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Viscous unified dark matter models under scrutiny:
Uncovering inconsistencies from dynamical system analysis

Guillermo Palma ,* Gabriel Gomez ,% and Norman Cruz

k

Departamento de Fisica, Universidad de Santiago de Chile,
Avenida Victor Jara 3493, Estacion Central, 9170124, Santiago, Chile

® (Received 20 June 2024; accepted 26 July 2024; published 5 September 2024)

Viscous unified dark matter models aim to describe the dark sector of the Universe, as the dark matter
fluid itself gives rise to an accelerated expansion due to a negative bulk viscous pressure. However, in most
studies, radiation is often disregarded as a minor factor in dynamical system analyses, overlooking whether
radiation domination is achievable. In this paper, we rigorously examine this critical aspect for common
parametrizations of bulk viscosity, denoted as &, within two general classes of viscous unified models. Our
findings reveal significant inconsistencies in models where & o« H'=2*p$, with s < 0, and surprisingly, in
models where & « p3, with exponents s < 0, as they both fail to produce a radiation-dominated era—an
undesirable outcome for any cosmological model. Moreover, the exponent s must lye within the interval
0 <s < 1/2 for the latter model to correctly describes the cosmological evolution. These results
underscore the need of including these constraints as a prior in statistical analyses of observational data,
with implications for current statistical inferences for the second model, where both prior and best-fit values

of s often fall outside the acceptable range.
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I. INTRODUCTION

The study of the Universe’s composition and evolution
has long been a central pursuit of cosmology, driving our
understanding of fundamental physics [1]. Among the
various challenges cosmologists face, reconciling observa-
tions with theoretical models remains a constant endeavor.
While the existence of dark energy is well established from
observations, its nature remains elusive [2]. One promising
avenue in this pursuit is the exploration of unified dark
scenarios, where dark matter and dark energy are mani-
festations of a single phenomenon. A promising class of
unified models are viscous unified models [3-7]. These
models offer an intriguing alternative, suggesting that the
accelerated expansion could be a consequence of dissipa-
tive processes within the cosmic fluid, rather than the
presence of the cosmological constant within the ACDM
model. Viscous unified scenarios seek to explain a multi-
tude of observational phenomena, ranging from the current
accelerated expansion observed in distant supernovae to
large-scale structure of the Universe [8—10].

On the other hand, there are several microscopic models
to explain how bulk viscosity could arise in cosmological
scenarios. Among them, in [11] it has been shown that two
fluid components of the universe having different cooling
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rates give rise to a nonvanishing bulk viscosity for the
system as a whole. Other mechanism implies the inclusion
of self-interacting scalar fields to describe dark energy [12],
within thermal field theory. Also from a microscopic point
of view, the relation between particle creation and bulk
viscosity in the early universe is discussed in [13-16],
which plays an important role in the inflationary viscous
model [17]. In addition to the discussion made by [12], a
different microscopic model that considers a bulk viscosity
induced by DM annihilation is discussed in [18,19], suited
for the late time accelerated expansion. The kinetic theory
formalism has been also implemented to describe the
viscous effect within self-interacting DM models [20,21].
In the context of neutralino CDM, an energy dissipation
from the CDM fluid to the radiation fluid is manifested
in a collisional damping mechanism during the kinetic
decoupling [22].

The examples mentioned above underscore the signifi-
cance of taking into account different dissipative processes
and their potential impacts on the behavior of the cosmic
fluid. Nevertheless, there is currently no widely accepted
model that incorporates a microscopically motivated bulk
viscosity. This is why many viscous unified models rely on
a phenomenological parametrization to describe bulk
viscosity. Moreover, most of these models are framed
within the Eckart’s theory [23] (also see [24]), which is
a first approximation for studying relativistic and causal
nonperfect fluids. We do not criticize this approach;
instead, we examine in this paper their predictions and
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implications for cosmic dynamics using dynamical system
techniques and explore potential avenues for future research.
Through this exploration, we aim to provide a comprehen-
sive understanding of viscous unified models and to uncover
some inconsistencies that have been overlooked thus far. In
particular, we consider two different viscous models within a
unified dark matter scenario that encompass a wide range of
phenomenological parametrizations for bulk viscosity. The
first one is a recently proposed parametrization, which
includes simultaneously the effects of the Hubble parameter
and the dark matter energy density [25]"

& o H'p},. (1)

where s is the viscous exponent. The above functional form
has the advantage of turning on the effect of bulk viscosity
when dark matter is dominant. This important feature is also
satisfied by the second viscous model, which has a power
law behavior in the matter energy density:

& o . 2)

The particular case s = 1/2 has been widely investigated in
bulk viscosity cosmological scenarios [26—34], while the
case s = 0, i.e., constant dissipation, was studied in [35],
displaying problems at perturbative level.

In spite of the fact that at microscopic level ¢ character-
izes an intrinsic property of the fluid, and therefore it
should depend only on the internal interactions, we have
included the parametrization of Eq. (1),2 together with the
model II [see Eq. (2)], as they offer the compelling
advantage of describing most of the well-motivated phe-
nomenological viscous models found in the literature.

Demands for complete cosmological dynamics, encom-
passing a universe transitioning from a radiation era to a
decelerated matter-dominated phase, followed by an accel-
erated expansion, select suitable cosmological scenarios. In
our context, this criterion provides valuable insights into
which specific parametrizations for bulk viscosity are
plausible. Once these models pass this challenge, they
must undergo careful scrutiny against observational con-
straints, not vice versa, as is usually done. Thus, dynamical
system analyses serve as an initial inquiry, indicating the
values of the model parameters within the proposed para-
metrization that lead to successful background cosmic
dynamics. It is important to note that in most studies,
radiation is often disregarded as a minor factor in dynamical
system analyses, overlooking whether radiation domination

lAlthough this model was initially proposed to describe a
dissipative dark matter model as an extension of the ACDM, it
can be naturally employed as a unified viscous model.

Notice that the inclusion of the Hubble parameter in the bulk
viscosity leads to an extra dependence on the energy densities of
the other components, which is hard to explain from a micro-
scopic theory.

is achievable [4,6,36—40], with few exceptions [3,41-43]
employing different setups from ours. The exclusion of
radiation is usually justified when focusing solely on late-
time observations. However, we will demonstrate that the
realization of a radiation-dominated phase is not a trivial
aspect in viscous unified models, despite its subdominant
effect at present times.

The present paper is organized as follows: After a
concise introduction, we summarize the essential features
of viscous unified models in Sec. II. Then, in Sec. III, we
review the conditions for accelerated expansion independ-
ently of the form of the bulk viscosity coefficient.
Subsequently, in Secs. IV and V, we respectively perform
dynamical system analyses for models I and II to establish
the stability conditions of the fixed points. This is accom-
panied by a comprehensive analytical treatment for specific
values of the exponent s. Finally, the main findings and a
general discussion of this work are presented in Sec. VI.

