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In this work, we elaborate further on a cosmological model of inflation that characterizes Chern-Simons
(CS) gravity models inspired from string theory. Such models are known to belong to the class of the so-
called string-inspired running vacuum cosmologies. In particular, by applying methods of dynamical
systems, commonly used in scalar-field cosmology, we examine in detail, for the first time to our
knowledge, the passage from a preinflationary era dominated by a stiff-axion-matter equation of state,
characteristic of the model, to inflation of the running vacuum model (RVM) type. By a careful discussion
of the formation of the condensate of the CS gravitational anomaly term, induced by populations of
primordial gravitational waves at the end of the stiff-axion-matter era, we show that an effectively linear
axion-monodromy potential arises. This eventually causes the transition from the matter to the RVM
inflation. By taking into account terms that have previously been ignored in the relevant literature of weak-
graviton quantization, we show that the effect of such terms is to diminish the value of the condensate by
half, remaining, however, in the same order of magnitude. This, in turn, implies that the qualitative
conclusions of previous works on the subject remain valid. Moreover, on assuming the approximate
cosmic-time independence of the gravitational-CS condensate, we also provide an estimate of the number
of sources of the primordial gravitational waves, upon the requirement of respecting the trans-Planckian
conjecture.
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I. INTRODUCTION

The existence of an early inflationary phase of the
universe, in which the latter undergoes an exponential
expansion of its scale factor with the cosmic time, can
explain several of the features of the observable universe.
Yet, there is no singly preferred microscopic model of
inflation, but rather several models that can fit the infla-
tionary framework [1]. The latest cosmological data,
especially from cosmic microwave background (CMB)
observations [2], can rule out several single-inflaton-field
models, but several remain.
From the latter, one of the most optimal models, from the

point of view of fitting the data, is the Starobinsky
model [3], which is a higher-curvature model, with the
higher-order terms arising from a conformal anomaly, and
hence their coefficient can only be phenomenologically
determined. The model is not characterized by a funda-
mental inflaton field, but a dynamical scalar degree of
freedom, responsible for inflation, is hidden in the non-
linear gravitational corrections. Interestingly enough, the

Starobinsky model can evade [4] the stringent swampland
criteria [5–9].1
Another interesting and compatible with the data cos-

mological framework, where the inflation is also not due to
external inflaton fields but rather to nonlinearities of gravity
in the early epochs of the universe, is the so-called running-
vacuum model (RVM) of cosmology [12–21], which is
phenomenologically consistent and can even contribute to
the alleviation of the currently observed cosmological
tensions [22–25].
A string-inspired version of the RVM, called stringy

RVM (StRVM), has been proposed in [26–32], which is
also not in tension with the swampland criteria [33]. This
version is a Chern-Simons gravity [34–36], coupled to
axionic (pseudoscalar) degrees of freedom, and the infla-
tionary RVM-like phase arises through the emergence of
condensates of the anomalous gravitational Chern-Simons

*Contact author: psdorlis0@gmail.com
†Contact author: sovlacho@gmail.com

1See, however, the cautionary remarks of [10], supporting the
alleviation of the tensions between inflation and the swampland
criteria in generic slow-roll single-field inflationary models,
where the initial conditions for the adiabatic curvature perturba-
tions are not known. Moreover, multifield inflationary models
can avoid the swampland criteria [11].
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(CS) terms, due to condensation of primordial gravitational
waves (GWs) [26,29–31]. The condensation is a conse-
quence of the fact that, in the presence of chiral GW
perturbations, the gravitational CS terms that couple to the
axionic degrees of freedom are nontrivial [37–39].
The CS condensate leads to RVM-like inflation, without

the necessity for the existence of fundamental inflaton
fields. The inflationary epoch is due to gravitational non-
linearities that characterize the situation. It has been shown
explicitly [29] that the ground state of the system is
characterized by a de Sitter equation of state, w ¼ −1,
which is characteristic of an RVM fluid. We also note, for
completeness, that an important and necessary aspect of
this approach is the existence of a pre-RVM inflationary
phase, during which a sufficient number of primordial GWs
are formed, as a result, e.g., of either coalescence of rotating
primordial black holes or nonsymmetric collapse of domain
walls, that characterize the early epochs of the stringy
RVM. The late stages of the pre-RVM inflationary phase is
characterized by a stiff-matter equation of state, w ¼ 1.
Such a phase is the result of a dominance of the fluid of
the massless stringy axionic degrees of freedom that
characterize the StRVM. On the other hand, in this
StRVM framework, it is assumed that near the big bang
there exists another (hilltop) inflationary phase [40], which
arises from condensates of gravitino fields, appearing in the
dynamically broken supergravity effective field theory, in
the early era of this string universe [29,30,41,42]. This
first inflation is deemed responsible for the isotropy and
homogeneity of the cosmic fluid during the axion-stiff and
RVM CS-anomaly-condensate-induced inflationary phase
of the universe. For details we refer the interested reader to
the relevant literature [29–31].
In the above works, however, we did not discuss the

details of the passage from the stiff- to the condensate-RVM-
inflationary phase, which is one of themain objectives of the
present article. The other main objective is to calculate the
gravitationalCS condensate itself, going beyond the approx-
imations used in [38,39], whichwere adopted in [26,29–31].
Aswe shall demonstrate quantitatively below, going beyond
the approximations made in [38,39] implies significant
corrections to thevalue of theCS condensate, which actually
is diminished by half. Nonetheless, the order of magnitude
remains the same, and therefore the qualitative conclusions
of the approach of [26,29–31] remain intact. However, the
physics details that allow the passage from the stiff-axion era
to the RVM inflationary era contain important novel
characteristics, from both a technical and a conceptual point
of view, and therefore are worthy of pointing out. We also
wish to point out that, as discussed already in [29,30], our
stiff-axion phase is different in origin from other scenarios in
the contemporary literature that involve stiff matter in the
early universe [43,44]. In such scenarios the stiff eras occur
after inflation, while in our case the stiff-axion era precedes
the RVM inflation.

The string-inspired gravitational action, which describes
the early-epoch StRVM dynamics, after string compacti-
fication to (3þ 1) spacetime dimensions, is given by2

[34,45–48]

SeffðIÞB ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
R −

1

2
∂μb∂μb

−
ffiffiffi
2

3

r
α0

96κ
bðxÞRμνρσR̃νμρσ þ � � �

�
; ð1:1Þ

where κ2 ¼ M−1
Pl is the (3þ 1)-dimensional gravitational

coupling, with MPl ≃ 2.4 × 1018 GeV the reduced Planck
mass, α0 ¼ M−2

s is the Regge slope, withMs the string mass
scale, and the dots � � � denote gauge as well as higher-
derivative terms appearing in the string effective action,
which we ignore for our discussion here. In (1.1), the

symbol gð � � �Þ denotes the corresponding dual tensor,
defined in Sec. III A [cf. (3.5)], and bðxÞ is the so-called
string-model independent axion [49], associated with the
pseudoscalar degree of freedom of the massless gravita-
tional ground state multiplet of the superstring (the other
members of which are the graviton and dilaton, which have
been ignored for our purposes, being assumed constant).
The inflationary dynamics is associatedwith the formation

of a condensate of the gravitational CS anomalous term3

hRCSi≡ 1

2
hRμνρσR̃νμρσi; ð1:2Þ

which during the inflationary epoch is approximately
constant, being a functional of the Hubble parameter H,
which is approximately constant during inflation. The
nonzero result of the condensate is guaranteed in the
presence of parity-violating metric perturbations, such as
chiral GWs. As a function of H the condensate is propor-
tional to H4, which was to be expected on dimensional
grounds. As already mentioned, in this paper we shall
reevaluate this condensate, relaxing some of the approx-
imations made in [38,39]. In the phase of a nonzero CS
condensate, the effective action (1.1) reduces to that of an
axion monodromy, with a linear axion b potential

VðbÞ ¼ const × bðxÞ; ð1:3Þ

which formally is similar to the situation encountered in
compactified brane models [51], which leads to linear

2Our conventions and definitions used throughout this work
are the following: signature of metric ð−;þ;þ;þÞ, Riemann
curvature tensor Rλ

μνσ ¼ ∂νΓλ
μσ þ Γρ

μσΓλ
ρν − ðν ↔ σÞ, Ricci

tensor Rμν ¼ Rλ
μλν, and Ricci scalar Rμνgμν. We also work in

units ℏ ¼ c ¼ 1.
3In this work we follow the conventions for the definition of

the gravitational CS term of [50], which differs by a sign from
that of [26,29–31].
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inflation. The difference of such linear axion models from
our condensate case lies on the fact that in our case the
axion potential assumes the form

VðbÞ ¼ dH4bðxÞ; d ¼ const; ð1:4Þ

where the Hubble parameter is in principle dependent on
the cosmic time t. Thus, in our condensate case, the
resulting cosmic vacuum energy density acquires a conven-
tional RVM form [12,15], and the induced inflation is
precisely due to the nonlinearities associated with the
cosmic evolution ofHðtÞ, and not to a fundamental inflaton
field, such as the axion b in the linear axion monodromy
models of [51]. Nonetheless, in the phase of a (approx-
imately) constant condensate, due to the form of the
effective action (1.1), one can still use the dynamical
systems approach to inflation due to scalar fields, to study
the passage from the stiff axion into the RVM inflationary
epoch in the case of the StRVM, which will be one of the
main topics of the current article.4

The structure of the paper is as follows: in Sec. II, we
describe briefly the dynamical system approach to (pseudo)
scalar-field cosmology, in which we first express the
cosmological equations as an autonomous dynamical
system of ordinary differential equations. Then, we con-
sider the case of a linear (pseudo)scalar potential and show
that inflation corresponds to a saddle point of the evolution,
while also that an approximately exponential expansion,
with the phenomenologically desired number of e-folds,
occurs only for a specific range of initial conditions. In
Sec. III, we explain in detail how the (approximately) linear
axion potential arises from condensation of primordial
GWs, and we evaluate the potential by applying the (weak
quantum gravity) method of [39], but going beyond the
approximations involved in that work, as well as in [38].
We calculate the CS condensate due to primordial GW in
the stiff era. Then, in Sec. IV, we calculate the CS
condensate in the inflationary era and discuss the detailed
conditions for a smooth transition from the stiff epoch to
the inflationary era. Finally, conclusions and outlook are
presented in Sec. V. Some technical aspects of our approach
of dynamical systems to cosmology are presented in
Appendixes A and B.

II. SCALAR-FIELD COSMOLOGY:
DYNAMICAL APPROACH

In this section, we consider the scalar-field cosmology
dynamics by considering minimal coupling and a scalar
field that respects the symmetries of the underlined

Friedmann-Lemaître-Robertson-Walker (FLRW) space-
time geometry. Although the StRVM is associated with
pseudoscalar fields bðxÞ, nonetheless under the assump-
tions of isotropy and homegeneity that we are employing
for our purposes here, the pseudoscalar nature of the field is
not relevant, and thus, for brevity in what follows we
concentrate on the scalar case.
Our goal is to express the Friedman and Klein-Gordon

equations that govern the cosmological evolution in the
form of an autonomous dynamical system of ordinary
differential equations (ODE). To illustrate that, we intro-
duce some appropriate (dimensionless) variables, the so-
called expansion normalized (EN) variables as in [54].
Then, we are interested in a particular case for the scalar
potential. Specifically, we are concerned with a linear
potential, for which the analysis of the corresponding
phase space shows that inflation arises as a saddle point
of the evolution, implying in this way a graceful exit, too.
The latter is a necessary condition in order not to spoil the
successful predictions of the standard cosmology, such as
nucleosynthesis. As we will show in the following, infla-
tion is reached only under a certain class of initial
conditions, contrary to the chaotic inflation of the even
power potentials [55–57], for which inflation corresponds
to an attractor of the evolution. Such a class is consistent
with a nearly stiff matter dominated preinflationary era,
which is introduced in a string-inspired cosmological
setup [29,30,58], and we will try to examine it in detail
in this article.

