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via Giuseppe Saragat 1, 44122 Ferrara, Italy
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We analyze primordial tensor perturbations using the latest cosmic microwave background and
gravitational waves data, focusing on the tensor-to-scalar ratio, r, and the tensor spectral tilt, nt. Utilizing
data from Planck PR4, BICEP/Keck, and LIGO-Virgo-KAGRA, we employ both Bayesian and frequentist
methods to provide robust constraints on these parameters. Our results indicate more conservative upper
limits for r with profile likelihoods compared to Bayesian credible intervals, highlighting the influence of
prior selection and volume effects. The profile likelihood for nt shows that the current data do not provide
sufficient information to derive quantitative bounds, unless extra assumptions on r are used. Additionally,
we conduct a 2D profile likelihood analysis of r and nt, indicating a closer agreement between both
statistical methods for the largest values of r. This study not only updates our understanding of the tensor
perturbations but also highlights the importance of employing both statistical methods to explore less
constrained parameters, crucial for future explorations in cosmology.
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I. INTRODUCTION

The cosmic microwave background (CMB) is a relic
from the distant past, containing within its faint signals the
secrets of the Universe’s beginnings [1–3]. Of particular
interest is B-mode polarization, which detection would
reveal the presence of primordial gravitational waves
(GWs), predicted by inflationary scenarios [4–6].
For this reason, observing B modes has been the goal

of past, present, and future experiments such as the
BICEP/Keck Array [7], the Simons Observatory [8],
CMB-S4 [9], and the Light satellite for the study of
B-mode polarization and inflation from cosmic micro-
wave background radiation detection (LiteBIRD) [10,11].
On top of that, Planck represents the cornerstone of
modern cosmology [12,13] and has recently provided the
most precise constraints on the standard ΛCDM model
with its fourth release (PR4) [14,15]. In this last iteration,
PR4 also provides information on B modes, which, in
combination with the measurements of BICEP/Keck,
represents our most advanced knowledge on primordial
GWs exploiting CMB data [16,17].

In parallel, GW interferometers are also proving to
be a very insightful tool for providing complementary
information on the primordial power spectrum of tensor
modes [18]. Indeed, CMB experiments are notably not very
effective in constraining its tilt (nt). This is due to the
lensing signal dominating the B-mode spectrum for
l > 300. Although GW interferometers, such as LIGO-
Virgo-KAGRA (LVK) [19–21], are designed to detect
ripples in spacetime emanating from cataclysmic cosmic
events, they also provide a unique synergy with CMB
observations. Their ability to probe the GW energy density
in a frequency range totally different from that of the CMB
enhances our chances of constraining the primordial
Universe scenarios [22,23].
The primordial scalar and tensor perturbations are

customarily parametrized with power laws as

PsðkÞ ¼ As

�
k
ks

�
ns−1

and PtðkÞ ¼ At

�
k
kt

�
nt
; ð1Þ

where As (At), ns (nt), and ks (kt) are respectively the
scalar (tensor) amplitude, spectral tilt, and pivot scale. On
top of this, the tensor-to-scalar ratio at a generic scale is
defined as*Contact author: giacomo.galloni@unife.it
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rk ¼
PtðkÞ
PsðkÞ

; ð2Þ

which, together with nt, represent the tensor sector of
parameter space. The state-of-the-art knowledge on this
sector can be divided into two cases: in the first, the
spectral tilt is fixed to the so-called consistency relation of
single-field slow-roll inflation nt ¼ −r0.05=8 [4], and only
r0.05 is constrained through the data. In this context, the
current lowest limit on r0.05 is r0.05 < 0.032 at 95% con-
fidence level (CL) based on the combination of Planck and
BICEP/Keck data [16]. On the other hand, one can avoid
the choice of single-field slow-roll inflation violating the
relation just mentioned. In this case, the current bounds
are r0.01 < 0.028 and −1.37 < nt < 0.42 at 95% CL,
accounting also for LVK data [17].
In a scenario where we do not have a detection of

primordial GWs, the choice of the statistical analysis
method used to extract information from the data is
crucial. Bayesian methods, based on Markov chain
Monte Carlo (MCMC), have been pivotal [24–28].
However, challenges arise, particularly in dealing with
volume effects that can mislead our conclusions in
multidimensional parameter spaces [29]. This is particu-
larly the case for the tensor sector as we shall see in the
rest of the paper. Indeed, for a given sensitivity, the
constraints on nt can be very broad if r is pushed to very
low values.
This work provides an update on the current knowl-

edge on the parameters of the primordial tensor power
spectrum using the latest Planck release (PR4). After
employing a MCMC approach to obtain information
about the posterior probability, we gauge the impact of
volume effects and prior choices by using the frequentist
approach based on profile likelihoods (PLs), which
offers independence from both [30–34]. Indeed,
MCMC and PL answer different and complementary
questions, delivering us with a complete picture of the
tensor parameter space.
In Sec. II, we offer a concise overview of the datasets

utilized in this study, encompassing contributions from
the CMB derived from Planck and BICEP/Keck, as well
as insights from a GW standpoint, particularly from the
LVK collaboration. Section III discusses the method-
ologies underpinning both the MCMC and the PL
analyses. Special attention is paid to the techniques
employed to extract confidence intervals, ensuring their
adherence to the correct statistical properties. Finally,
Sec. IV presents our findings, revisiting the outcomes
of [17] through the lens of updated datasets using the
MCMC perspective. Simultaneously, we introduce a
novel frequentist exploration of the tensor sector of
parameter space using PL, shedding light on volume
effects and prior-choice dependencies that impact
Bayesian results.

II. DATASETS

A. Data

1. Planck

This study uses Planck’s PR4 maps.1 They were pro-
duced by the NPIPE processing pipeline, which recon-
structs temperature- and polarization-calibrated frequency
maps from Planck’s LFI and HFI data. The NPIPE pro-
cess, detailed in [36], incorporates data from previously
neglected repointing periods, along with several enhance-
ments that reduce noise and systematic errors across
frequencies and component-separated maps, enhancing
consistency between different frequencies.
We use several likelihoods that cover the multipole range

from l ¼ 2 to l ¼ 2500. For large angular scales in
temperature (l ≤ 30), we consider the Commander TT
likelihood (lowlT) based on a Bayesian posterior Gibbs
sampling that combines the separation of astrophysical
components and the estimation of likelihood [13,37]. For
large angular scales in polarization, we use the low-l
likelihood polarized for Planck (LoLLiPoP) based on the
Hamimeche-Lewis approximation for the EE, BB, and EB
power spectra [16], which can cover multipoles l ≤ 150.
The cross-correlation spectrum TE is not used at large
scales. At small angular scales (l > 30), we alternatively
use the high-l likelihood polarized for Planck (HiLLiPoP)
or CamSpec which both combine the TT, TE, and EE
CMB spectra over a large fraction of the sky (75% and
80%, respectively). HiLLiPoP is a multifrequency like-
lihood based on cross spectra of the 100, 143, and 217 GHz
frequency maps, with astrophysical models for the resid-
uals of foreground emissions [15]. CamSpec is based on
cross spectra at 143 and 217 GHz which are preprocessed
by a cleaning procedure using the 545 GHz maps as a
template of Galactic dust emission [14]. Each likelihood
comes together with its own nuisance parameters mostly
related to instrumental calibration and residual foreground
modeling.