II. BULK VISCOUS MODELS

In this section, we write the fundamental equations
describing the dynamics of bulk viscous unified models.
Within this framework, the bulk viscosity in the dark matter
fluid provides a repulsive pressure capable of driving the
current cosmic accelerated expansion, similar to the role
played by the cosmological constant in the standard ACDM
model. We include radiation in our prescription to illustrate
later that demanding a complete cosmological evolution is
not always plausible in these scenarios. We assume a
homogeneous and isotropic background described by a flat
FLRW metric. The matter content is represented by two
fluids: one for radiation with density p, and pressure P,,
and another for dark matter with density p,, and effective
pressure PSIT. The Friedmann equation and the acceleration
equation are respectively given by:

3H2 :8”GN(pr+pm)v (3)
3H? 4+ 2H = —8xGy(P, + PEI). (4)

Here Gy denotes the Newton’s constant. We use a poly-
tropic relation for radiation P, = p,/3 and consider intrin-
sic bulk viscosity in the dark matter fluid, according to the
Eckart theory, with vanishing kinetic pressure. Hence, the
effective pressure is defined as

Pt = P, + 1= -3H¢, (5)

and the bulk viscosity coefficient £ is positive in order to
fulfill the second law of thermodynamics. Our aim is to
encompass well-motivated unified bulk viscosity models
within a general framework. This is achieved by employing
two parametrizations for the bulk viscosity. The first
parametrization corresponds to a new model recently
proposed in [25] (see also [44]):
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o _ Pm \* &
1 = Hl 25H2s Fm — HOS , 6
C=8Gy T 0\,,) TGy, M O

which possesses two significant features: firstly, the bulk
viscosity effects are turned off when the energy density of
matter vanishes, and secondly, it allows the dynamical
system of equations [Egs. (4)—(6)] to be written as an
autonomous system for arbitrary s-exponents, as we will
demonstrate below. This parametrization is quite general,
covering functional forms suchas £ &« H, & « p,ln/ 2, and more
general combinations of both dependencies. A second
viscous model is provided by the power law parametrization

&/V3

1 —
é: - (871.GN>(3—4S)/2'0’"'

(7)

This formulation includes the widely used case of a constant
bulk viscosity coefficient. It is worthwhile to point out that

both &, and 80 are dimensionless parameters independent of
the s value within this setup. It is also noteworthy that both
parametrizations coincide for the particular value s = 1/2.
We refer to them as models I (6) and II (7), respectively,
throughout. To complete the dynamical system, conserva-
tion laws for the two components are required. They can be
expressed in a simple form as

pr+4Hpr :Ov (8)

Pm + 3H(p, +1I) = 0. ©)

Most existing works solve the corresponding evolution
equations for particular values of the exponent s, as it is
challenging to write them in the form of an autonomous
system, which is necessary for applying dynamical system
techniques. However, one interesting feature of both para-
metrizations is that the system maintains its autonomous
form for any arbitrary value of s. Therefore, we can study the
dynamical character of the fixed points and their corre-
sponding stability properties of unified viscous models
within this general setup. Before delving into that, we will
discuss in the next section some physical conditions required
to achieve accelerated expansion within this scenario.

III. CONDITION FOR ACCELERATED
EXPANSION FROM BULK VISCOSITY

The condition for an accelerated expansion within this
framework leads us to the question of how much bulk
viscosity the fluid must have to mimic the effect of the
cosmological constant. This question can be answered by a
simple examination of the condition for acceleration
equation at very low redshift for the given effective pressure
Eq. (5). This translates into the condition

3HE 1
eff — 777> __ 10
m O < 3’ ( )

which can be expressed, in turn, as

HQ,,
87TGN ’

£> (11)

This inequality holds only from a certain time at which the
bulk viscosity coefficient overcomes the right-hand side,
giving rise to the onset of the acceleration in the cosmic
expansion. In practice, we evaluate the above expression
at the present time f#;, whose inequality still holds. As
reference values, we assume Planck 2018 results [45],3
leading to

H Q
t=t,)>1.123 x 108 0 m0 ) pa.
St =to)>1.123x <67.4km/s/Mpc> (0.96) s

(12)

which is fully independent of the assumed parametrization
and consistent with early estimations (see, e.g., [46]).
Nevertheless, this value is difficult to understand in terms
of what we expect from typical values of bulk viscosity and
fluid density. On one side, we have extreme density in
astrophysical systems, such as neutron stars, which typically
are of the order of p ~ 10'7 kg/m?; and on the other side, we
have very low cosmic density of dark matter on the order of
10727 kg/m?>. This implies a difference of 10** orders of
magnitude between these extreme astrophysical and cos-
mological fluids. It is worth noting that the highest value for
a constant bulk viscosity coefficient in neutron star merger
simulations is estimated to be & ~ 10*° Pa - s [47], which is
significantly larger than the lower limit (12) by about 10!
orders of magnitude. Given the huge differences in their
respective densities, one could expect even more contrasting
values of bulk viscosity. In fact, from what we know about
typical fluids in terrestrial environments, bulk viscosity is
present even in monoatomic gases with small values on the
order of O(1071%) Pa - s [48].

Despite not knowing the nature of the dark matter
component, it is highly improbable, as discussed above,
that some kind of field or particle would exhibit such huge
values of bulk viscosity at very low present densities. Such
large values of bulk viscosity, necessary for achieving
accelerated expansion, would also dramatically impact the
evolution of cosmic structures unless there is a physical

*We have simply estimated the matter density parameter
from the baryon density parameter as follows: Q,, o =1 —Q,,
where we have neglected radiation for the sake of example.
This relation is equivalent to requiring an effective energy density
and pressure today that match respectively p,,0 = pcpmo + Pa
and py = —pp =~ —3H¢, to be in agreement with late-time
observations.
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mechanism that dissipates the viscosity over time during
structure formation and makes it relevant only close to the
present era, thereby triggering cosmic acceleration.
However, this scenario would require fine-tuning in con-
trast to a smoother behavior for the bulk viscosity
coefficient.

Let us consider models of the form & « pj, with s < 0,
implying that the bulk viscosity dynamically diminishes
toward the past as the energy density of dark matter
increases. This counterintuitive behavior was necessitated
in [5,49] to fit perturbative and background cosmological
data. In other words, the unified viscous scenario suffers
from the drawback of lacking a physical behavior for the
bulk viscosity. Moreover, the dynamical system analysis of
this viscous model indicates, as we shall see, that this
inverse dependence on the matter density exacerbates our
initial concern, as it prevents having a complete and
consistent description of cosmic evolution.”

The next question we want to address is whether current
estimations of the bulk viscosity coefficient based on
statistical analysis are consistent with the constraint (12).
This concern arises because this information is not usually
included in the priors on the model parameters. Parameter
estimation procedure constrains, instead, the dimensionless
quantity EO which does depend on the assumed para-
metrization, such as models (6) and (7). Not surprising,
this latter quantity can be linked to the lower limit we
derived above. For instance, considering the model (7), one
can establish a more stringent condition involving both

parameters &, and s to generate acceleration

1-s
3y > b (13)

9
Considering the observational constraints on the model
parameters for this model found in [51], where s = —0.557,
Q,,0=0.96, and Eo = 0.403 [51], we aim to verify whether
these values align with the acceleration condition (13). This
condition demands .%0 > 0.104,” which validates the inde-
pendent analysis based on statistical inferences but not
resolve the discrepancies we discussed earlier.

On the other hand, the inclusion of the cosmological
constant can considerably lower the bound (12) because
bulk viscosity turns out to be a subdominant effect in the
cosmological dynamics. Some studies suggest, for exam-
ple, &~ 10° Pa.s [30,31], with small differences between
them due to the assumed parametrization.

Turning to the discussion of viscous unified scenarios,
they must undergo scrutiny to ensure they provide a complete
cosmological evolution, ensuring the cosmological viability

‘At the background level, it is well known that this model
exhibits a behavior similar to the generalized Chaplygin gas
model [50]. R

°It is worth noting that in their study, they refer to &, as f.

of the model or indicating its failure. We will explore this
delicate aspect in detail in the following sections.

IV. DYNAMICAL SYSTEM ANALYSIS
FOR THE VISCOUS MODEL I

Now we introduce dimensionless variables that define
the phase space of the system. The inclusion of bulk
viscosity in the form of Eq. (6) does not require an extra
variable to close the system. This viscous fluid itself
represents the dark sector of the Universe. Therefore,
our variables correspond to the energy density parameters
associated with each fluid component

871'G’N/)m
3H*

8”GNpr .

