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The internal linear combination (ILC) method is a popular approach for constructing component-
separated maps in cosmic microwave background analyses. It optimally combines observed maps at
different frequencies to produce an unbiased minimum-variance map of a component. When performed
in harmonic space, it is straightforward to analytically compute the contributions of individual sky
components to the power spectrum of the resulting ILC map. ILC can also be performed on a basis of
needlets, spherical wavelets that have compact support in both pixel and harmonic space, capturing both
scale-dependent and spatially varying information. However, an analytic understanding of the power
spectra of needlet ILC (NILC) component-separated maps, as needed to enable their use in cosmological
parameter inference, has remained an outstanding problem. In this paper, we derive the first analytic
expression for the power spectra of NILC maps, as well as an expression for the cross spectrum of a NILC
map with an arbitrary second map, in terms of contributions from individual sky components. We validate
our result using simulations, finding that it is exact. These results contain useful insights: we explicitly see
how NILC power spectra contain information from contaminant fields beyond the two-point level, and we
obtain a formalism with which to parametrize NILC power spectra. However, because this parameter
dependence is complicated by correlations and higher-point functions of the component maps and weight
maps, we find that it is intractable to perform parameter inference using these analytic expressions. Instead,
numerical techniques are needed to estimate parameters using NILC maps—we explore the use of
likelihood-free inference with neural posterior estimation in a companion paper.

DOI: 10.1103/PhysRevD.110.063509

I. INTRODUCTION

In cosmic microwave background (CMB) data analyses,
it is often useful to produce a best-estimate map of a
specific signal in the sky [1–3]. Several “component-
separation” techniques have been developed for this pur-
pose.1 One class of component separation methods works
by subtracting foreground templates, either in the map or
spherical harmonic domain. Examples include spectral esti-
mation via expectation maximization (SEVEM) [4–6],
which constructs foreground templates by map-level dif-
ferencing of low and high frequency channels, and spectral
matching independent component analysis (SMICA) [7,8],
which works by comparing the data to a spectral domain
model and fitting a minimal set of basis parameters without
explicitly separating a map into components. Other tech-
niques, such as Commander [9,10], fit parametric models
of the sky in each pixel and involve Monte Carlo methods.
Internal linear combination (ILC) [11–13] is a semiblind

approach that estimates the signal of interest by finding the

minimum-variance linear combination of the observed
frequency maps that satisfies the constraint of unit response
to the signal of interest. It can be performed on several
domains, including real/pixel space and harmonic space.
Notably, it is often applied on a basis of needlets in what is
known as needlet ILC, or NILC [14]. Needlets are a basis
of spherical wavelets that have compact support in both
pixel and harmonic space, allowing weights to vary as func-
tions of both angular scale and position. Needlet ILC has
been used to construct high-resolution maps of individual
components using Planck, the Atacama Cosmology Tele-
scope (ACT), and the South Pole Telescope (SPT) data
(e.g., Refs. [15–19]) and has also been used for simulation
analysis of future experiments such as the Simons
Observatory, CMB-S4, and LiteBIRD, e.g., Refs. [20–22].
While the use of NILC has been popular at the map level,

it is also useful to study the power spectra of the resulting
NILC maps. For example, several previous studies have
computed and interpreted the power spectra of the Planck
NILC Compton-y map [15,16,23–25]. However, there
have been far fewer attempts at using the power spectra
of NILC component-separated maps in cosmological
parameter inference. One notable attempt was made in
the Planck 2015 component separation analysis, which
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tried to perform inference using component-separated maps
from various techniques, including NILC [26]. To estimate
residual foreground contributions to the NILC power
spectrum, they passed full focal plane 8 (FFP8) simulated
foreground maps consisting of synchrotron, free-free,
dust, CO, thermal Sunyaev-Zeldovich (tSZ), and cosmic
infrared background emission through the NILC pipeline.
The resulting power spectrum was treated as a template
in the NILC CMB map power spectrum, and was then
marginalized over via a single amplitude parameter at the
power spectrum level in the parameter inference process.
The Planck team found systematic uncertainties related to
the foreground propagation at the 1–2σ level due to this
method of foreground modeling (by comparing with the
best-fit ΛCDM model from the Planck 2015 multifre-
quency power spectrum likelihood) and thus concluded that
component-separated maps should not be used for robust
cosmological parameter inference at that time. The single-
parameter extragalactic foreground template was used
because the propagation of foregrounds to NILC maps
was thought to be too complicated to model. The reasoning
is as follows: when ILC is performed in harmonic space, it
is straightforward to compute the power spectrum of the
resulting ILC map analytically since the weights are only l
dependent and not m dependent. However, this is not the
case for NILC, where the weights have nontrivial depend-
ence on both l and m due to their spatially varying nature.
Thus, the power spectrum of the resulting NILC map is not
a simple linear combination of the autospectra and cross-
power spectra of the sky components at each multipole.
In this paper, we provide the first analytic expression for