2. BICEP/Keck Array

We use the BICEP/Keck likelihood (BK18), representing
data collected by the BICEP2, Keck Array and
BICEP3 CMB polarization experiments up to the 2018
observing season [38]. This likelihood is based on the
Hamimeche-Lewis approximation [39] for the joint like-
lihood of the BB autospectra and cross spectra obtained
across multiple frequency maps: BICEP/Keck (two at
95 GHz, one each at 150 and 220 GHz), WMAP (23
and 33 GHz), and Planck (PR4 at 30, 44, 143, 217, and
353 GHz). Covering an effective area of roughly 400
square degrees (equivalent to 1% of the sky), this dataset is
centered on a region characterized by minimal foreground

1This is available on the Planck Legacy Archive: [35].
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emission. The data model encompasses Galactic dust and
synchrotron emission, incorporating correlations between
dust and synchrotron components.

3. LIGO-Virgo-KAGRA interferometers

We adopt the same approach as described in [17,18]
taking advantage of the fact that GW interferometers probe
scales (k ∼ 1016 Mpc−1) nearly 18 orders of magnitude
above those probed by the CMB (k ∼ 10−2 Mpc−1). Under
the assumption that the tensor tilt nt remains constant
across the large frequency range between the CMB and
GW interferometers, we use the upper limit on the energy
density of GWs (ΩGW) provided by the LVK collaboration
to obtain a constraint on nt at small scales, with [18,40]

ΩGWðkÞ ¼
r0.05As

24zeq

�
k
kt

�
nt
; ð3Þ

where we considered the pivot scale to be kt ¼ ks ¼
0.05 Mpc−1 and As is the scalar amplitude defined in
Eq. (1). Then, we define a Gaussian likelihood on the
energy density of GWs,

−2 logðLLVKÞ ¼
ðΩGW − μLVKÞ2

σ2LVK
; ð4Þ

predicted as centered on μLVK ¼ 0 and with a σLVK that
equals half of the LVK’s 95% bound [18].
In particular, we use the limitΩGWð25 HzÞ < 6.6 × 10−9

(95% CL) provided in [23] using data from the third
observing run of Advanced LIGO and Advanced Virgo
(O3) combined with upper limits of the previous runs O1
and O2.

B. Combinations of data

Throughout the remainder of this paper, we refer
to “PLK20(CamSpec/HiLLiPoP)” as the combination of
Planck likelihoods:

(i) Planck PR3 low-l TT [13,37],
(ii) Planck PR4 LoLLiPoP [16],
(iii) Planck PR4 lensing [41],
(iv) Planck PR4 high-l (CamSpec [14] or HiLLiPoP

[15]).
We then add the two other datasets:

(i) BICEP/Keck array 2018 (BK18) [38],
(ii) LIGO-Virgo-KAGRA 2021 (LVK21) [23],

to form the two main combinations we study in
this work, PLK20ðCamSpecÞ þ BK18þ LVK21 and
PLK20ðHiLLiPoPÞ þ BK18þ LVK21. Furthermore, we
will consider the same combinations without LVK21 to
emphasize the role of GW interferometers.
Note that we slightly modified the high-l likelihoods

(both HiLLiPoP and CamSpec) to avoid any correlation
with the low-l LoLLiPoP. Indeed, to maximize the

information coming from BB, we use LoLLiPoP up to
l ¼ 150 and consequently adjust the minimum multipole
of high-l likelihoods for EE at lmin ¼ 151.
As previously done in [16], we neglect correlations

between Planck and BICEP/Keck datasets and simply
multiply the likelihood distributions. This is justified
because the BK18 spectra are estimated on 1% of the
sky, while the Planck analysis is derived from at least 50%
of the sky.

III. METHODOLOGY

In this work, we explore both the tensor-to-scalar ratio r
and the tensor spectral tilt nt. This allows us to test the
consistency relation imposed by the single-field slow-roll
inflationary model (nt ¼ −r=8 at first order), leaving
instead nt free to vary. The only assumption we make is
that the tensor power spectrum can still be described as a
power law [see Eq. (1)]. In a context where nt is fixed, the
pivot is usually chosen to match the scalar pivot scale of
kt ¼ ks ¼ 0.05 Mpc−1. Instead, in our case the pivot is
taken to be kt ¼ 0.01 Mpc−1, since this scale is close to the
decorrelation scale [18].
It is important to emphasize that we also fit for the six

parameters of the ΛCDM cosmological model as well as all
nuisance parameters associated to the likelihoods (see
Sec. II B and the references therein for more details).
For this reason, we refer to the model we study in this
paper as ΛCDMþ r0.01 þ nt. Then, taking into account the
nuisance parameters, the size of the parameter space
considered is of the order of ∼30 dimensions.
To compute the angular power spectra of all the

observables considered here, we employ CAMB [28,42,43].
Before discussing the details of the Bayesian and

frequentist approaches to parameter estimation, it is essen-
tial to understand that these two methodologies address
complementary questions. Bayesian credible intervals pro-
vide information about the probability that the true value of
a parameter falls within a given interval. Conversely,
frequentist confidence intervals inform us about the prob-
ability of obtaining the observed data. Thus, together they
provide a complete picture on the parameter space under
consideration, but they must be compared with care. In fact,
for example, [31,44,45] shows the importance of compar-
ing and confronting results from both methods in order to
gain a comprehensive understanding of the data and
validate the robustness of the conclusions.

