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Standard cosmic microwave background (CMB) analyses constrain cosmological and astrophysical
parameters by fitting parametric models to multifrequency power spectra (MFPS). However, such methods
do not optimally weight maps in power spectrum (PS) measurements for non-Gaussian cosmic microwave
background (CMB) foregrounds. We propose needlet internal linear combination (NILC), operating on
wavelets with compact support in pixel and harmonic space, as a weighting scheme to yield more optimal
parameter constraints. In a companion paper, we derived an analytic formula for the NILC map PS, which
is physically insightful but computationally difficult to use in parameter inference pipelines. In this work,
we analytically show that fitting parametric templates to MFPS and the harmonic ILC PS yields identical
parameter constraints when the number of sky components equals or exceeds the number of frequency
channels. We numerically show that, for Gaussian random fields, the same holds for the NILC PS. This
suggests that NILC can reduce parameter error bars in the presence of non-Gaussian fields since it uses
non-Gaussian information. As Gaussian likelihoods may be inaccurate, we use likelihood-free inference
with neural posterior estimation. We show that performing inference with autospectra and cross-PS of
NILC component maps as summary statistics yields smaller parameter error bars than inference with
MFPS. For a model with CMB, an amplified thermal Sunyaev-Zel’dovich (tSZ) signal, and noise, we find a
60% reduction in the area of the 2D 68% confidence region for component amplitude parameters inferred
from the NILC PS, as compared to inference from MFPS. Primordial B-mode searches are a promising
application for our new method, as the amplitude of the non-Gaussian dust foreground is known to be larger
than a potential signal.
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I. INTRODUCTION

Standard state-of-the-art cosmic microwave background
(CMB) data analyses—such as those used in Planck [1], the
Atacama Cosmology Telescope (ACT) [2,3], the South
Pole Telescope (SPT) [4], and BICEP [5]—fit data to
theoretical parametric templates at the power spectrum
level using multifrequency data. These analyses have been
used to derive the parameter constraints that underlie the
current standard model of cosmology. Before computing
the frequency-frequency autospectra and cross spectra of
the maps, inverse noise variance weighting is applied
to the maps to downweight areas of high instrumental
noise, allowing one to more optimally recover the signal
(e.g., [6–9]). However, this weighting does not downweight
CMB foreground contaminants, which are generally non-
Gaussian fields. Therefore, the signal that is recovered
when applying inverse noise variance weighting is the total

sky signal (foregrounds in addition to the CMB). Since the
cosmological signal of interest is the CMB alone, we
should aim to infer this particular component with the
smallest possible error bars. In order to achieve that goal,
one should apply a weighting scheme that captures both
scale-dependent and spatially varying information to sup-
press the non-Gaussian CMB foregrounds, improving
power spectrum estimation and hence parameter error bars.
Since the weighting would be applied at the map level prior
to power spectrum estimation, this motivates the explora-
tion of various map-based weighting schemes.
At the map level, there are several methods for con-

structing component-separated maps of various signals
in the microwave sky. Some methods fit parametric
models [10,11]. Others, such as internal linear combination
(ILC) [12–14], are semiblind approaches. The ILC pro-
cedure estimates a map of some signal of interest by finding
the minimum-variance linear combination of the observed
frequency maps that satisfies the constraint of unit response
to the signal of interest. ILC can be performed in both real/
pixel space and harmonic space.
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Additionally, it can be applied on a tight frame of
spherical wavelets, known as needlets, in a method called
needlet ILC (NILC) [15]. The benefit of NILC is that
needlets have compact support in both pixel and harmonic
space, allowing the ILC weights to vary as functions of
both angular scale and position. NILC has been used to
construct high-resolution maps of individual components in
the microwave sky using data or simulations from Planck,
ACT, SPT, the Simons Observatory, CMB-S4, and
LiteBIRD, e.g., Refs. [16–23].
The primary idea of this paper is to use NILC as a

concrete example of a weighting scheme that opti-
mally downweights contaminants and upweights signal-
dominated regions before computing power spectra. In
particular, we explore the approach of producing a NILC
map for every component in the sky model, computing the
autospectra and cross-power spectra of the resulting NILC
maps, and using these power spectra as summary statistics
for parameter inference. We do the same with harmonic
ILC (HILC), mathematically proving that it yields the same
parameter constraints as the traditional multifrequency
power spectrum approach. This suggests that NILC can
indeed reduce parameter error bars in the presence of non-
Gaussian foregrounds since it uses non-Gaussian informa-
tion that HILC does not. In a companion paper we
developed an analytic formalism by which to parametrize
NILC power spectra, which enabled novel insights into the
beyond-Gaussian information that the NILC algorithm uses
in constructing foreground-cleaned maps [24]. However,
we found that parameter dependence of the NILC compo-
nent map power spectra was complicated, particularly due
to the appearance of terms involving correlations between
the NILC weight maps and the underlying fields, and that
the analytic results were very slow to use in a realistic
computation.
In this paper, we investigate numerical techniques for

parametrizing NILC map power spectra for use in a
Gaussian likelihood. However, we also find that the
Gaussian likelihood is not a good assumption, and thus
use likelihood-free inference (LFI), showing explicitly how
discrepant the results from the Gaussian likelihood are.
Previous studies have considered the use of likelihood-free
inference, also known as simulation-based inference (SBI),
to constrain cosmological parameters (e.g., [25–27]). LFI
can be performed at the field level, which indeed takes into
account spatially varying information, but requires large
numbers of computationally expensive simulations. It can
also be done using summary statistics such as the power
spectrum, which allows one to optimally compress the data
for Gaussian random fields. Using NILC power spectra as
summary statistics allows several advantages as compared
to a pure field-level approach. First, a power-spectrum-
based approach allows one to use noise-debiased data-split
cross spectra (e.g., [28–30]), mitigating the need for the LFI
to learn how to remove instrumental noise. Additionally,

nearly all the information for the primary field of interest
(the CMB) is contained in its two-point function alone.
NILC allows one to better recover that power spectrum by
suppressing contributions from non-Gaussian contaminants.
The remainder of this paper is organized as follows. In

Sec. II we review ILC methods, including harmonic and
needlet ILC. In Sec. III we review likelihood-free inference
(LFI), also known as simulation-based inference (SBI). In
Sec. IV we provide an overview of the computational setup
and the various methods implemented in this work. In
Secs. V–VII, we describe in detail the various methods
and summary statistics considered, using both Gaussian
likelihoods and LFI to obtain posteriors. Specifically, we
consider the use of multifrequency autospectra and cross-
power spectra, harmonic ILC map power spectra, and
needlet ILC map power spectra as summary statistics,
respectively. In Sec. IX we present the results of each of the
methods, showing how 2D posteriors shrink significantly
when using needlet ILC summary statistics. Finally, in
Sec. X we discuss the results and their implications,
particularly for primordial B-mode searches. The main
results of this work are summarized in Fig. 5 and Table II,
as well as in Fig. 13 and Table V in Appendix D. Our code
is publicly available in NILC-Inference-Pipeline [31] and con-
tains pipelines for all the methods described in this work.

II. INTERNAL LINEAR COMBINATION

Internal linear combination (ILC) [12–15] is a method to
estimate a map of a signal of interest by finding the
minimum-variance linear combination of a set of observed
frequency maps that satisfies the constraint of unit response
to the signal of interest. Specifically, in pixel space, the
signal of interest at some pixel p can be expressed as
ŷðpÞ ¼Pi wiΔTiðpÞ, where ΔTiðpÞ is the temperature
fluctuation in the ith frequency map andwi is the associated
linear-combination weight. Then the problem of finding the
weights can be expressed as follows:

min
wi

σ2ŷ ¼ N−1
pix

X
p

ðŷðpÞ − hyiÞ2

such that
X
i

wigi ¼ 1; ð1Þ

where Npix is the number of pixels, hyi is the average signal
across pixels, and gi is the spectral response of the
component of interest at the ith frequency channel. The
solution for the weights can be found using Lagrange
multipliers [14]:

wi ¼ gjðR̂−1Þij
gkðR̂−1Þklgl

with R̂ij ¼ N−1
pix

X
p

ΔTiðpÞΔTjðpÞ;

ð2Þ
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where R̂ij is the empirical frequency-frequency covariance
matrix of the observed maps. ILC can also be formulated in
harmonic space, giving l-dependent weights:

wi
l ¼

ðR̂−1
l Þijgj

ðR̂−1
l Þkmgkgm

with ðR̂lÞij ¼
XlþΔl=2

l0¼l−Δl=2

2l0 þ 1

4π
Cij
l0 :

ð3Þ

The multipole bin width Δl (or the pixel domain size in
real-space ILC above) must be large enough to mitigate the
“ILC bias” that results from computing the covariances for
ILC weights using a small number of modes [15].
To maximize the robustness of the ILC procedure,

it is frequently applied to CMB data on a needlet frame
[1,15–18,32–36]. Needlets are a set of basis functions on
the sphere that possess compact support in both real space
and harmonic space [37,38], allowing one to obtain ILC
weights that vary both as a function of scale (depending on
multipole l) and of position (depending on direction or
spatial pixel n̂). Such a procedure allows us to apply an
optimal weighting scheme to non-Gaussian and/or aniso-
tropic foregrounds. We briefly summarize the NILC pro-
cedure below [15,39].
Consider a set of frequency maps Tiðn̂Þ, where i is an

index denoting the frequency channel of each map in our

dataset. For a needlet filter hðnÞl , indexed by (n) ranging
from 1 to Nscales (the total number of needlet filters), the
NILC operations on this set of frequency maps are as
follows:

(i) Transform each frequency map to harmonic space
and filter it with the needlet filter function hðnÞl :

Ti
lm → Ti;ðnÞ

lm ≡ Ti
lmh

ðnÞ
l : ð4Þ

This procedure produces Nscales separate maps for
each frequency channel (each frequency map gets
filtered by each needlet filter separately).

(ii) Define local pixel-space domains, and compute the
smoothed frequency-frequency covariance matrix
on each domain. In particular, let DðnÞ

α denote a
real-space domain in frequency maps that have been
filtered with needlet scale (n), where α labels each
domain on that map. The frequency-frequency
covariance matrix is then

ðR̂ðnÞ
α Þij ¼ N−1

pix

X
p∈DðnÞ

α

ΔTiðpÞΔTjðpÞ; ð5Þ

where Npix is the number of pixels in DðnÞ
α . This

equation is nearly identical to Eq. (2) for the
real-space ILC frequency-frequency covariance
matrix, except that here the covariance matrix is

computed independently for each needlet filter scale.
In practice, Eq. (5) is usually implemented by
smoothing the product map ΔTiΔTj with a Gaus-
sian kernel, with larger kernels used for lower-
multipole needlet filter scales.

(iii) For each frequency channel and each needlet filter
scale, determine a map of weights in pixel space
Wi;ðnÞðn̂Þ analogously to Eq. (2). Theweight maps are
determined via the ILC algorithm, similar to Eq. (2)
but performed on the local pixel-space domains from
the previous step. Multiply each filtered frequency
map by the associated weight map:

Ti;ðnÞðn̂Þ → T̃i;ðnÞðn̂Þ≡ Ti;ðnÞðn̂ÞWi;ðnÞðn̂Þ: ð6Þ

(iv) Add up the ILC-weighted maps to obtain a single
ILC map at each needlet filter scale:

TNILC;ðnÞðn̂Þ ¼
X
i

T̃i;ðnÞðn̂Þ: ð7Þ

(v) Apply the needlet filter hðnÞl again:

TNILC;ðnÞ
lm → TNILC;ðnÞ;ðnÞ

lm ≡ TNILC;ðnÞ
lm hðnÞl : ð8Þ

(vi) Sum the results from all needlet filter scales to obtain
the final NILC map:

TNILCðn̂Þ ¼
X
ðnÞ

TNILC;ðnÞ;ðnÞðn̂Þ: ð9Þ

Producing a NILC map in this manner allows the signal
of interest to propagate in an unbiased fashion to the final
map, due to the ILC signal-preservation constraint and the

NILC filter power-preservation constraint,
P

ðnÞ ðhðnÞl Þ2 ¼
1 at each l. However, contaminant signals propagate in a
nontrivial way, as derived in Ref. [24].
Thus far, we have described ILC methods that remove

contaminants by minimizing the variance of the final map.
It is also possible to perform constrained ILC methods,
which explicitly deproject contaminants by imposing an
additional constraint that the response of the final map to
the contaminant must be zero [40,41]. However, the addi-
tional constraint comes at the cost of increasing the variance
of the final map. In this work, we consider only standard
ILC methods (no explicit deprojection of contaminants)
throughout.