the power spectra of NILC maps by treating the NILC
weight maps as effective “masks” and building on standard
techniques used in mask mode-coupling analyses. Our goal
is to better model foreground propagation into NILC maps,
so that it can be treated in a more rigorous way when doing
parameter inference, hopefully resolving some of the
systematic uncertainties that were observed in Ref. [26].
Since NILC efficiently captures non-Gaussian information
with its spatially varying weights, this approach could lead
to smaller parameter error bars than traditional multifre-
quency power spectrum template-fitting techniques (used
in current state-of-the-art cosmological parameter measure-
ments with Planck [1], ACT [27,28], and SPT [29]) since
essentially all CMB foregrounds are non-Gaussian. In
particular, using a NILC weighting scheme, one could
better suppress non-Gaussian CMB foregrounds, thus
improving inference of the CMB component and yielding
smaller cosmological parameter error bars.
The remainder of this paper is organized as follows. In

Sec. II, we review ILC variants, specifically real-space ILC,
harmonic ILC, and needlet ILC (NILC). In Sec. III, we
derive an analytic expression for the autospectra and
cross-power spectra of NILC component-separated maps,
with the final result given in Eq. (26), and in Sec. IV we

explicitly validate this result using simulations. Finally, in
Sec. V we discuss our results and their interpretation, as
well as ongoing follow-up work.

II. INTERNAL LINEAR COMBINATION

In this section, we review formulations of the ILC
method in various domains. The overall goal is to produce
an unbiased map of some component of interest, while
minimizing the variance of that map. To enforce the
constraint that the final map is an unbiased map of the
signal, we require it to have unit response to that signal,
using its spectral energy distribution (SED). In this paper
we review standard minimum-variance ILC methods,
though it is also possible to impose constraints that
deproject contaminants using their known SEDs [30,31],
moment deprojection [32,33], or tracers [34].

A. Real-space ILC

In pixel space, we seek to estimate the signal of interest
in some pixel p via a weighted linear combination of the
frequency maps in that pixel: T̂ðpÞ ¼Pi wiΔTiðpÞ, where
ΔTiðpÞ is the temperature fluctuation in the ith frequency
map in pixel p and wi is the associated weight. Then the
problem of finding the weights can be expressed as follows:

min
wi

σ2
T̂
¼ N−1

pix

X
p

ðT̂ðpÞ − hTiÞ2

such that
X
i

wigi ¼ 1; ð1Þ

where Npix is the number of pixels in the region of interest,
hTi is the average signal across pixels in that region,
and gi is the spectral response of the component of interest
at the ith frequency channel (a vector of ones for the
CMB, assuming the maps are in CMB thermodynamic
temperature units). The first line of Eq. (1) minimizes the
variance of the ILC map, while the second line enforces
the constraint of unit response to the signal of interest. The
solution for the weights can be found using Lagrange
multipliers [13]:

wi ¼
P

jgjðR̂−1ÞijP
kmgkðR̂−1Þkmgm

with R̂ij ¼ N−1
pix

X
p

ΔTiðpÞΔTjðpÞ; ð2Þ

where R̂ij is the empirical frequency-frequency covariance
matrix of the observed maps on the region of interest. Real-
space ILC can also be performed on various subregions of a
map to account for spatially varying foregrounds. In that
case, the ILC procedure is performed separately on each of
the defined subregions, minimizing the variance of the final
reconstructed map in that region alone. For instance, in the
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Wilkinson Microwave Anisotropy Probe (WMAP) analy-
ses, the sky was partitioned into 12 regions [13].