A. The cosmological evolution as an autonomous
dynamical system

The general action for a minimally coupled interacting
scalar field bðxÞ reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

2
ð∂μbÞð∂μbÞ − VðbÞ

�
; ð2:1Þ

where VðbÞ denotes a self-interaction potential for the
scalar field, which for our purposes in this work we take to
be positive. The gravitational field equations are given by

Gμν ¼ κ2Tb
μν; ð2:2Þ

where

Tb
μν ¼ ∂μb∂νb −

1

2
gμνð∂bÞ2 − gμνVðbÞ ð2:3Þ

is the stress energy tensor of the scalar-field b.
Variation with respect to the field bðxÞ gives the well-

known Klein-Gordon equation in curved spacetime,

□b − V;b ¼ 0; ð2:4Þ

4Our approach is distinct from other approaches based on
string-inspired higher-curvature (e.g., Gauss-Bonnet) effective
actions, in the presence of CS terms coupled to scalar fields, such
as those in [52,53]. Those works also predict detectable in
principle frequencies for circular polarization due to the CS terms.
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where commas denote functional differentiation with
respect to the field bðxÞ. We consider a spatially flat
FLRW spacetime line element

ds2 ¼ −dt2 þ α2ðtÞδijdxidxj; ð2:5Þ

where αðtÞ denotes the scale factor.
The gravitational equations of motion (2.2) reduce to the

Friedmann equations

3H2 ¼ κ2
�
ḃ2

2
þ VðbÞ

�
; ð2:6Þ

2Ḣ þ 3H2 ¼ −κ2
�
ḃ2

2
− VðbÞ

�
; ð2:7Þ

and the Klein-Gordon equation for the scalar field becomes

b̈þ 3Hḃþ V;b ¼ 0: ð2:8Þ

The energy density and the pressure for the scalar-field
fluid are given by

ρ ¼ ḃ2

2
þ VðbÞ; ð2:9Þ

p ¼ ḃ2

2
− VðbÞ; ð2:10Þ

where the equation of state, p ¼ ωbρ, is dynamical and
reads

ωb ¼
ḃ2
2
− VðbÞ

ḃ2
2
þ VðbÞ ; ð2:11Þ

which ranges fromþ1 (dominance of kinetic energy) to −1
(dominance of potential energy).
At this point, we introduce the EN variables as follows:

x ¼ κḃffiffiffi
6

p
H

and y ¼ κ
ffiffiffiffiffiffijVjpffiffiffi
3

p
H

: ð2:12Þ

By its definition, the variable y is always non-negative,
y ≥ 0. This provides a by-definition constraint on the physical
phase space. Another constraint of the physical phase space
comes from the Friedmann equation (2.6) (Friedman con-
straint), which takes the following simple form:

x2 þ y2 ¼ 1; ð2:13Þ

thereby constraining the physical phase space on the unit
circle of the x-y plane. Thus, the physical phase space on the
ðx; yÞ plane is represented by the positive y half-circle
(y ≥ 0), with the center at the origin. The equation of state
(2.11) becomes

ωb ¼
x2 − y2

x2 þ y2
¼ x2 − y2: ð2:14Þ

What we can see now is that, for x ¼ 0 and y ¼ 1, the
potential energy of the scalar field dominates, giving an
equation of state ω ¼ −1, behaving in this way as an
effective cosmological constant that drives the accelerated
expansion of the universe. For x ¼ 1 and y ¼ 0, the kinetic
energy of the field dominates, and we have an equation of
state ω ¼ 1, where the scalar field behaves as stiff matter.
With the EN variables, we can finally express Eqs. (2.6),

(2.7), and (2.8) as an autonomous dynamical system of
ODE as follows (see details of these calculations in
Appendix A):

x0 ¼ −
3

2

�
2x − x3 þ xðy2 − 1Þ −

ffiffiffi
2

pffiffiffi
3

p λy2
�
; ð2:15Þ

y0 ¼ −
3

2
y

�
−x2 þ y2 − 1þ

ffiffiffi
2

pffiffiffi
3

p λx

�
ð2:16Þ

λ0 ¼ −
ffiffiffi
6

p
ðΓ − 1Þλ2x; ð2:17Þ

where a prime denotes differentiation with respect to the
time parameter N ≡ logðαðtÞÞ (e-folds), and we have
defined

λ ¼ −
V;b

κV
and Γ ¼ VV;bb

V2
;b

: ð2:18Þ

One should notice that the above system of ODE is three-
dimensional (3D) rather than two-dimensional (2D), which
one would naively expect to be the case of the EN variables.
The presence of the extra dimension λ is necessitated by the
requirement of autonomy of the system in the general case,
since the EN variables are time dependent.
However, the introduction of λ can be avoided in specific

cases of potentials. One famous example where such a
reduction occurs is the quintessence model with exponen-
tial potential [59,60], for which λ is just a constant and then
acts only as a roll parameter. More generally, models in
which the only matter field present is the scalar field, such
as the StRVM discussed in this work during its early
phases [26,29,30], constitute examples where the ODE
system (2.15)–(2.17) reduces to a 2D dynamical system.
This is a consequence of the Friedman equation (2.6).5

5When matter beyond the scalar field is present, the Friedman
equation (2.6) implies x2 þ y2 ≤ 1; i.e., the interior of the unit
circle is also part of the phase space and the dynamical system
remains 3D. This may happen in realistic StRVM or other string
cosmologies, where one may face, e.g., a multiaxion cosmology,
due to the presence of axion fields from compactification, in
addition to the KR (Kalb–Ramond) axion. In our context, such
axions may be present during the preinflationary epoch [61], thus
affecting the details of the passage to the inflationary era.
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According to (2.6), we can express the two variables ðx; yÞ
with respect to the angle φ∈ ½0; π� of the polar coordinates,
as follows:

x ¼ cosφ; y ¼ sinφ: ð2:19Þ

Then, the two ODE for ðx; yÞ are reduced into one for φ,
and the 2D dynamical system reads

φ0 ¼
�
3 cosφ −

ffiffiffi
6

p

2
λ

�
sinφ;

λ0 ¼ −
ffiffiffi
6

p
ðΓ − 1Þλ2 cosφ: ð2:20Þ

In principle, λ can take any value on the real axis. However,
the symmetry of the system of ODE (2.20) under the
simultaneous transformations ðφ → π − φ; λ → −λÞ allows
us, without loss of generality, to consider only positive
values of λ ≥ 0. In such cases, one can bound the phase
space through the following change of variable:

ζ ¼ λ

λþ 1
; ð2:21Þ

which takes on values in the region ζ∈ ½0; 1Þ, for
λ∈ ½0;þ∞Þ. Thence, the system of ODE reads

φ0 ¼
�
3 cosφ −

ffiffiffi
6

p

2

ζ

1 − ζ

�
sinφ; ð2:22Þ

ζ0 ¼ −
ffiffiffi
6

p
ðΓ − 1Þζ2 cosφ; ð2:23Þ

and the phase space is restricted to the interior of a finite
rectangle in the ζ − φ plane (see Fig. 1).

B. Linear potential: Inflation as a saddle point
of the evolution

Consider the case of a linear potential for the scalar field

VðbÞ ¼ Cb > 0; ð2:24Þ

where C is a constant. The dynamical parameter λ and
consequently ζ and Γ of the dynamical system (2.22) and
(2.23) read

λ ¼ −
1

κb
; ζ ¼ 1

1 − κb
; Γ ¼ 0; ð2:25Þ

and consequently, we have the following system of ODE:

φ0 ¼
�
3 cosφ −

ffiffiffi
6

p

2

ζ

1 − ζ

�
sinφ; ð2:26Þ

ζ0 ¼
ffiffiffi
6

p
ζ2 cosφ; ð2:27Þ

where ζ∈ ½0; 1Þ and ϕ∈ ½0; π�.
In Table I, we can see the critical points of interest

ðϕ0 ¼ ζ0 ¼ 0Þ, together with the equation of state parameter
(2.14), which is given by ωb ¼ x2 − y2 ¼ cos2 ϕ − sin2 ϕ
and also the stability of the relative points (see Appendix B
for details on the stability analysis). The critical pointsO, I,
C lie on the ζ ¼ 0 line of the aforementioned finite
rectangle on the ϕ − ζ plane, i.e., the phase space region
ϕ∈ ½0; π� and ζ∈ ½0; 1Þ.

TABLE I. The eigenvalues, eigenvectors, and equation of state parameter ωb for the field b, and the status of the
hyperbolicity and stability properties of the various critical points O, I, C of our dynamical system.

Point Eigenvalues Eigenvectors EoS ωb (Non) Hyperbolic Stability

Oð0; 0Þ λ1;2 ¼ 3; 0
�
1

0

�
;

�
0

1

�
1 Nonhyperbolic Nonstable

Iðπ
2
; 0Þ λ1;2 ¼ −3; 0

�
1

0

�
;

� −1ffiffi
6

p
1

�
−1 Nonhyperbolic Saddle

Cðπ; 0Þ λ1;2 ¼ 3; 0
�
1

0

�
;

�
0

1

�
1 Nonhyperbolic Nonstable

FIG. 1. The phase portrait of the dynamical system (2.22) and
(2.23). The critical points are marked as squares, circles, or a disk.
The shaded rectangular region corresponds to accelerated ex-
pansion, with equation of state ωb ≤ −1=3, with the disk in the
center of the abscissa denoting exact exponential expansion,
ωb ¼ −1. The solid, dot-dashed, dashed, and dotted lines
correspond to orbits with initial conditions φi ¼ 10−5=2 and
ζi ¼ 0.06, 0.07, 0.09, 0.14, respectively.
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In Fig. 1, the phase portrait of the system is presented.
The critical points Oð0; 0Þ and Cðπ; 0Þ correspond to an
equation of state ωb ¼ þ1 [cf. (2.14)], representing a state
where the kinetic energy of the axion dominates heavily
over the potential energy (“stiff era” phase for the field).
The point I ¼ ðπ

2
; 0Þ, which, as shown in Table I and proved

analytically in Appendix B, is a saddle point, corresponds
to an equation of state ωb ¼ −1, i.e., of de Sitter type. Thus,
in this picture, the inflationary state of the universe in our
model is represented as saddle critical point of the cosmic
evolution. The time that the system stays in the neighbor-
hood of this saddle point is strongly related to the initial
conditions of the problem. In Fig. 1, the φ axis denotes
the direction of the eigenvector with eigenvalue −3 (stable
direction) of the inflationary point I. So, only along this
direction does the point I ¼ ðπ

2
; 0Þ present stability.

Otherwise, upon small perturbations, the system will only
stay in the neighborhood of the saddle point for some finite
time, and then decay to another phase. The linear potential
has the property to provide a saddle point inflationary
solution, which is important for a graceful exit from the
accelerated phase of the universe. The initial conditions of
such a system play a crucial role for the physical outcomes,
since the inflationary state cannot be approached for all the
possible range of the initial conditions. This is visualized
by the orbits of Fig. 1, where we see that there are initial
conditions that do not lead to an accelerated expansion at
all. From the phase portrait of Fig. 1, we see that the initial
conditions that lead to an inflationary era are those close to
the ζ ¼ 0 line of the diagram. Moreover, in Fig. 2 the
evolution of the equation of state for the different orbits
reveals that for a given initial value, namely6 φi ¼ 10−5=2,
there is an upper limit ζi < 0.06 in order for the system to
acquire an approximately de Sitter phase with the desired
number of e-folds, N > 50. In this sense, the class of the
initial conditions that lead to inflation with the desired
properties is approximately defined.
Supposing that the initial conditions are those for which

inflation is achieved, we can have a relative estimate of the
order of magnitude for the Hubble rate with respect to its
initial value. Using (2.12) together with (2.19) and (2.25),
we get for the relative evolution of the Hubble rate

HðNÞ
Hi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ζ − 1

1=ζi − 1

s
sinφi

sinφ
; ð2:28Þ

where the subscript i denotes initial values. Choosing the
specific initial conditions

ðφi ¼ 10−5=2; ζi ¼ 0.06Þ; ð2:29Þ

we plot the corresponding graph in Fig. 3. The Hubble rate
decreases very fast, until it acquires an approximately
constant value (approximately de Sitter phase),HI ≈ const,
for N > 50 e-folds, with an order of magnitude,
HI ∼ 10−3.5Hi.
The same procedure can be followed in the numerical

evaluation of the evolution of the field b and its time
derivative ḃ. From the definition of the EN variable (2.12),
(2.19) and from Eq. (2.25), we obtain

b
MPl

¼ ζ − 1

ζ
;

ḃ
HMPl

¼
ffiffiffi
6

p
cosϕ: ð2:30Þ

Considering the same initial conditions (2.29), we can
plot the result, which is depicted in Fig. 4. We observe that
the order of magnitude of both b and ḃ does not change
during inflation, yielding:

jbj
MPl

∼Oð10Þ; ḃ
HIMPl

∼Oð10−1Þ: ð2:31Þ

It is noteworthy to mention here that the fact that the
evolution tends to an approximately de Sitter solution,
rather than an anti–de Sitter one, is due to the restriction of
VðbÞ > 0. On the other hand, the fact that the system tends
to acquire a cosmological constant type equation of state
does not depend on the sign of the potential. The epoch
characterized by an approximate equation of state ωb ≈ −1
corresponds to an era of an effective-cosmological-constant
dominance,

Λeff ¼ Cb ≃ const; ð2:32Þ

since b is approximately constant up to order of
magnitude. Moreover, in this epoch b is negative in its

FIG. 2. The evolution of the equation of state for the orbits of
Fig. 1. In the case of φi ¼ 10−5=2, inflation with the desired
number of e-folds, N > 50, is achieved for ζi < 0.06.