Q="M
Y2

Q,

(14)
Hence, the Friedmann constraint takes the simple form
Q. +Q,=1. (15)

The acceleration equation (4) involves an explicit depend-
ence on the bulk viscosity coefficient, which is also
manifested in the continuity equations (8) and (9). The
dynamical system associated with these phase space
variables (Q,, Q,,) can be written as an autonomous system
in the following form:

Q) = —Q,(Q, +352)),
and Q) = (1-Q,)(Q, +352,),  (16)

where the prime denotes derivative with respect to
N = Ina. These expressions explicitly show a dependence
on the bulk viscosity, which can alternatively be interpreted
as a nonlinear interaction among both components. This
feature leads to nontrivial effects on the background
dynamics. It it worth pointing out that the Friedmann
constraint Eq. (15) could be used to reduce the dynamical
system to just one evolution equation. However, we choose
to keep it as a two-dimensional system to obtain a more
intuitive representation of the evolution. The effective
equation of state (EoS) parameter is defined as

2H . H 1 A
Weff:—gﬁ—l, with ﬁzi(—3+3éog;n—gr) (17)

As we saw in the last section, one expects from a physical
perspective that the viscous coefficient fulfills the condition

&y ~ O(1), such that the viscosity leads to an accelerated
expansion in the absence of the cosmological constant.
Similarly, using Eq. (4), the deceleration parameter can be
expressed as

1 3.
J2E :E(I_I_Qr)_zg()gfn' (18)
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Having described the dynamical equations for this viscous
scenario, we can proceed with a detailed analytical analysis
of the asymptotic behavior of the background dynamics.
The advantage of our approach lies in its validity for
arbitrary values of the exponent s.

A. Analytical study of the fixed points structure
for arbitrary bulk viscosity exponents

We first calculate the fixed points of the dynamical
system (16), followed by a linear stability analysis. Beyond
the linear regime, we will apply the criterion of the general
stability theorem set by Malkin [52]. To simplify the
notation, we introduce the variables X = Q, and ¥ = Q,,,.
The fixed points fall generally into three solutions:

(1) Type I:

X; =0, Y, =1, with wy=—(1"§

3

and q:%—(l“') > (19)

This one-parameter family of fixed points represents
physically viscous dark matter domination regard-
less of the values of s and &,.° They may lead to a
cosmic acceleration if & > 1/3, considering the
positive branch in the involved root, whereas for
%0 < 1 on the negative branch, the fluid behaves
almost like standard dark matter (dust) with a very
small dissipative pressure.
(i) Type II (for s > 0):

1
Y”:O, XH:], with Weffzg and q:l (20)

This general fixed point represents a radiation fluid
with standard EoS and decelerated expansion.

(iii) Type III (for s # 1):

Xip=1=Yy, Y= (_380)1/(1—@’

1 A
with Wef = gX - éo Ys

1 3.

To ensure that Y;;; €R ., the exponent s must be a
rational number of the form s = (1+2n)/2m,
where n and m are arbitrary integers. This restriction
results, respectively, in the following effective EoS
and deceleration parameters:

®We remind the reader that here we refer to viscous dark matter
as a single unified description of the dark sector of the Universe.

1 A
Wett =3 (1 - 2(350)2'"/(2<m_")_1)>
and qg= 1= (330)2m/(2(m—n)—1)’ (22)

This fixed point describes a universe with both
radiation and dark matter components. Therefore,
the dynamical character of this point can change
depending on the values of the model parameters. In
the limit as éo — 0, we recover the solution for
radiation domination (20). This indicates that the
presence of dark matter is fully supported by the
bulk viscosity pressure. In this sense, this fixed point
can lead to accelerated expansion on the condition
that &, > 1/3, similar to the previous type I case.
After describing the conditions for the existence of the fixed
points, which can exist simultaneously or not depending on
the value of s, we proceed to illustrate the main features of
these solutions for specific values of the exponent s. It is
important to note that within our setup, any unified viscous
model must either account for pure radiation domination
(type I1) or include radiation with a small contribution from
bulk viscosity dark matter (type 7/1). We provide examples
that cover either one, two, or all three types of fixed points.
These are detailed in Table I, along with some cosmological
characteristics, as described below:
(i) s = —2. This value allows for the existence of a
unique fixed point, which belongs to type I. Spe-
cifically, it takes the following form:

X, = 0, Y, = 1  with Wef = —%0,
1 3.
d g==-28&. 2
and ¢ 3 250 (23)

This fixed point corresponds to a viscous DM
component, denoted as point (Aa) in Table I, and
can successfully drive the current accelerated ex-
pansion provided &, > 1/3. However, it fails to
account for radiation domination and must be
discarded as possible unified dark model.

(i) s = —3/2. In this case, pure radiation domination
(type II) is not possible. However, fixed points of
type I remain, labeled as (Ba) and (Bb), respectively.
These can be summarized as

XI :O, YI = 1, Wlth Weff = :FEO’
1 3.
_ 132k 24
and ¢ 2:F2§0 (24)

Finally, the fixed point of type III [see Eq. (21)]
yields:

X =1-03&)°, Y =(3&)%°, with

1 A .
Wett :§ (1 - 2(35())2/5) and g=1- (350)2/5-
(25)
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(iii)

(iv)

TABLE L

Fixed points of the autonomous system described by Eq. (16) for different values of the bulk viscosity

exponent s along with the condition of existence of the fixed point. The main cosmological features of the model

have been also included.

Exponent Point Q, Q,, Wesp Existence Acceleration
§==2 (Aa) 0 1 - v & Yes
s=-3 (Ba) 0 1 & v & No
(Bb) 0 1 -& v & Yes
(Bo) 1= (3&)%° (380)° 1a- 2(330)2/5) v & No
s=-1 (Ca) 0 1 - v & Yes
s=-1 (Da) 0 1 =& v & Yes
(Db) 0 1 & v & No
(De) 1-(3&)%? (360)* 1(1-2(34)%) & >0 No
s=0 (Ea) 0 1 -& v & Yes
s=1 (Fa) 0 1 2, v & No
(Fb) 0 1 =& v & Yes
(Fe) 1 - (38))> (3)? 3 v & No
s=1 (Ga) 0 1 - v & Yes
(Gb) 1 0 ! v & No
5§ = % (Ha) 0 1 & v & Yes
(Hb) 0 1 & v & No
(He) 1 0 L v & No
(Hd) 1-(3&)2 3&))2 11— 2 o £ 0 No
(3&) (3&) l ( (w) &y #
s=2 (Ta) 0 1 - v & Yes
(Ib) 1 0 L v & No

This is denoted as (Bc) in Table 1. Solutions of types
II and I1] cannot coexist simultaneously under the
physical requirement of complete cosmological
evolution. If Zfo > 1/3, leading to accelerated ex-
pansion, it disrupts the radiation era, rendering this
solution unsuitable for a unified scenario.

s = —1. In this case, only the fixed point of type I
[(Ca) in the table] exists, describing viscous dark
matter with the potential to generate accelerated
expansion provided that ;*0 > 1/3. This is charac-
terized by

X;=0, Y;=1, with wy =—&,

1 3.
and q= 5—560. (26)

However, it fails to describe the radiation era and
must be discarded.

s = —1/2. This value results in fixed points of type
I, given by:

063513-6

X, =0, ¥, =1, with wy =F&.,

1 3.
and ¢ ) + 550, (27)

which corresponds to (Da)—-(Db) in Table L. It also
allows for a fixed point of type /11, labeled as (Dc) in
Table L.