A. MCMC analysis

MCMC, a versatile and indispensable tool of Bayesian
statistics, has become fundamental in the navigation of
intricate landscapes of probability distributions [24–28].
Its role in exploring large parameter spaces becomes
particularly apparent when seeking information about
individual parameters. Indeed, such a procedure provides
us with the marginalized posterior of a parameter given a
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set of data, which we can use to find the degree of belief
of such a parameter.
If a physical boundary is present (as in our case with

r0.01), it is naturally encoded in a Bayesian framework by
the prior distribution. Indeed, considering a generic param-
eter named θ and a dataset x, the posterior PðθjxÞ is
obtained through the Bayes theorem, which reads

PðθjxÞ ¼ LðxjθÞΠðθÞ
EðxÞ : ð5Þ

Here, LðxjθÞ is the likelihood, ΠðθÞ is the prior, and EðxÞ
the evidence. A positivity bound on θ can be easily
accounted for choosing

ΠðθÞ ¼
�
0 θ < 0

1 θ ≥ 0:
ð6Þ

All this comes without ambiguity in Bayesian statistics,
as the random quantity evaluated here is θ and we are
reconstructing its degree of belief.
Specifying the discussion to the tensor sector, [17]

reports a comprehensive analysis on the two most used
approaches for r0.01 and nt. Here, we follow the same
procedure chosen in that work: Single-scale approach
(SSA). This implies the introduction of a lower cutoff in
the tensor-to-scalar ratio of r0.01 > 10−5. The underlying
idea is that this amplitude level is far from detectable
with current experiments, thus we cut the prior to avoid
pathological behaviors of the MCMC. From a physical
point of view, we know that some minimal B-mode signal
is present even in single-field slow-roll inflation with no
primordial tensor modes. Indeed, we have measured scalar
perturbations of our Universe, which source GWs at second
order in the perturbations. In particular, those would
produce a B-mode signal equivalent to r ≃ 10−7 on large
scales and r ≃ 10−5 on small scales [46–50].
Despite all this, in a Bayesian framework, volume effects

can have an important role. In a multidimensional problem,
if a large part of the probability volume is in a certain area,
the final posterior will be drawn towards that region just as
a result of the marginalization procedure. On top of this,
excluding a priori parts of the parameter space (as we do,
following the SSA prescription) could also bring to
differences in the final results, highlighting the prior
dependence of Bayesian statistics (see [17]). In this context,
another possible prior choice for a parameter whose order
of magnitude is unknown is the log-uniform prior. This
translates into equal weighting of the order of magnitude of
this parameter [51].
These aspects can pose challenges in accurately gauging

the significance of the obtained results and, possibly,
mislead the derived conclusions. For this reason, in this
work we confront and compare those results with the ones
derived with the frequentist approach, i.e., the PL.

B. Profile likelihood

The procedure to get confidence intervals in a frequentist
framework is slightly more involved due to the nature of
frequentist intervals: in fact, the true values of parameters
are not random variables, but rather fixed values that nature
chooses. Thus, the boundaries obtained from a set of data
are specific for the experiment considered and represent the
random variable in this case. Repeating the experiment
would cause these bounds to fluctuate. The “coverage
probability” refers to the fraction of intervals that contain
the true value of the parameters among the N different
repetitions of an experiment. The confidence intervals are
then determined to have a coverage probability greater than
or equal to a certain confidence level (CL) [52].
To derive a confidence region that has the correct

frequentist coverage properties, one can make use of
likelihood ratio statistics. For multiparametric spaces, this
amounts to constructing the PL: for fixed values of the
parameter of interest (θi), we look for the maximum of the
likelihood function in all the other dimensions (both for
the physical parameters and the nuisance parameters). We
then have access to the function χ2minðθiÞ ¼ −2 lnLmaxðθiÞ,
where L is the likelihood considered. The best fit [or
minðχ2minðθiÞÞ] gives the estimate of the parameter under
consideration, which also corresponds to the maximum
likelihood over all the other parameters.
This procedure also ensures that its determination is

independent of any change of variable fðθiÞ, making it
parametrization invariant.
The error in the parameter θ can be deduced from the

shape of the χ2minðθiÞ function. For Gaussian distribution,
the function is parabolic and the 1σ error bounds are simply
obtained by a cut at Δχ2min ¼ χ2minðθiÞ −minðχ2minðθiÞÞ ¼ 1.
When dealing with physical boundaries, one needs to use
the Feldman-Cousins (FC) prescription and the Neyman
construction [52,53]. Note that no integration in parameter
space is performed to obtain the confidence intervals.
Indeed, this is the manifestation of the core difference
between Bayesian and frequentist approaches to parameter
estimation mentioned above. The former requires to mar-
ginalize a posterior to extract bounds on a single parameter,
while the latter does not.
One of the difficulties in building the PL is the precision

with which we need to determine the values of χ2minðθiÞ. We
must rely both on a very accurate minimizer and a boost to
the accuracy parameters of the Boltzmann code CAMB [36].
The PL procedure also generates a by-product, the

“coprofiles.” In fact, we not only obtain a function χ2minðθiÞ,
but alsoN − 1 functions θjðθiÞwhere j ≠ i. These coprofiles
allow us to gauge the direction of degeneracy of other
parameters on the profiled one and are very useful as a
diagnostic tool of the PL procedure [31,34]. In other words,
coprofiles allow us to explore the parameter space in the
direction of the minimum −2 logL valley.
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C. Feldman-Cousins prescription

The first step of the FC prescription is to assume a true
value of the parameter of interest θ. In fact, for each value
of the parameter we can find an interval ½x1ðθ; αÞ; x2ðθ; αÞ�
such that

α ¼
Z

x2

x1

LðxjθÞdx: ð7Þ

Repeating this process for a set of “true values” of θ and
drawing each segment [x1; x2] in a plot, we can find a
“confidence belt.” Now, having a measured value of
x ¼ x0, the confidence interval [θ1ðxÞ; θ2ðxÞ] is found by
drawing a vertical line at x0 and looking at the maximum
and minimum values of θ (or its relative segment) that
intersect this line.
Note that, actually, Eq. (7) does not define uniquely x1

and x2, therefore, we need another equation to close the
system. Here is where the FC prescription is defined.
Consider the following test statistic:

λðx; θÞ ¼ LðxjθÞ
Lðxjθ̂Þ ; ð8Þ

i.e., a likelihood ratio where θ̂ maximizes LðxjθÞ. Solving
Eq. (7) while asking λðx1; θÞ ¼ λðx2; θÞ represents the FC
construction.
This prescription not only recovers the correct coverage

probability, but it is also able to naturally account for any
eventual physical boundaries of the parameters, shifting
“automatically” from a two-sided interval to a one-sided
one. Suppose that

LðxjθÞ ¼ 1ffiffiffiffiffiffi
2π

p exp

�
−
ðx − θÞ2

2

�
ð9Þ

and that θ must be non-negative. Our physically allowed
best estimate of θ is θ̂ ¼ maxð0; xÞ; then, we can write

λðx; θÞ ¼ LðxjθÞ
Lðxjθ̂Þ ¼

8<
:

exp
�
− ðx−θÞ2

2

�
if x ≥ 0

exp
�
xθ − θ2

2

�
if x < 0:

ð10Þ

Now, if the measured value of x is too close to the
physical limit or is negative, the correspondent vertical line
would intercept only x1ðθ; αÞ, automatically defining an
upper limit on θ. At some point, increasing the measured
value, we would instead intercept also x2ðθ; αÞ, shifting to a
two-sided confidence interval. For this reason, the FC
intervals are also said to be unified (see [53] for more
details).