6The choice of such an initial condition for the φ variable will
be clarified later in the article.
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sign, which means that whether the evolution is approx-
imately de Sitter or anti–de Sitter depends on the sign of C.
Specifically, inflation corresponds to a negative sign,
C < 0. As we shall discuss later on, this is also in agreement
with the considerations of [26,29–31], within the StRVM
framework.

III. PRODUCING THE LINEAR
POTENTIAL THROUGH

GRAVITATIONAL CONDENSATE

In what follows, we present a specific way by means of
which an approximately linear axion potential is generated
in the presence of gravitational waves [38,39] in CS
gravity [35,36]. This has been proposed in the context
of the StRVM in [26,29–31,61] to discuss RVM inflation.
In this section we shall provide a further, and more detailed
analysis, on the evaluation of such condensates, starting
from the pre-RVM-inflationary stiff-axion-matter era of
the model, something that has not been examined

before in the relevant literature.7 In particular, we shall
consider a cosmological (FLRW) background during the

FIG. 3. The relative change of the Hubble rate with respect to its initial value at the beginning of the evolution. The Hubble rate during
the approximately de Sitter phase has a value which is 4 orders of magnitude lower than initially, HI=H ∼ 10−4.

FIG. 4. Left panel: numerical evaluation of the behavior of the b-field during the dynamical evolution of the Universe, showing that the
order of magnitude of b during inflation remains approximately constant. Right panel: the behavior of ḃ which also remains in the same
order of magnitude during inflation, causing an approximately linear time dependence for the b-field.

7We stress that in the StRVM context, the stiff era is dominated
by massless KR axion matter and occurs before RVM inflation.
The possibility of having generic stiff-matter dominance in the
early universe has also been discussed in the literature [43,44] but
there such epochs occur after inflation and are due to different
mechanisms than the one provided by the StRVM. For instance,
in [43] the stiff era is due to a cold gas of baryons. In the cases
examined in [44], the stiff era can occur in situations where dark
matter is made of relativistic self-gravitating Bose-Einstein con-
densates (BEC), with positive or negative energy densities. It has
been shown in that work that in cases of stiff-BEC with negative
energy density, the primordial universe may be singularity-free. In
our StRVM, the preinflationary epoch that is characterized by a
positive energy density stiff-KR-axion matter is preceded [29,30]
by appropriate first-inflation eras occurring in a phase of dynami-
cally broken supergravities, which appear as the low energy limit
of strings. Generically in string theories, the higher curvature
corrections that characterize the effective gravitational actions
could provide a resolution of the initial singularity [62], inde-
pendently of the properties of the stiff matter.
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preinflationary stiff era phase of the universe, and show that
there is a creation of such a linear potential from the
condensation of chiral gravitational waves at the end of the
stiff era. This can then lead to an approximately inflationary
state which is dynamical and as such of RVM. As it
becomes clear from the previous discussion, whether such
an approximate de Sitter phase is achieved depends on the
initial conditions, which in this case correspond to whether
the condensate is created. Thereafter, the dynamics are
governed by the effective linear potential for the axion.
The CS gravitational theory [35,36] introduces a linear

coupling of the (pseudo)scalar field, b, with the gravita-
tional CS (gCS) term, Lint ∼ bRCS, where RCS is given in
(3.4) and is a total derivative.8 The latter is a CP violating
term and as such vanishes for spherically symmetric or
isotropic and homogeneous spacetime backgrounds. This is
the case when an FRW background is considered, which
means that in such a case the modified Lagrangian is
equivalent to the Einstein-Hilbert of general relativity.
Consequently, the scalar field is minimally coupled to
gravity and the cosmological evolution is governed by a
stiff equation of state, in which the theory is shift symmetric,
i.e., invariant under global transformations of the scalar,

b → bþ const: ð3:1Þ
However, when gravitational waves are produced, through
nonspherically symmetric coalescence of primordial black
holes or collisions of domain walls, the gCS term becomes
nontrivial because different helicities of the tensorial per-
turbations propagate in a different way [37–39,63]. This
difference to the wave equations for the left- and right-
handed polarizations comes through the Cotton tensor
(3.9), which, as already mentioned, modifies the gravita-
tional equations leading to gravitational wave birefringence
of cosmological origin.
In this article, we treat the (weak) gravitational waves

quantum mechanically by applying the process of second
quantization [39], i.e., by promoting the perturbations to
operators through the definition of the corresponding crea-
tion and annihilation operators. In this sense, the gCS term
becomes also an operator, R̂CS, which we calculate up to
second order in the tensorial perturbations. The gCS operator
backreacts onto the effective Lagrangian through its vacuum
expectation value (VEV), hRCSi≡ h0jR̂CSj0i, where j0i
denotes the appropriate gravitational ground state of the

system, and the symbol dð � � �Þ is used to denote quantum
operators. We claim that hRCSi acquires a constant value,

thus having the form of a (translationally invariant) gravi-
tational condensate. In this sense, a linear potential for the
axion arises, Veff ∼ hRCSib, ending the stiff-axion-matter
dominance, while simultaneously breaking the shift sym-
metry (3.1) of the effective gravitational theory. Thus, the
formation of the condensate, at the late phase of the stiff era,
coincides with the beginning of a cosmic evolution governed
by a linear axion potential, studied in Sec. II B. From our
previous discussion, then, it follows that the formation of the
condensate has tooccur at a phase of the stiff era forwhich the
initial conditions for the linear-potential-governed evolution
belong to the desired class for inflation to occur. This is in
accordance with the breaking of the shift symmetry of the
theory, since the initial conditions, ðφi; ζiÞ, and consequently
the subsequent cosmic evolution, depend on the value of the
axion itself and not only on its derivatives.

A. Gravitational waves in Chern-Simons gravity

We consider the Chern-Simons gravitational theory,
given by the action (1.1):

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

2
ð∂μbÞð∂μbÞ − AbRCS

�
; ð3:2Þ

where

A ¼
ffiffiffi
2

3

r
α0

48κ
ð3:3Þ

denotes the coupling constant of the string-inspired
model [34], which the StRVM is based upon [26,29,30].
The quantity RCS is the gCS anomaly term:

RCS ¼
1

2
Rμ

νρσR̃ν
μ
ρσ; ð3:4Þ

with the symbol gð � � �Þ denoting the dual of the Riemann
tensor, defined as

R̃αβγδ ¼
1

2
Rαβ

ρσερσγδ; ð3:5Þ

and ερσκλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp

ϵ̂ρσκλ the covariant Levi-Civita under
the convention that the symbol ϵ̂0123 ¼ 1, etc.
Variation of the action with respect to the metric and the

axion field yields the following equations of motion [34,35]:

Gμν ¼ κ2TðbÞ
μν þ 4κ2ACμν; ð3:6Þ

□b ¼ ARCS; ð3:7Þ

where TðbÞ
μν is the stress energy-momentum tensor associated

with the kinetic term of a matter field,

TðbÞ
μν ¼ ∇μb∇νb −

1

2
gμνð∇bÞ2: ð3:8Þ

8We should stress at this point that the gCS term, unlike the
gauge CS term, which the axion also couples to, yields a
nontrivial variation with the metric tensor, namely the Cotton
tensor [cf. (3.9)] [35]. This implies the nonconservation of the
naive axion stress tensor (2.3), which physically is interpreted as
indicating a nontrivial exchange of energy between the axion
matter and the gravitational field.
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The quantityCμν is the Cotton tensor derived from themetric
variation of bRCS and reads

Cμν ¼ −
1

2
∇α½ð∇βbÞR̃αμβν þ ð∇βbÞR̃ανβμ�: ð3:9Þ

We assume a spatially flat FLRW spacetime of the following
form:

ds2 ¼ −dt2 þ α2ðtÞδijdxidxj; ð3:10Þ

where αðtÞ denotes the scale factor. It is easy to obtain that
RCS identically vanishes for an FLRW spacetime and the
above action describes amassless, real scalar fieldminimally
coupled with gravity, with a stiff equation of state.
However, this is not true in the presence of gravitational

waves. The tensor perturbation of the FLRW has the
following form:

ds2 ¼ −dt2 þ α2ðtÞðδij þ hijÞdxidxj: ð3:11Þ

One is able to treat the gravitational waves as quantum
perturbations, for which the wave equation is derived from
the gravitational equations of motion. We can express hij in
the linear polarization basis, expressed as

hij ¼ hþϵ
ðþÞ
ij þ h×ϵ

ð×Þ
ij ; ð3:12Þ

where the polarization tensors are defined through

ϵðþÞ
ij ¼ ½e1ðk⃗Þ�i½e1ðk⃗Þ�j − ½e2ðk⃗Þ�i½e2ðk⃗Þ�j; ð3:13Þ

ϵð×Þij ¼ ½e1ðk⃗Þ�i½e2ðk⃗Þ�j þ ½e1ðk⃗Þ�j½e2ðk⃗Þ�i; ð3:14Þ

where ðe1ðk⃗Þ; e2ðk⃗Þ; e3ðk⃗ÞÞ, with e3ðk⃗Þ ¼ k⃗=jk⃗j forming a
right-handed orthogonal triad of unit vectors. Without loss
of generality, we choose the z axis as the direction of
propagation, e1 ¼ ð1; 0; 0Þ, e2 ¼ ð0; 1; 0Þ, e3 ¼ ð0; 0; 1Þ,
and then, hij reads

½hij� ¼

264 hþ h× 0

h× −hþ 0

0 0 0

375; ð3:15Þ

which is traceless h ¼ hii ¼ 0 and symmetric, while also
hþ;× ¼ hþ;×ðt; zÞ.
In our analysis below we assume weak gravitational-

wave perturbations. This will prove sufficient for our
purposes in this work, which was also the assumption
in [26,29,30,38,39]. To obtain the corresponding action of
the field theory, one has to expand the Lagrangian of the
gravitational theory up to second order in the relevant
perturbations, to obtain the first-order equations of motion
through the variational principle. On the other hand, the

equations of motion can be obtained directly from the
equations of motion of the underlined gravitational theory,
by expanding them up to first order, without an explicit
reference to the corresponding Lagrangian. Following the
latter way, we obtained the equation of motion for each
polarization by linearizing the gravitational equations of
motion (3.6) with respect to hþ;×, which leads to the
following equations of motion for the gravitational-wave
perturbations:

□h×;þ¼ ∓ 4Aκ2

α2
ð2α̇ ḃþαb̈Þ∂t∂zhþ;× ∓ 4Aκ2ḃ

α
∂
2
t ∂zhþ;×

� 4Aκ2ḃ
α3

∂
3
zhþ;×; ð3:16Þ

where

□ ¼ −∂2t − 3
α̇

α
∂t þ

1

α2
∂
2
z ð3:17Þ

is the d’Alembertian in the FLRW spacetime. These
equations imply that the two polarizations of the gravita-
tional field are coupled with each other, due to the non-
vanishing contribution of the CP violating coupling of the
scalar field with the gCS term. However, the perturbation
(3.15) can be expanded according to the helicity basis
tensors ϵL;Rij , as [39]

hijðt; x⃗Þ ¼ hLϵ
ðLÞ
ij þ hRϵ

ðRÞ
ij ¼

X
λ¼L;R

hλðt; x⃗ÞϵðλÞij ; ð3:18Þ

where

½ϵðRÞij � ¼ 1ffiffiffi
2

p ð½ϵðþÞ
ij � þ i½ϵð×Þij �Þ ¼ 1ffiffiffi

2
p

2641 i 0

i −1 0

0 0 0

375¼ ½ϵðLÞij �†;