III. LIKELIHOOD-FREE INFERENCE

In standard Bayesian analysis, given some parameters θ
and an observation x, one can compute the posterior
pðθjxÞ using
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pðθjxÞ ¼ pðxjθÞpðθÞR
dθ0pðxjθ0Þpðθ0Þ ; ð10Þ

where pðxjθÞ is the likelihood, pðθÞ is the prior, and
pðxÞ ¼ R dθ0pðxjθ0Þpðθ0Þ is the evidence.
In certain situations, however, it is intractable to con-

struct an analytic likelihood. Likelihood-free inference
(LFI), also known as simulation-based inference (SBI) or
implicit likelihood inference, is a method for determining
posterior distributions without using an explicit likelihood
(e.g., [42]). In particular, given some prior pðθÞ, LFI
requires a simulator that samples from the prior and gene-
rates simulations, i.e., xi ∼ pðxijθiÞ. With several simula-
tions on hand, one can then train a normalizing flow
network to learn the likelihood (“neural likelihood estima-
tion”) [43–45], to learn the likelihood-evidence ratio
(“neural ratio estimation”) [46–49], or to learn the posterior
directly (“neural posterior estimation”) [50–53]. When the
length of the data vector being simulated is much larger
than the number of parameters, as is the case in our setup
discussed in the coming sections, neural posterior estima-
tion (NPE) generally performs best.

A. Masked autoregressive flows

There are various possible choices for the exact network
that is used in LFI. In our work, we use masked autore-
gressive flows (MAF) [54], for which we find the most
stable training results. MAF combines the advantages of
autoregressive models [55], which model several condi-
tionals whose product comprises the target joint density,
and normalizing flows [56], which use invertible trans-
formations to convert a base density into the target density.
In the remainder of this section, we follow the notation
of Ref. [54].
Autoregressive models decompose the target density

pðxÞ as

pðxÞ ¼
Y
i

pðxijx1∶i−1Þ; ð11Þ

where the subscript 1∶ i − 1 denotes that the ith state is
dependent on all previous states indexed from 1 to i − 1.
The parameters of each conditional can be learned as
functions of hidden states of recurrent networks.
Normalizing flows take some base density πuðuÞ, draw

u ∼ πuðuÞ, and let x ¼ fðuÞ, where f is an invertible
transformation. The joint target density pðxÞ is computed as

pðxÞ ¼ πuðf−1ðxÞÞ
���� det

�
∂f−1

∂x

�����; ð12Þ

and thus, f must have a tractable Jacobian.
Autoregressive models can be treated as normalizing

flows: Let

pðxijx1∶i−1Þ ¼ N ðxijμi; ðexpαiÞ2Þ ð13Þ

with μi ¼ fμiðx1∶i−1Þ and αi ¼ fαiðx1∶i−1Þ, where fμi and
fαi are scalar functions. Then taking some random vector u
with ui ∼N ð0; 1Þ, xi ¼ ui exp αi þ μi. This allows one to
start with some random seed and transform it into the target
density.
MAF is made by stacking several of the masked

autoencoder(s) for distribution estimation (MADE) [57].
MADE uses a feedforward network to learn fμi and fαi ,
applying binary masks to the weight matrices to enforce the
autoregressive property. We refer the reader to Ref. [54] for
more details.

IV. OVERVIEW OF METHODS AND
COMPUTATIONAL SETUP

A. General computational setup

As a simple, demonstrative example, we consider a
simulated sky model comprising two components: the
CMB signal and the thermal Sunyaev-Zel’dovich (tSZ)
signal, which is amplified by a factor of 150 at the map
level (for reasons described below). The tSZ effect is the
inverse-Compton scattering of CMB photons off hot
electrons and is a useful probe of hot gas in galaxy
clusters [58,59]. We refer to the amplified tSZ signal as
the “fake” tSZ or “ftSZ” field. In CMB thermodynamic
temperature units, the CMB spectral response is unity at
every frequency. We use units of K for the CMB field. The
tSZ spectral response, which we denote as gðνÞ with ν
being some frequency in Hz, is given by

gðνÞ ¼ x coth
x
2
− 4 with x ¼ hν

kBTCMB
; ð14Þ

where h is Planck’s constant, kB is the Boltzmann constant,
and TCMB ¼ 2.726 is the CMB temperature today (at
redshift z ¼ 0).
We simulate these sky components at two frequencies,

90 and 150 GHz. We then add Gaussian, white noise to the
mock sky map for each frequency channel. Lensed alm for
the CMB component are obtained from the WebSky
Extragalactic CMB Mocks,1 which assume a flat ΛCDM
cosmology with cosmological parameters consistent with
Planck 2018 [29]: ðΩm;Ωb; σ8; ns; h; τÞ ¼ ð0.31; 0.049;
0.81; 0.965; 0.68; 0.055Þ [60]. The HEALPix/HEALPY

[61,62] software package is used to compute some fiducial
power spectrum and then generate many CMB realizations
from that spectrum. For the tSZ maps, we use HALOSKY,2

which generates realistic random non-Gaussian tSZ sim-
ulations from random halo catalogs. Specifically, HALOSKY

1https://mocks.cita.utoronto.ca/index.php/WebSky_Extragalactic_
CMB_Mocks.

2https://github.com/marcelo-alvarez/halosky.
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Poisson samples from the Tinker et al. halo mass func-
tion [63] (determining halo abundance by using the
WebSky [60] linear matter power spectrum based on the
Planck 2018 cosmological parameters [29]) and then
populates a catalog of halos along the light cone. The
Battaglia et al. AGN feedback pressure profile is used [64].
We use redshift limits 0 ≤ z ≤ 5.0 and mass limits 5 ×
1014M⊙ ≤ M ≤ 1016M⊙ in this construction, the latter
chosen for computational efficiency. This narrow mass
range is not important since we are rescaling the tSZ field
by a large amplitude in this toy model. It also has the effect
of populating fewer halos, making the tSZ effect more
Poissonian and thereby more non-Gaussian. This is useful
for our demonstration purposes, the reasoning for which is
discussed further below.
To avoid noise biases in the measured power spectra,

we use data-split cross spectra, as is done in many actual
CMB analyses (e.g., [28–30]). For the noise power spec-
trum in each simulated split map, we use the model given
by Ref. [65]:

Nl ¼ W2elðlþ1Þσ2 with σ ¼ θFWHM=
ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
;

where we set W90 ¼ W150 ¼ 3 × 104 μKCMB · arcmin for
each noise split and θFWHM ¼ 1.4 arcmin for both the 90
and 150 GHz beams in our simulations. The large noise is
important for our simple two-frequency, two-component-
plus-noise sky model, where we do not want the NILC
maps to completely clean the contaminating foregrounds
(thus giving a realistic representation on what would
happen with actual data where there are several sky
components that cannot all be simultaneously cleaned
completely). All maps are generated at HEALPix resolution
parameter Nside ¼ 128, and power spectra are computed up
to lmax ¼ 250 for computational efficiency on this simple,
demonstrative example. We then add the CMB, ftSZ, and
noise map at each frequency and each split, resulting in four
maps (two frequencies and two splits). An example of the
simulated component power spectra and frequency-
frequency power spectra is shown in Fig. 1.
Our goal is to constrain two parameters, ACMB and AftSZ,

which are two overall amplitude parameters that uniformly
scale the CMB and ftSZ power spectrum over the entire
multipole range, respectively. The fiducial parameter values
are ACMB ¼ 1 ¼ AftSZ. Specifically,

Cij
l ðACMB; AftSZÞ ¼ ACMBCCMB

l þ AftSZgiyg
j
yCftSZ

l ; ð15Þ

where i and j index frequency channels, Cij
l is the

frequency-frequency autospectrum or cross-power spec-
trum, CCMB

l is a CMB power spectrum template, CftSZ
l

is a power spectrum template of the amplified Compton-y
field, and giy and gjy denote the tSZ spectral responses at
frequencies i and j. We could have also defined the

amplitude parameters at the map level, but we choose to
define them at the power spectrum level to be consistent
with what is done in current major CMB data analyses (and
also because the primary field of interest, the CMB, is
entirely described by its power spectrum). We consider
various methods for obtaining the posteriors on these
parameters, outlined in the next subsection.
The tSZ field is highly non-Gaussian, as it traces hot gas

in galaxy clusters. At the low multipole values considered
in this work, the tSZ power spectrum lies significantly
below that of the CMB. As described in Sec. I, our goal is to
show that NILC decreases parameter error bars in the
presence of non-Gaussian fields. To demonstrate that idea,
we would need the tSZ power spectrum to be comparable to
or larger than the CMB power spectrum in magnitude.
Thus, each tSZ map is amplified by a factor of 150 for
our simulations, since we are interested in showing that
NILC-based summary statistics are an improvement over
multifrequency power spectra summary statistics for data
with large non-Gaussian components.

B. Outline of implemented methods

In this subsection we provide an outline of the methods
considered in this work. We describe each method in detail
in Secs. V–VII.

FIG. 1. Sample simulated power spectra (in units of K2), plotted
asDl ¼ lðlþ 1ÞCl=ð2πÞ. Plotted are the CMB power spectrum
(black dash-dotted curve); ftSZ or amplified tSZ autospectrum at
90 GHz (dotted blue curve), autospectrum at 150 GHz (dotted
red curve), and 90 × 150 GHz cross spectrum (dotted green
curve). The combined CMBþ ftSZ spectra at 90, 150, and
90 × 150 GHz are also shown (solid blue, solid red, and solid
green curves, respectively). Finally, the total power spectra at
90, 150, and 90 × 150 GHz are shown (dashed cyan, dashed
orange, and dashed lime curves, respectively). Of note is that
there is no noise bias in the total power spectrum since we have
used noise-debiased data-split cross spectra, though there are
noise fluctuations.
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(1) Multifrequency power spectra (see Sec. V)
(a) Gaussian likelihood (with known analytic

parameter dependence)
(i) Maximum likelihood estimation (MLE)
(ii) Fisher matrix
(iii) Markov chain Monte Carlo (MCMC)

algorithm
(b) Likelihood-free inference (LFI)

(2) Harmonic ILC (HILC) power spectra (see Sec. VI)
(a) Gaussian likelihood

(i) Fixed weights
(A) Using known analytic parameter

dependence
(I) MLE
(II) Fisher matrix
(III) MCMC algorithm

(B) Parameter dependence determined via
symbolic regression (SR)
(I) MLE
(II) Fisher matrix
(III) MCMC algorithm

(ii) Varying weights
(A) Parameter dependence determined

via SR
(I) MLE
(II) Fisher matrix
(III) MCMC algorithm

(b) LFI
(i) Fixed weights
(ii) Varying weights

(3) Needlet ILC (NILC) power spectra (see Sec. VII)
(a) Gaussian likelihood (with parameter dependence

determined via SR)
(i) MLE
(i) Fisher matrix
(iii) MCMC algorithm

(b) LFI

V. MULTIFREQUENCY POWER SPECTRA
AS SUMMARY STATISTICS

A. Gaussian likelihood

Fitting multifrequency autospectrum and cross-power
spectrum data to parametric templates using a Gaussian
likelihood is the classic method used in nearly all major
primary CMB analyses to date. In our case, we use the
autospectra and cross spectra at the two frequency channels
as our data vector. Specifically, our data vector consists
of C90split1;90split2

b , C90split1;150split2
b , C150split1;90split2

b , and

C150split1;150split2
b , where 90split1 signifies the 90 GHz

map with the first noise split, and similarly for the other
frequency-split pairs. The subscript b denotes the multipole
l-space bin, where we use ten linearly spaced bins from
l ¼ 2 to l ¼ 250 (one bin contains 24 multipoles, and all

other bins contain 25 multipoles). The Gaussian likelihood
is given by

lnLðACMB; AftSZÞ ¼ −
1

2

�
Cij
b1
ðACMB; AftSZÞ − Cij;data

b1

�
× ðCovijb1;klb2Þ−1

�
Ckl
b2
ðACMB; AftSZÞ

− Ckl;data
b2

�
; ð16Þ

where there is implied summation over repeated indices
i, j, k, l, b1, and b2 on the rhs of Eq. (16). Here
Cij
b1
; Ckl

b2
∈ fC90split1;90split2

b ; C90split1;150split2
b ; C150split1;90split2

b ;