IV. RESULTS

In this section, we fit for the parameters of the ΛCDM
model extended to tensor perturbations with the dataset
described in Sec. II and the methodology presented in
Sec. III.
In particular, we focus on the tensor sector of the

parameter space, i.e., {r0.01; nt}. As regards the ΛCDM
parameters, we do not find any significant deviation
from the current state-of-the-art results [14,15] (see
Appendix A). We mention that we use a modified version
of COBAYA [54] to obtain both Bayesian and frequentist
results. For the latter, we added a new minimizer based on
MINUIT

2 [55], which outperformed the two alternatives
implemented in Cobaya (PY-BOBYQA [56] and SCIPY [57]).
Various configurations of CAMB and MINUIT have

been tested in terms of reliability to obtain the absolute
maximum of the likelihoods. More details can be found in
Appendix B.
Note that very recently many new tools have been

developed to perform PLs, which are not exploited in this
work [58–60].

A. MCMC analysis

Figure 1 shows the 2D posterior distributions for r0.01
and nt from the MCMC analysis for the different datasets.
We start by comparing the results between different

choices on the high-l part of CMB, i.e., CamSpec or
HiLLiPoP. In particular, the 95% CL marginalized intervals
for PLK20ðCamSpecÞ þ BK18þ LVK21 are

r0.01 < 0.028 and − 1.36 < nt < 0.42; ð11Þ
while for PLK20ðHiLLiPoPÞ þ BK18þ LVK21

r0.01 < 0.029 and − 1.39 < nt < 0.41: ð12Þ
These intervals are almost identical, suggesting that this

choice does not significantly impact the tensor sector, as
expected. Furthermore, these are also very similar to the
results presented in [17] which used a slightly different
combination of datasets indicating the robustness of the
derived limits regarding the choice of high-l CMB like-
lihood.3 The bounds we obtain here for nt are typically
broader than the ones reported in [18]. We note that in [18],
the tensor perturbations are characterized by fitting r at two
different scales which can be affected by prior effects as
discussed in [17].
As a test to gauge the importance of GWs inter-

ferometers, we also repeat the analysis removing LVK21.
As expected, LVK21 severely constrains the tilt. For
PLK20ðCamSpecÞ þ BK18 we obtain

2https://github.com/CobayaSampler/cobaya/pull/332.
3For completeness, [17] used a combination of datasets made

up of LoLLiPoP of PR4þ plik and lensing from PR3þ BK18þ
LVK21 (see Sec. II).
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r0.01 < 0.029 and − 1.33 < nt < 3.37; ð13Þ

while using PLK20ðHiLLiPoPÞ þ BK18 we obtain

r0.01 < 0.030 and − 1.35 < nt < 3.40: ð14Þ

Once again, these bounds are similar to the ones obtained
in [17]. The only sizable difference lies in the fact that the
tensor spectral tilt has slightly shifted to higher values. We
have investigated the causes of such a shift but have been
unable to identify any specific behavior of the likelihood
function, or distinctive features within the parameter space.
In conclusion of this section, we reassessed the state-of-

the-art results using the most updated datasets (see Sec. II).
We found that the constraints on r0.01 and nt have remained
essentially stable as compared to [17], demonstrating that
the constraints are driven mainly by the low-l part of CMB
polarization.

B. Profile likelihood

We have previously noted that results from the Bayesian
analysis may be affected by volume effects or by the prior
choice. In this section, we perform a frequentist analysis on
the tensor sector of parameter space to gauge such effects.

1. Tensor-to-scalar ratio

First, we calculate the PL on the tensor-to-scalar ratio.
Our underlying model is ΛCDMþ r0.01 þ nt, so at each
fixed value of r0.01, the likelihoods are maximized both
with respect to the standard ΛCDM parameters and nt
(together with all the nuisance parameters in each
likelihood).
The left panel of Fig. 2 reports the results of PLK20 ×

ðCamSpecÞ þ BK18þ LVK21 and PLK20ðHiLLiPoPÞ þ
BK18þ LVK21 in terms of both Δχ2minðr0.01Þ and like-
lihood ratio Lðr0.01Þ=Lmax to emphasize the correspon-
dence between these two quantities. On the other hand, the
right panel shows the profile likelihood ratio for all the
datasets defined above. All of them are very similar.
However, one can note that HiLLiPoP results in a slightly
higher upper limit with respect to CamSpec. This resonates
with the MCMC results of Sec. IVA, where PLK20 ×
ðHiLLiPoPÞ þ BK18þ LVK21 gives slightly broader
bounds. Indeed, even though the two profiles show quite
similar widths, the HiLLiPoP case peaks at r0.01 ¼ 0.01
while CamSpec at r0.01 ¼ 0.009.
Figure 2 shows also the comparison between the

posteriors from Sec. IVA and PL distributions, suggesting
that some volume effect is present in the Bayesian
framework, pushing the posterior toward r ¼ 0.
We emphasize that all PLs point to a best-fit value for the

tensor-to-scalar ratio of r0.01 ≃ 0.01while being completely
consistent with a nondetection (i.e., r0.01 ¼ 0). Instead, the
maximum posterior tends to be around r0.01 ≃ 0 for every

FIG. 2. Left: Δχ2minðr0.01Þ and Lðr0.01Þ=Lmax for PLK20ðCamSpecÞ þ BK18þ LVK21 and PLK20ðHiLLiPoPÞ þ BK18þ LVK21.
Right: profile likelihood ratio (solid lines) and posterior distributions (dashed lines) for r0.01.