ð3:19Þ

with the polarization tensors obeying the following nor-
malization:

ϵ�ðλÞij ϵijðλ0Þ ¼ 2δλλ0 : ð3:20Þ

In the helicity basis, the RCS term has the following
structure [38,39]:

RCS ¼
1

2
Rμ
νρσR̃

νρσ
μ

¼ 2i
α3

½ð∂2zhL∂z∂thR þ α2∂2t hL∂z∂thR þ αα̇∂thL∂z∂thRÞ
− L ↔ R� þOðh4Þ: ð3:21Þ

If hL and hR happen to satisfy the same dispersion relations,
RCS would vanish identically. The only way for RCS to
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survive is within the existence of a phenomenon called
“cosmological birefringence,” a prediction about the rota-
tion of the polarization plane of the fields as they travel over
cosmological distances. As we stated, this is the case in the
presence of tensor perturbation of the FLRW metric, and
the RCS survives exactly because hR and hL evolve with a
difference in the sign of their equations of motion as it is
shown in (3.22). Responsible for this are the first-order
contributions of the Cotton tensor in (3.6), which alter the
wave equation of the gravitational waves in a nontrivial
way. Because of the form of the Cotton tensor (3.9), the
pertinent correction terms contain only derivatives of the
axion field, and at least first-order derivatives with respect
to the perturbations, thereby representing higher-order
contributions in the momenta k⃗ (with magnitude k) of
the corresponding Fourier modes.9

In the helicity basis, therefore, the wave equations (3.16)
take the following form, which decouples the left-handed
from the right-handed polarizations:

□hR;L ¼ � 4iAκ2

α2
ð2α̇ ḃþαb̈Þ∂t∂zhR;L � 4iAκ2

α
ḃ∂2t ∂zhR;L

∓ 4iAκ2

α3
ḃ∂3zhR;L: ð3:22Þ

Transforming Eq. (3.22) to the conformal time via
dt ¼ αdη, we finally obtain

h00λ þ 2
α0

α
h0λ − ∂

2
zhλ ¼ −lλ

4iAκ2

α2
∂zðb00h0λ þ b0h00λ − b0∂2zhλÞ;

λ ¼ R;L; ð3:23Þ

where lR ¼ þ1, lL ¼ −1, and a prime denotes differ-
entiation with respect to the conformal time, η. Going onto
Fourier modes

hλðη; x⃗Þ ¼
Z

d3k

ð2πÞ3=2 e
ik⃗·x⃗h̃λ;k⃗ðηÞ; ð3:24Þ

and substituting into (3.23) yields:

h̃00
λ;k⃗

þ 2
α0

α
h̃0
λ;k⃗

þ k2h̃λ;k⃗

¼ lλlk⃗
4kAκ2

α2
ðb00h̃0

λ;k⃗
þ b0h̃00

λ;k⃗
þ k2b0h̃λ;k⃗Þ; ð3:25Þ

where lk⃗ ¼ 1 and l−k⃗ ¼ −1. From the definition of the
circular polarizations (3.18) and (3.19), we know that
h�Lðη; x⃗Þ ¼ hRðη; x⃗Þ, which for the mode expansion implies
h̃�
L;−k⃗

ðηÞ ¼ h̃R;k⃗ðηÞ. As such, h̃�L;−k⃗ðηÞ and h̃R;k⃗ðηÞ have to

satisfy the same equation of motion, which indeed happen,
since lRlk⃗ ¼ lLl−k⃗ ¼ 1. Thus, Eq. (3.25) for the two
helicity states is not symmetric under the separate trans-
formations L → R, or k⃗ → −k⃗. However, it is symmetric
under the simultaneous transformations

L → R and k⃗ → −k⃗: ð3:26Þ

At this point we mention an important aspect of our
analysis. The authors of [38] considered only the first term
of the right-hand side of (3.22), ignoring corrections that
include higher than second-order derivatives of the polari-
zation tensors. In our analysis below, we shall take into
account all such terms. As we shall show in the following
sections of the current article, this has effects on the final
estimate of the gravitational CS anomaly condensate,
which during the inflationary era, considered in [38], is
found here to be half of the value evaluated in that work.
We now perform the following field redefinition:

h̃λ;k⃗ðηÞ ¼ κ
ψ̃λ;k⃗ðηÞ
zλ;k⃗ðηÞ

; ð3:27Þ

with

zλ;k⃗ðηÞ ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − lλlk⃗LCSðηÞ

q
; ð3:28Þ

where

LCSðηÞ ¼ kξ; ξ ¼ 4Ab0κ2

α2
; ð3:29Þ

which is dimensionless, while ½ξ� ¼ ½M�−1 represents the
mass scale introduced into the system due to the existence
of the gravitational anomaly term RCS (see [63], and
references therein). Now, the perturbation tensor reads

hij ¼ κ
X
λ

Z
d3k

ð2πÞ3=2 e
ik⃗·x⃗

ψ̃ λ;k⃗ðηÞ
α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − lλlk⃗LCSðηÞ

q ϵλij; ð3:30Þ

while Eq. (3.25) reduces to

ψ̃ 00
λ;k⃗

þ ω2

λ;k⃗
ðηÞψ̃ λ;k⃗ ¼ 0; λ ¼ L;R; ð3:31Þ

with

ω2

λ;k⃗
ðηÞ ¼ k2 −

z00
λ;k⃗
ðηÞ

zλ;k⃗ðηÞ
: ð3:32Þ

9When the perturbations are expressed in terms of their Fourier
expansions, partial derivatives ∂z of the perturbations yield
powers of the momentum scale k ¼ jk⃗j in the mode expansion,
where k⃗ is the momentum vector along the direction of propa-
gation of the gravitational waves, which here has been chosen for
convenience to be along the z axis, as mentioned above.
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For ξ ¼ 0, Eq. (3.31) corresponds to the wave equation of a
single complex scalar field in an FLRW spacetime (in
Fourier space), since zλ;k⃗ ¼ α. The presence of the CP
violating coupling in (3.2) produces not only a time-
dependent frequency for the effective harmonic oscillators,
but also makes it dependent on both, the direction of
propagation and helicity. The symmetry of the equations
under (3.26) is reflected on the fact that ωL;k⃗ ¼ ωR;−k⃗,
since zL;k⃗ ¼ zR;−k⃗.
Using (3.27), we can deduce that ψ̃�

L;−k⃗
ðηÞ ¼ ψ̃R;k⃗ðηÞ

also holds. Thus, we can define the complex scalar field

ϕðη; x⃗Þ¼ψLðη; x⃗Þ¼
Z

d3k

ð2πÞ3=2e
ik⃗·x⃗ψ̃L;k⃗ðηÞ; ϕ̃k⃗¼ ψ̃L;k⃗;

ϕ�ðη; x⃗Þ¼ψRðη; x⃗Þ¼
Z

d3k

ð2πÞ3=2e
ik⃗·x⃗ψ̃R;k⃗ðηÞ; ϕ̃�

−k⃗
¼ ψ̃R;k⃗;

ð3:33Þ

where ϕ and ϕ� obey complex-conjugate equations of
motion, as it happens in (3.23). Transforming to Fourier
space, the form of the complex-conjugate equation of
motion translates to a difference in the equations of motion
under spatial reflection of the momentum three-vector
k⃗ → −k⃗. In this sense, the corresponding action of the
effective field theory for the perturbations, in Fourier space,
is equivalent to that of a single complex scalar field, ϕ, with
anisotropic effective frequency, Ω2

k⃗
¼ ω2

L;k⃗
¼ ω2

R;−k⃗
≠ Ω2

−k⃗
,

which, of course, leads to the aforementioned property of
birefringence of the perturbed CS gravity. In Fourier space,
the action reads [64]

S ¼
Z

dη
Z

d3kð−ϕ̃0
k⃗
ϕ̃�0
k⃗
þΩ2

k⃗
ðηÞϕ̃k⃗ϕ̃

�
k⃗
Þ; ð3:34Þ

which, indeed, as can be readily checked, produces, upon
the appropriate variations, the equations of motion (3.31),
which in this formalism read

ϕ̃00
k⃗
þΩ2

k⃗
ϕ̃k⃗ ¼ 0; ð3:35Þ

ϕ̃�00
−k⃗

þ Ω2

−k⃗
ϕ̃�
−k⃗

¼ 0: ð3:36Þ

We stress once again that it is the gCS coupling in the
action (3.2), which is responsible for such anisotropic
frequencies, which reflects its CP violating nature. On
the other hand, in the absence of the gCS term, the effective
descriptions of left- and right-handed polarizations in terms
of scalar fields would be identical, of a form similar to the
above described one, but with the replacement of the
effective anisotropic frequency in (3.35) and (3.36) by
an isotropic one, Ωk⃗ → Ωk, for the infinite set of complex
harmonic oscillators.

We next notice, for completion, that the above action
(3.34) can be equivalently written as

S ¼ −
1

2

X
λ¼L;R

Z
dη
Z

d3kðjψ̃ 0
λ;k⃗
j2 − ω2

λ;k⃗
jψ̃ λ;k⃗j2Þ; ð3:37Þ

in agreement with [39]. Finally, using (3.27) and (3.37),
one can obtain the action for the gravitational-wave
perturbations, up to an irrelevant total derivative,

S ¼ −
1

2κ2
X
λ¼L;R

Z
dη
Z

d3kz2
λ;k⃗
ðηÞðjh̃0

λ;k⃗
j2 − k2jh̃λ;k⃗j2Þ;

ð3:38Þ

in agreement with [65], in which the above action has been
derived by keeping only up to second-order terms in the
gravitational action (3.2). From the above action it is clear
that LCS < 1 in order to avoid ghostlike modes in the
effective description [65]. The maximum value for LCS is
acquired at the physical ultraviolet (UV) cutoff μ of the
momenta of the graviton (tensor metric perturbations)
modes, which means that the latter has to be certainly
bounded by the characteristic scale, ξ (3.29), through
μ < 1=αξ, in order to avoid pathologies in our effective
description.We stress that within our string effective actions,
it is natural [31] to identify μ with the string scale Ms.
Moreover, consistency with the trans-Planckian censorship
hypothesis [30,66,67], namely that no modes exceed the
Planck scale, requires that μ≲MPl, whichwe assume below.