C150split1;150split2
b g and Covijb1;klb2 ≡ CovðCij

b1
; Ckl

b2
Þ is the

covariance matrix of the multifrequency power spectra,
computed directly from 2000 independent simulations
generated with the fiducial parameter values (i.e., there
is no assumption of a Gaussian covariance matrix). We
multiply the inverse of the multifrequency power spectrum
covariance matrix by the correction factor n−p−2n−1 , where n is
the number of simulations and p is the length of the data
vector [66]. Since the number of simulations is far greater
than the length of the data vector, this factor is very close
to 1 in our case.
Note also that we have included off-diagonal l bins in

the covariance matrix and likelihood. For the multifre-
quency power spectra,

Cij
b1
ðACMB; AftSZÞ ¼ ACMBCCMB

b1
þ AftSZgiyg

j
yCftSZ

b1
; ð17Þ

where giy and g
j
y are the spectral responses of the tSZ signal

at frequencies i and j [as defined in Eq. (14)], CCMB
b1

is the
fiducial CMB power spectrum template, and CftSZ

b1
is the

fiducial (amplified) Compton-y power spectrum template.
For these fiducial templates, we use the mean of the CMB
and ftSZ spectra generated from 2000 simulations to obtain
smooth theory curves. We implement three methods for
computing the posteriors on ACMB and AftSZ: maximum
likelihood estimation (MLE), the Fisher information
matrix, and an MCMC algorithm.
For MLE, we numerically find the maximum-likelihood

point for the likelihood function in Eq. (16) for each of the
2000 simulations. Specifically, for each simulation, we
compute the power spectra of the frequency maps to use as
Cij;data
b1

and Ckl;data
b2

. Note that these are noise debiased by
construction, though there are noise fluctuations present.
The total power spectrum at each frequency, along with the
contributions from individual components, can be seen in
Fig. 1. We then find the maximum-likelihood ðACMB; AftSZÞ
point for every simulation using Nelder-Mead minimiza-
tion [67] of the negative log likelihood. To avoid getting
stuck in local minima, we set run the minimization routine
using three starting points: ðACMB; AftSZÞ ¼ ð1.0; 1.0Þ,
(0.5, 0.5), and (1.5, 1.5). We then use the global minimum
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from these results as our maximum-likelihood point
ðÂCMB; ÂftSZÞ. The majority of the time, the results from
each of these starting points are equal, and local minima
do not pose a problem. Only in a few simulations are the
results actually different depending on starting point.
For the Fisher matrix calculation, we obtain the para-

meter covariance matrix using the usual

σ2
ÂαÂβ

¼ ðFÂαÂβ
Þ−1; ð18Þ

where Âα; Âβ ∈ fÂCMB; ÂftSZg and FÂαÂβ
is the Fisher

matrix defined as

FÂαÂβ
¼ −

�
∂
2 lnL
∂AαAβ

�����
ÂαÂβ

¼ ∂Cij
b1

∂Aα
ðCov−1ijb1;klb2Þ

∂Ckl
b2

∂Aβ

����
Aα¼Aβ¼1

; ð19Þ

where there is implied summation over i, j, k, l, b1,
and b2. As seen from Eq. (17), ∂Cij

b1
=∂ACMB ¼ CCMB

b1
and

∂Cij
b1
=∂AftSZ ¼ CftSZ

b1
.

Finally, for the MCMC algorithm we use EMCEE [68]
with the likelihood in Eq. (16) and an observation con-
sisting of the mean of multifrequency autospectra and cross
spectra over all simulations. We use ten walkers, each with
a random starting point between ðACMB; AftSZÞ ¼ ð0.8; 0.8Þ
and ðACMB; AftSZÞ ¼ ð1.2; 1.2Þ. The autocorrelation time is
used to assess MCMC convergence. Specifically, the chain
is marked as converged when it is longer than 50 times the
integrated autocorrelation time.

B. Likelihood-free inference

For LFI/SBI, we use the code SBI [69]. As discussed in
Sec. III, we require four components for LFI: a prior, a
simulator, an observation, and a network. For the former,
we set a uniform prior centered on 1 with lower bound
ð1 − 5σÂCMB

; 1 − 5σÂftSZ
Þ and upper bound ð1þ 5σÂCMB

;
1þ 5σÂftSZ

Þ, where σÂCMB
and σÂftSZ

are the 1D marginalized
errors obtained from the multifrequency Gaussian like-
lihood on ÂCMB and ÂtSZ, respectively. The 5σ range for the
prior ensures that the prior is narrow enough to be efficient
in the number of simulations, but wide enough to encom-
pass the true error on the parameters (5σ of the results from
the Gaussian likelihood should be sufficient since the
Gaussian likelihood, though not entirely accurate, should
not be a catastrophically bad approximation due to the
central limit theorem). As a further check that the prior is
wide enough, we ensure that the final posteriors do not hit
the prior edges.
For the simulator, we draw ACMB and AftSZ from the prior

distribution. Then for each simulation, we multiply the
input CMB map by a factor of

ffiffiffiffiffiffiffiffiffiffiffi
ACMB

p
and the ftSZ map by

a factor of
ffiffiffiffiffiffiffiffiffiffi
AftSZ

p
(recall that the parameters are defined at

the power spectrum level). We then proceed as usual with
constructing maps of two noise splits for each frequency
and constructing the data vector comprising the concat-
enation of C90split1;90split2

b , C90split1;150split2
b , C150split1;90split2

b ,

and C150split1;150split2
b . Thus, the data vector has a total length

of 40 since there are ten bins in each of the concatenated
spectra. We generate 40000 simulations with para-
meters drawn randomly from the prior. For the obser-
vation vector, we generate 2000 simulations of the data
vector with ACMB ¼ AftSZ ¼ 1 and take the mean over the
2000 simulations. This may result in a slightly biased
central value of the posteriors since we use significantly
fewer simulations to determine the mock observation
vector than to determine the full posteriors. However,
the focus of this paper is on the spread in the posteriors
rather than central values. Note also that the observation
vector here is allowed to be smooth since the simulator
generates noisy spectra from which the LFI learns the
covariance.
We use single-round neural posterior estimation (NPE)

for the LFI. We apply z-score normalization to each
simulated data vector and to the observation for more
stable training. For the network, we train a masked
autoregressive flow (MAF). We also experiment with using
a neural spine flow, mixture density network, and masked
autoencoder for distribution estimation, but we find that the
MAF is the most efficient in the number of simulations for
our purposes. We use 90% of the 40000 simulations for
training and 10% for validation. We tune the hyperpara-
meters of the network with the weights and biases frame-
work (WANDB) [70]. Our WANDB project is public.3 We use
a random hyperparameter search with 40 trials. For the final
posteriors, we use an ensemble of the top ten networks in
terms of logarithmic probability on the validation set and
uniformly weight each of the top ten networks to obtain the
final posteriors. To assess whether reductions in the size of
the posterior are significant, we examine the variance in the
final parameter covariance matrices obtained from different
hyperparameter settings (the “error on the error”). We find
that this error on the error is not significant when using just
the top ten networks. However, the final posteriors are still
sensitive to the hyperparameter tuning, as some networks
cause the posteriors to hit the prior edges and are thus
essentially not learning any information. A table of hyper-
parameters that are tuned is shown in Table I. Specifically,
we tune the learning rate, the number of transforms in the
normalizing flow, the number of hidden features, the value
at which to clip the total gradient norm in order to prevent
exploding gradients, and the number of epochs to wait for
improvement on the validation set before terminating
training.

3https://wandb.ai/kmsurrao/cmb_sbi/sweeps.
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VI. HARMONIC ILC COMPONENT MAP POWER
SPECTRA AS SUMMARY STATISTICS

Our data vector for the harmonic ILC power spectra

consists of CT̂split1;T̂split2
b , CT̂split1;ŷsplit2

b , Cŷsplit1;T̂split2
b , and

Cŷsplit1;ŷsplit2
b , where T̂split1 signifies a HILC CMB map

produced using the frequency maps with the first noise
split, ŷsplit1 signifies a HILC Compton-y map produced
using the frequency maps with the first noise split, and
similarly for the second split. The subscript b denotes the
multipole l-space bin, where we use ten linearly spaced
bins from l ¼ 2 to l ¼ 250 (one bin contains 24 multi-
poles, and all other bins contain 25 multipoles).
We compute the HILC weights and power spectra

analytically. As an example, to compute CT̂split1;ŷsplit2
b we

do the following. First, we produce four maps: a 90 GHz
map with the first noise split, a 90 GHz map with the
second noise split, a 150 GHz map with the first noise
split, and a 150 GHz map with the second noise split. We
then compute weights for the HILC CMB map using
the first noise split in an analogous way to Eq. (3) [and
noting the CMB spectral energy distribution (SED) is a
vector of ones as described in Sec. IV]:

wi;T̂split1
l ¼ 1jðR̂−1

l Þij
ðR̂−1

l Þkm1k1m
with

ðR̂lÞij ¼
XlþΔl=2

l0¼l−Δl=2

2l0 þ 1

4π
Cisplit1;jsplit1
l0 ; ð20Þ

where isplit1; jsplit1∈ f90split1; 150split1g, 1 is a vector
of ones, and Δl ¼ 20. This calculation is performed at
every l within windows that overlap, and then binned as
described previously (note that the binning in the harmonic
ILC computation at each l is distinct from the binning of
the final HILC spectra for use in the data vector). We then
compute weights for the HILC Compton-y map using the
second noise split:

wi;ŷsplit2
l ¼ ðR̂−1

l Þijgjy
ðR̂−1

l Þkmgkygmy
with

ðR̂lÞij ¼
XlþΔl=2

l0¼l−Δl=2

2l0 þ 1

4π
Cisplit2;jsplit2
l0 : ð21Þ

Then,

CT̂split1;ŷsplit2
l ¼

X
i;j

wi;T̂split1
l wj;ŷsplit2

l Cisplit1;jsplit2
l : ð22Þ

After computing the spectrum independently for each
multipole, l-space binning is performed, giving

CT̂split1;ŷsplit2
b . The computation of CT̂split1;T̂split2

b ,

Cŷsplit1;T̂split2
b , and Cŷsplit1;ŷsplit2

b are done analogously. In
Appendix A we verify that this analytic computation of
HILC spectra yields the same results as producing HILC
maps and then computing the spectra from the maps.
We use 2000 simulations for the HILC Gaussian like-

lihood pipelines (described in Sec. VI A). We have two
options for computing the weights in the pipeline:
(1) Fixed weights. Compute the HILC weights once

from some fiducial template multifrequency power
spectra. Apply these same weights to every simu-
lation. For the remainder of the paper, we refer to
this as the “fixed weights” or “weights once” HILC
variant.

(2) Varying weights. Compute the HILC weights sep-
arately for every simulation, using the specific
multifrequency power spectra from that simulation.
For the remainder of the paper, we refer to this as the
“varying weights” or “weights vary” HILC variant.

When the weights vary on a per-simulation basis, we ensure
that the ILC bias is mitigated by omitting the central l
value in each bin when computing the weights, i.e., by
setting

TABLE I. Distributions of hyperparameters tuned in the MAF used for LFI. “Clip maximum norm” refers to the
value at which to clip the total gradient norm in order to prevent exploding gradients, and “Epochs for convergence
assessment” the number of epochs to wait for improvement on the validation set before terminating training. See
Sec. V B for details of how the hyperparameter sweep is used. The same distributions of hyperparameters are used to
tune the networks used for LFI with multifrequency power spectra, harmonic ILC power spectra, and needlet ILC
power spectra summary statistics, described in Secs. V B, VI B, and VII B, respectively.