X =1-(38)%3, Yy =(38)%3, with

1 A n
Weff:§(1_2(3€0>2)7 and q:l—(3§0)2, (28)

It is important to notice that the fixed point of type /,
corresponding to a viscous DM type, leads to
accelerated expansion for ;&0 > 1/3. However, for
such values, X;;; becomes negative, which is physi-
cally unacceptable. Therefore, one can have either
radiation domination for ;“0 < 1 or accelerated
expansion for %0 > 1/3, but unfortunately not both
periods. As a consequence, this viscous model must
also be discarded.
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(v) s =0. This particular value corresponds to a bulk
viscosity coefficient of the form & o« H, commonly
used in unified viscous models. In this scenario,
there exists only one fixed point of type I, which
describes dissipative dark matter. This is given by

XIIO, YIII, Wlth weff:_%Ov

1 3.

and q=7 250. (29)
This fixed point, denoted as (Ea), leads to accel-
erated expansion for 20 > 1/3, but it fails to describe
the radiation era of the universe. Therefore, it must
be discarded. This is in line with [42].

(vi) s =1/2. This value corresponds to the viscous
model & x p,lﬂ/ 2, which has been extensively used
in the literature. However, this particular case must
be approached differently within our framework.
While it seemingly exhibits a fixed point of type /71
(X;; = 1,Y;; = 0), it fails to satisfy the condition of
Malkin’s theorem Eq. (44). This argument will be
developed in more detail when studying the stability

conditions. Instead, it presents two fixed points of
type I, labeled as (Fa)—(Fb):

X, =0, Y, =1, with we=TF&,

1 3.
and qzzqiifo. (30)

Additionally, it exhibits one fixed point of type I/
[see Eq. (20)]:
Type 11:

1
XIIZI, YIIZO, with Weffzg and q:] (31)

This fixed point describes a standard radiation domi-
nated era, with the known EoS coefficient w ¢ = 1/3.
Type 111:

Xi=1- (350)2, Yin= (3%0)21 with

1 A .
Weff :§ (1 —2(350)2> and g=1- (350)2- (32)

This latter is denoted as (Fc) in Table 1. While this
scenario appears to present a complete cosmological
evolution—featuring a radiation domination era with non-
vanishing viscous dark matter and an accelerated expansion
driven by bulk viscosity pressure—this fixed point must be
disregarded, as X;;; becomes negative for ;fo > 1/3.
Relaxing this condition inevitably compromises the behav-
ior of dark energy at late times. This scenario faces similar

issues as previous cases and, surprisingly, should not be

considered as a unified description of the dark sector.

(vii) s = 1. This particular case must be handle sepa-
rately, as the dynamical system simplifies its ana-
lytical dependence, and moreover, has no fixed
points of type I11. Accordingly, the fixed point of
type I is

2 1 3.
X;=0, Y;=1, with wg=-&, and q:z_zgo’

(33)

which corresponds to (Ga) in Table I. A fixed point
of type /I is also present

X":O, Y[]II, with Wefle/?), and q:l’
(34)

which corresponds to (Gb) in Table I. This para-
metrization correctly captures both radiation and
matter-dominated periods, and the viscous pressure

could drive accelerated expansion for %o > 1/3.

In addition, for this case it is possible to integrate
analytically the dynamical system. The behavior for the
normalized DM energy density as a function of the scale
parameter a is given by

a1+320
Q,(a) = (35)

14 al+3%’

which fulfills the suited conditions to vanishes as a — 0, or
equivalently, ©,, vanishes asymptotically in the radiation
dominated epoch. This asymptotic behavior corresponds to
the fixed point of type IL. It is worthwhile pointing out that

deep in this era and in the zero viscosity limit a), the dark
matter normalized energy density given by the above
equation behaves as Q,,(a) o a. But, in this asymptotic
region the square of the Hubble parameter goes propor-
tional to the radiation energy density [see Eq. (3)], and as a
consequence, the dark matter energy density behaves as a
power law of the scale parameter with the well-known
exponent, i.e. p,,(a) « a=3. This result represents a con-
sistency check of the validity of expression Eq. (35),
obtained by a direct integration of the dynamical system
governing the cosmological evolution.

Similarly, for the DM-dominated era a — oo, ¥ — 1,
whose asymptotic behavior is described by the fixed point
of type I. As a consequence, the effective DM pressure of
Eq. (5) can be expressed in the form
3 HZEE) a1+3.§0

&Gy 1 + a1+3;to '

H(a) = —goﬂm = (36)
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As H? is non-negative quantity and Zi) > 0, it follows that
the negative effective pressure drives the universe to an
accelerated expansion when the scale parameter a grows, as
expected by the cosmological observation data. On the
contrary, it becomes negligible as a becomes relatively
small, compatible with the decelerated expansion of the
radiation dominated epoch, including the Big Bang singu-
larity (a — 0).
(viii) s = 3/2. This case exhibits similar features as the
s = 1/2 case with one key distinction we discuss
later. There are four fixed points. Two of the form

type 1

. A 1 3.
X;=0, Y;=1, with wey =F, and CIZEZFEQEO
(37)

which correspond to (Ha)—(Hb). In this scenario,
accelerated expansion can take place, as usual, only
in the positive branch of the square root of the above

expressions for & > 1/3. Another fixed point reads

X11:17 YIIZO’ with WCff:1/37 and q:l
(38)

which corresponds to (Hc), and represents a radia-
tion fluid. The last fixed point is of type I/I and
yields:

Xi=1=Yp. Yy=03&)2 with
1 < 2 ) 1
Weff == l-——— and qzl—,\i (39)
AN (3&)?

This is marked as (Hd) in Table I. We have also
considered the positive branch of the square root of the
unity, consistent with the choice made for the fixed point of
type I. As anticipated, we can see a key difference with
respect the case s = 1/2 in the fixed point of type I1]
[compare Egs. (32) and (39)]. For ;&0 > 1/3, this fixed point
exists thanks to the negative square in Y;;;, which prevents
this quantity to become larger than one, as happened in the
s =1/2 case, leading to a positive value for X;,.
Interestingly, this fixed point describes a combined radi-
ation-viscous matter fluid with a generalized EoS that
encapsulates the effects mentioned, but it is not compatible
with an accelerated expansion.

(ix) s = 2. This fixed point shares the same attributes as
the s =1 case, so we will skip this discussion.
However, it is worth noting that the stability proper-
ties may potentially differ.

We conclude this section by discussing the implications
of considering arbitrary exponents in the fixed points

analysis of the dynamical system described by Eq. (16).
When dealing with nonpositive integer exponents, denoted
ass = —nwithn =0,1,2,3..., we observe that only fixed
points of type [ are present. This is because the condition
X =1 and Y = 0 to obtain radiation domination fails to
yield a stationary point for Eq. (16). There remains the
option of having fixed points of type //1. However, for a
general negative irrational exponent value s, the factor
(=1)"/(1=5) appearing in Eq. (21) introduces an imaginary
component given by the expression sin(z(2n + 1)/(1 —s))
with m € Z, which is physically unacceptable. We conclude
that for negative irrational s-values, the fixed points of Type
111 must be discarded. Consequently, in a vicinity of the
fixed point associated with s = —1/2, whose exponent
already fails to describe the radiation era of the universe, for
instance s = —1/2 + e with € < 1, there will not be a value
yielding a complete description of the universe’s evolution.
As a main result of this part, it is imperative to exclude such
exponents from consideration in phenomenological viscous
unified models, as they do not lead to physically mean-
ingful solutions capable of describing the full dynamics of
the universe.