B. The hRCSi condensate of quantum
primordial (weak) gravitational waves

As well known, in field theories, (second) quantization is
achieved by promoting the fields to quantum operators, and
expanding them in terms of the corresponding creation and
annihilation operators, which act on appropriate (Fock)
state spaces. In our approach to quantum (weak) gravita-
tional wave perturbations in this article, we have mapped
the system (in the helicity basis) to that of a complex field
(3.33). In practice, therefore, we deal with the quantization
of a complex scalar field in an (effectively) anisotropic
background, with the action given by (3.34). It is known
that in the case of complex scalar fields, ϕ̃�

−k⃗
≠ ϕ̃k⃗, with the

equality holding for the case of real scalars [64]. Thus, we
are forced to introduce two sets of creation and annihilation
operators, namely α�

k⃗
and b�

k⃗
, for which ðα−

k⃗
Þ† ¼ αþ

k⃗
and

ðb−
k⃗
Þ† ¼ bþ

k⃗
. These operators obey the following commu-

tation relations:

½α̂−
k⃗
; α̂þ

k⃗0
� ¼ ½b̂−

k⃗
; b̂þ

k⃗0
� ¼ δð3Þðk⃗ − k⃗0Þ; ð3:39Þ

and zero otherwise. It is known that for the complex scalar
fields αþ creates a particle, while bþ creates its antiparticle.
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In this effective description the particle/antiparticle inter-
pretation corresponds to the left and right polarizations of
the gravitational waves, respectively. Furthermore, since ϕk⃗
and ϕ�

−k⃗
obey different equations of motion, there have to

be defined two sets of mode functions, which form an
orthonormal basis in the complex space of solutions for
each differential equation. We denote the set of mode
functions for (3.35) as fṽk⃗; ṽ�k⃗g, while those of (3.36) as

fvk⃗; v�k⃗g, in accordance with (3.33). However, since v�−k⃗ is a
solution of (3.35), it can be written in terms of the basis
fṽk⃗; ṽ�k⃗g. The same holds also for ṽ�

−k⃗
and fvk⃗; v�k⃗g. This

means that fṽk⃗; v�−k⃗g is also a basis for (3.35) and fvk⃗; ṽ�−k⃗g
for (3.36). In other words, we can just relate the bases by
imposing, ṽk⃗ ¼ v−k⃗. Then, the appropriate mode expansion
reads

ˆ̃ϕk⃗ðηÞ ¼ ṽk⃗α̂
−
k⃗
þ v�

−k⃗
b̂þ
−k⃗
;

ˆ̃ϕ
�
−k⃗ðηÞ ¼ vk⃗b̂

−
k⃗
þ ṽ�

−k⃗
α̂þ
−k⃗
: ð3:40Þ

Moreover, the conjugate momenta read

ˆ̃πk⃗ ¼ − ˆ̃ϕ
�0
k⃗ ; ð3:41Þ

obeying the commutation relation

½ ˆ̃ϕk⃗ðηÞ; ˆ̃πk⃗0 ðηÞ� ¼ iδðk⃗ − k⃗0Þ: ð3:42Þ

Then, to be consistent with the commutation relations
(3.39) and (3.42), the mode functions should obey the
following Wronskian normalization condition:

ṽk⃗ṽ
�0
k⃗
− ṽ�

k⃗
ṽ0
k⃗
¼ −i; ð3:43Þ

vk⃗v
�0
k⃗
− v�

k⃗
v0
k⃗
¼ −i: ð3:44Þ

We now remark that the gravitational tensor perturbations
corresponding to the gravitational waves are also quantized,
within the weak quantum gravity context, according to
(3.27) and (3.33):

h̃L;k⃗ ¼ uL;k⃗α
−
k⃗
þ u�

R;−k⃗
bþ
−k⃗
;

h̃R;k⃗ ¼ uR;k⃗b
−
k⃗
þ u�

L;−k⃗
αþ
−k⃗
; ð3:45Þ

where

uL;k⃗ ¼ κ
ṽk⃗
zL;k⃗

;

uR;k⃗ ¼ κ
vk⃗
zR;k⃗

: ð3:46Þ

Then, correlators between the helicity basis are nonzero,
having the following form:

hh̃R;k⃗1 h̃L;k⃗2i ¼ uR;k⃗1u
�
R;−k⃗2

δðk⃗1 þ k⃗2Þ; ð3:47Þ

hh̃L;k⃗1 h̃R;k⃗2i ¼ uL;k⃗1u
�
L;−k⃗2

δðk⃗1 þ k⃗2Þ: ð3:48Þ

The condensate of the gravitational anomaly can be
computed according to the above considerations as follows.
In conformal time, we have

hRCSi ¼
2i
α4

½h∂2zhL∂zh0Ri þ hh00L∂zh0Ri
− h∂2zhR∂zh0Li − hh00R∂zh0Li�; ð3:49Þ

where the prime denotes differentiation with respect to the
conformal time. Having as a rule in the Fourier space that
derivatives with respect to z mean multiplication with ik,
while derivatives with respect to the conformal time mean
derivatives of the mode functions, one can calculate each
term having as a guide Eqs. (3.47) and (3.48). With these in
mind, we then obtain

h∂2zhRðx⃗; ηÞ∂zh0Lðx⃗; ηÞi ¼ −
Z

αμ d3k⃗
ð2πÞ3 lk⃗ðik

3ÞuR;k⃗u�0R;k⃗;

ð3:50Þ

hh00R∂zh0Li ¼
Z

αμ d3k⃗
ð2πÞ3 lk⃗ðikÞu

00
R;k⃗

u�0
R;k⃗

; ð3:51Þ

h∂2zhLðx⃗; ηÞ∂zh0Rðx⃗; ηÞi ¼ −
Z

αμ d3k⃗
ð2πÞ3 lk⃗ðik

3ÞuL;k⃗u�0L;k⃗;

ð3:52Þ

hh00L∂zh0Ri ¼
Z

αμ d3k⃗
ð2πÞ3 lk⃗ðikÞu

00
L;k⃗

u�0
L;k⃗

: ð3:53Þ

Substituting to (3.49), we obtain

hRCSi ¼
2

α4

Z
αμ d3k⃗
ð2πÞ3 lk⃗

�
k3ðuL;k⃗u�0L;k⃗ − uR;k⃗u

�0
R;k⃗

Þ

þ kðu00
R;k⃗

u�0
R;k⃗

− u00
L;k⃗

u�0
L;k⃗

Þ�: ð3:54Þ

Since each polarization satisfies a different equation, the
above condensate is nonvanishing.

1. The hRCSi condensate in a stiff background

Now, we can choose specifically the era of interest by
specifying the dependence of the scale factor with respect
to the conformal time, and also by choosing our back-
ground through the equations of motion for the field b.

DORLIS, MAVROMATOS, and VLACHOS PHYS. REV. D 110, 063512 (2024)

063512-12



The above developed formalism therefore allows us to
discuss in detail the passage from the stiff KR axion era to
the RVM inflationary era, within the StRVM cosmology,
which had only been sketched in [26,29,30]. Specifically,
for the stiff era, the background equations of motion read

3

�
α̇

α

�
2

¼ κ2

2
ḃ2; ð3:55Þ

�
α̇

α

�
2

þ 2
α̈

α
¼ −

κ2

2
ḃ2 ð3:56Þ

b̈þ 3
α̇

α
ḃ ¼ 0: ð3:57Þ

The solution for the field and the scale factor dependence
on the conformal time η are given by

bðαÞ ¼
ffiffiffi
6

p

κ
logðαÞ þ bðη0Þ; ð3:58Þ

αðηÞ ¼
ffiffiffiffiffiffiffiffiffi
η=η0

p
; ð3:59Þ

respectively, where the dots denote derivatives with respect
to the FLRW cosmic time, t, and η0 is a constant, which
represents the beginning of the stiff era in the StRVM
cosmology, at which we assume the boundary condition
bðη0Þ < 0. The negative value of the initial condition of the
field bðη0Þ at the beginning of the stiff era is necessitated by
the requirement that bðηiÞ, where ηi ≫ η0 denotes the end
of the stiff era and the onset of the RVM inflation, must
be negative, while ḃðtÞ > 0 throughout, as discussed in
Sec. II A (see Fig. 4). Such results are also in agreement
with the considerations of [26,29–31].
The actual value of η0 cannot be determined for a generic

stiff era, as its duration actually depends on the details of
the microscopic string model that underlies the phenom-
enological StRVM cosmology of [26,29,30]. If we assume
a first hilltop inflation, for instance, as done in [29], then η0
represents the exit from that phase, at which the massless
KR axion dominance is assumed to take place, with these
excitations being created by the decay of the vacuum during
the first inflation. The details of the latter are not important
for our purposes in this work. The end of the stiff era,
during which the condensate of the gCS term hRCSi forms,
can be consistently defined by η ≫ η0, without specifying
further the magnitude of η0.
Now, we want to estimate the order of the dimensionless

quantity LCSðηÞ appearing in Eq. (3.29), considering the
physical UV cutoff μ of our theory to be the string scale,
Ms, i.e., modes with momenta k ∼ αMs ¼ μ. Keeping in
mind that in the StRVM the CS coupling A [cf. (3.3)] is
of order

A ∼ 10−2O
�
MPl

M2
s

�
; ð3:60Þ

the maximum order attained by LCS is

LCS ∼ 10−2
�

ḃ
MsMPl

�
; ð3:61Þ

which is realized for modes with momenta near the UV
cutoff μ. We must assume the following condition
LCS ≪ 1. Since b0 ∼ 1=η, the statement of LCS ≪ 1 can
be understood as a late stiff era condition; i.e., the
condensate forms after sufficient time of evolution accord-
ing to the stiff equation of state, wb ¼ þ1, during the pre-
RVM inflationary era of the StRVM [29,30]. Keeping now
only the leading-order term, with respect to LCS, in
Eq. (3.31) during the stiff era, we obtain

d2

dx2
ψλ;k⃗ þ

�
1þ 1

4x2
½1þ 8lλlk⃗LCS þOðL2

CSÞ�
�
ψλ;k⃗ ¼ 0;

ð3:62Þ

where x≡ kη. Thus, since LCS ≪ 1, it suffices to solve the
following equation for the mode functions of ψλ:

d2

dx2
ψλ;k⃗ þ

�
1þ 1

4x2

�
ψλ;k⃗ ¼ 0; ð3:63Þ

with the final contribution of the gravitational anomaly
introduced through the mode functions (3.27). In this case,
we have abandoned the dependence of the equation of the
helicity, something that is valid for the late stiff era
approximation we are concerned with. This means that
we have only one differential equation, the same for ψL;k⃗

and ψR;k⃗. Consequently, the two sets of mode functions
defined for (3.35) and (3.36) degenerate into one common
basis, i.e., fvk; v�kg, with the Wronskian normalization

vkv�0k − v�kv
0
k ¼ −i: ð3:64Þ

The solution of (3.63) reads

vkðηÞ ¼
ffiffiffi
η

p ½C1J0ðkηÞ þ C2Y0ðkηÞ�; ð3:65Þ

where C1, C2 are dimensionless integration constants and
J0, Y0 are the Bessel functions of the first and second
kind [68]. As η → ∞, the effective frequency ω2

λ;k⃗
ðηÞ → k2,

and thus, the solution should have a smooth connection
with the Minkowski mode function (bunch Davies vacuum)
that obeys the Wronskian normalization (3.64) [64]

vkðηÞjη→∞ ¼ 1ffiffiffiffiffi
2k

p eikη: ð3:66Þ

The asymptotic behavior of the Bessel functions of
Eq. (3.65) is given by
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J0ðkηÞ →
ffiffiffi
2

π

r ffiffiffiffiffi
1

kη

s
cos

�
kη −

π

4

�
; ð3:67Þ

Y0ðkηÞ →
ffiffiffi
2

π

r ffiffiffiffiffi
1

kη

s
sin

�
kη −

π

4

�
: ð3:68Þ

So, the asymptotic limit of vλ;k reads

vkðηÞjη→∞ →
1ffiffiffiffiffi
πk

p ½ðC1 − C2Þ cos kηþ ðC1 þ C2Þ sin kη�:

ð3:69Þ

Matching with (3.66) requires that C1 ¼
ffiffiffi
π

p
eiπ=4=2 and

C2 ¼ iC1. We finally obtain then

vkðηÞ ¼ eiπ=4
ffiffiffiffiffi
πη

p
2

½J0ðkηÞ þ iY0ðkηÞ�; ð3:70Þ

v�kðηÞ ¼ e−iπ=4
ffiffiffiffiffi
πη

p
2

½J0ðkηÞ − iY0ðkηÞ�: ð3:71Þ

The redefinition functions zλ;kðηÞ (3.28) during the stiff era
are given by

zstiff
L;k⃗

ðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η

η0
þ lk⃗

2
ffiffiffi
6

p
Aκk
η

s
; ð3:72Þ

zstiff
R;k⃗

ðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η

η0
− lk⃗

2
ffiffiffi
6

p
Aκk
η

s
; ð3:73Þ

and, so, from the field redefinition (3.27) and Eq. (3.46), we
obtain the mode functions uL;k⃗; uR;k⃗ for the gravitational
waves:

uL;k⃗ ¼ κ
eiπ=4

2

ffiffiffiffiffi
πη

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η
η0
þ lk⃗

2
ffiffi
6

p
Aκk
η

q ½J0ðkηÞ þ iY0ðkηÞ�;

uR;k⃗ ¼ κ
eiπ=4

2

ffiffiffiffiffi
πη

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η
η0
− lk⃗

2
ffiffi
6

p
Aκk
η

q ½J0ðkηÞ þ iY0ðkηÞ�: ð3:74Þ

We can calculate now the gravitational condensate of
Eq. (3.54) during the late stiff era that precedes RVM
inflation in the StRVMmodel of [26,29,30]. To this end, we
shall only keep first-order terms with respect to LCS.
Furthermore, since we are interested in the late stiff era
ðη ≫ η0Þ, we will use the asymptotic behavior for the mode
functions in order to calculate the integral of Eq. (3.54).
With the physical UV cutoff given by k ≈ αμ, and applying
the aforementioned approximations to Eq. (3.54), we
obtain the final result

hRCSistiff ¼ −
1

2
hRμνρσR̃μνρσi ¼ −

30
ffiffiffi
6

p
Aκ3μ4

π2
HstiffðηÞ4:

ð3:75Þ

In the above expression, HðηÞ corresponds to the Hubble
rate of a stiff-matter dominance era, as a function of the
conformal cosmic time, which reads

HstiffðηÞ ¼
α0

α2
¼

ffiffiffiffiffi
η0

p
2η3=2

: ð3:76Þ

In arriving at (3.75), we have tacitly assumed that the
number N S of sources that produce this condensate is of
Oð1Þ. In [31], it has been suggested that in general the
number of sources is a phenomenological parameter, which
actually depends on the microscopic string model under-
lying StRVM [29,30], and, in fact, a nontrivial density is
necessary in order to be able to consistently implement a
UV cutoff for the modes μ ≃Ms, without restricting the
string scale Ms, as required by viewing the StRVM as an
effective low energy gravitational theory stemming from
strings. With this in mind, the gCS condensate (3.75)
during the stiff era has to be replaced by the more general
expression

hRCSitotalstiff ¼ −N S
30

ffiffiffi
6

p
Aκ3μ4

π2
HstiffðηÞ4; ð3:77Þ

assuming, as in [31], a linear superposition of the effects of
the various sources when evaluating the condensate as a
vacuum expectation value stemming from weak quantum
graviton modes (tensor perturbations of chiral gravitational
wave type).