B. Harmonic-space ILC

The ILC method can also be formulated in harmonic
space, giving l-dependent weights:

wi
l ¼

P
jðR̂−1

l ÞijgjP
kmðR̂−1

l Þkmgkgm

with
�
R̂l

�
ij ¼

XlþΔl=2

l0¼l−Δl=2

2l0 þ 1

4π
Cij
l0 : ð3Þ

The multipole bin width Δl must be large enough to
mitigate the “ILC bias” that results from computing the
covariances for ILC weights using a finite number of
modes [14].
In the harmonic ILC approach, we construct the har-

monic transform of the ILC map, T̂lm, via

T̂lm ¼
X
i

wi
lT

i
lm: ð4Þ

The ILC weights are given by Eq. (3), where the matrix of
autospectra and cross-power spectra Cij

l is just the fre-
quency-frequency covariance matrix at this multipole.
As previously mentioned, it is straightforward to write

down the power spectrum of a harmonic ILC map since the
weights are only l dependent and not m dependent. The
power spectrum is given by CT̂ T̂

l ¼ wi
lw

j
lC

ij
l .

C. Needlet-frame ILC

To maximize the robustness and flexibility of the ILC
procedure, it is frequently applied to CMB data on a needlet
frame [1,2,14–16,23,26,35–37]. Needlets are a set of basis
functions on the sphere that possess compact support in
both the harmonic and pixel-space domains [38,39]. Thus,
one can obtain ILC weights that vary both as a function of
scale (i.e., depending on multipole l) and as a function of
position (i.e., depending on direction or spatial pixel n̂),
allowing us to apply an optimal weighting scheme to non-
Gaussian and/or nonisotropic foregrounds. Here we briefly
summarize the NILC procedure [14,40].
Consider a set of maps Tiðn̂Þ, where i labels the

frequency channel of each map in our dataset. For a

needlet filter hðnÞl , labeled by the index (n) which ranges
from 1 to Nscales (the total number of needlet filter scales),
the NILC operations on this set of frequency maps consist
of the following steps:

(i) Filter each frequency map in harmonic space with
the needlet filter function hðnÞl :

Ti
lm → Ti;ðnÞ

lm ≡ Ti
lmh

ðnÞ
l : ð5Þ

(ii) Define some local domains in pixel space, and
compute the smoothed frequency-frequency covari-
ance matrix on each domain. Specifically, let DðnÞ

α

denote a real-space domain in frequency maps that
have been filtered with needlet scale (n), where α
labels each domain on that map. The frequency-
frequency covariance matrix is then computed as

ðR̂ðnÞ
α Þij ¼ N−1

pix

X
p∈DðnÞ

α

ΔTiðpÞΔTjðpÞ; ð6Þ

where Npix is the number of pixels in DðnÞ
α . Note that

this equation is nearly the same as Eq. (2) for the
real-space ILC frequency-frequency covariance
matrix, except that this is done independently for
each needlet filter scale. In practice, Eq. (6) is
usually implemented by smoothing the product
map ΔTiΔTj with a Gaussian kernel, with larger
kernels used for lower-multipole needlet filter
scales.

(iii) For each needlet filter scale and each frequency
channel, determine a map of weights in pixel space
Wi;ðnÞðn̂Þ in an analogous fashion to Eq. (2). The
weight maps are determined via the ILC algo-
rithm [i.e., Eq. (2)] performed on the local pixel
space domains from the previous step. Multiply
each filtered frequency map by the corresponding
weight map:

Ti;ðnÞðn̂Þ → T̃i;ðnÞðn̂Þ≡ Ti;ðnÞðn̂ÞWi;ðnÞðn̂Þ: ð7Þ

(iv) Add up these ILC-weighted maps to obtain a single
ILC map at this needlet filter scale:

TNILC;ðnÞðn̂Þ ¼
X
i

T̃i;ðnÞðn̂Þ: ð8Þ

(v) Apply the filter hðnÞl again:

TNILC;ðnÞ
lm → TNILC;ðnÞ;ðnÞ

lm ≡ TNILC;ðnÞ
lm hðnÞl : ð9Þ

(vi) Add up the results from all filter scales to obtain the
final NILC map:

TNILCðn̂Þ ¼
X
ðnÞ

TNILC;ðnÞ;ðnÞðn̂Þ: ð10Þ

In creating a NILCmap in this manner, the signal of interest
will propagate in an unbiased fashion to the final map,
due to the ILC signal-preservation constraint and the NILC

filter power-preservation constraint,
P

ðnÞ ðhðnÞl Þ2 ¼ 1 at
each l. However, residual contaminant signals will
generally propagate in a nontrivial way, which we derive
in Sec. III.
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III. DERIVATION OF NILC POWER SPECTRA

We seek to derive an analytic expression that captures all
contributions to NILC map power spectra, allowing us to
easily see how various contaminants propagate. We derive
an equation for the final power spectrum of a NILC map in
terms of needlet filter functions, spectral response vectors,
and n-point functions of the component maps and
weight maps.

A. Notation and definitions

1. Power spectrum

Letting Tðn̂Þ represent the map of the signal of interest
and Wðn̂Þ represent some weight map (i.e., a mask or

“window” in common CMB analysis terminology), we
express the weighted (or masked) map as T̃ðn̂Þ≡
Wðn̂ÞTðn̂Þ. Each of these quantities can be expanded in
harmonic space as follows:

Tðn̂Þ ¼
X
l;m

almYlmðn̂Þ; Wðn̂Þ ¼
X
l;m

wlmYlmðn̂Þ;

T̃ðn̂Þ ¼
X
l;m

ãlmYlmðn̂Þ; ð11Þ

where Ylmðn̂Þ are spherical harmonics and
P

l;m≡P∞
l¼0

Pl
m¼−l. The angular autospectra and cross-power

spectra of the map and mask/weight map are defined as

hal1m1
al2m2

i ¼ ð−1Þm1ha�l1−m1
al2m2

i≡ ð−1Þm1Caa
l1
δKl1;l2δ

K
m1;−m2

hal1m1
wl2m2

i ¼ ð−1Þm1ha�l1−m1
wl2m2

i≡ ð−1Þm1Caw
l1
δKl1;l2δ

K
m1;−m2

hwl1m1
wl2m2

i ¼ ð−1Þm1hw�
l1−m1

wl2m2
i≡ ð−1Þm1Cww

l1
δKl1;l2δ

K
m1;−m2

; ð12Þ

where δK is the Kronecker delta function and we have
assumed statistical isotropy of the maps and masks.

2. Bispectrum

The connected bispectrum, or the connected three-point
function, consisting of two factors of the map and one
factor of the mask is defined as [41–44]

hal1m1
al2m2

wl3m3
ic ≡ Bl1l2l3

m1m2m3
½aaw�≡ Gl1l2l3

m1m2m3
baawl1l2l3

;

ð13Þ

where Bl1l2l3
m1m2m3

½aaw� is the connected bispectrum and
baawl1l2l3

is the reduced bispectrum, which is symmetric
under any permutation of the joint set fðl1; aÞ; ðl2; aÞ;
ðl3; wÞg. In Eq. (13), Gl1l2l3

m1m2m3
represents the Gaunt integral,

which is symmetric under exchange of ðl; mÞ pairs and can
be expanded in terms of Wigner 3j symbols:

Gl1l2l3
m1m2m3

≡
Z

dn̂Yl1m1
ðn̂ÞYl2m2

ðn̂ÞYl3m3
ðn̂Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

0 0 0

��
l1 l2 l3

m1 m2 m3

�
: ð14Þ

3. Trispectrum

The connected trispectrum, or the connected four-point
function, consisting of two factors of the map and two

factors of the mask is defined as [45,46]

�
al1m1

al2m2
wl3m3

wl4m4

�
c ≡

X∞
L¼0

XL
M¼−L

ð−1ÞMGl1l2L
m1m2−M

× Gl3l4L
m3m4M

t½aaww�l1l2l3l4
ðLÞ

þ 23 perms:; ð15Þ

where the permutations are taken over the joint set
fðl1; m1; aÞ; ðl2; m2; aÞ; ðl3; m3; wÞ; ðl4; m4; wÞg and
t½aaww�l1l2l3l4