Hyperparameter Minimum value Maximum value Distribution

Learning rate 1.0 × 10−4 7.0 × 10−4 Uniform
Number of transforms 3 10 Integer uniform
Hidden features 35 65 Integer uniform
Clip maximum norm 3.0 7.0 Uniform
Epochs for convergence assessment 20 60 Integer uniform
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ðR̂lÞij ¼
 XlþΔl=2

l0¼l−Δl=2

2l0 þ 1

4π
Cij
l0

!
−
2lþ 1

4π
Cij
l : ð23Þ

This heavily reduces chance correlations between the signal
and noise/contaminants, which thereby reduces the ILC
bias (this is analogous to a similar trick developed for
NILC in Ref. [16]). The two variants of the HILC pipeline
have different implications for parameter dependence in
the Gaussian likelihood. This is discussed further below
in Sec. VI A.

A. Gaussian likelihood

The Gaussian likelihood is given by

lnLðACMB; AftSZÞ ¼ −
1

2

�
Cp̂q̂
b1
ðACMB; AftSZÞ − Cp̂q̂;data

b1

�
×
�
Covp̂q̂b1;r̂ŝb2

�−1�Cr̂ŝ
b2
ðACMB; AftSZÞ

− Cr̂ŝ;data
b2

�
; ð24Þ

where summation is implied over repeated indices p̂, q̂, r̂,

ŝ, b1, and b2 on the rhs. Here Cp̂q̂
b1
;Cr̂ŝ

b2
∈fCT̂split1;T̂split2

b ;

CT̂split1;ŷsplit2
b ;Cŷsplit1;T̂split2

b ;Cŷsplit1;ŷsplit2
b g and Covp̂q̂b1;r̂ŝb2≡

CovðCp̂q̂
b1
; Cr̂ŝ

b2
Þ is the covariance matrix of the HILC power

spectra, computed directly from 2000 independent simu-
lations generated at the fiducial parameter values (i.e., there
is no assumption of a Gaussian covariance matrix). A
correction factor is applied to the inverse of the HILC
power spectrum covariance matrix, as is done in Sec. VA
for the multifrequency power spectrum covariance
matrix [66]. Note also that we have included off-diagonal
l bins in the covariance matrix and likelihood.

1. Analytic parameter dependence

When using fixed weights in the HILC pipeline, the
weights do not depend on the particular fluctuations of any
single simulated sky realization. Thus, we can analytically
write down the parameter dependence as (ignoring binning
for now)

Cp̂q̂
l ¼

X
i;j

wi;p̂
l wj;q̂

l Cij
l

�
ACMB; AftSZ

�
¼
X
i;j

wi;p̂
l wj;q̂

l

�
ACMBCCMB

l þ AftSZgiyg
j
yCftSZ

l

�
; ð25Þ

where we have used Eq. (17) in the second equality.
Including binning, we obtain

Cp̂q̂
b1

¼ 1

Nb1

X
l∈b1

X
i;j

wi;p̂
l wj;q̂

l Cij
l

�
ACMB;AftSZ

�

¼ 1

Nb1

X
l∈b1

X
i;j

wi;p̂
l wj;q̂

l

�
ACMBCCMB

l þAftSZgiyg
j
yCftSZ

l

�
;

ð26Þ

where Nb1 is the number of multipole values l contained in
bin b1 [it is not the total number of modes (l; m)].
However, this simple parameter dependence is not correct

in the varying-weights case. In that case, the weights respond
to the particular fluctuations in the sky signal realized in
each simulation. Thus, they are functions of the (randomly
fluctuating) parameter amplitude values of individual sim-
ulations. Determining the parameter dependence in the
varying-weights case is the subject of Sec. VI A 2.

2. Parameter dependence from symbolic regression

Our goal in this section is to write

Cp̂q̂
b ðACMB; AftSZÞ ¼ fp̂q̂b ðACMB; AftSZÞ

× Cp̂q̂
b ðACMB ¼ 1 ¼ AftSZÞ ð27Þ

and determine a function fp̂q̂b ðACMB; AftSZÞ for each
p̂q̂∈ fT̂split1T̂split2; T̂split1ŷsplit2; ŷsplit1T̂split2; ŷsplit1
ŷsplit2g and bin b. The superscripts and subscripts on f
only denote that it is a quantity to be determined separately
for each p̂q̂ and b; however, f is just some function, not
a power spectrum. Moreover, there is no implied summa-
tion over p̂, q̂, or b in the equation. To avoid assuming
a specified form of f, we find these functions with
symbolic regression, using PySR [71]. For our regressor,
we allow the binary operations of addition, subtraction,
multiplication, and division; unary operations of exponen-
tiation, squaring, and cubing; and a custom inverse
operation. We use an L2-loss function that does not in
itself penalize complexity since we simply need smooth
functions that describe the simulations well, rather than
concise equations representing any fundamental law of
physics. However, we do impose a complexity limit to
avoid overfitting by setting the maximum size of our
expression to 12.
For each p̂q̂ and bin b, the values that we feed into the

regressor come from scaling various combinations of
components. We define four “scaling factors” around the
fiducial parameter value of 1: 0.9, 0.99, 1.01, and 1.1. First,
we find the average HILC spectra over 50 simulations and
use these to compute

Cp̂q̂
b

�
ACMB ¼ 1 ¼ AftSZ

�
:

As an example, consider the scaling factor 0.9. Using the
same map-level realizations that were used to determine
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Cp̂q̂
b ðACMB ¼ 1 ¼ AftSZÞ, we multiply the CMB and/or the ftSZ map by 0.9 for each of the 50 simulations. The ILC weights

(in the varying weights case) also change as a result. Then we compute

Cp̂q̂
b ðACMB ¼ 0.81; AftSZ ¼ 1Þ; Cp̂q̂

b ðACMB ¼ 1; AftSZ ¼ 0.81Þ; and Cp̂q̂
b ðACMB ¼ 0.81; AftSZ ¼ 0.81Þ:

Note that the scaled parameters are set to 0.81 since multiplying by 0.9 at the map level corresponds to multiplying by
0.92 ¼ 0.81 at the power spectrum level. For this example, the data points ðx⃗; yÞ that go into the regressor are then

x⃗ ¼ ðACMB; AftSZÞ ¼ ð0.81; 1Þ; y ¼ Cp̂q̂
b ðACMB ¼ 0.81; AftSZ ¼ 1Þ=Cp̂q̂

b ðACMB ¼ 1 ¼ AftSZÞ;
x⃗ ¼ ðACMB; AftSZÞ ¼ ð1; 0.81Þ; y ¼ Cp̂q̂

b ðACMB ¼ 1; AftSZ ¼ 0.81Þ=Cp̂q̂
b ðACMB ¼ 1 ¼ AftSZÞ; and

x⃗ ¼ ðACMB; AftSZÞ ¼ ð0.81; 0.81Þ; y ¼ Cp̂q̂
b ðACMB ¼ 0.81 ¼ AftSZÞ=Cp̂q̂

b ðACMB ¼ 1 ¼ AftSZÞ:

We repeat the same procedure with the other scaling
factors, feeding the ðx⃗; yÞ pairs from all scaling factors
into the regressor together. Then by definition of x⃗ and y,
the regressor learns fp̂q̂b .
This procedure is used to determine the parameter

dependence for the HILC varying-weights Gaussian-
likelihood pipeline. However, it can also be used on the
HILC fixed-weights Gaussian-likelihood pipeline. Since
we know the analytic parameter dependence in the fixed-
weights case, for that scenario we can compare the
posteriors obtained using analytic parameter dependence
to the posteriors obtained using SR as a cross-check of the
validity of the SR approach. This serves as an important
validation step for the varying-weights HILC Gaussian-
likelihood pipeline, as well as the NILC Gaussian-
likelihood pipeline that is described in Sec. VII A.
Sample equations and parameter dependence learned via
SR are shown in Appendix B. Note that, because of the
way we define the parameter dependence function fp̂q̂b in
Eq. (27), we cannot directly compare the equations
obtained from symbolic regression to the analytic para-
meter dependence in Eq. (26). We could have instead
defined the symbolic regression procedure such that it
could recover that same analytic parameter dependence, but
the computational cost would be greater since we would
have to perform symbolic regression multiple times for
each p̂, q̂, and b.

3. MLE, Fisher matrix, and MCMC

As for the multifrequency power spectrum Gaussian
likelihood, we obtain parameter posteriors from HILC
map power spectra via MLE, the Fisher matrix, and an
MCMC algorithm. For MLE, we numerically find the
maximum-likelihood point of the likelihood function in
Eq. (24) for each of the 2000 simulations. Specifically,
for each simulation, we compute the HILC spectra from
that simulation to use as Cp̂q̂;data

b1
and Cr̂ŝ;data

b2
. We then find

the maximum-likelihood ðACMB; AftSZÞ point for every
simulation using Nelder-Mead minimization [67] of the

negative log likelihood. We run the minimization routine
using three starting points: ðACMB; AftSZÞ ¼ ð1.0; 1.0Þ,
(0.5, 0.5), and (1.5, 1.5). We then use the global mini-
mum from these results as our maximum-likelihood
point ðÂCMB; ÂftSZÞ.
The Fisher matrix in this approach is defined as

FÂαÂβ
¼ −

�
∂
2 lnL
∂AαAβ

�����
ÂαÂβ

¼ ∂Cp̂q̂
b1

∂Aα
ðCov−1p̂q̂b1;r̂ŝb2Þ

∂Cr̂ŝ
b2

∂Aβ

����
Aα¼Aβ¼1

; ð28Þ

where there is implied summation over p̂, q̂, r̂, ŝ, b1, and
b2. For the case of fixed weights with analytic parameter
dependence, we compute the derivatives in Eq. (28) ana-
lytically [cf. Eq. (26)]. For varying weights and fixed
weights with parameter dependence determined via SR, we
compute the derivatives numerically with finite differences.
Finally, for the MCMC algorithm we use EMCEE [68]

with the likelihood in Eq. (24) and a mock observation
consisting of the mean of simulated HILC autospectra and
cross spectra over all simulations. The remaining setup of
the MCMC algorithm is the same as described in Sec. VA.

B. Likelihood-free inference

We follow a similar procedure as for the LFI in the
multifrequency power spectrum case, described in
Sec. V B. For the prior, we set a uniform prior centered
on 1 with lower bound ð1 − 5σÂCMB

; 1 − 5σÂftSZ
Þ and upper

bound ð1þ 5σÂCMB
; 1þ 5σÂftSZ

Þ, where σÂCMB
and σÂftSZ

are
the 1D marginalized errors obtained from the multifre-
quency Gaussian likelihood on ÂCMB and ÂtSZ, respec-
tively. Note that the prior is kept the same as the prior in the
multifrequency LFI for fair comparison of the resulting
posteriors.
As for the HILC Gaussian likelihood, we perform LFI

with two versions of the HILC method: one in which the
weights are computed once from some fiducial template
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generated at ACMB ¼ 1 ¼ AftSZ, and one in which the
weights are computed independently for each output of
the simulator. For the simulator, we draw ACMB and AftSZ
from the prior distribution. Then for each simulation, we
multiply the input CMB map by a factor of

ffiffiffiffiffiffiffiffiffiffiffi
ACMB

p
and the

ftSZ map by a factor of
ffiffiffiffiffiffiffiffiffiffi
AftSZ

p
. We then proceed as usual

with creating maps of two noise splits for each frequency
and performing the HILC operations to construct the data

vector comprising the concatenation of CT̂split1;T̂split2
b ,

CT̂split1;ŷsplit2
b , Cŷsplit1;T̂split2

b , and Cŷsplit1;ŷsplit2
b . Thus, the data

vector has a total length of 40 since there are ten bins in
each of the concatenated spectra. The remainder of the LFI
setup is the same as described in Sec. V B.