B. Stability of the fixed points

In this subsection, we investigate the stability properties
of the fixed points identified in the previous section. Our
objective is to ascertain whether these fixed points accu-
rately portray the evolution of the Universe. To achieve this,
we employ linear stability analysis, a method well-suited
for examining the behavior of the system in the vicinity of
the critical points defined by the dynamical system (16).
We compute the eigenvalues of the system derived from the
Jacobian matrix, obtained from the first-order derivatives of
the functions appearing on the right-hand side of Eq. (16):

Fi(X,Y) = =X(¥ +3& "),
Fy(X,Y) = (1=Y)(Y +3&Y%). (40)

From here, we obtain

Fix=-(Y+ 350YS)’ Frx =0, (41)

Fiy ==X(1+3s&Y* ),
Fpy=1=2Y+3& (s~ = (1 +5)¥°), (42)

where the comma indicates derivative with respect to the
variable. We proceed then to compute the characteristic
equation:

0= det(ﬂ] — aij)’ where aij = Flj (43)
By solving this characteristic equation, we can obtain
the eigenvalues for each fixed point. Subsequently, we

can determine whether these eigenvalues correspond to
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attractors, repellers, or saddle points, which in turn define
the dynamical character of the fixed points. Regarding the
applicability of linear stability theory beyond this regime, it
is essential to address a technical point. Malkin’s nonlinear
stability theorem [52] asserts that the conclusions drawn
from linear stability analysis concerning a fixed point
(X,,Y.) remain valid beyond the linear approximation if
the right-hand side functions of the dynamical system
defined by Eq. (16), denoted as F;(X,Y), satisfy the
following condition in a sufficiently small neighborhood
of the fixed point

[Fi(X.Y)] SN(X? + ¥2)1/2te, (44)

where |F;| stands for the absolute value of the function F;,
and N and a are positive constants, together with the
additional condition on the real parts of the eigenvalues of
the characteristic equation associated with the Jacobian
matrix of being negative (stable fixed point), or being at
least one of them positive (unstable fixed point). This
mathematical aspect is crucial because in the open interval
0 < s < 1, the above condition is violated by F, for fixed
points of type II. Consequently, the stability analysis
demands a higher-order examination. Now, we delve into
the stability properties of suitable fixed points associated
with those exponent values for which both types of fixed
points exist—radiation and viscous matter—and addition-
ally lead to an accelerated expansion.

(i) For s = 1/2, in principle, there are two fixed points
that fulfill the aforementioned conditions. Never-
theless, the dynamical system has ill-defined deriv-
atives at the fixed point (X = 1,Y = 0) as it can be
seen from Eq. (42). In addition, the condition (44)
for the validity of the linear stability analysis beyond
the linear approximation is violated, and therefore,
we have to deal with this technical issue by perform-
ing instead a numerical analysis.

The stability properties of the fixed points for this case
are as follows:

Type I:
5 1 3¢
X;=0, Y;=1, with we=7F& and q:f%'
(45)

As we can see, this fixed point corresponds to viscous
dark matter, leading to accelerated expansion under

the aforementioned condition (.%0 > 1/3). The asso-
ciated eigenvalues are degenerated and given by

Hi2 = _(1 + 320)- (46)

These eigenvalues describe an attractor fixed point,
provided one chooses the positive branch of the square

root. This condition is consistent with the above
constraint (Eo > 1/3), such that viscosity drives the
universe to an accelerated expansion in the dark-
matter dominated era.

Type II:

1
X[IZI, Y":O, with Weff:g and q:1 (47)

This fixed point exists, as it is an stationary point of
the dynamical system for s = 1/2, and describes a
standard radiation dominated era. Nevertheless, as it
was explain above, its stability properties go beyond
the linear stability analysis. This aspect will be
addressed by numerical analysis.

Type I11I:

Xur=1-03&)% Y =(3&)? with

1 A N
Weit :§ (1 —2(350)2> and g=1- (350)2‘ (48)

This type of fixed point describes a combined radiation-
matter fluid with a nonstandard EoS parameter due to the
presence of bulk viscosity. However, when the condition
for accelerated expansion is fulfilled, the energy density
parameter for radiation becomes negative, which is physi-
cally unsatisfactory.” Therefore, fixed points of type I11
must be discarded as it is not compatible with the existence
of the other fixed points.

(i) For s = 1, there are two fixed points that fulfill the
conditions necessary to describe the complete evo-
lution of the universe. For the first fixed point of type
I, where X; =0 and Y; =1, and considering
Egs. (41) and (42), we observe that the two eigen-
values are degenerate:

3.
5§0~
(49)

A ) o 1
Hip=—(143&) with weg=—&, and 9=5-

This point corresponds to (Ga) in Table II. As both
eigenvalues are negative, the associated fixed point
corresponds to an attractor, and represents a viscous
matter capable of driving the accelerated expansion,
provided that Eo > 1/3. For the second fixed point
of type 11, X;; = 1, Y;; = 0, the eigenvalues, dis-
played as (Gb) in Table II, are given by

"This type of critical point is also absent in a more general
scenario where viscous dark matter and dark energy fluid are
allowed to interact, and the bulk viscosity is a function of the total
energy density [41].
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(iii)

TABLE II. Eigenvalues and stability conditions for determining the dynamical character of fixed points meeting
the criteria for a suitable dynamical evolution: from a radiation-dominated era to accelerated expansion.
Exponent Point A A Stability
s=1 (Ga) —(1+ 3230) —(1+3&) Attractor for 0 < &, < 1
(Gb) 0 1 Marginal/Repeller if éo >0
s=3 (Ha) —(1+3&) —(1+3&) Attractor for & > lA/3
(He) 1 0 Repeller/Marginal V &, > 0
(Hd) —-2/(38,)2 1(5-1/(&)%)) Attractor/Repeller for & > 0.447
s=2 (Ta) —(1+43&) —(1+3&) Attractor for & > 1/3
(Ib) 0 1 Marginal/Repeller V 30 >0
A . 1 This type of fixed point describes a combined
pr=1+38. =0 with werr = 3 and g=1. radiation-matter fluid with a modified effective

(50)

These eigenvalues describe a repeller/marginal fixed
point, corresponding to standard radiation domi-
nated era.

For s = 3/2 there are in principle three fixed points,
with two of them fulfilling the required conditions to
describe the complete evolution of the universe. For
the first fixed point of type I, X; =0, Y; = 1, the
two eigenvalues are degenerated as in the s = 1/2
case:

pip=—(1+ 3&,) with wer=F& and

13,
So-

E:FE (51)

q =
As both eigenvalues are negative, the associated
fixed point corresponds to an attractor, representing
a viscous matter mimicking the effect of dark energy
at late times. Again, the condition (:&0 > 1/3 must be
imposed to ensure accelerated expansion, along with
the selection of the positive branch of the square root
of 1. For the second fixed point of type 11, X;; = 1,
Y;; = 0, the eigenvalues are

1
ﬂlzl, /AZZO with Weffzg and q:1 (52)

These eigenvalues describe a repeller/marginal fixed
point, which describes standard radiation era. Fi-
nally, the eigenvalues associated with the fixed point
of type 111 are

-2 1 1
— " m==(5-%), with
ST 2< 5%) i
1 2 1
=1 ——= d g=1——x—. 53
Wet 3< (350)2> and ¢q (350)2 (53)

EoS coefficient, when compared with a pure radi-
ation fluid EoS [see Eq. (52)]. Nevertheless,
the physical constraint Y;; <1, or equivalently
éo > 1/3, forbids this fixed point to describe an
accelerated expansion. As a consequence, this fixed
point must be a repeller, at least in one direction, to
be in accordance to the universe dynamics. This
leads to the more demanding lower bound condition
éo > (0.447, ensuring that p, > 0.