IV. INFLATION INDUCED FROM
GRAVITATIONAL CONDENSATES:

A DYNAMICAL SYSTEM APPROACH

Based on the previous analysis, we shall present in this
section a detailed demonstration as to how the condensation
of the gravitational waves, assumed to occur at the end of
the stiff era of the StRVM, as discussed in Sec. III B, can
lead to a transition from the stiff era to an inflationary
universe (of RVM type). After the condensation of the
chiral gravitational waves, the gravitational effective action
will be given by (3.2), with the condensate given by (3.75).
In this sense, a linear effective potential for the axion
arises [31,61]:

Veff ¼ AhRCSib; ð4:1Þ

which breaks the shift symmetry (3.1) of the Lagrangian
(1.1). Such a potential is identical with the one in (2.24),
where the corresponding constant is given by C ¼ AhRCSi.
During the stiff era, i.e., in the absence of gravitational
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waves, the gCS term is identically zero for an FLRW
background. This is the case where the solution according
to the EN variables, described in Sec. II A, is x ¼ κḃffiffi

6
p

H
¼ 1,

and y ¼ 0. Before the introduction of the linear effective
potential, the system lies on one of the two critical points
Oð0; 0Þ or Cðπ; 0Þ, with an equation of state ωb ¼ þ1. In
other words, the state of the KR-axion cosmic fluid before
the influence of the potential is either at the left or at the
right circles in the abscissa of Fig. 1. As we have to deal
with unstable fixed points, stiff solutions for our system are
like a pencil balancing on its tip. A slight perturbation on it
could drive the system to another phase. Such a perturba-
tion is introduced by the presence, and eventual condensa-
tion, of the chiral gravitational waves (3.15).
To determine the order of magnitude of this perturbation,

we first express the order of magnitude of the square of our
EN variable y, which is given by (2.12), but now using the
effective potential (4.1):

y2i ≡ sin2 φi ¼
κ2jVeff j
3H2

i
; ð4:2Þ

where Hi is the Hubble rate at the formation of the
condensate. Thus, the order of magnitude for y2 can be
expressed, through (3.75), as

Oðy2i Þ≡Oðsin2 φiÞ ∼ 2.5 × 10−4
�
Hi

MPl

�
2
� jbij
MPl

�
; ð4:3Þ

where, as already mentioned, we considered that the UV
cutoff of our theory is provided by the string scale Ms,
μ ≈Ms [31], which is consistent with viewing StRVM as a
low-energy string effective gravitational theory. Assuming
an order of magnitude of φi ∼ 10−p, p∈R, one can easily
ascertain, following the analysis in Sec. II B, that, for
ζi ∼ 10−2, the Hubble rate at inflation is related to its initial
value Hi, at the moment of the formation of the CS
condensation in the shift era, through Hi ∼ 10pþ1HI .
Moreover, in view of (2.25), ζi ∼ 10−2 implies

jbij
MPl

∼Oð10Þ: ð4:4Þ

The upper bound on the Hubble rate at inflation, imposed
by the Planck Collaboration data [2], sets an order of
magnitude HI ∼ 10−5MP. On account of (4.3), this yields

φi ≈ 10−5=2: ð4:5Þ

In such a case, the gravitational condensate has to be
formed at the stiff era in a phase where the Hubble rate is
about

Hi ∼ 107=2HI ≈ 10−3=2MPl: ð4:6Þ

Furthermore, from Eq. (3.58), we obtain that, at the
formation of the condensate, one has

ḃi ¼ MPl

ffiffiffi
6

p
Hi ∼ 7.7 × 10−2M2

Pl ∼ 10−1M2
Pl; ð4:7Þ

implying from Eq. (3.61) that LCS ∼ 7.7 × 10−4MPl=Ms.
Thus, by assuming the maximum order of LCS ∼ 10−2

(3.61), as necessary for the formation of the condensate at
the late stiff era, we obtain for the string scale (cutoff) the
order of

Ms ∼ 10−1MPl < MPl; ð4:8Þ

consistent with the trans-Planckian censorship hypothesis
[30,66,67].

A. The constancy of hRCSi
We can now apply the same argumentation in order to

calculate the gravitational condensate during inflation, in
order to study how this condensate can remain constant.
The redefinition function is given by (3.28) and (3.29),
with the scale factor given by αðηÞ ¼ −1=HIη, where η < 0
is the conformal time during inflation. Writing again
Eq. (3.31) up to leading order to the small, dimensionless
quantity LCS, we have

d2

dx2
ψ̃ λ;k⃗ þ

�
1 −

2

x2

�
1 − lλlk⃗

LCS

2
þOðL2

CSÞ
��

ψ̃ λ;k⃗ ¼ 0;

ð4:9Þ

where x ¼ kη. We can see that, during inflation, jLCSj ¼
L̃CS · jxj, with L̃CS ¼ 4Aḃκ2HI ∼ 10−11. We can check that
around the cutoff of the effective theory defined from (4.8),
the maximum value for x ¼ kjηj ∼ 104. This gives the
maximum value of LCS:

Lmax
CS ∼ 10−7 ≪ 1: ð4:10Þ

Thus, Eq. (4.9) can be approximated by

d2

dx2
ψ̃ λ;k⃗ þ

�
1 −

2

x2
− lλ

L̃CS

x

�
ψ̃ λ;k⃗ ¼ 0: ð4:11Þ

The terms of inverse powers of x are important only for the
superhorizon modes, x ≪ 1. Considering only the subhor-
izon modes, as in [38], the solution of Eq. (4.11) can be
approximated by the plane waves

vk ¼
1ffiffiffiffiffi
2k

p eikη; ð4:12Þ

v�k ¼
1ffiffiffiffiffi
2k

p e−ikη; ð4:13Þ
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that is, again the equation is reduced to the isotropic case,
while the anisotropic contribution is introduced through
(3.46), with the two bases reduced again to the isotropic
one, fvk; v�kg, which solves (4.11). The redefinition func-
tion of Eq. (3.28) during inflation is given by

zI
L;k⃗

ðηÞ ¼ −
1

HIη

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − lk⃗4AḃH

2
I kκ

2η
q

;

zI
R;k⃗

ðηÞ ¼ −
1

HIη

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lk⃗4AḃH

2
I kκ

2η
q

: ð4:14Þ

Using (3.46), we can calculate the gCS condensate during
inflation. On expanding the quantity inside the integral of
Eq. (3.54) up to leading order for LI

CS and performing the
integration, we obtain the result

hRCSiI ¼ −
A
π2

ḃI
MPl

�
HI

MPl

�
3

μ4 < 0; ð4:15Þ

where the negative sign guarantees a positive sign for the
effective cosmological constant (2.32). It is important to
note that the above result differs by a factor of 2 from the
one presented in [26,29–31,61], which is based on the
result of [38]. The reason for the discrepancy lies on
Eq. (3.22). As already mentioned in Sec. III A, the authors
of [38] considered only the first term of the right-hand side
of Eq. (3.22) and ignored corrections that include higher-
order spatial derivatives. In our analysis, we have taken into
account every contribution of the equations of motion for
the gravitational waves, even those coming from higher-
order derivatives. If one considers only up to first-order
spatial derivatives to (3.22), the corresponding redefinition
function has the form z ¼ aðηÞe�4Aḃkκ2=aðηÞ. Consequently,
the correction due to the CS coupling, up to first order to
LCS, reads z ≈ αðηÞ � 4Aḃkκ2. Such a result yields a
contribution which is 2 times larger than that of the
redefinition function (3.27), leading to a 2 times larger
result for the condensate (4.15), which was the case of [38].
Nonetheless, the order of magnitude of the condensate
remains the same, and hence the phenomenology of the
StRVM [26,29–31,61] is not qualitatively affected.
As in the case of the stiff matter era (3.77), for the actual

value of the condensate in the inflationary epoch, we have
to multiply the result (4.15) with the number N I of all
kinds of sources of gravitational waves during inflation,
obtaining as a final result [31]

hRCSitotalI ¼ −N I
Aκ4μ4

π2
ḃIH3

I : ð4:16Þ

As already mentioned, Eq. (2.31) (see also Fig. 4)
provides an estimate of the order of magnitude of ḃ,
which remains approximately constant during the entire
inflation era:

ḃI ∼ 10−1HIMPl; ð4:17Þ

confirming in this way the assumption made in [26,29–31].
This is a highly nontrivial consistency check of the StRVM
approach to inflation via primordial-gravitational-wave-
induced CS condensates, which in this way is mapped
into a dynamical evolution of a single-(axion) field system
with a linear potential.10

Moreover, assuming the constancy of the value of the
condensate during the entirety of the inflationary era, and
using Eq. (4.17), we have to match Eq. (4.16) with
Eq. (3.77). Then, we obtain

N I

N S
∼ 7 × 102

�
Hi

HI

�
4

; ð4:18Þ

where, we recall, N S denotes the number of sources of
gravitational waves during the stiff era that form the
condensate. In the result of Eq. (3.75), we assumed
N S ∼Oð1Þ, but we could in general consider an enhance-
ment in this period, i.e., from populations of primordial
black holes. Such an enhancement would have an impact
on our theory, since it would affect the time of creation of
the gravitational condensate and the upcoming inflationary
evolution, but it would also influence the cutoff scale of our
theory (4.8). For the initial condition we have already
assumed, for which Hi=HI ∼ 107=2, we obtain

N I

N S
∼ 7 × 1016; ð4:19Þ

which lies in the range given in [31], stemming from the
assumption of the constancy of the CS condensate during
inflation, which thus avoids exponential dilution [26,29].
Before closing this section, we would like to stress once

more that the presence of theUVcutoff μ, which is identified
with the string scale Ms in our approach, is unavoidable,
because our gravitational theory is viewed as an effective
field theory obtained from strings, which is valid at energy
scales up to Ms. In this respect, our model, and that
of [26,27,29,30], is different from purely local effective
field theory models of gravitational leptogenesis, studied
in [70,71], where the gCS condensate can be estimated by
adding to the theory appropriately (and not uniquely) chosen
counterterms (in specific expanding universe backgrounds)
to cancel the divergent terms that are proportional to the UV
cutoff scale. Such a procedure [71] leaves a finite value of the
condensate, which, in contrast to our string theory case
(3.75), (4.16), (4.17), is found to depend on the eighth power

10Wemention for completeness that our calculations in thiswork
are also in agreement with the requirement that the axion is of order
jbI j ∼Oð10ÞMPl and does not change order of magnitude during
inflation, which is a crucial fact for the string-inspired Lorentz- and
CPT-violating standard model extension [69], which stems as a
consequence of the StRVM framework [26,29–31].
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of the Hubble parameter. Par contrast, in our case the
condensate is proportional to H4. In our string theory
context, adding such local effective counterterms to remove
the UV cutoff has no meaning, as we have already
mentioned. The presence of the UV cutoff in our case,
which is identified with the string scaleMs, signals the role
of infinite towers of massive string states (hence, nonlocal,
purely stringy effects). As discussed in [72], from the point
of view of a low energy observer, such towers can be viewed
as an “environment,” which is reflected in the presence of
imaginary parts in the condensate. The latter leads to an
instability of the corresponding de Sitter vacuum, thus
allowing an exit from inflation, consistent with the dynami-
cal system approach. The imaginary parts can lead to an
estimate of the lifetime of inflation, consistent with
phenomenology.