VII. NEEDLET ILC COMPONENT MAP POWER
SPECTRA AS SUMMARY STATISTICS

A. Gaussian likelihood

We follow a procedure similar to that described in
Sec. VI A. Our data vector for the NILC component
map autospectra and cross-power spectra consists of

CT̂split1;T̂split2
b , CT̂split1;ŷsplit2

b , Cŷsplit1;T̂split2
b , and Cŷsplit1;ŷsplit2

b ,
where T̂split1 signifies a NILC CMB map produced using
the frequency maps with the first noise split, ŷsplit1
signifies a NILC Compton-y map produced using the
frequency maps with the first noise split, and similarly
for the second split. The subscript b denotes the multi-
pole bin, where we use ten bins from l ¼ 2 to l ¼ 250
(one bin contains 24 multipoles, and all other bins contain
25 multipoles).
In the HILC case, we are able to easily compute the

power spectra analytically. However, this is not the case
for NILC, as shown in Ref. [24], due to the nontrivial
contributions of three- and four-point functions of the
components and weight maps. Thus, we build NILC maps
from simulations and compute the power spectra directly
from these. To produce the NILC maps and weight maps,
we use PYILC

4 [17,36]. We use needlet filters that are the
difference of successive Gaussians, where the Gaussians
have full width at half maximum (FWHM) values of 300,
120, and 60 arcmin, resulting in four needlet filter scales.
The fourth filter is modified slightly such that the filters
satisfy the needlet filter power preservation constraint, i.e.,

that
P

ðnÞ ðhðnÞl Þ2 ¼ 1 at each l. The filters are shown in
Fig. 2. Examples of the resulting NILC component maps
and weight maps are shown in Appendix A.
In the HILC case, we implement two variants: one with

fixed ILC weights (i.e., weights that are not recomputed
for every simulation realization) and one with varying
ILC weights (i.e., weights that are recomputed for every
realization). In the NILC case, we only use varying

weights, meaning that the weight maps are determined
separately for every simulation. This is necessary so that the
NILC algorithm can capture meaningful spatially varying
information within each simulation. In particular, on a
single simulation, the pipeline is as follows:
(1) Simulate four frequency maps (maps of two noise

splits for each of the two frequencies).
(2) For each split, run PYILC to build a NILC CMB-

preserved map (e.g., to build a CMB NILC map for
the first split, feed in the 90 GHz Split 1 and
150 GHz Split 1 maps as input to the code and
specify preservation of the CMB component).
Repeat the same procedure for the (amplified)
Compton-y NILC map. Thus, for each simulation
we have four NILC maps: T̂split1, T̂split2, ŷsplit1,
and ŷsplit2.

(3) Compute the elements of the data vector (i.e.,
the power spectra): CT̂split1;T̂split2

b , CT̂split1;ŷsplit2
b ,

Cŷsplit1;T̂split2
b , and Cŷsplit1;ŷsplit2

b .
We then use the same Gaussian likelihood as in Eq. (24),

except that the spectra are now NILC spectra instead of
HILC spectra. To determine the parameter dependence
Cp̂q̂
b ðACMB; AftSZÞ, we follow the same symbolic regression

procedure that is described in Sec. VI A 2. In Appendix B,
we show examples of the expressions and parameter
dependence we obtain from symbolic regression, and
compare them to those obtained in the HILC case.
We compute the covariance matrix used in the Gaussian

likelihood directly via 2000 simulations of the above
pipeline. A correction factor is applied to the inverse of
the NILC power spectrum covariance matrix, as is done
in Sec. VA for the multifrequency power spectrum covari-
ance matrix [66]. We then proceed with the MLE,
Fisher matrix, and MCMC procedures, as described in
Sec. VI A 3. In Fig. 3, we show the correlation matrix and
covariance matrix from these NILC simulations and com-
pare them to the HILC correlation and covariance matrices
for both the fixed-weights and varying-weights cases

FIG. 2. Needlet filters hðnÞl used in our simulations for the NILC
pipeline, found by taking the differences of successive Gaussians
of FWHM 300, 120, and 60 arcmin.

4https://github.com/jcolinhill/pyilc.
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(described in Sec. VI). In all cases, the non-Gaussianity of
the tSZ field is evident from the off-diagonal contributions
to CovðCŷŷ

l ; Cŷŷ
l Þ, and the propagation of that field as a

contaminant to the CovðCT̂T̂
l ; CT̂T̂

l Þ covariance can be seen.
However, we see that this contamination is lowest in the
NILC case, where the CovðCT̂T̂

l ; CT̂T̂
l Þ is roughly diagonal.

We also note that the varying-weights HILC does better
than the fixed-weights HILC, as expected since the varying
weights can account for (isotropic) harmonic-space fluc-
tuations in individual simulations. As further confirma-
tion that NILC better cleans contaminants, we show the
mean HILC (in the varying-weights case) and mean NILC
spectra from 2000 simulations in Fig. 4. From this figure,
it is evident that NILC better suppresses contamination
and recovers spectra that are closer to the underlying
ground truth.

B. Likelihood-free inference

We follow a similar procedure to that used for the LFI in
the multifrequency-power-spectra and HILC-power-spectra

cases, described in Secs. V B and VI B, respectively.
For the prior, we set a uniform prior centered on 1 with
lower bound ð1 − 5σÂCMB

; 1 − 5σÂftSZ
Þ and upper bound

ð1þ 5σÂCMB
; 1þ 5σÂftSZ

Þ, where σÂCMB
and σÂftSZ

are the
1D marginalized errors obtained from the multifrequency
Gaussian likelihood on ÂCMB and ÂtSZ, respectively. Note
that the prior is kept the same as the prior in the multi-
frequency and HILC LFI for fair comparison of the
resulting posteriors.
For the simulator, we draw ACMB and AftSZ from the prior

distribution. Then for each simulation, we multiply the
input CMB map by a factor of

ffiffiffiffiffiffiffiffiffiffiffi
ACMB

p
and the ftSZ map by

a factor of
ffiffiffiffiffiffiffiffiffiffi
AftSZ

p
. We then proceed as in the Gaussian-

likelihood case with creating maps of two noise splits for
each frequency and performing the NILC operations to
construct the data vector comprising the concatenation of

CT̂split1;T̂split2
b , CT̂split1;ŷsplit2

b , Cŷsplit1;T̂split2
b , and Cŷsplit1;ŷsplit2

b .
Thus, the data vector has a total length of 40 since there are
ten bins in each of the concatenated spectra. The remainder
of the LFI setup is the same as described in Sec. V B.

FIG. 3. Correlation matrices (top row) and absolute value of covariance matrices (bottom row) computed via 2000 simulations, as used
in our Gaussian likelihoods. These matrices are shown for the NILC pipeline (left), HILC with varying weights pipeline (middle), and
HILC with fixed weights pipeline (right). Within each subplot, there is a grid of nine squares, corresponding to elements of the

covariance and correlation among CT̂T̂
l , CT̂ŷ

l , and Cŷŷ
l for each of the ten multipole bins increasing from left to right and top to bottom.

Here CT̂ŷ
l corresponds to CT̂split1;ŷsplit2

l and we omit the other split combination for concision since it behaves similarly. The T̂ maps are in
units of KCMB, while the ŷ maps are in dimensionless Compton-y units.
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VIII. WHEN ARE THE HARMONIC ILC AND
MULTIFREQUENCY POWER SPECTRUM
INFERENCE METHODS ANALYTICALLY

EQUIVALENT?

A. General setup

In this section, we perform analytic calculations to
compare parameter covariances derived from HILC map
power spectra and template fitting to multifrequency
autospectra and cross-power spectra. We determine the
conditions under which these two inference methods are
exactly equivalent, and explicitly prove this result. For all
calculations here, we assume a Gaussian likelihood for both
approaches. We also assume no l-space binning, but the
results also hold in the limit of small bin widths. Finally, for
clarity and concision we do not use different noise splits of
the data, though the results hold in that case as well.
We prove the equivalence of the parameter Fisher

matrices, and thus the final parameter covariance matrices,
at a single multipole l (or for a single narrow bandpower).
This immediately generalizes to fitting all multipoles
simultaneously, as long as the power spectrum covariance
matrix is diagonal in l. The Fisher matrix for the multi-
frequency approach is given by Eq. (19):

Fmult
ÂαÂβ

¼
X
ij

X
km

∂Cij
l

∂Aα
ðCov−1Þij;kml

∂Ckm
l

∂Aβ

����
Aα¼1¼Aβ

; ð29Þ

where ij; km can each take on NfreqðNfreq þ 1Þ=2 values.
For example, if there are two frequency channels, then
ij; km can each take on three values: one for each
frequency-frequency autospectrum, and one for the
frequency-frequency cross-spectrum. Since we consider
only a single l here, there is no sum over l;l0, as would
be present in the general form of the above equation. The
Fisher matrix for the HILC approach is given by Eq. (28):

FHILC
ÂαÂβ

¼
X
p̂q̂

X
r̂ŝ

∂Cp̂q̂
l

∂Aα
ðCov−1Þp̂q̂;r̂ŝl

∂Cr̂ŝ
l

∂Aβ

����
Aα¼1¼Aβ

; ð30Þ

where the number of values that p̂q̂; r̂ŝ can take on is more
complicated than in the multifrequency case and is exam-
ined in detail in the next subsection. The power spectra of
HILC maps are easy to model. In particular, from Eq. (25),
we have

∂Cp̂q̂
l

∂Aα
¼
X
i;j

wi;p̂
l wj;q̂

l
∂Cij

l

∂Aα
and

∂Cr̂ŝ
l

∂Aβ
¼
X
k;l

wk;r̂
l wl;ŝ

l2

∂Ckl
l

∂Aβ
:

ð31Þ

The covariance matrix for the HILC component map
autospectra and cross-power spectra is (at a single l)

FIG. 4. Mean ILC spectra over 2000 simulations, for NILC and HILC (with varying weights, i.e., weights determined separately for
each of the simulations). Solid curves show the ground truth spectra for the CMB (blue), CMB × amplified Compton-y (red), and

amplified Compton-y (green). Dashed curves show HILC spectra: CT̂T̂
l (light blue), CT̂ŷ

l (orange), and Cŷŷ
l (lime green). Dotted curves

show NILC spectra: CT̂T̂
l (cyan), CT̂ŷ

l (salmon), and Cŷŷ
l (olive). Here T̂ represents a CMB-preserved ILC map, and ŷ represents an ILC

map that preserves the tSZ signal. Each of the spectra are computed using noise splits (here CT̂ŷ
l is really CT̂split1;ŷsplit2

l and the other split
combination is omitted for concision since it behaves similarly). The T̂ maps are in units of KCMB, and the ŷ maps are in dimensionless
Compton-y units.
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Covp̂q̂;r̂ŝl ¼ Cov
�
Cp̂q̂
l ; Cr̂ŝ

l

�
¼
X
i;j;k;m

wi;p̂
l wj;q̂

l wk;r̂
l wm;ŝ

l Cov
�
Cij
l ; C

km
l

�
; ð32Þ

where here we are summing over individual frequencies,
i.e., i, j, k, l each take on Nfreq possible values. Then
we have

FHILC
ÂαÂβ

¼
X

p̂q̂;r̂ŝ

 X
i;j
wi;p̂
l wj;q̂

l
∂Cij

l

∂Aα

!

×
�X

i;j;k;l
wi;p̂
l wj;q̂

l wk;r̂
l wl;ŝ

l Cov
�
Cij
l ; C

kl
l

�	−1
×

 X
k;l
wk;r̂
l wl;ŝ

l
∂Ckl

l

∂Aβ

!�����
Aα¼1¼Aβ

: ð33Þ

Here we have assumed fixed HILC weights, e.g., as would
be determined once from the actual data and applied to
every simulation. Thus, the weights are not parameter-
dependent quantities [if they were, then the derivatives in
Eq. (31) would be more complicated]. Note that there are
some subtleties in the indexing. In particular, we must
define some mapping from p̂q̂ to individual p̂ and q̂, and
similarly for r̂ŝ. This is discussed in the next subsection.

B. Number of components vs number of frequencies

We prove the equivalence of Fmult
ÂαÂβ

and FHILC
ÂαÂβ

analytically

for specific numbers of frequencies and sky components.
In all cases, we assume an arbitrary frequency-frequency
covariance matrix that is diagonal in l, unless otherwise
noted. The Gaussian covariance matrix as in Refs. [72,73] is
an example of such a covariance matrix. Because of the
lengthy algebraic expressions in the following analysis, we
provideMathematica notebooks demonstrating each of these
results in our GitHub repository NILC-Inference-Pipeline.