For s = 2, there are two fixed points fulfilling the
required conditions to describe a suitable dynamics.
For the first fixed point of type I, X; =0, ¥Y; =1,
the two eigenvalues are degenerated:

@iv)

3.
S
(54)

. ) 1
12 =—(1+3&) with weg=—&, and q9=5-

As they are both negative, the associated fixed point
corresponds to an attractor, describing a viscous matter
driving the accelerated expansion if 30 > 1/3. As to the
second fixed point of type II, X; =1, Y; =0, the
eigenvalues are

1
ﬂlzl, /4220 with Weffzg and q:l (55)

These eigenvalues describe a repeller/marginal fixed
point, representing standard radiation.

Based on the stability analysis, we conclude that the
cases s = 1 and s = 3/2 are suitable scenarios for unified
viscous models. The case s = 1 can straightforwardly be
extended to all non-negative integers s = n, where n €N.
Rational exponents such as (2n + 1)/2n, which cover the
former case (iii), are also eligible for modeling viscosity
within the DM sector. These results are summarized in
Table II.
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V. DYNAMICAL SYSTEM ANALYSIS
FOR THE VISCOUS MODEL II

Now, we compute the fixed points associated with the
second type of parametrization of the bulk viscosity
coefficient &  p3, [Eq. (7)], followed by their stability
properties. This model has been extensively studied in the
literature in different cosmological scenarios. In particular,
we want to draw attention to the pioneering work [6],
where, to the best of our knowledge, it was first noticed that
for s > 1/2, the fixed point type I, describing viscous
matter domination, corresponds to a saddle point, while for
s < 1/2, it represents an attractor de Sitter solution. In the
present viscous model, we must retain this feature along
with the existence of a radiation stage to provide a realistic
cosmological model. Therefore, in the following analysis,
particular attention must be paid to the case s < 1/2. We
have also verified that our analysis fully agrees with the
results of [6], as we have found the same critical points and
stability properties.8 However, the inclusion of a radiation
component in this viscous model leads to a significant
change in the main conclusion, as we uncover from our
analysis.

Contrary to the previous model, the phase space for
this viscous model is spanned by three instead of two
variables: (X,Y,#n). The corresponding dynamical system
turns out to be

X =X(X-1-=-3nY%),

Y =XY+35(1-Y)Y*,

n=(s=1/2)n(-3-X+3nY"), (56)
where X and Y are the same physical quantities defined in

Eq. (14), and the additional dimensionless variable #,
which was necessary to close the system, is defined by

n = (24nGy)*~V2E H> 1. (57)

The effective EoS and deceleration parameter are given,
respectively, by

1
Weft = X - n YS’

: (1+X-37Y%). (58)

N[ =

and g =

%The curious reader can observe that in the phase space
analysis of [6], the case s = 1/2 cannot be covered because this
makes the solution singular, which differs from our approach
since our system is well-behaved for all non-negative values of s.
Another key difference is the choice of the dynamical variables.
Colistete et al. chose distinctively the Hubble parameter H,
whose value extends to infinity in phase space. This is the reason
why they have projected onto the Poincaré sphere. In contrast, our
variable #n [see Eq. (57)] is confined to the range 0 <7 < 1,
despite being a function of the Hubble parameter, thus allowing
us to represent the entire phase space from the original variables.

We remind that this model coincides with the previous one
for the case s = 1/2. We exclude then this case in the
forthcoming analysis.

A. Analytical study of the fixed points structure
for arbitrary bulk viscosity exponents

Following the same reasoning as in the former case, we
briefly describe the main steps in the computation of the
fixed points. For exponents s # 1/2, the fixed points can be
classified into two types:

Type I (7, # 0):

SGR\{I/z}Zm:l, X]ZO, Y1:1,
with weg=—1 and g=-—1. (59)

This fixed point is independent of s and represents
viscous matter fully dominating the universe. In the
asymptotic limit, it describes a de Sitter-like solution.

Type II (n;; = 0):

sER: () =0, X;=0, Y, =1, with
Weff:() and q:1/2 (60)

This fixed point, labeled as a, represents a standard
nonrelativistic dark matter fluid, and leads to a
decelerated expansion, and hence, it does not cor-
respond to the known cosmological evolution. In
addition, from its stability properties, this fixed point
turns out to be an attractor/marginal point in the
physical phase space spanned by (Q,,Q,,), which
does not fit to the know universe dynamics either.
As a consequence, this fixed point must be dis-
carded.

The second possible fixed point of this type, labeled as b,

is the following:

S>O:(T1H)b:0, X”:], Y”:O, with
Weff:1/37 and q:], (61)

which exists for arbitrary positive s-values, and describes a
standard radiation fluid.

It is worth pointing out that with the exception of the
particular value s = 1/2, there are no fixed points of
type 111 in this viscous model as in the former viscous
model I, which could have described rational exponents.
This occurs because it is not possible to find a fixed
point that meets the physical constraints 0 < X;;; < 1,
Y, #0, and simultaneously allows the cancellation of
the right-hand side of Eq. (56). This complication
arises due to the presence of another dynamical equation
for the system related to #, which differs from the
former model. Consequently, a solution of the form
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Y = (=3n;,)"/0=%) for n#0 cannot simultaneously
satisfy the condition 5’ = 0.

A more significant implication arising from the structure
of the fixed points is the unequivocal exclusion of negative
exponents. These exponents are automatically deemed
invalid, as they fail to yield fixed points associated with
a radiation-dominated era. Hence, viscous models with
s < 0 must be ruled out as they cannot describe a complete
cosmological evolution. In this sense, it is pertinent to
explicitly address the specific case of s = —1/2, as this
exponent value corresponds to a preferred value in the best-
fit analysis of extensive cosmological datasets [51], which
also encompassed gravitational wave standard sirens [54].
Unfortunately, the constraint s < 0 has been overlooked in
those analysis as a (physical) prior information, leading to a
best-fit values of s falling outside the acceptable range. To
discard any potential ambiguity in the definition of
dynamical variables that might overcloud physical solu-
tions, we introduce the variable change Z = Y~!/2, leading
to the following dynamical system:

X =X(X-1-332),
1
7' =—(-X | 2V AVA
5 (=X + 3 )Z)Z,
W =n-3-X+3n2). (62)

A simple examination reveals that a radiation-like solution
of the general form (X = 1,Y = 0, 5) is explicitly excluded
as a fixed point, as was also the case in the original
dynamical system. In fact, there is only one fixed point that
satisfies the constraint X +Z72 =1 and the physical
condition 7 > 0:

XIIO, Z]ZI, 77[:1 with Weff:—l and q:1 (63)

The above fixed point represents a viscous dark matter fluid,
which describes an asymptotically de Sitter expansion.
However, since this case does not include a radiation fixed
point, it must be dismissed as a viable viscous unified model.

As to the limit value s = 0, which describes a constant
bulk viscosity coefficient within this setup [see Eq. (7)], the
dynamical system reduces to

X =X(X-1-3n),
Y = XY +35(1-7Y),

1
11’2517(3+X—311)- (64)

°In an effective theory of relativistic viscous fluids, viscosity has
no effect on the behavior of radiation either, i.e., wei = 1/3 [53],
consistent with standard cosmology. We conjecture that this aspect
is not intrinsically related to a causal first-order theory of
relativistic viscous fluid dynamics but may be a consequence of
the functional form of the bulk viscosity.

