes a shift of the friction peak
toward lower frequencies, and the Kibble regime actually
lasts longer [since tf ∼ ðGμÞ−2], thus affecting a broader
range of frequencies.
Increasing β, which depends on the number of particle

species that interact with the strings and thus quantifies the
strength of friction, increases the duration of the friction

era. As a result, the friction peak is broadened, and the
SGWB spectrum is affected by friction up to lower
frequencies, as Fig. 8 shows. However, an increase in β
also means that the network becomes denser during the
Kibble regime, leading to an increase of the height of the
friction peak, and that this regime happens at later times,
causing the very slight shift of the peak frequency that may
be seen in this figure.
Finally, as discussed in Sec. IV, if one decreases the

initial characteristic length of the network, the Kibble
regime, in which this signature is created, will start earlier,
and the network will be much denser in this stage. This
leads, as shown in Fig. 9, to a significant increase of the
height of the peak and to an extension of its range toward
even higher frequencies. Note, however, that, for very small
Lc, ΓGμL and αL necessarily become unphysically small
at the very early stages of the evolution of the network.

VII. CONCLUSIONS

We have shown that friction may leave a distinct
signature, in the form of a secondary peak, in the ultra-
high-frequency range of the SGWB spectrum generated by
cosmic string loops. This signature has been neglected in
the literature, since it is usually assumed that friction leads
to a very strong suppression of the GWemission of cosmic
string loops. We found, however, that the end stages of the
life of loops will necessarily be frictionless and that their
emission is only partially reduced. As a matter of fact,
during the Kibble regime, when the network is very dense
and intercommutations are very frequent, loop production
is very intensive and the superposition of their numerous
individual emissions despite being weakened may still
generate a prominent characteristic imprint.
The signature of friction uncovered here may potentially

allow us not only to probe cosmic string tension (and
through it the energy scale of the string-forming phase
transition) but also the details of the underlying particle
physics scenario. As we have seen, the height and broad-
ness of the secondary peak caused by friction depends on
the number of particle species of the surrounding plasma
that interact strongly with the strings, quantified through
the parameter β. This parameter necessarily depends on the
nature of the fields that constitute the string, and therefore
one may expect different string models to generate dis-
tinguishable signatures. This signature is also sensitive to
the initial conditions of the cosmic string network, which
may also allow us to uncover more about the symmetry-
breaking process that originated the strings. As a matter of
fact, the initial string energy density should be determined
by the dynamics of the phase transition [45–48]—in
particular, by the cooling rate around the critical temper-
ature—and not by the correlation length at the Ginzburg
temperature as originally expected [39]. An initial charac-
teristic length of the order of the cosmological horizon
would be expected in slow first-order phase transitions,

FIG. 8. The SGWB generated by cosmic string networks with
Gμ ¼ 10−14, α ¼ 10−12, Lc ¼ tc for different values of β. The
solid lines represent spectra with friction, while the dashed lines
correspond to spectra without friction.

FIG. 9. The SGWB generated by cosmic string networks with
Gμ ¼ 10−14, α ¼ 10−12, β ¼ 1 for different values of Lc. The
solid lines represent spectra with friction, while the dashed line
correspond to spectra without friction.
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while smaller Lc (up to Lc ∼ tc=θ [13]) may result from
second-order phase transitions [8,13]. Note that the evo-
lution of the cosmic string network in the frictionless
regime is insensitive to these two aspects, and therefore this
signature of friction offers the possibility of extracting
information about the physics of the early Universe that the
rest of the SGWB does not allow us to access.
Our results show that the existence of this signature is

also strongly dependent on the size of loops and, in fact,
this signature is more prominent roughly when the length of
loops is not much larger than the gravitational backreaction
scale (but this, as we have seen, depends on a number of
other aspects, too). Nambu-Goto numerical simulations
[14] indicate that 10% of the energy lost by the network
as a result of interactions is in the form of large loops with
α ∼ 0.34 and that the rest of the energy is lost in the form
of small loops with α ∼ ΓGμ and thus the majority of
the loops created is, in fact, quite small. So, although the
contribution of the large loops (that may provide the
dominant contribution to the SGWB in the frictionless
regime) would be highly suppressed in the friction era, the
numerous small loops could still give rise to a prominent
signature in the ultrahigh-frequency range. Note that loop
production in the presence of friction has not yet been
studied in detail and there is the possibility that the
production of small loops may be suppressed in these
early stages of the evolution, since friction could potentially
erase small-scale structure on long strings on timescales
smaller than a Hubble time [7,27]. However, since during
the Kibble regime collisions and intercommutations
between strings are quite frequent, new kinks should be
copiously produced during this regime. Friction should also
only be effective in removing structure on scales that are
larger than the friction length scale. Whether the kink decay
caused by friction is effective in smoothing long strings and
in suppressing the production of small loops is then a
subject that warrants further investigation.
We also noticed that unphysically small scales for the

length of loops and for the gravitational backreaction scale
may arise during the friction epoch. Since this could mean
that the classical treatment of cosmic strings might not be
well justified anymore and that quantum effects may have
to be considered (if thermal fluctuations are not large
enough to prevent the existence of strings at these scales),
we have introduced cutoffs to address these situations in
our computations. Quantum fluctuations on straight strings
in Minkowski spacetime in the weak coupling limit were
studied in Ref. [38], and the results indicate that these
fluctuations are generally small enough, when compared to
string thickness, to be neglected. However, if quantum
corrections are indeed necessary, in principle, they may
leave a signature in the SGWB in the ultrahigh-frequency

range (which would appear in the spectra where the cutoff
we have imposed has a visible effect).
A detection of the signature of friction in the ultrahigh-

frequency range of the SGWB spectrum is currently
challenging. This range of the spectrum has, however,
been garnering a lot of attention in the literature, and
several observational concepts to probe it have been
proposed (see, e.g., Ref. [49] for a recent review). Given
the location of the signature, experiments based on the
inverse Gertsenshtein effect [50,51], also known as mag-
netic conversion, are of particular interest, as they may, in
principle, be designed to detect GWs with frequencies
above 1 THz. This effect—the conversion of GWs into
photons in the presence of an external magnetic field—may
also take place in current and upcoming axion-search
experiments, in which axionlike particles may convert into
photons in the presence of a strong magnetic field. In
Ref. [52], the authors use ALPS, OSQAR, and CAST data
to constrain the amplitude of isotropic ultrahigh-frequency
GWs in two frequency bands: ð2.7–14Þ × 1014 Hz and
ð5–12Þ × 1018 Hz. Besides experiments based on artificial
magnetic fields, there are suggestions to also use astro-
nomical magnetic fields such as those of pulsars [53],
planetary magnetospheres [54], or galaxy clusters [55] to
detect GWs. The former [53] constrain SGWBs around
1013–1027 Hz, precisely in the relevant frequency range to
probe friction. Moreover, in Ref. [56], the authors proposed
a new method based on the inverse Gertsenshtein effect that
resorts to high-energy laser beams instead of magnetic
fields. They find that the best sensitivity is reached when
the GW frequency is twice the frequency of the lasers used
and thus, given the wide range of lasers’ operational
frequencies (1013–1019 Hz), this method may allow us to
probe GWs in a broad frequency range in the future. So,
although this signature is currently out of reach of GW
detectors, the sensitivity to SGWBs in the ultrahigh-
frequency range of the spectrum is expected to increase,
thus opening the prospect of probing the imprints of friction
directly in the future.
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