1. Two components, two frequencies

This is the simplest case and is also the one we consider
in our full simulation-based pipelines. We assume an
arbitrary diagonal frequency-frequency power spectrum
covariance matrix for this proof, but we do not assume
that this covariance matrix is Gaussian. For concreteness,
let us assume two frequency channels, e.g., 90 and
150 GHz. Moreover, we assume two sky components,
the CMB and tSZ fields, and their respective minimum-
variance HILC maps, T̂ and ŷ. In this case, we have that
ij; km∈ f90 × 90; 90 × 150; 150 × 150g. This yields a
rank-3 frequency-frequency covariance matrix at each l,
Covij;kml . Since there are two components, we have p̂q̂∈
fT̂T̂; T̂ŷ; ŷŷg. The covariance matrix Covp̂q̂;r̂ŝl has a rank
of 3, as can immediately be seen via the construction in
Eq. (32) in terms of Covij;kml . Thus, the HILC data vector

comprises all three spectra CT̂T̂
l ; CT̂ŷ

l ; Cŷŷ
l . Using that HILC

data vector, the parameter covariance matrix elements from
HILC and multifrequency power spectra are equal.

2. Three components, two frequencies

Let us now suppose that we have three components
whose HILC maps are denoted T̂, ŷ, and Ĵ. Suppose we let
Cp̂q̂
l take on values of all the component autospectra and

cross spectra, i.e., Cp̂q̂
l ∈ fCT̂T̂

l ; Cŷŷ
l ; CĴĴ

l ; CT̂ŷ
l ; CT̂Ĵ

l ; CŷĴ
l g.

We would then have a 6 × 6 HILC power spectrum co-
variance matrix. However, this matrix actually only has a
rank of 3 since it is built from the rank-3 frequency-
frequency power spectrum covariance matrix, and we
must thus remove linearly dependent rows and columns
to make the covariance matrix invertible. In particular, the
rows and columns corresponding to the elements of the
data vector in the following sets are linearly dependent:

fCT̂T̂
l ; CT̂ŷ

l ; CT̂Ĵ
l g, fCŷŷ

l ; CT̂ŷ
l ; CŷĴ

l g, and fCĴĴ
l ; CT̂Ĵ

l ; CŷĴ
l g.

Using Cp̂q̂
l ∈ fCT̂T̂

l ; Cŷŷ
l ; CĴĴ

l g as our fundamental HILC
data vector thus solves this problem. Using this construc-
tion in Eq. (33), we find that FHILC

ÂαÂβ
¼ Fmult

ÂαÂβ
, and thus the

HILC and multifrequency-power-spectrum methods yield
identical parameter covariance matrix elements. (The ana-
lytic demonstration can be found in the Mathematica
notebooks in NILC-Inference-Pipeline.)

3. Two components, three frequencies

For concreteness, suppose that the three frequency
channels are 90, 150, and 220 GHz. Then there are six
possible values for each of ij and km: ij; km∈f90× 90;
150× 150;220× 220;90× 150;90× 220;150× 220g. The
frequency-frequency power spectrum covariance matrix
thus has a rank of 6. Since there are two components in the
sky model (let us call their associated HILC maps T̂ and ŷ),

the largest possible HILC data vector is fCT̂T̂
l ; CT̂ŷ

l ; Cŷŷ
l g.

This would result in a HILC power spectrum covariance
matrix of rank 3, which is less than the rank of the frequency-
frequency power spectrum covariance matrix. As a result,
the two methods do not yield identical parameter co-
variance matrix elements in this scenario. Analytically,
it is not obvious which one has a larger covariance,
but numerically, we find that the parameter covariance
matrices are actually nearly identical in practice (see
Appendix D).

4. Three components, three frequencies

Suppose that the three frequency channels are 90, 150,
and 220 GHz. Then there are six possible values values for
each of ij and km: ij; km∈f90× 90;150× 150;220× 220;
90× 150;90× 220;150× 220g. The frequency-frequency
power spectrum covariance matrix thus has a rank of 6. Let
the HILC maps of the three sky components be denoted as
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T̂, ŷ, and Ĵ. Then p̂q̂ may take on values of all the auto-
spectra and cross spectra, i.e., p̂q̂∈ fCT̂T̂

l ; Cŷŷ
l ; CĴĴ

l ;

CT̂ŷ
l ; CT̂Ĵ

l ; CŷĴ
l g. This matrix also has a rank of 6 since it

is built from the frequency-frequency covariance matrix of
rank-6. Thus, in this case we can use all the possible
autospectra and cross spectra in the HILC data vector.
Because of computational constraints of running this
scenario entirely analytically, we assume a Gaussian
frequency-frequency power spectrum covariance matrix
and derive analytic results for the final Fisher matrices
in both the HILC and multifrequency power spectrum
approaches. Testing several numerical setups, we then
find that the HILC and multifrequency approaches yield
identical parameter covariance matrices, as in the two-
component, two-frequency case considered above.

5. General conclusions

Based on these simple examples, we can extrapolate
some general conclusions:

(i) When the number of frequencies is equal to the
number of components, we can use all possible
HILC map autospectra and cross spectra in the data
vector for the HILC approach, and the two ap-
proaches yield identical results for the final para-
meter covariance matrix.

(ii) When there are more components than frequencies,
the rank of the HILC power spectrum covariance
matrix is limited by the rank of the frequency-
frequency power spectrum covariance matrix, and

we must thus limit the number of spectra in the
HILC data vector. After doing so, we find that the
two approaches also yield equal parameter covari-
ance matrices.

(iii) When there are more frequencies than components,
the rank of the HILC power spectrum covariance
matrix is necessarily less than that of the frequency-
frequency power spectrum covariance matrix. Thus,
the two methods do not give equivalent results
analytically, though numerically we find that they
do give nearly identical results, with the HILC
posterior often being very slightly larger (see
Appendix D).

IX. COMPARING POSTERIOR DISTRIBUTIONS
FROM SIMULATIONS

In this section, we compare the simulation-derived
posteriors obtained from the multifrequency power spec-
trum, harmonic ILC, and needlet ILC approaches. The
posterior distributions for both LFI and the Gaussian
likelihood (with posteriors computed via MLE here) are
shown in Fig. 5. In both cases, we see that NILC
significantly shrinks the area of the 2D posterior compared
to the other approaches. In particular, we see an approx-
imately 60% reduction in the area of the 68% confidence
interval 2D posterior (in the elliptical approximation,
discussed further in Appendix D) using NILC power
spectra as compared with multifrequency power spectra
as summary statistics for LFI. Figure 6 compares the
posteriors from LFI and the Gaussian likelihood for

FIG. 5. Parameter posteriors obtained via LFI (left) and Gaussian likelihoods (right). In both figures, we compare the results using
various summary statistics: multifrequency power spectra (described in Sec. V), HILC power spectra (with a few variants based on
weight determination and parameter dependence determination that are described in Sec. VI), and NILC power spectra (described in
Sec. VII). For LFI, we use 40000 simulations for each pipeline. For the Gaussian likelihood, we use 2000 simulations and show the
distribution of maximum-likelihood estimates from each simulation. It is evident that the area of the 2D posterior is significantly smaller
in the NILC pipeline than the traditional multifrequency pipeline, suggesting that NILC is a useful transformation of the data to use in
parameter inference pipelines when there are non-Gaussian sky components.
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each of the pipelines to assess whether the Gaussian
likelihood is a valid assumption. We predict that it is not
a good assumption since, if we histogram the value of
one summary statistic in one bin from several simula-
tions, the histogram is non-Gaussian. From the changes
in the posteriors (computed in the Gaussian likelihood
versus with LFI), we see that it is indeed an imperfect
assumption. Table II shows the numerical values of 1D
marginalized posteriors for all the methods considered in
this work.
As a consistency check, we also run all of the pipelines in

this work using a setup containing only Gaussian random
fields (i.e., we generate Gaussian realizations of the ftSZ
field using a fiducial power spectrum). In this situation,
there should be no advantage to performing NILC over
HILC, and moreover, the Gaussian likelihood should yield

the same results as LFI.5 This is explored in Appendix C,
where we find that this is indeed the case, and the posteriors
from all methods are nearly identical.
As discussed in Sec. VIII B, when the number of

frequencies is equal to the number of components in the
sky model (as is the case here), the HILC fixed-weights
pipeline and multifrequency-power-spectra pipeline must

FIG. 6. Comparison of posteriors from LFI to those from a Gaussian likelihood for all the summary statistics considered in this work.
We show posteriors for the Gaussian likelihood, LFI, and LFI shifted such that the posterior is centered on 1.0 for both parameters. The
Gaussian likelihood is inaccurate in the presence of the highly amplified non-Gaussian tSZ field.

5When data are cosmic-variance limited, LFI is more optimal
and less biased than the Gaussian likelihood, even when every
field in the problem is Gaussian. This is because the covariance
matrix in the Gaussian likelihood is actually a parameter-
dependent quantity, but generally treated as parameter indepen-
dent, while LFI can learn such a dependence [74]. However, in
the situation studied here, there is non-negligible instrumental
noise, so the data are not cosmic-variance limited, and thus we
expect the two approaches to yield nearly identical results.
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yield identical results for the Gaussian-likelihood analysis.
We have shown that when the number of components is
greater than the number of frequency channels, the fixed-
weights HILC power spectrum covariance matrix becomes
singular if we make HILC maps for every component in the
sky model and use all of their autospectra and cross-power
spectra in the data vector. A natural question is whether the
same would be true for NILC power spectra, which have
nontrivial scale-dependent coupling. Using our simula-
tions, we show that, to within our numerical precision, the
determinant of the NILC power spectrum covariance matrix

is zero in such a situation. Specifically, we demonstrate this
on a setup very similar to the main one used in the simula-
tions, but with an added Gaussian realization of the CIB
field, assuming a modified blackbody SED [75] with an
effective dust temperature of 20.0 K and spectral index of
1.45. With this setup, we also verify numerically that the
HILC power spectrum covariance matrices are singular for
both variants of the HILC pipeline (fixed weights and
varying weights). The implication is that, for both the HILC
and NILC inference approaches, if the number of compo-
nents is greater than the number of frequency channels, one

TABLE II. Parameter constraints for all the methods considered in this work. See Secs. V–VII for information on
using multifrequency power spectra, harmonic ILC power spectra, and needlet ILC power spectra as summary
statistics, respectively. We present 1D marginalized posterior values obtained with the different summary statistics
using both likelihood-free inference and a Gaussian likelihood. For the Gaussian likelihood, we compute posteriors
using maximum-likelihood estimation (MLE), Fisher matrix calculations, and a Markov chain Monte Carlo
(MCMC) algorithm. Note that we do not quote a central value for the Fisher matrix calculation since it only predicts
the error bars (which are assumed to be symmetric in the Fisher approximation).

Pipeline (on non-Gaussian simulations) ACMB AftSZ

Multifrequency PS MLE: 1.001� 0.017 MLE: 0.999þ0.10
−0.18

-Gaussian likelihood Fisher: __�0.017 Fisher: __�0.16
-Analytic parameter dependence MCMC: 1.000� 0.016 MCMC: 0.99� 0.16

Multifrequency PS 0.999� 0.020 0.88� 0.11
-Likelihood-free inference

Harmonic ILC MLE: 1.001� 0.017 MLE: 0.999þ0.10
−0.18

-Fixed weights Fisher: __�0.017 Fisher: __�0.16
-Gaussian likelihood MCMC: 1.000þ0.017

−0.015 MCMC: 1.01� 0.16
-Analytic parameter dependence

Harmonic ILC MLE: 1.000� 0.017 MLE: 1.00þ0.10
−0.17

-Fixed weights Fisher: __�0.017 Fisher: __�0.16
-Gaussian likelihood MCMC: 0.9996� 0.017 MCMC: 0.999� 0.16
-Parameter dependence from symbolic regression

Harmonic ILC 1.001� 0.017 0.87� 0.11
-Fixed weights
-Likelihood-free inference

Harmonic ILC MLE: 1.000� 0.016 MLE: 1.001þ0.089
−0.10

-Varying weights Fisher: __�0.016 Fisher: __�0.11
-Gaussian likelihood MCMC: 1.002� 0.016 MCMC: 1.035þ0.073

−0.11
-Parameter dependence from symbolic regression

Harmonic ILC 1.000� 0.015 0.87� 0.11
-Varying weights
-Likelihood-free inference

Needlet ILC MLE: 1.001� 0.022 MLE: 1.001� 0.055
-Gaussian likelihood Fisher: __�0.022 Fisher: __�0.052
-Parameter dependence from symbolic regression MCMC: 1.001� 0.022 MCMC: 1.007þ0.049

−0.054

Needlet ILC 1.020� 0.019 0.956� 0.049
-Likelihood-free inference
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must carefully construct the fundamental data vector such
that the elements are linearly independent (i.e., one should
not use the autospectra and cross spectra of every compo-
nent ILC map in the data vector).
We also examine how the results change when varying

the frequency channels used or when increasing the number
of frequency channels to three (while still keeping just
two components). These results are shown in Appendix D.
In all cases, using NILC power spectra as summary
statistics either shrinks or yields the same area of the 2D
posterior as compared with using multifrequency power
spectra as summary statistics. This method thus has
significant promise in yielding tighter parameter constraints
from ongoing and upcoming CMB experiments.