V. CONCLUSIONS AND OUTLOOK

In this work we have revisited the string-inspired
cosmological Chern-Simons gravitational theory that cor-
responds to the StRVM cosmology, proposed in [26,29,30].
We have reevaluated the gravitational anomaly condensate
induced by primordial gravitational waves, by relaxing
some of the approximations that have been employed
in [38,39]. As we have shown, there is considerable
reduction (by a half) of the value of the condensate, as
compared with the approximate evaluation of [38,39], but
since the order of magnitude remains the same, the
conclusions on the cosmology of the model in the analysis
of [26,29,30] are not affected.
In our analysis, we have used dynamical systems to

study both the KR-axion-stiff and RVM inflationary phases
of the model, and the transition from the former to the latter
in detail, which to the best of our knowledge has not been
done before. The formation of the CS anomaly condensate
leads to an effective gravitational theory with a linear KR
axion potential, whose dynamics is studied using the
aforementioned dynamical system approach. In this con-
text, we should mention that to be complete, one should
estimate the order of magnitude of the imaginary parts of
the quantum effective action, obtained from integrating our
graviton degrees of freedom [30,39]. This would in
principle yield an estimate of the lifetime of the metastable
inflationary era,11 which, for phenomenological consis-
tency of the model, should produce a number of e-foldings
N ≳ 50–60. There are subtleties in such a computation in
the context of our weak quantum gravity models, especially
those associated with gauge invariance, which are addi-
tional to the already technical complications of flat

spacetime models [73–79]. This is left for future work,
noting that a rough estimation of the associated lifetime for
RVM inflation in our model has been given in [72].
There are several interesting avenues of research that we

would like to pursue, related to issues which, although
briefly outlined in [26,29,30], nonetheless have never been
studied in detail. Among the most important of them is the
existence of linear in cosmic time KR axion backgrounds,
which are responsible for a spontaneous breaking of (local)
spacetime Lorentz invariance during the presence of the
primordial-gravitational-wave-induced CS condensate. As
argued in [26,29], such backgrounds remain undiluted
during the RVM inflation, surviving intact during the
radiation era that succeeds the inflationary epoch. In
models with massive right-handed neutrinos in their matter
sector, then, the presence of these linear KR axion back-
grounds leads to the creation of a lepton asymmetry
(leptogenesis), according to the mechanism suggested
in [80–83]. Eventually this leads to baryogenesis, via,
say, baryon(B)- and lepton(L)-number violating, but B-L
conserving, sphaleron processes in the standard model
sector of the effective matter theory. Although for exactly
constant CS condensates, such KR axion backgrounds
exhibit a constant rate; nonetheless, in actual situations,
as a result of the cosmic-time dependence of the CS
condensate during the end of the RVM inflationary period,
these KR axion fields are characterized by time dependent
rates. It would be interesting to exploit the precise effects of
such time dependence of the KR axion background on the
leptogenesis processes.
Another potentially interesting issue, is an estimation of

the duration of the transition of the system from the end of
the RVM inflationary era to the radiation era. This depends
on details of the microscopic string theory that underlies the
StRVM. In general, depending on their parameters, RVM
cosmologies may be characterized by long reheating
phases [15,16]. In the case of string theory, there are
additional reasons that might prolong the exit phase from
inflation, as the latter depends on the detailed axion
dynamics within the StRVM framework. Specifically,
given that StRVM is a string-inspired theory, its actual
axion spectrum is much more complicated than the single
KR axion model we discussed above and in [26,29,30].
Indeed, in string theory, in addition to the string-model
independent KR axion, one faces a multiaxion situation,
due to axion fields, different from the KR axion, arising
from compactification, which depend on the specific
(compactified) string model under consideration [49].
The existence of periodic modulation potentials for such

axions [84,85] can also lead to an enhanced production of
rotating primordial black holes during inflation, and this can
affect the duration of the reheating phase [85]. Under such
circumstances and for some regions of the parameter space
of the models, there is also the possibility of the existence of
an intermediate matter-dominated phase, between the RVM

11It is worthy of mentioning that the metastability of the
inflationary era is a welcome fact from the point of view of the
StRVM, as implying compatibility, at least in principle, with
the swampland criteria [5–9,33] for embedding the theory into a
consistent quantum gravity framework.
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inflation and radiation eras [86]. This can affect significantly
the populations of primordial black holes, and, as a conse-
quence, the profiles of the gravitational waves produced
from the coalescence of such black holes, leading in turn to
observable in principle modifications of the spectrum of the
gravitational waves during the early radiation era. In fact, as
argued in [85], by looking at the details of such gravitational-
wave profiles via future interferometers, one can in principle
distinguish the effects of the StRVM from generic string-
inspired axion-monodromy inflationary models, with linear
axion potentials, such as those discussed in [84]. A detailed
analysis, therefore, of the exit phase from RVM inflation in
our StRVM cosmology framework, and a study of the
potential (rotating) primordial-black-hole populations, con-
stitute an important, potentially very interesting from a
phenomenological point of view, avenue for research thatwe
intend to pursue in the future.
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APPENDIX A: DERIVATION OF THE
EQUATIONS OF THE EXPANSION

NORMALIZED VARIABLES

In this appendix we review the basics of the dynamical
system approach to single-scalar-field cosmology. In the
main text we have introduced the EN variables in
Eq. (2.12), which we repeat here for the reader’s conven-
ience:

x ¼ κḃffiffiffi
6

p
H

and y ¼ κ
ffiffiffiffiffiffijVjpffiffiffi
3

p
H

: ðA1Þ

Squaring Eq. (A1), we obtain

ḃ2 ¼ 6x2H2

κ2
and jVj ¼ 3y2H2

κ2
; ðA2Þ

which, by a simple substitution to the Friedmann equa-
tion (2.6), yields

x2 þ y2 ¼ 1: ðA3Þ

Now, to derive the equations for x0 and y0, where the
prime denotes differentiation with respect to the quantity

N ¼ logα, where α is the scale factor of the Universe, we
use Eq. (2.7) and obtain

2Ḣ þ 3H2 ¼ −κ2
�
ḃ2

2
− VðbÞ

�
⇒

Ḣ
H2

¼ −
3

2
ðx2 − y2 þ 1Þ: ðA4Þ

We now consider the derivative of x and y with respect to
N ¼ logα:

x0≡ dx
dN

¼ 1

H
dx
dt

¼ 1

H

�
κb̈ffiffiffi
6

p
H
−

κḃḢffiffiffi
6

p
H2

�
¼ κḃffiffiffi

6
p

H

�
b̈

ḃH
−
Ḣ
H2

�
:

ðA5Þ

The two terms inside the brackets on the right-hand side of
the last equality in (A5) can be evaluated by using the
Klein-Gordon equation for the axion (2.8) and also using
(A4). From the equation of motion for the axion, we have

b̈þ 3Hḃ ¼ −V;b ⇒
b̈

ḃH
¼ −3 −

V;b

ḃH
:

Using the EN variables definitions (A1) we get

b̈

ḃH
¼ −3 −

V;b

ffiffiffi
6

p
y2

2xκV
; ðA6Þ

and substituting Eqs. (A4) and (A6) into (A5), we obtain
the equation for x0:

x0 ¼ −
3

2

�
2x − x3 þ xðy2 − 1Þ −

ffiffiffi
2

pffiffiffi
3

p λy2
�
; ðA7Þ

where λ ¼ − V;b

κV . This is Eq. (2.15) for the first dynamical
variable that was mentioned in Sec. II A of the main text.
Similar steps are followed for the derivation of the y0
equation:

y0 ≡ dy
dN

¼ 1

H
dy
dt

¼ κffiffiffi
3

p
H

�
V̇jVj−1

2

H
−
ḢjVj12
H

�
: ðA8Þ

On using

V̇ ¼ dV
dt

¼ ḃV;b ¼ V;b
x
ffiffiffi
6

p
H

κ
;

Eq. (A8) becomes

y0 ¼
ffiffiffi
6

p

2

V;b

κV
xy − y

Ḣ
H2

;
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from which, upon substituting the definition of λ ¼ − V;b

κV in
the first term on the right-hand side, and making use of
Eq. (A4) in the second, we obtain

y0 ¼ −
3

2
y

�
−x2 þ y2 − 1þ

ffiffiffi
2

pffiffiffi
3

p λx

�
: ðA9Þ

This is Eq. (2.16) in the main text. The derivation of
Eq. (2.17) for the evolution of λ is straightforward and is
omitted here for brevity.

APPENDIX B: STABILITY ANALYSIS OF THE
DYNAMICAL SYSTEM (2.22), (2.23)

In this appendix we will examine the stability of the
critical (fixed) points of our dynamical system. To study the
stability of the fixed points, we first calculate the Jacobian
(stability) matrix, which allows us to determine the eigen-
values at each fixed point separately. For the hyperbolic
fixed points, the stability can be determined immediately
from the eigenvalues, which in such a case should have a
nonzero real part. Otherwise, if one eigenvalue is zero,
corresponding to a center space, more advanced techniques
such as center manifold theory or Lyapunov function
analysis should be applied in order to draw safe conclusions
on the stability of the fixed points.
For the reader’s convenience, we rewrite the dynamical

system as follows:

φ0 ≡ μðϕ; zÞ ¼
�
3 cosφ −

ffiffiffi
6

p

2

z
1 − z

�
sinφ;

z0 ≡ νðϕ; zÞ ¼
ffiffiffi
6

p
z2 cosφ:

The linearized system yields the Jacobian (stability) matrix:

J ¼
 

∂μ
∂ϕ

∂μ
∂z

∂ν
∂ϕ

∂ν
∂z

!
¼
 
3 cosð2φÞ þ

ffiffi
3
2

p
z cosðφÞ
z−1 −

ffiffi
3
2

p
sinðφÞ

ðz−1Þ2

−
ffiffiffi
6

p
z2 sinðφÞ 2

ffiffiffi
6

p
z cosðφÞ

!
:

ðB1Þ

Now, we want to find the eigenvalues of the Jacobian
matrix at the fixed points. The points and the eigenvalues
are given in Table I in the main text.
The linear approximation fails in the case when a center

manifold exists (that is, at least one eigenvalue has zero real
part). Below, we shall first mention some basic facts about
center manifold theory and then proceed to the analysis for
the fixed points.
Center manifold theory: As we have already stated, using

linear stability theory, we cannot conclude about the
stability of fixed points with eigenvalues that have zero
real parts. With the methods of center manifold theory,
however, we are able to reduce the dimensions of the
dynamical system, and then the stability properties of this

reduced system can be investigated analytically. We men-
tion below some of the basics of this method [54] and
proceed with the analysis for the specific critical points of
our dynamical system (2.22), (2.23).
Let one consider a dynamical system of the following

form:

ż ¼ FðzÞ; ðB2Þ

where F is a regular function of z∈Rn. Assuming a fixed
point at z ¼ z0, we can linearize the system around this
point using the Jacobian matrix. Defining z� ¼ z − z0, we
have that