FIG. 1. 2D posterior of r0.01 − nt for baselineþ CamSpec and
baseline þ HiLLiPoP.
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dataset (the only exception being PLK20ðHiLLiPoPÞ þ
BK18, whose maximum posterior approaches the best fit).

2. Feldman-Cousins for r0.01
We now apply the FC prescription to recover the

confidence interval with the correct coverage probability
and accounting for the physical limit r0.01 ≥ 0.
For a Gaussian distribution of data given a parameter θ,

we can include a physical bound in a frequentist framework
by using the test statistic introduced by Eq. (10).
However, the PL ratios we obtain from both CamSpec

and HiLLiPoP do not follow a Gaussian distribution far
away from the best-fit value of r0.01 (i.e., for Δχ2 ≳ 2).
Indeed, we identify three distinct features in our PLs (see
the right panel of Fig. 2): all of them present a relatively
large probability tail, PLK20ðHiLLiPoPÞ þ BK18þ
LVK21 shows a bump at low values of r0.01, and the
likelihood ratio for the combinations without LVK21 seems
to drop faster than a Gaussian on the left of the best fit. We
show in Appendix C that accounting for these features with
a more complex approach with respect to the one presented
in Sec. III B makes no significant difference.
Finally, in Fig. 3 we report the results for all the datasets

considered. Intersecting these FC belts with the respective
best-fit values, we obtain the upper bounds given in Table I.

None of these limits are affected by the volume effect, or
the prior choice, previously discussed in Sec. IV B 1. As a
result, the upper limits of the PL are more conservative than
those derived with the Bayesian analysis (see Sec. IVA).

3. Tensor spectral tilt

The profile likelihood on nt is shown on Fig. 4 for
various combinations of the datasets. Given the shape of the
PLs, the derivation of quantitative upper bounds is beyond
the scope of this work, and we shall nevertheless go to a
qualitative description of the obtained results.
First, PLs without GW data show a mild preference for a

best fit around nt ≃ 2. However, the fact that Δχ2 is always
≲1 means that current data are not sufficiently constraining
to statistically disentangle the different values of nt. In fact,
the part at low nt exhibits a constant-χ2 region, which we
will call “plateau” and will be discussed below.
The addition of LVK21 constrains the value of nt to be

lower thannt ≲ 0.4 due to the huge level arm in the frequency
domain. Given the low level of statistical significance, we
would not interpret this as a sign for a nonconstant spectral
index. To emphasize this cutoff given by LVK21, we
normalize the PLK20ðCamSpec=HiLLiPoPÞ þ BK18þ
LVK21 profiles to the minimum of their counterpart without
GW data. This also emphasizes that the corresponding
plateaus are found at the same value of χ2min. Furthermore,
LVK21 also causes another plateau at the same χ2min level
with respect to the previously mentioned one, but this time
for blue tilts.
Finally, we note that HiLLiPoP shows a “bump” at

nt ∼ −1 and that the plateaus are slightly higher compared
to the minimum χ2 when considering HiLLiPoP rather than
CamSpec, suggesting that HiLLiPoP is slightly more
constraining nt compared to CamSpec.
The plateaus observed in the PL result from the fact that

the combination of likelihoods is no longer sensitive to the

FIG. 3. FC belts obtained including the positivity condition on
r0.01. The vertical dashed lines are the best-fit values obtained
from each dataset.

TABLE I. 95% confidence intervals obtained with the FC
prescription.

Dataset
95% confidence

interval

PLK20ðHiLLiPoPÞ þ BK18 r0.01 < 0.033
PLK20ðCamSpecÞ þ BK18 r0.01 < 0.032
PLK20ðHiLLiPoPÞ þ BK18þ LVK21 r0.01 < 0.033
PLK20ðCamSpecÞ þ BK18þ LVK21 r0.01 < 0.032

FIG. 4. PL on the tensor spectral tilt. Both PLKðCamSpecÞ þ
BK18þ LVK21 and PLKðHiLLiPoPÞ þ BK18þ LVK21 are
normalized to the minimum of their counterpart without LVK21.
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value of nt in this region. This can be understood by
looking at the coprofile r0.01ðntÞ (Fig. 5). Indeed, in order to
accommodate extreme values of nt, the tensor-to-scalar
ratio is suppressed to very small values. At some point, the
likelihoods are no longer sensitive to whether tensors are
there or not, and the χ2 just sits on the same value for
each tilt.
This is exactly the reason behind the analysis of [17].

Indeed, if we do not impose a lower cutoff in r0.01, the
datasets we consider are not sufficient to constrain nt given
that one can always find a value of r0.01 low enough to
accommodate any tilt. As a consequence, we do not have a
clear upper or lower bound on the nt profile (Fig. 4). On the
contrary, introducing a cutoff allows to get constraints on nt
as illustrated in Fig. 6. First, note that as soon as the tensor-
to-scalar ratio is restricted, Δχ2min diverges, indicating that
we could recover both an upper and a lower bound. In fact,
with r0.01 ¼ 10−7 (respectively 10−5), at some point the tilt

will be so red that the corresponding B modes should be
observed by Planck or BICEP/Keck array. Despite this,
once again we stop at a qualitative description of the profile
in nt, as a further study is necessary for an actual
confidence interval.
The same reason explains the difference between the

posterior and the profile on nt (see Fig. 6). Indeed, the
values of r0.01 found by the PL minimization are so low
(r0.01 ∼ 10−10–10−17) that it would be impossible to explore
that region with our MCMC using a flat prior. The region
explored by the MCMC corresponds to the region of the
coprofile with the highest values of r0.01, which also
corresponds to the region of the PL between the plateaus
(see Fig. 6). Indeed, it is a well-known feature of uniform
priors to poorly explore the region where the parameter of
interest is extremely close to the boundaries. To showcase
this, we show in the right panel of Fig. 6 the posterior
obtained imposing a log-uniform prior on r0.01. This allows
us to better explore the region of very low tensor-to-scalar
ratio and results in a broader distribution of nt.
Once again, this comparison highlights a possible flaw of

the Bayesian analysis: a tilt of nt ¼ −2 is almost excluded
by our MCMC analysis, however, it is not statistically
excluded by the PL analysis as it only corresponds to
Δχ2min ≃ 0.7. This is not the case if we look at the log-
uniform results. In fact, values as low as nt ≃ −3 are still
accepted and correspond to Δχ2min ≳ 3, due to a better
representation of the low-r region. Despite this, such a
choice is known to provide extremely underestimated
bounds on r0.01 [51].