X. DISCUSSION

In this paper we have considered several methods for
inferring parameters describing the power spectra of
physical sky components from multifrequency mm-wave
data. We have shown that using autospectra and cross
spectra of HILC maps in a Gaussian likelihood yields the
same final parameter error bars as the traditional approach
of fitting templates to multifrequency autospectra and
cross-power spectra, with caveats of which HILC spectra
to include in the data vector based on the number of
frequency channels and number of sky components (dis-
cussed in Sec. VIII). Specifically, when the number of sky
components is greater than or equal to the number of
frequency channels, we have analytically shown that
performing inference with harmonic ILC power spectra
(with fixed weights) yields identical parameter covariance
matrices as performing inference with multifrequency
power spectra on Gaussian random fields. However, the
power spectra of HILC maps only contain Gaussian
information, and many mm-wave foreground fields vary
spatially on the sky and are non-Gaussian. Thus, NILC is a
better candidate to capture such additional information. In
previous work, we derived an analytic expression for the
autospectra and cross spectra of NILC maps in Ref. [24],
finding a nontrivial parameter dependence. In this work, we
have estimated this parameter dependence from simulations
using symbolic regression, and have then performed a
maximum-likelihood analysis to show that NILC reduces
the area of the 68% confidence interval 2D posterior on
CMB and ftSZ amplitude parameters by 60%, with results
summarized in Table II and 2D and 1D marginalized
posterior distributions shown in Fig. 5.
Because the weight maps are functions of the fields, the

results of Ref. [24] demonstrate that the parameter depend-
ence of NILC power spectra is highly nontrivial. With
NILC, the exact dependence of the weight maps on the
fields is complex, so we must estimate this dependence

using simulations and symbolic regression to avoid assum-
ing a specific functional form. Figure 10 in Appendix B
shows the complexity of this dependence, which depends
on the exact amplitude of each component. In some cases,
we note that when the amplitude of some component
increases, its contribution to the NILC power spectrum of
another component actually decreases since the weight
maps then prioritize suppressing this contaminant over
the others. With such complex parameter dependence, and
given that in many situations the Gaussian likelihood is an
imperfect assumption, LFI is a much simpler and more
accurate approach for determining parameter posteriors in
the presence of non-Gaussian contaminants. Similar to the
case when using the Gaussian likelihood, we find that
performing LFI with NILC power spectra as summary
statistics reduces the area of the 68% confidence interval
2D posterior on CMB and ftSZ amplitude parameters by
60% as compared with performing LFI with multifre-
quency power spectra as summary statistics.
In Appendix D we examine various frequency combi-

nations and how they impact the results of the different
summary statistics. In all cases, NILC either maintains or
shrinks the area of the 2D posterior, showing that NILC
component map power spectra are powerful summary
statistics. In our setup, we have used 40,000 simulations
in the LFI, using a single round of NPE with a uniform
prior. To be more efficient in the number of simula-
tions, one could use sequential neural posterior estima-
tion (SNPE), running the NPE procedure in multiple
rounds [50–53]. In the first round, parameters are sampled
from the prior and used to generate simulations, learning an
initial posterior. In subsequent rounds, parameters are
sampled instead from the current learned posterior rather
than the prior. Another modification to be more efficient in
the number of simulations is to use a very wide Gaussian
prior rather than a uniform prior.
Here we have demonstrated our result on a somewhat

contrived scenario in which the tSZ field is amplified by a
factor of 150, but we would expect similar trends in the
error bars with the usual tSZ field at high l, in particular,
beyond l ¼ 2000where the tSZ signal amplitude surpasses
that of the CMB at 90 GHz. Moreover, we would expect
such large error bar reductions in other cases where non-
Gaussian foregrounds dominate over the signal of interest,
as is the case when searching for primordial B modes, for
which the non-Gaussian dust dominates. With the latest
constraint on the tensor-to-scalar ratio of r0.05 < 0.036 [5],
the dust amplitude is approximately a factor of 10–100
times larger than the CMB B-mode amplitude at 150 GHz
for 2 ≤ l ≤ 500 (see Fig. 12 of Ref. [76]), depending on
the region of sky analyzed. This ratio is even larger than the
ratio in our toy model of the ftSZ to CMB (which is within
a factor of a few, cf. Fig. 1). The current limitation in
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demonstrating our NILC approach on the example of
primordial B modes and polarized dust is the need for
many realistic anisotropic, non-Gaussian simulations of the
dust field. However, progress has been made toward such
simulations in recent work [77–79], and is also the focus of
follow-up work in preparation.
This work demonstrates the ability of NILC to capture

non-Gaussian information, as well as the constraining
power that such information can have on parameters. It
thus motivates further methodological development for
using NILC-based inference or other techniques that
efficiently capture information beyond two-point statistics
in analyses of the mm-wave sky.
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APPENDIX A: ILC MAPS AND WEIGHT MAPS

In this appendix we show images of component maps
and ILC weight maps. For the harmonic ILC pipeline, we
compute the spectra that comprise the data vector analyti-
cally, as described in Sec. VI. However, one can also
explicitly construct a HILC map and then compute the
power spectrum of that map. In Fig. 7, we compare the
analytic spectra to the map-based spectra, confirming that
the results are effectively identical.
In Fig. 8, we compare the reconstructed CMB and

amplified Compton-y maps from the NILC and HILC
pipelines. The reconstructed amplified Compton-y maps
look very similar. However, in the reconstructed CMB
maps, one can see some bright spots in the HILC map that
are not present in the input CMB map or NILC CMB map.
These coincide with bright spots in the ftSZ map. Thus, this
is an example of how HILC does not optimally clean out
non-Gaussian contaminants, but NILC does.
Figure 9 shows the NILC weight maps used for the

construction of both the CMB-preserved NILC map and
ftSZ-preserved NILC map. These weight maps are built
from the same map realizations shown in Fig. 8. We see
that the weight maps have the general appearance of the
contaminant field since the purpose of the weight maps is to
suppress contamination. For example, the weight maps for
a CMB-preserved NILC map roughly mimic the structure
of the ftSZ map in Fig. 8.

FIG. 7. Comparison of harmonic ILC spectra computed ana-
lytically as described in Sec. VI (dotted curves) and spectra
computed from a map-based HILC operation using PYILC (solid
curves) for a single simulation. The curves are shown in units of
K2 for the CMB spectra and dimensionless Compton-y units for
the Compton-y spectra. Harmonic ILC weights are computed
with Δl ¼ 20 (see Sec. VI). There is no l-space binning shown
in the plot.
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FIG. 8. Comparison of input CMB and amplified Compton-y maps to the maps reconstructed via NILC and HILC. Residual bright
spots resulting from ftSZ contamination are present in the CMB HILC map but not in the CMB NILC map, demonstrating the ability of
NILC to better clean non-Gaussian contaminants.

FIG. 9. NILC weight maps for a preserved CMB component (left two columns) and preserved tSZ component (right two columns),
generated with PYILC, for a sky model consisting of the CMB, amplified tSZ signal (ftSZ), and noise. The maps are shown for 90 and
150 GHz at each needlet filter scale, with scale 0 corresponding to the lowest-l scale and scale 3 corresponding to the highest-l scale.
The CMB and ftSZ maps underlying the frequency maps from which these NILC weight maps are produced are shown in Fig. 8. The
CMB weight maps are unitless, and the Compton-y weight maps have units of 1=K such that the output NILC map is in dimensionless
Compton-y units.
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APPENDIX B: PARAMETER DEPENDENCE
FROM SYMBOLIC REGRESSION

In this appendix we discuss results for determining the
parameter dependence of HILC and NILC power spectra
via symbolic regression. The details of this procedure are
presented in Sec. VI A 2. In Fig. 10 we show the values of

fp̂q̂b ðACMB; AftSZÞ from Eq. (27) for the different p̂; q̂ and
different methods considered in this work. Since fb is
a separate function for each bin, we choose one bin
for which to plot the results (here it is b ¼ 5, which

corresponds to a mean multipole of l ¼ 138). We show the
values of fb for the region of parameter space around the
fiducial ACMB ¼ 1 ¼ AftSZ.
We also show the analytic expressions output by the

regressor for bin 5 in Table III. From these expressions, we
see that the regressor may be slightly overfitting (for
example, this is apparent from the term involving AftSZ

in the expression for NILC CT̂T̂
b ), but this is not important

for our purposes here. We simply require expressions that
give smooth and accurate parameter dependence around the
fiducial ACMB ¼ 1 ¼ AftSZ.

FIG. 10. Visual representation of the parameter dependence of ILC component map power spectra obtained via symbolic regression
for NILC power spectra (top row), HILC power spectra with weights determined separately for each simulation (middle row), and HILC
power spectra with weights determined from a fiducial template and then applied to every simulation (bottom row). Parameter

dependence is shown for the different elements of the data vector: CT̂T̂
l (left), CT̂ŷ

l (middle), and Cŷŷ
l (right). In particular, we plot

fp̂q̂b ðACMB; AftSZÞ from Eq. (27), where b ¼ 5 here, corresponding to a mean multipole l ¼ 138.
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APPENDIX C: RESULTS ON GAUSSIAN
RANDOM FIELDS

In this appendix we present the same results as in
Sec. IX, but evaluated on simulations containing only
Gaussian random fields. The CMB and noise remain the
same as described in Sec. IV, but the ftSZ field is now a
Gaussian random field as well. Specifically, we take the

power spectrum of one tSZ map generated via HALOSKY,
where the map is amplified by a factor of 150. Then for
each simulation, we generate a Gaussian realization of that
power spectrum. With all Gaussian random fields, we
expect that the posterior distributions should be nearly
identical for all of the methods considered in this work. In
particular, the Gaussian likelihood should be equivalent to

TABLE III. Parameter dependence of ILC power spectra obtained via symbolic regression for NILC power
spectra, HILC power spectra with weights determined separately for each simulation, and HILC power spectra with
weights determined from a fiducial template and then applied to every simulation. Parameter dependence is shown

for the different elements of the data vector: CT̂T̂
l , CT̂ŷ

l , and Cŷŷ
l . In particular, we show the resulting expressions for

fp̂q̂b ðACMB; AftSZÞ from Eq. (27), where b ¼ 5 here, corresponding to a mean multipole l ¼ 138.