For the first fixed point, we have

X]:(), Y]II, 7’]]:1 with Weff:—l and q:—l
(65)

This solution represents a scenario where viscous dark
matter dominates, leading to an expansion resembling that
of de Sitter expansion. The second fixed point is

X11:1, YIZO, (l’]l)b:O with Weff:1/3 and q:l
(66)

This point characterizes a standard radiation fluid.
Consequently, as we will explore in the next subsection
on stability properties, this exponent satisfies the physical
conditions necessary to depict a complete evolution of the
Universe, consistent with earlier findings [42,43].

A final remark concerns the particular exponent s = 1/2.
This is a very special value for the dynamical equations as
1 vanishes automatically [see Eq. (56)]. As a result, the
evolution equations go exactly into the same dynamical
system as the viscous model I, with # going to 20 [see
Eq. (57)]. Thus, both models are fully equivalent for
s = 1/2, and the previous analysis conducted within the
viscous model / remains applicable to the present model /1.

B. Stability properties of the fixed points

In this subsection, we investigate the stability properties
of various fixed points that could potentially characterize
the entire cosmic evolution. Employing a methodology
akin to that used for the first viscous model, we will skip
certain technical details. The functions featured on the
right-hand side of Eq. (56) are

Fi(X.Y.n) =X(X—1=33Y%),
Fy(X.Y.n) = XY +3n(1 = Y)Y*,

F3(X,Y,n) =(s=1/2)n(-3-X+3pY*). (67)

As mentioned earlier, the case s = 1/2 has been already
analyzed, so it is omitted from the current analysis.
Nevertheless, for arbitrary s € R\{1/2}, the stability prop-
erties of the fixed point of type I changes in the -direction
as s crosses this particular value. In fact, for this fixed point
Eq. 59) (X; =0, Y; =1, n = 1), the eigenvalues are

ur=—4, u,=-3, and u3=3(s—1/2) together with,
Weg=—1, and g=—1. (68)

This fixed point describes an attractor in the physical phase
space directions (Q,, Q,,), driving to an accelerated expan-
sion due to the negative bulk viscosity pressure.
Nevertheless, for the 5-direction, u3 represents an attractor
if s <1/2, while it becomes a repeller for s > 1/2.
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Consequently, there exists a critical value around which a
unified dark matter scenario emerges (s < 1/2), driving
late-time accelerated expansion. This feature of the phase
space was first observed in [6] (see also [39,55]). We have
shown explicitly how this behavior arises in the Appendix.

Now, for fixed points of type I/ Eq. (61) (X;; =1,
Y, =0, #* = 0), the eigenvalues are given by

u1o=1, and p3=-4(s—1/2) together with,
weg=1/3, and g=1. (69)

Thus, this point describes a repeller in the physical phase
space directions (Q,,€,,), indicating a pure radiation era.
The repeller character of the z-direction for s < 1/2
follows from its behavior: 7 « H?~!), whose value tends
to zero as H goes to infinity [see Eq. (57)]. This behavior
holds in the radiation dominated era, approaching the big
bang singularity.

As an overall conclusion of the above analysis, the
requirement of late-time accelerated expansion alongside
the condition of radiation domination, i.e., s > 0, confines
the physical region to 0 < s < 1/2. Imposing the require-
ment of late-time accelerated expansion alongside the
condition of radiation domination, i.e., s > 0, confines
the physical region to 0 < s < 1/2. This interval must be
incorporated as a prior in statistical analyses, contrasting
with the unjustified assumption made in [51,54].

Finally, for the limit value s = 0, which corresponds to a
constant viscous coefficient, the eigenvalues are

For fixed points of type I: (X; =0, Y; =1,n=1)

U =—4, u,=-3, and u3=-3/2 together with,
Weﬂ::—l, and q:—l, (70)

which describes an attractor in the physical phase
space directions (Q,,€,,). The attractor character of
the #n-direction follows from the functional form
n o H™', which goes to a constant value for an
asymptotically de Sitter solution described by a fixed
point of type I, and prevents x to deviate from its
constant value.

For fixed points of type II: (X;; =1, Y;; =0, n* = 0)

ui,=1, and p; =2 together with,
wep=1/3, and g=1, (71)

which corresponds to a repeller in the physical phase
space directions (Q,,Q,,), indicating a period domi-
nated by standard radiation we = 1/3. The repeller
character of the g-direction follows again from the
behavior of 7 « H~!, which leads # — 0, as H — oo

in the very early Universe limit.
For s =0, or equivalently constant bulk viscosity
coefficient, the dynamical system can be analytically

be integrated. Close enough to the asymptotic region
n= (247[GN)_1/2§A0H‘1 w 0, the expression for the DM
energy density as a function of a, the scale parameter, is
given by

Q,(a) , with = (247Gy) V26, H ' »0, (72)

_ ca
" l4ca

being ¢ an integration constant. Accordingly, in the limit
a — 0, the DM energy density vanishes, which remarks
that this era is dominated by radiation with w.; = 1/3. In
the other asymptotic region, when n o« H~! ~» 1, and
Q,,(a) ~ 1, we obtain

_Aa4—3

Q,(a)= T with 7= (242G y)~2E H™ =~ 1,

(73)

where A is a positive integration constant. The above
expression holds in the asymptotic region of large a-values,
such that Q,, ~ 1. The effective DM viscous pressure can
be written as

127
3%y (74)

M=-3H¢=-—"_°0_p
5 (87TGN)3/2

which leads to a late accelerated expansion of De Sitter type,
as n = (247Gy)~V/2EyH™! w 1, compare with Ref. [3].
Similarly to the former analysis, for the particular s = 1
case, it is also possible to integrate analytically the
dynamical system in the asymptotic regime of constant
n. The behavior for the DM energy density parameter as a
function of the scale parameter a turns out to be

a1+311

Tlraon with '7:<24”GN)1/25AOH‘~>1, (75)
pREE

Q,(a)

which vanishes in the very early universe as a — 0.
Moreover, since 7 w 1, this solution describes a De
Sitter inflationary scenario, in agreements with a similar
results found in [3]. Analogously, for the DM-dominated
era a grows exponentially, and therefore Q,, — 1. This
asymptotic behavior is captured by the fixed point of type I.
As a consequence, the negative effective DM pressure,
Eq. (5), can be expressed in the form
33/2H3§A0 alt3n
(872G )" /21 + a'+3n”

Il=-3H¢=— (76)

As H and n are both positive quantities, this effective
pressure drives the universe to an accelerated expansion as
the scale parameter a grows, while it becomes negligible
as a becomes relatively small, compatible with an expected
radiation dominated epoch, including the big bang
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singularity (¢ — 0). Concerning the limit # — 0, which
corresponds to a fixed point of type /I, the expression
for Q,, goes continuously to the expression Q,(a) =
a/(1 + a), for a sufficiently small. Moreover, the asymp-
totic expression for the effective DM pressure, Eq. (5),
would become negligible as

M(a) « 7Y (a) =50, (77)

which means that close to this type of fixed point,
corresponding to a radiation dominated era, the effective
pressure would not lead to changes in the dynamics of the
early cosmic expansion. Nevertheless, as it was explained
in the general discussion of stability properties of fixed
points, for s > 1/2, the stability behavior would corre-
spond to an attractor in the n-direction, which fails to
describe the true physical dynamics of the universe, and
hence, this viscous value must be discarded as a suited
viscous model. (See the Appendix for a detailed explan-
ation on how a radiation dominated fixed point only exists
for 0 <s < 1/2).