C. 2D profile likelihood

In order to explore deeper the ðr0.01; ntÞ plane, we
construct the 2D profile likelihood, fitting the best fit over

FIG. 5. Coprofiles of r0.01 as a function of the profiled value ofnt.

FIG. 6. Left: comparison between Δχ2min as a function of nt for PLK20ðCamSpecÞ þ BK18þ LVK21, while imposing r0.01 > 10−7

(blue) and r0.01 > 10−5 (gold). Here we also show the corresponding result from Fig. 4 (dashed green) to emphasize the effect of
bounding r0.01. Right: comparison betweenL=Lmax of the cases mentioned above andP=Pmax from the MCMC (red) of Fig. 1. Here, we
plot the posterior obtained assuming a uniform prior on log r0.01 ∈ ½−5; 0�.
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the rest of the parameters for any fixed combination of r0.01
and nt.
Of course, such an analysis is very demanding in terms

of CPU time, given that we have to iterate an already
computationally heavy procedure. For this reason, we
perform it only on PLK20ðCamSpec=HiLLiPoPÞ þ
BK18þ LVK21 and not on their counterparts without
LVK21. We assume a range of the tensor-to-scalar ratio
from a maximum of r0.01 ¼ 0.036 to a minimum of
r0.01 ¼ 10−6, for a total of N ¼ 15 steps. The range in
nt varies case by case, as Fig. 7 shows (black dots). Then,
we interpolate these points to get a smooth surface that
represents the result for N → ∞.
We overplot the marginalized 2D posteriors from the

Bayesian analysis discussed in Sec. IVA. The posteriors
seem to follow the same behavior as the iso-χ2 curves, at
least for r0.01 ≳ 5 × 10−4. In particular, both 95% posterior
contours follow approximately the iso-χ2 curve at
Δχ2min ≃ 4.6. Similarly to the discussion at the end of

Sec. IV B 3, this depends on the choice of the prior for
the MCMC exploration, thus this correspondence is not
guaranteed if the SSA is not employed.
Here, if we imagine intersecting this surface with any

horizontal (vertical) plane for a value of r0.01 (nt), we would
obtain the PL of nt (r0.01) conditioned on that value. We see
that for the values of r0.01 considered here, the PL do not
show any plateau (see Fig. 4), and instead χ2 diverges for
low and high values of nt allowing in principle to derive
some confidence interval.
To illustrate the results, we fix the tensor-to-scalar ratio

to the value predicted by the Starobinsky inflation r0.01 ∼
0.0046 [61]. The resulting profiles on nt are shown in Fig. 8
for PLK20ðHiLLiPoPÞ þ BK18þ LVK21 (solid blue) and
PLK20ðCamSpecÞ þ BK18þ LVK21 (solid red). On top
of this, we obtain the Bayesian equivalent of this by
running an MCMC imposing again r0.01 ¼ 0.0046. The
resulting posterior distributions are shown in the same
figure with dashed lines.

FIG. 7. 2D PL on r0.01 and nt using PLK20ðCamSpecÞ þ BK18þ LVK21 (left) and PLK20ðHiLLiPoPÞ þ BK18þ LVK21 (right).
The star indicates the absolute minimum we find with this procedure, whereas the gray lines show some iso-χ2 curves to emphasize the
2D shape of the profile. The black dots are the points in which a minimization is performed. We show in solid black the 68% and 95%
contours of the 2D marginalized posterior from Sec. IVA.

FIG. 8. Δχ2min as a function of nt, while imposing r0.01 ¼ 0.0046 corresponding to Starobinsky inflation. In red we plot the results of
PLK20ðCamSpecÞ þ BK18þ LVK21, while in blue the ones of PLK20ðHiLLiPoPÞ þ BK18þ LVK21.
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Note that the frequentist and Bayesian results agree quite
well in this case. As in the full 2D case, this correspondence
indicates that the other parameters do not induce any
volume effects on nt. This also ensures that the credible
and confidence intervals should be the same, allowing us to
obtain frequentist confidence intervals.
Of course, we do not know a priori the Δχ2min corre-

sponding to the 95% CL, since the distribution is clearly
non-Gaussian. Still, we can obtain it from the Bayesian
intervals by finding the Δχ2min that gives the same values. In
particular, the Bayesian intervals read

−1.43< nt < 0.41 PLK20ðCamSpecÞþBK18þLVK21;

−1.47< nt < 0.41 PLK20ðHillipopÞþBK18þLVK21;

which correspond, respectively, to Δχ2min ¼ 1.5 and
Δχ2min ¼ 1.3. As expected, these are lower than the corre-
sponding Gaussian prescription for the 95% CL interval of
Δχ2min ¼ 3.84, since both of our distributions are much
flatter than a Gaussian.
As a final remark, HiLLiPoP has a mild preference for

nt ≃ −1, also shown in Fig. 4, which is not shown by
CamSpec.

V. CONCLUSIONS

In this work, we explore the primordial tensor perturba-
tion constraints utilizing the latest available data from CMB
and gravitational wave measurements. We focus more
specifically on the tensor-to-scalar ratio r0.01 and the tensor
spectral tilt nt parametrizing the amplitude and the tilt of the
tensor perturbations power spectrum. Our dataset includes
CMBmeasurements from the latest Planck PR4 dataset, the
BICEP/Keck array, and LIGO-Virgo-KAGRA upper bound
on the energy density of GWs to constraint the tensor
spectrum at much smaller scales.
In order to provide a complete picture of the constraints,

we use both Bayesian and frequentist approaches. While
the former provides with a statistical statement about the
probability distribution of the different parameters after
marginalization, the latter can describe the probability
distribution of data given the theoretical model insensitive
to the choice of priors and free from volume effects. Thus, it
is clear that comparing credible and confidence intervals is
not trivial; however, it allows us to extract useful informa-
tion on relatively unconstrained parameters. The results are
summarized in Fig. 9.
For the tensor-to-scalar ratio, we find upper limits with

profile likelihoods slightly more conservative than the
Bayesian ones. This indicates that both volume effects
and prior choices have a role in obtaining the credible
intervals.
Concerning the tensor spectral tilt nt, the recovered

profile likelihoods exhibit a very non-Gaussian behavior
with the absence of distinct bounds. In fact, Δχ2min never