Spectrum Expression

NILC CT̂T̂
b¼5 0.57870084ACMB − 1.53680702801541 × 10−5ðAftSZÞ27 þ 0.42053628

NILC CT̂ŷ
b¼5 expð ACMB−1=AftSZ

ACMB=AftSZþ2.737616Þ
NILC Cŷŷ

b¼5 0.03574537ACMB − 0.03574537ðAftSZÞ2 þ AftSZ

HILC (weights vary) CT̂T̂
b¼5 expf½ðACMBÞ4 − AftSZ� × expð−2ACMBÞg

HILC (weights vary) CT̂ŷ
b¼5 expf0.22931802ACMB − 0.22931802 × exp½ðACMB−AftSZÞ3�

AftSZ
g

HILC (weights vary) Cŷŷ
b¼5 0.036737457ACMB − 0.036737457ðAftSZÞ2 þ AftSZ

HILC (weights fixed) CT̂T̂
b¼5 0.5588486ACMB þ 0.4411514AftSZ

HILC (weights fixed) CT̂ŷ
b¼5 0.24519494ACMB þ 0.75480506AftSZ

HILC (weights fixed) Cŷŷ
b¼5 0.076038094388331ACMB þ 0.923961905611669AftSZ

FIG. 11. Parameter posteriors obtained via LFI (left) and Gaussian likelihoods (right) using simulations containing only Gaussian
random fields (here the ftSZ field is a Gaussian realization of an amplified template tSZ power spectrum). In both figures, we compare
the results using various summary statistics: multifrequency power spectra (described in Sec. V), harmonic ILC (HILC) power spectra
(with a few variants based on weight determination and parameter dependence determination that are described in Sec. VI), and NILC
power spectra (described in Sec. VII). For LFI, we use 30000 simulations for each pipeline. For the Gaussian likelihood, we use 2000
simulations and show the distribution of maximum-likelihood estimates from each simulation.
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likelihood-free inference since the Gaussian likelihood
assumption must hold when every field in the problem
is Gaussian random.6 Moreover, without the presence of
large non-Gaussian fields, we would expect that there is no
additional information for NILC to extract that is not
already encompassed by the two-point functions contained
in the multifrequency power spectra. Thus, we also expect
that using multifrequency power spectra, HILC power
spectra, and NILC power spectra as summary statistics
should all yield nearly identical results. We use this fact to

validate all of the methods presented in this paper and to
assess the significance of 2D posterior area reductions in
the full non-Gaussian ftSZ field case.
The posterior distributions for both LFI and the Gaussian

likelihood (with posteriors computed via MLE here) are
shown in Fig. 11. From these plots, we see that multi-
frequency, HILC, and NILC power spectra yield nearly
identical posteriors. Figure 12 compares the posteriors from
LFI and the Gaussian likelihood for each of the pipelines,
validating the LFI procedure by showing that it recovers the
same results as the Gaussian likelihood in this situation
where we know that the Gaussian likelihood should hold.
Table IV shows the 1D marginalized posteriors for each of
the methods discussed in this work, evaluated on this setup
of only Gaussian random fields.

FIG. 12. Comparison of posteriors from LFI to those from a Gaussian likelihood for all the summary statistics considered in this work,
computed on simulations consisting only of Gaussian random fields. The Gaussian likelihood is a reasonable assumption when every
field in the simulation is a Gaussian random field.

6Strictly speaking, this is only true for sufficiently high l—at
low l there can still be deviations from Gaussianity in the
likelihood due to the small number of harmonic modes, as
described in, e.g., Ref. [89].
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APPENDIX D: EFFECTS OF VARYING
FREQUENCY CHANNELS

In Sec. IX we consider a toy model in which we use two
frequency channels: 90 and 150 GHz. In this appendix, we
consider various other combinations of frequency channels
to forecast the impact of NILC on parameter constraints.
Our physical sky model is identical to that in Sec. IX,
comprising the CMB and ftSZ fields, but we evaluate these
at different sets of frequencies here. In particular, we
consider the following sets of channels (all in GHz): 90,
120; 90, 150; 90, 280; 90, 120, 150; 90, 150, 280; 90, 150,

220; 280, 353; and 280, 353, 400. The noise models and
beams are the same in each frequency channel. We compute
the results for both the Gaussian likelihood and likelihood-
free inference using each summary statistic (multifre-
quency power spectra, HILC with fixed weights, HILC
with varying weights, and NILC), for each set of frequen-
cies. We then estimate the area of the resulting 2D poste-
riors by extracting the covariance matrix and assuming an
elliptical posterior (a crude approximation but sufficient for
the rough estimation performed here). As described in
Ref. [90], the ellipse parameters are then given by

TABLE IV. Parameter constraints for all the methods considered in this work, as applied to simulations containing only Gaussian
random fields (here the ftSZ field is a Gaussian realization of an amplified tSZ power spectrum template). See Secs. V–VII for
information on using multifrequency power spectra, harmonic ILC power spectra, and needlet ILC power spectra as summary statistics,
respectively. We present 1D marginalized posterior values obtained with the different summary statistics using both likelihood-free
inference (with 30000 simulations) and a Gaussian likelihood (with 2000 simulations). For the Gaussian likelihood, we compute
posteriors using maximum-likelihood estimation (MLE), Fisher matrix calculation, and a Markov chain Monte Carlo (MCMC)
algorithm. Note that we do not quote a central value for the Fisher matrix calculation since it only predicts the error bars (which are
assumed to be symmetric in the Fisher calculation).

Pipeline (using only Gaussian random fields) ACMB AftSZ

Multifrequency PS MLE: 1.000� 0.016 MLE: 0.99998� 0.0064
-Gaussian likelihood Fisher: __�0.016 Fisher: __�0.0065
-Analytic parameter dependence MCMC: 0.999� 0.015 MCMC: 0.99997� 0.0064

Multifrequency PS 1.002� 0.016 0.9994� 0.0068
-Likelihood-free inference

Harmonic ILC MLE: 1.000� 0.016 MLE: 0.99998� 0.0064
-Fixed weights Fisher: __�0.016 Fisher: __�0.0065
-Gaussian likelihood MCMC: 0.999� 0.016 MCMC: 1.0001� 0.0064
-Analytic parameter dependence

Harmonic ILC MLE: 1.000� 0.016 MLE: 1.0000� 0.0064
-Fixed weights Fisher: __�0.016 Fisher: __�0.0065
-Gaussian likelihood MCMC: 0.9997� 0.016 MCMC: 1.0006� 0.0062
-Parameter dependence from symbolic regression

Harmonic ILC 1.001� 0.016 0.9996� 0.0065
-Fixed weights
-Likelihood-free inference

Harmonic ILC MLE: 1.001� 0.015 MLE: 0.99995� 0.0064
-Varying weights Fisher: __�0.015 Fisher: __�0.0064
-Gaussian likelihood MCMC: 1.002� 0.015 MCMC: 0.9995� 0.0064
-Parameter dependence from symbolic regression

Harmonic ILC 1.000� 0.014 0.9995� 0.0062
-Varying weights
-Likelihood-free inference

Needlet ILC MLE: 1.001� 0.015 MLE: 1.0000� 0.0064
-Gaussian likelihood Fisher: __�0.015 Fisher: __�0.0064
-Parameter dependence from symbolic regression MCMC: 1.000� 0.016 MCMC: 1.0002� 0.0064

Needlet ILC 1.001� 0.015 0.9997� 0.0065
-Likelihood-free inference
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FIG. 13. Posteriors using various summary statistics and frequency combinations with LFI.

TABLE V. Area of 2D posteriors multiplied by a factor of 1000 for clarity (assuming elliptical posteriors) for various frequency
combinations, using likelihood-free inference. We note that the elliptical approximation is crude in some cases.

Frequencies (GHz) Multifrequency PS HILC (weights once) HILC (weights vary) NILC

90, 120 36.0 35.2 30.6 18.8
90, 150 16.0 14.2 12.2 6.3
90, 280 5.5 5.3 5.1 5.0
90, 120, 150 16.0 13.4 11.9 7.2
90, 150, 280 5.3 5.4 5.0 5.3
90, 150, 220 6.0 6.1 5.7 4.6
280, 353 11.4 10.3 8.5 4.6
280, 353, 400 10.8 8.3 8.2 5.3

CONSTRAINING COSMOLOGICAL …. II. LIKELIHOOD-FREE … PHYS. REV. D 110, 063510 (2024)

063510-25



a2 ¼ σ2x þ σ2y
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2x − σ2yÞ2

4
þ σ2xy

s
; ðD1Þ

b2 ¼ σ2x þ σ2y
2

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2x − σ2yÞ2

4
þ σ2xy

s
; ðD2Þ

and the area of ellipse is then

A ¼ πabΔχ2; ðD3Þ

where Δχ2 ¼ 2.3 for the 68% confidence interval.
Table V details the 68% confidence ellipse areas for each

of the frequency sets for each summary statistic, using
likelihood-free inference, and Fig. 13 shows the posteriors,
comparing the various summary statistics for each indi-
vidual set of frequencies. Notably, the 2D posterior
obtained using NILC power spectra as a summary statistic
(blue contours in Fig. 13) is the same or smaller than the 2D
posteriors obtained using multifrequency power spectra as
a summary statistic (green contours in Fig. 13) for every set
of frequencies. Table VI and Fig. 14 show the analogous
information obtained using a Gaussian likelihood instead
of LFI.
Using harmonic ILC with fixed weights, “HILC (weights

once),” often yields smaller 2D posterior areas than using
multifrequency power spectra in the LFI case. From an
information perspective, both methods contain the exact
same information, as the former just rescales the latter by

some fixed constants that are applied to every simulation in
the same way. This indicates that the LFI may not yet have
converged for the multifrequency power spectrum case.
Thus, this simple rescaling into HILC power spectra may
aid in the algorithm’s ability to learn parameters by trans-
forming the data into a space that is more immediately
connected to the parameters of interest.
Also of note is that, in most cases, adding additional

frequency channels increases the constraining power of a
given summary statistic, where the constraining power is
estimated by the area of the Fisher ellipse. As can be seen in
Table V, there are a few exceptions to this trend. From an
information content standpoint, adding frequency channels
can only add information and thus increase constraining
power. Thus, we attribute minor deviations from the expec-
ted trend to lack of full LFI convergence (or need for more
simulations in the Gaussian likelihood case) and the crude
approximation that the 2D posteriors are elliptical.
In our setup, we have selected the amplification factor of

the Compton-y field specifically such that the resulting ftSZ
power spectrum would have comparable magnitude to that
of the CMB. Thus, depending on the frequency used, the
tSZ SED could make the ftSZ power spectrum either larger
or smaller than that of the CMB. This would play a role in
which parameter is most well constrained. We observe this
effect in the NILC posteriors in Fig. 15, where the
orientation of the posterior interestingly flips, for example,
when switching from using 90 and 150 GHz channels to
using 90, 150, and 280 GHz channels.

TABLE VI. Area of 2D posteriors multiplied by a factor of 1000 for clarity (assuming elliptical posteriors) for
various frequency combinations, using Gaussian likelihoods. For the HILC (weights once) case, we use the analytic
parameter dependence. We note that the elliptical approximation is crude in some cases. In particular, for the case of
280, 353, and 400 GHz, it appears that the HILC (weights once) posterior is significantly smaller than the
multifrequency PS posterior. However, the 1D marginalized posteriors are ACMB ¼ 1.000� 0.010 and AftSZ ¼
1.00þ0.10

−0.18 in the HILC (weights once) pipeline, and ACMB ¼ 1.000� 0.010 and AftSZ ¼ 0.999þ0.12
−0.17 in the

multifrequency PS case, and thus, the two methods actually produce nearly identical numerical posteriors.

Frequencies (GHz) Multifrequency PS HILC (weights once) HILC (weights vary) NILC

90, 120 46.8 46.5 25.4 19.1
90, 150 19.5 19.5 11.2 8.3
90, 280 7.9 7.9 7.8 7.9
90, 120, 150 19.1 19.4 12.4 10.2
90, 150, 280 7.5 7.7 7.8 7.7
90, 150, 220 8.5 8.7 9.0 6.6
280, 353 14.4 14.4 12.3 5.8
280, 353, 400 14.2 11.8 11.7 7.6
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FIG. 14. Posteriors using various summary statistics and frequency combinations with Gaussian likelihoods. For the HILC (weights
once) case, we use the analytic parameter dependence.
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[50] G. Papamakarios and I. Murray, arXiv:1605.06376.
[51] J.-M. Lueckmann, P. J. Goncalves, G. Bassetto, K. Öcal, M.

Nonnenmacher, and J. H. Macke, arXiv:1711.01861.
[52] D. S. Greenberg, M. Nonnenmacher, and J. H. Macke,

arXiv:1905.07488.
[53] M. Deistler, P. J. Goncalves, and J. H. Macke, arXiv:2210

.04815.
[54] G. Papamakarios, T. Pavlakou, and I. Murray, arXiv:1705

.07057.
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