VI. CONCLUSIONS

For the general viscous model 7, which depends explic-
itly on the Hubble parameter and the energy density in the
form & o« H'=>%p$,, we have found a family of rational
values s = (2n+1)/2m with n,meN, including the
known case s = 1/2, that are well-suited to describe a
complete cosmological evolution. This conclusion is
supported by the fixed points associated with both radia-
tion-dominated and viscous dark matter-dominated cos-
mological eras. Moreover, these suited values have the
remarkable feature of displaying an additional fixed point
of type 111, which describes a combined radiation and
viscous dark matter behavior and does not lead to an
accelerated expansion. We have also observed that in the
asymptotic upper limit s — 1, (n = m large), this fixed
point goes into a fixed point of type /7, describing standard
radiation with an EoS parameter w. = 1/3.

Concerning the unified viscous model /7, which depends
on the dark matter energy density as a power law: & ~ pj,,
our dynamical system analysis has revealed significant
inconsistencies for negative exponents s < 0, which have
not been previously observed. Indeed, they must be
discarded as suited effective scenarios to describe viscosity
within the DM sector, as they fail to produce a radiation-
dominated era, an undesirable outcome for any cosmo-
logical model. Moreover, in a neighborhood of a rational
negative viscous exponent like —1/2, there will not exist a
fixed point representing the radiation dominated era,
rendering all these values invalid. This result underscores
the need to include this constraint as a prior in statistical
analyses of observational data, with implications for current
statistical inferences, where both prior and best-fit values of
s often fall outside the acceptable range [5,51,54].

Further, for this type of viscous model, we have found that
arbitrary real exponents s lying in the interval 0 < s < 1/2
are suited values to model viscosity within the DM sector.
They can describe the complete cosmological dynamics,
including the known radiation- and dark matter-dominated
eras, and lead to an accelerated expansion. Moreover, the
stability properties of the associated fixed points also
correctly describe the observed universe evolution.

The main conclusion of this paper underscores a crucial
aspect often overlooked in observational analyses. While
early studies hinted at challenges in reconciling model 7/
with observations due to rapid damping of density pertur-
bations in the viscous fluid [5], recent analyses incorporating
more comprehensive data, including the full cosmic micro-
wave background temperature and anisotropy data, provide
strong evidence supporting a nonzero bulk viscous scenario
at more than 2 standard deviations [51,54]. These analyses
suggest a preferred value of the exponent s = —0.557 based
on combinations of cosmological datasets. However, the
theoretical inconsistencies of this model when s < O raise
significant concerns as we have shown. This invalidates the
analysis of [5,51,54] because, initially, this physical infor-
mation was not included in the prior assumptions.

We have observed that in models & o« H'~>%p$,, a natural
limit to the standard (pressureless) cold dark matter
component is achievable as s approaches infinity asymp-
totically. However, this feature cannot be recovered for the
model &' ~ p$, unless we trivially choose a vanishing bulk
viscosity coefficient & — 0.

We have shown that for unified models, regardless of the
chosen parametrization to model viscosity, the accelerated
phase of cosmic expansion requires very high values of
bulk viscosity. Such high values are not expected given the
very low value of cosmic dark matter density at the present
time, and considering the small bulk viscosity values for
fluids in terrestrial environments. We pointed out that
despite the ongoing debate about the nature of dark matter,
it is highly improbable for any model of this component to
result in such high values of viscosity. Furthermore,
viscosity during structure formation must be very low to
fit the data, demanding the counterintuitive behavior of
bulk viscosity diminishing as the energy density increases.
In summary, the unified viscous scenario has a weakness of
requiring nonphysical behavior for the bulk viscosity in
terms of fluid density to fit cosmological data. Moreover,
the dynamical system analysis of the two models studied
reveals that this inverse dependence on matter energy
density does not lead to a complete and consistent
description of the background cosmic evolution.

After exploring predictions and implications for cosmic
dynamics, and uncovering some inconsistencies not pre-
viously observed, we are left with a fundamental question:
Are viscous unified scenarios a viable model to describe the
universe? Not surprisingly, the ultimate answer lies in the
realm of observational constraints. This is the next step we
plan to take in our immediate research.
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APPENDIX: COMPLEMENTARY ANALYSIS
OF STABILITY FOR THE MODEL 11

We show explicitly how the behavior described for the
model /7 depends on whether s € (0,1/2), or s (1/2,1).
It can be done by choosing different phase space variables
given by

87Gy)?
x = (82Gy)/?H, and y= %pm. (A1)
The corresponding evolution equations are
1 s+1/2
x = =2x? +§y + 5 Eoxy®,
3 R
y/ — _Exy + 3S+1/2£0x2ys. (Az)

where the ' stands for the derivative with respect to the

dimensionless time 7 =1/(87Gy)"/?. The finite fixed
points of the above dynamical system are of two types.

Type I (s # 1/2):

1 ~ 1~ 2 .
==£">, with

_E T3S
\/gfo > VI 3
Weft = —1 and q= —1. (A3)

X1 =

Type II (s > 0,5 # 1/2):
x;;=0, y;=0, with wez=0 and g=1/2, (A4)

where we have used the expressions for the EoS
parameter m., and for the deceleration parameter g as
functions of the phase space variables (x, y), which are
given by

2 x 1
Weit = =3 3~ I, and ¢g= 5(1 + 3weir),  (AS)

respectively. It follows that the fixed point of type /
corresponds to a viscous DM component, with an EoS
parameter associated with negative pressure, leading
to accelerated expansion in the late-time dynamics. It
is worth pointing out that the dynamical system is
singular for s = 1/2, as there are no associated fixed
points for this value. The eigenvalues associated with
the fixed point of type I can straightforwardly be
computed from the characteristic equation, leading to
the explicit analytic expression

1
Ay = {—ﬁ(u/z—ss)

+ ([217(11/2—3;)}2
ras-1/2)|EE a0

From this expression, one concludes that s < 1/2
must be required to ensure that this fixed point
remains an attractor of the dynamical system. As to
a fixed point associated to pure radiation (p,, = 0),
even if we restrict s > 0, it follows from the Eq. (A2)
that x = 0. Therefore, we conclude that there are no
other fixed points in the finite plane (x,y). One can
look for fixed points at infinity by using the Poincaré
sphere projection method, which could describe pure
radiation in the same infinite limit (i.e. x — o0). Let
us, accordingly, introduce the map to the half Poincaré
sphere using the relations

— X — 7)]
VIt 4y VI+2+y?
1
and Z=—— (A7)

VIt 4y

As it is well known, the topological properties of the
original planar flow described by the system of Eq. (A2)
closed to infinity correspond to those of the flow on the
Poincaré sphere closed to the half-sphere rim at Z = 0 (see
Ref. [56]). For 0 <s < 1/2 and close to Z~0, the
associated dynamical system turns out to be

1 3s+1/2 .
Y =YZ8 +§y2zx+l + 5 f()Y‘Y(Z—Z),
1 s+1/2
7 = =275t 4 5 YZ5+? + 5 EZ2YS. (A8)

From the fixed points of the above system, we are interested
inX =1,Y =0and Y = 0, which corresponds to the fixed
point (H = o0, p,, = 0) of the original system [compare
with the analysis of this point below Eq. (69)]. This fixed
point describes a pure radiation universe era. Unfortunately,
it doesn’t fulfills Malkin’s theorem around (¥ = 0,Z = 0)
as s < 1/2. Even worst, the first derivatives at this point are
ill-defined. So, the use of this new phase space variables
definition, although advantageous to establish the dynami-
cal character of the fixed point /, fails to set the stability of
the fixed point associated with radiation. We have then to
come back to the original phase space variables [see
Eq. (14)]. In this sense, both representations are comple-
mentary and fully characterize the dynamical nature of both
fixed points.
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