exceeds Δχ2min ≃ 1, which cannot be captured by Bayesian
analysis. We identify that this behavior is the result of the
potential accommodation of highly extreme spectral tilts at
the expense of driving r0.01 toward zero. Despite this,
datasets accounting for GW interferometers show a mild
preference for nt ≃ 0.3. Instead, those without LIGO-Virgo-
KAGRA prefer nt ≃ 2. Some constraints on nt can be found
by introducing a cutoff on small values of r0.01 as done in
Bayesian analysis (r0.01 > 10−5). However, it cannot solve
the discrepancy with the marginalized posterior of the
MCMC analysis when it is driven by a flat prior on r0.01.
For example, sampling with a log-uniform prior allows us
to explore the region for very low values of r0.01 and
provide a marginalized posterior significantly wider.
Indeed, in the case of nt, given today’s accuracy of the
data, Bayesian analysis is dominated by the choice of priors
and consequently credibility intervals are driven by this
choice. In contrast, frequentist analysis, which is indepen-
dent of any prior, leads to unconstrained nt.
When profiling r0.01 and nt simultaneously in 2D, we

recover constraints close to the 2D marginalized posterior
for large values of r (r0.01 ≳ 5 × 10−4). This indicates that
other parameters (physical or nuisance) do not induce
volume effects in this 2D plane, proving that in this range
the tensor sector is sufficiently decoupled from the ΛCDM
parameters. For the largest value of r0.01, including the
prediction for the Starobinsky model (r0.01 ¼ 0.0046),
constraints on nt can be derived (see Fig. 9). In this case,
the correspondence between Bayesian and frequentist
results is evident, ensuring that credible and confidence
intervals are the same.

FIG. 9. Summary of the 95% CL intervals obtained in this
work. The solid patches refer to the credible intervals, while the
shaded ones to the confidence intervals. The last two rows refer to
r0.01 ¼ 0.0046 as predicted by Starobinsky inflation.
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Projecting this comparison into the future, when more
data will be available, we can expect a similar difference
between these two methods as they answer different
questions, especially in the case of an upper limit on r.
Indeed, the prior dependence of the Bayesian analysis is an
unavoidable part of the framework, so one must deal with
the fact that a prior must be taken before performing any
analysis. Instead, performing the same analysis with differ-
ent priors is a way to showcase the consequence of such a
choice [17]. On the other hand, the more the new data will
be constraining on the tensor sector, the more frequentist
and Bayesian results will converge to each other. This is
because the likelihood function will dominate both meth-
ods in the limit of a full detection of r.
To summarize, this paper delivers a comprehensive and

statistically robust analysis of the tensor sector of parameter
space. Beyond offering an updated perspective using the
latest datasets currently available, the analysis underscores
the significance of probing relatively unconstrained param-
eters with frequentist approaches, complementing the
widely used Bayesian methods. This insight proves valu-
able for forthcoming investigations into CMB polarization,
such as with LiteBIRD, and for any endeavor exploring
extensions to the standard ΛCDM model.
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APPENDIX A: CONSTRAINTS ON THE ΛCDM
PARAMETERS

As mentioned in Sec. III, the focus of this work is the
tensor sector of parameter space, which consists of r0.01 and
nt. Despite this, to correctly capture the variability in these
parameters, it is also important to sample all other ΛCDM
and nuisance parameters. First, we define a set of priors
in Table II, encoding our knowledge about physical

parameters. For what regards the nuisance parameters of
the various likelihoods, we stick to the default settings.
In addition, we fix the number of relativistic degrees of

freedom to Neff ¼ 3.046, asking for a massive neutrino
with Mν ¼ 0.06 eV.
In Sec. IVA, the results on the tensor sectors are

discussed, while here we show those on the ΛCDM
parameters. In fact, Fig. 10 shows the triangle plot of what
we may call the “scalar” sector of parameters. Note that
here we substitute θMC with H0 as it is a more physical
parameter controlling the sound horizon. Here, we consider
PLKðCamSpecÞ þ BK18þ LVK21, PLKðCamSpecÞ þ
BK18, PLKðHiLLiPoPÞ þ BK18þ LVK21, and PLK ×
ðHiLLiPoPÞ þ BK18 showing that they are all compatible
with each other.
To be more quantitative, we also report in Table III the

mean values and standard deviations of these parameters.
As expected, removing LVK21 does not produce any

difference in ΛCDM parameters. The only noticeable
difference is found by looking at ns for PLK20
(CamSpec) and PLK20(HiLLiPoP), which is estimated
to be slightly higher (approximately 0.5σns higher) by
the latter. This feature is also remarked in [15]. For
completeness, we also mention that HiLLiPoP also esti-
mates H0 to be higher of ∼0.2σH0

.

TABLE II. Priors on the parameters of ΛCDM þ r0.01 þ nt.
Here, As is the scalar perturbations amplitude, ns the scalar
spectral tilt, Ωb and Ωcdm are the abundances of baryons and
CDM, h≡H0=100 is the Hubble constant divided by 100, τreio
the optical depth, and θMC is an approximate quantity represent-
ing the sound horizon.

Parameter Prior Parameter Prior

logð1010AsÞ [1.61, 3.91] τreio [0.01, 0.8]
ns [0.8, 1.2] θMC [0.5, 10]
Ωbh2 [0.005, 0.1] r0.01 ½10−5; 3�
Ωcdmh2 [0.001, 0.99] nt ½−5; 5�

FIG. 10. ΛCDM contours.

4http://www.esa.int/Planck.
5http://github.com/planck-npipe.
6https://github.com/matplotlib/matplotlib.
7https://github.com/numpy/numpy.
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APPENDIX B: TESTS ON THE ACCURACY

In Sec. III we mention that, to perform a precise PL, it is
crucial to efficiently maximize the likelihood, reaching at
each point of the profiled parameter the absolute minimum
of the χ2 (and not a local one). Thus, to verify the precision
of our minimizing procedure, we performed different tests.
For example, we fix the tensor-to-scalar ratio to r ¼ 0.02
and minimize the χ2 8 times, storing the result of each. We
repeat this while changing the accuracy parameters of
CAMB and of MINUIT. The dispersion of the results is an
indication of the precision of minimization performed by
MINUIT, since it gauges the reliability of recovering the
absolute minimum. In addition, the value of these points
tends to depend to some degree on the accuracy of the
Boltzmann solver [36].
In particular, the parameters we considered for these tests

are as follows:
(i) stra of MINUIT, which allows to change the

strategy of the minimization from fast (stra ¼ 0),
balanced (stra ¼ 1), and accurate (stra ¼ 2).
The default value is stra ¼ 1.

(ii) AccuracyBoost of CAMB, which controls several
other accuracy parameters of the Boltzmann solver.
The default value is 1.