ż� ¼ Jz�: ðB3Þ

We know that the Jacobian J is an n × n matrix (where n
denotes the number of dimensions of the dynamical system),
having n eigenvalues. These eigenvalues correspond to three
subspaces spanned by the respective eigenvectors. So, Rn

can be expressed as a direct sum of these tree subspaces,
denoted by Es, Eu, Ec, with (s) for “stable,” (u) for
“unstable,” and (c) for “center.” From the linear stability
theory, it is well known that, if all the eigenvalues have
positive real parts, the fixed point is unstable, while if all the
eigenvalues have negative real parts, then the point is stable.
Mixed signs of the eigenvalues (nonzero) correspond to
saddle points. So, the eigenvectors of J corresponding to
negative real part eigenvalues span the stable subspace Es,
and eigenvectors corresponding to positive real part eigen-
values span the unstable subspace Eu. Ec is spanned by the
Jacobian eigenvectors that are associated with zero real part
eigenvalues. The dynamics and the stability properties of the
phase space trajectories in both Es and Eu can be analyzed
using linear stability theory,while the dynamics inEc require
the use of center manifold theory to be fully understood.
If the Jacobian has (at least) one eigenvalue with a

positive real part, then the corresponding fixed point cannot
be stable, regardless of it being hyperbolic or nonhyper-
bolic. Otherwise, there always exists an appropriate coor-
dinate transformation allowing us to rewrite the system
(B3) in the form

ẋ ¼ Axþ fðx; yÞ; ðB4Þ

ẏ ¼ By þ gðx; yÞ; ðB5Þ

where ðx; yÞ∈Rc ×Rs, with c the dimension of the center
manifold Ec and s the dimension of the stable manifold Es.
The functions f and g satisfy

fð0; 0Þ ¼ 0; ∇fð0; 0Þ ¼ 0; ðB6Þ

gð0; 0Þ ¼ 0; ∇gð0; 0Þ ¼ 0: ðB7Þ
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In the above system (B4), (B5), A is a c × c matrix having
zero real part eigenvalues (center manifold), while B is
an s × s matrix having negative real part eigenvalues
(stable manifold). To present the method of center mani-
fold, we have to state some theorems without proof and
some definitions, which we will then use to determine
the stability properties of our system. For details of the
analysis, including proofs of the pertinent theorems, the
interested reader is referred to Carr’s work in [87].
Definition. A geometrical space is a center manifold for

(B4), (B5) if it can be locally represented as

Wcð0Þ ¼ ½ðx; yÞ∈Rc ×Rsjy ¼ hðxÞ; jxj < δ;

hð0Þ ¼ 0;∇hð0Þ ¼ 0�; ðB8Þ

for δ being sufficiently small and hðxÞ a regular function on
space Rs.
Next, we present three basic theorems [87], which

constitute the basis of center manifold theory, allowing
us to determine the stability of the fixed points with zero
eigenvalues for our cosmological system (2.22), (2.23).
Theorem 1. There exists a center manifold for (B4), (B5),

whose dynamics, restricted to the center manifold, are
given by

u̇ ¼ Auþ fðu; hðuÞÞ; ðB9Þ

with u∈Rc being sufficiently small.
Theorem 2. Suppose that the zero solution of (B9) is

stable (or unstable). Then, the zero solution of (B4), (B5) is
also stable (or unstable). What is more, if ðxðtÞ; yðtÞÞ is also
a solution of (B4), (B5) with ðxð0Þ; yð0ÞÞ being small
enough, there exists a solution uðtÞ of (B9) such that

xðtÞ ¼ uðtÞ þOðe−γtÞ; ðB10Þ

yðtÞ ¼ hðuðtÞÞ þOðe−γtÞ; ðB11Þ

as t → ∞, with the positive constant γ > 0.
These two theorems assume the knowledge of the

function hðxÞ which needs to be calculated. We can derive
a differential equation for hðxÞ, using Definition (B8). We
then have that y ¼ hðxÞ. Differentiating with respect to our
time variable, and applying the chain rule, we obtain

ẏ ¼ ∇hðxÞ · ẋ: ðB12Þ

Hence, from (B4), (B5), we can substitute for ẋ and ẏ, and
using the fact that y ¼ hðxÞ, we can derive the following
differential equation:

N ðhðxÞÞ≔ ∇hðxÞ½Axþ fðx; hðxÞÞ�−BhðxÞ− gðx; hðxÞÞ
¼ 0: ðB13Þ

The differential equation (B13) must be satisfied by hðxÞ in
order for it to be the center manifold. To approximate the
solution of the above equation, which in general is not
solvable even in the simplest cases, we present the third
theorem:
Theorem 3. Let ϕ∶ Rc → Rs be a map with ϕð0Þ ¼

∇ϕð0Þ ¼ 0 such that N ðϕðxÞÞ ¼ OðjxjqÞ as x → 0 for
q > 1. Then, we have that

jhðxÞ − ϕðxÞj ¼ OðjxjqÞ as x → 0: ðB14Þ

The important thing here is that an approximate description
of the center manifold can return the same information
about the stability of our fixed point as an exact solution of
(B13). This can usually be done by a series expansion of
hðxÞ, where the coefficients of the series can be determined
by satisfying (B13) for each order.
Now, we have everything we need to apply the center

manifold theory to our system (2.22), (2.23) for the
fixed points that contain a zero eigenvalue, which are
Iðπ

2
; 0Þ; Oð0; 0Þ; Cðπ; 0Þ.
Let us start with the fixed point of interest, Iðπ

2
; 0Þ. The

first step is to “move” the point, via a coordinate trans-
formation, to the origin. So, we send ϕ → θ þ π

2
, and in the

new coordinates θ, ζ, the system (2.22), (2.23) becomes

θ0 ¼
�
3 cos

�
θ þ π

2

�
−

ffiffiffi
6

p

2

ζ

1 − ζ

�
sin

�
θ þ π

2

�
; ðB15Þ

ζ0 ¼
ffiffiffi
6

p
ζ2 cos

�
θ þ π

2

�
; ðB16Þ

where now the fixed point Iðϕ ¼ π
2
; ζ ¼ 0Þ corresponds to

Iðθ ¼ 0; ζ ¼ 0Þ. The Jacobian matrix of the system (B15),
(B16) reads

J ¼
0@−3 cosð2θÞ −

ffiffi
3
2

p
ζ sinðθÞ
ζ−1 −

ffiffi
3
2

p
cosðθÞ

ðζ−1Þ2

−
ffiffiffi
6

p
ζ2 cosðθÞ −2

ffiffiffi
6

p
ζ sinðθÞ

1A; ðB17Þ

and, at Iðθ ¼ 0; ζ ¼ 0Þ, we have

Jjθ¼0
ζ¼0 ¼

 
−3 −

ffiffi
3
2

q
0 0

!
; ðB18Þ

with the eigenvalues and the corresponding eigenvectors
given by

λ1 ¼ 0 → u ¼
�− 1ffiffi

6
p

1

�
; ðB19Þ

λ2 ¼ −3 → v ¼
�
1

0

�
: ðB20Þ
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The eigenvalue λ2 ¼ −3 and the corresponding eigenvector
v span the stable subspace for the fixed point, while the
eigenvalue λ1 ¼ 0 and the corresponding eigenvector u
span the center subspace. The next step is to find new
variables, which diagonalize the Jacobian matrix (B18), in
order to obtain the necessary form of Eqs. (B4), (B5) so as
to be able to apply the arguments of the center manifold
theory.
To this end, we start with the linearized system�

θ0

ζ0

�
¼ Jjθ¼0

ζ¼0

�
θ

ζ

�
; ðB21Þ

and the Jacobian

J ¼ PDP−1;

where

P¼
�− 1ffiffi

6
p 1

1 0

�
; P−1¼

�
0 1

1 1ffiffi
6

p

�
; D¼

�
0 0

0 −3

�
ðB22Þ

are the matrices from the diagonalization of the Jacobian
matrix at the fixed point Iðθ ¼ 0; z ¼ 0Þ. Now, multiplying
(B21) with P−1 from the left on both sides, and keeping in
mind that D ¼ P−1JP, we get

P−1
�
θ0

ζ0

�
¼ DP−1

�
θ

ζ

�
: ðB23Þ

So, an appropriate (diagonal) coordinate transformation is�
U

V

�
¼ P−1

�
θ

ζ

�
¼
�
0 1

1 1ffiffi
6

p

��
θ

ζ

�
; ðB24Þ

which yields

U ¼ ζ and V ¼ θ þ ζffiffiffi
6

p : ðB25Þ

Equation (B23) can be written as�
U0

V 0

�
¼ D

�
U

V

�
¼
�
0 0

0 −3

��
U

V

�
; ðB26Þ

which can be cast in the form of Eqs. (B4), (B5)

U0 ¼ 0; ðB27Þ

V 0 ¼ −3V; ðB28Þ

giving the values of A ¼ 0 and B ¼ −3 [see (B4), (B5)].
Now, we can express the system of (B15), (B16) in terms of
the new variables U and V, which reads

U0 ¼ AU þ fðU;VÞ; ðB29Þ

V 0 ¼ BV þ gðU;VÞ; ðB30Þ

where A ¼ 0; B ¼ −3 and the functions f, g are given by

fðU;VÞ ¼
ffiffiffi
6

p
sin

�
Uffiffiffi
6

p − V

�
U2; ðB31Þ

gðU;VÞ ¼ U2 sin

�
Uffiffiffi
6

p − V

�

−
6ðU − 1Þ sin ð Uffiffi

6
p − VÞ þ ffiffiffi

6
p

U

2ð1 −UÞ cos

�
Uffiffiffi
6

p − V

�
þ 3V: ðB32Þ

These functions indeed satisfy Eqs (B6), (B7):

fðU¼ 0;V¼ 0Þ¼ 0; ∇fðU¼ 0;V¼ 0Þ¼ 0; ðB33Þ

gðU¼ 0;V¼ 0Þ¼ 0; ∇gðU¼ 0;V¼ 0Þ¼ 0; ðB34Þ

which is an important feature, allowing us to proceed to the
description of the center manifold stability properties.
To this end, we have to find an approximate solution for

the function hðUÞ for our center manifold. We can form the
differential equation (B13), with A ¼ 0; B ¼ −3 and
gðU;VÞ given from (B32), where V is a function of U,
V ¼ hðUÞ locally. Then, we have the differential equation

h0ðUÞ½AUþfðU;hðUÞÞ�−BhðUÞ−gðU;hðUÞÞ¼0

⇒h0ðUÞfðU;hðUÞÞþ3hðUÞ−gðU;hðUÞÞ¼0: ðB35Þ

We can solve the above equation for the first terms of a
series expansion in hðUÞ. Keeping the leading orders, with
the boundary condition hð0Þ ¼ 0, gives

hðUÞ ¼ −
U2ffiffiffi
6

p −
25U3

36
ffiffiffi
6

p −
U4

12
ffiffiffi
6

p þOðU5Þ: ðB36Þ

Now that we have found an approximate solution for hðUÞ,
we can reduce the dimensionality of the problem and
define the stability of our dynamical system (2.22), (2.23)
only by studying the stability properties of Eq. (B9). Thus,
we have

u0ðNÞ ¼ AuðNÞ þ fðuðNÞ; hðuðNÞÞÞ; ðB37Þ
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which gives

u0ðNÞ ¼
ffiffiffi
6

p
uðNÞ2 sin

�
uðNÞð−677uðNÞ4 þ 120uðNÞ3 þ 1000uðNÞ2 þ 1440uðNÞ þ 1440Þ

1440
ffiffiffi
6

p
�
: ðB38Þ

Upon a series expansion of the right-hand side of the above
equation, we obtain

u0ðNÞ ¼ uðNÞ3 − uðNÞ5
3

þOðuðNÞ6Þ: ðB39Þ

The sign of the constant in front of the term uðNÞ3 gives us
all the information we need about the stability of the
direction related to the zero eigenvalue of our fixed point
Iðϕ ¼ π

2
; ζ ¼ 0Þ. A positive coefficient means instability

along the eigenvector of the zero eigenvalue, while a
negative one implies stability. In our case, the coefficient
is þ1 > 0, so we have an unstable direction concerning the
center manifold. This means that Iðϕ ¼ π

2
; ζ ¼ 0Þ is a

saddle point, with one stable ðλ ¼ −3Þ and one unstable
(λ ¼ 0) direction.
Similar analysis can be done for every fixed point with a

zero eigenvalue. The complete results are summarized in
Table I in Sec. II A of the main text.
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J. Mod. Phys. D 28, 1944002 (2019).

[29] N. E. Mavromatos and J. Solà Peracaula, Eur. Phys. J.
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