(iii) lAccuracyBoost of CAMB, which is related to
the resolution in l space of the Boltzmann solver.
The default value is 1.

Figure 11 shows the different sets of minima we obtain,
where we define

Standard Accuracy: Default settings;
High Accuracy iMinuit: stra ¼ 2;
High Accuracy CAMB: AccuracyBoost ¼ 2 and
1AccuracyBoost ¼ 2;

All High Accuracy: stra ¼ 2, AccuracyBoost ¼ 2
and 1AccuracyBoost ¼ 2;

Super High Accuracy CAMB: AccuracyBoost ¼ 3
and 1AccuracyBoost ¼ 3;

Super High CAMB + High iMinuit: stra ¼ 2,
AccuracyBoost ¼ 3
and 1AccuracyBoost ¼ 3.

It is clear that these settings have an effect on the values
we obtain for the minimum. Figure 11 shows that when we
increase the accuracy of MINUIT the dispersion of the points
gets severely reduced. Instead, the absolute minimum we
obtain here is given by increasing the accuracy of CAMB to
high, since going to super high actually increases the values
of χ2. Despite this, all of these nondefault settings increase
significantly the computation time necessary to maximize
the likelihood; thus, we must ask ourselves if it is worth
imposing some extra accuracy.
First, note that with high CAMB accuracy, the typical χ2

decreases of ∼0.125. Still, if this difference is just a
constant offset between the two configurations, it will
essentially disappear when we normalize the likelihood
values on the absolute minimum. Furthermore, note that
although increasing the accuracy of MINUIT leads all
points to converge to the absolute minimum, it is not
worth it in terms of computation time. In fact, usually more
than half of the points with the default MINUIT converge to
the same point, so statistically we always get at least one
point there.

TABLE III. Summary of the constraints on the ΛCDMþ r0.01 þ nt model. For the six ΛCDM parameters, we report the mean and the
standard deviation; instead, we report the 95% CL intervals for the tensor sector, as in Sec. IVA.

Parameter
PLK20ðCamSpecÞþ
BK18þ LVK21

PLK20ðHiLLiPoPÞþ
BK18þ LVK21

PLK20ðCamSpecÞþ
BK18

PLK20ðHiLLiPoPÞþ
BK18

logð1010AsÞ 3.046� 0.012 3.044� 0.012 3.045� 0.012 3.044� 0.012
ns 0.9653� 0.0039 0.9673� 0.0039 0.9653� 0.0038 0.9673� 0.0039
Ωbh2 0.02220� 0.00013 0.02222� 0.00013 0.02220� 0.00013 0.00222� 0.00013
Ωcdmh2 0.1194� 0.0010 0.1192� 0.0011 0.1194� 0.0010 0.1192� 0.0011
τreio 0.0586� 0.0059 0.0594� 0.0060 0.0586� 0.0059 0.0594� 0.0060
H0 67.37� 0.46 67.49� 0.50 67.40� 0.45 67.50� 0.49
r0.01 <0.028 <0.029 <0.029 <0.030
nt −1.36 < nt < 0.42 −1.39 < nt < 0.41 −1.33 < nt < 3.37 −1.35 < nt < 3.40

FIG. 11. Different set of minima obtained with different
settings for the accuracy of CAMB and MINUIT.
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Despite these considerations, we build a parabolic fit for
each accuracy configuration [with Oð10Þ points] to verify
that we can stick to the default settings. We did not find
significant differences in the final PL.

APPENDIX C: NON-GAUSSIAN
FELDMAN-COUSINS

In Sec. IV B 1 we discuss the fact that our PLs on the
tensor-to-scalar ratio present some non-Gaussian features.
Thus,we askourselveswhether it is possible to generalize the
FC prescription to a more complex curve that fits our PLs.
We consider two simple alternatives that have two

characteristics: we require that one of the parameters of
the function corresponds to our parameter of interest; in
addition, we will consider only this parameter as free to
vary in the FC procedure. In other words, the curve we
choose will shift to the right or to the left with the parameter
changing, while keeping its shape unchanged.
In particular, we consider what we call double Gaussian,

defined as

Pðxjμ;Δμ; σ1; σ2; AÞ

∝ exp

�
−
ðx − μÞ2
2σ21

	
þ A exp

�
−
ðx − μ − ΔμÞ2

2σ22

	
; ðC1Þ

and piecewise Gaussian, which reads

Pðxjμ;Δμ;σ1;σ2; xsepÞ ∝
8<
:

exp
h
− ðx−μÞ2

2σ2
1

i
for x ≤ xsep

exp
h
− ðx−μ−ΔμÞ2

2σ2
2

i
for x > xsep:

ðC2Þ

Of course, these curves do not find any physical
justification, but are born from the pragmatic attempt to
fit our PL with analytical formulas. The parameter values
are estimated by fitting Eqs. (C1) and (C2) to our PL. These
curves, together with the standard Gaussian, allow us to fit
the features mentioned in Sec. IV B 1.
As an example, the left panel of Fig. 12 shows the results

of PLK20ðHiLLiPoPÞ þ BK18þ LVK21, which is our
most complex PL in terms of extra features.

(i) Using the standard Gaussian with all the PL points,
we clearly get a poor fit of the maximum likelihood
because of the relatively high-probability tail. This
can be solved by fitting just the points near the
minimum (Δχ2 ≲ 2), as we do in Sec. IV B 1.

(ii) If instead we try to use the double Gaussian on the
full range of PL points, we can recover quite
well both the maximum likelihood and the high-
probability tail. On the other hand, using it in the
region where Δχ2 ≲ 2 allows us to fit the maximum
and the bump at low r0.01.

(iii) Similarly to the double Gaussian, using the piece-
wise Gaussian on the full range of points allows us to
fit the maximum likelihood and the tail.

At this point, we perform the FC computation for all
the cases mentioned above. The right panel of Fig. 12
shows the intersections between the various FC belts (solid)
and their relative best-fit values for r0.01 (dashed). We find
that the upper bound of r0.01 does not change significantly
from case to case, allowing the choice made in Sec. IV B 1.
Of course, the only relevant exception is the Gaussian
case on the full range, which clearly overestimates the
upper bound.

FIG. 12. Left: fits of different curves on the PLK20ðHiLLiPoPÞ þ BK18þ LVK21 PL. Right: intersection between the FC belts
(solid) and their relative best-fit values of r0.01 (dashed), defining its upper bound with different fitting curves.
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