ðLÞ is the reduced (parity-even) trispectrum.
For two different fields a and w, the reduced trispectrum
has the following symmetries:

t½aaww�l1l2l3l4
ðLÞ ¼ t½aaww�l2l1l3l4

ðLÞ ¼ t½aaww�l1l2l4l3
ðLÞ

¼ t½wwaa�l3l4l1l2
ðLÞ; ð16Þ

giving a set of eight equal permutations of the reduced
trispectrum.
We also define the estimator

ρ̂½awaw�l1l3l2l4
ðLÞ≡ X

m1;m2;m3;m4;M

ð−1ÞMGl1l3L
m1m3−M

× Gl2l4L
m2m4M

al1m1
al2m2

wl3m3
wl4m4

: ð17Þ

The expectation of ρ̂½awaw�l1l3l2l4
ðLÞ is then [from Eq. (15)]
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hρ̂½awaw�l1l3l2l4
ðLÞi ¼

X
m1m2m3m4

X
L0MM0

ð−1ÞMþM0
Gl1l3L
m1m3−MG

l2l4L
m2m4M

h
Gl1l2L0
m1m2−M0G

l3l4L0
m3m4M0t½aaww�l1l2l3l4

ðL0Þ þ 23 perms
i
; ð18Þ

where the 23 additional permutations are taken over only the
piece in brackets. This estimator is the first step to measuring
the trispectrum from data before we have to decorrelate and
normalize it, as explained in detail in Ref. [47]. The
decorrelation/normalization is necessary since hρ̂l1l2l3l4

ðLÞi
depends on tl1l2

l3l4
ðL0Þ with L ≠ L0. Such correlation stems

from the fact that there are two distinct internal legs that can
be used to parametrize a quadrilateral. Thus, the decorrela-
tion makes the reduced trispectrum diagonal in L.

4. Components, frequencies, and filter scales

We use indices y and z to denote different sky compo-
nents, such as the CMB and tSZ effect. For example, Cyz

l is
the cross spectrum of components y and z. Indices p̂ and q̂
denote NILC maps with preserved components p and q,
respectively. For example, Cp̂ q̂

l denotes the cross spectrum
of a NILC map with preserved component p and a NILC
map with preserved component q. Frequencies are indexed
with i and j. For example, gyi is the spectral response of
component y at the ith frequency. Needlet filter scales are

indexed with (n) and (m). For example, hðnÞl is the needlet
filter at scale n. This information is summarized in Table I.

Some examples of the notation are as follows: Cy;piðnÞ
l is

the cross spectrum of component y and the weight map at
frequency i and scale (n) for a NILC map with preserved

component p. by;z;piðnÞl1l2l3
is the reduced bispectrum involving

component y, component z, and the weight map at fre-
quency i and scale (n) for a NILC map with preserved

component p. by;piðnÞ;qjðmÞ
l1l2l3

is the reduced bispectrum
involving component y, the weight map at frequency i
and scale (n) for a NILC map with preserved compo-
nent p, and the weight map at frequency j and scale (m)
for a NILC map with preserved component q. Finally,
hρ̂½y; piðnÞ; z; qjðmÞ�l2l4

l3l5
ðl1Þi is the estimator ρ̂ involving

one factor of component y, one factor of the weight map at
frequency i and scale (n) for a NILC map with preserved
component p, one factor of component z, and one factor of
the weight map at frequency j and scale (m) for a NILC
map with preserved component q.

B. Derivation of autospectra and cross-power
spectra of NILC maps

In this section, we derive an analytic expression for all
contributions to the power spectrum of a NILC map, as well
as cross spectra of such maps. Our starting point is Eq. (10),
which gives the expression for a NILC map in pixel space.
To obtain the spherical harmonic transform of this expres-
sion, we follow the steps in Sec. II C, working backwards:

TNILC
l1m1

¼
X
ðnÞ

TNILC;ðnÞ;ðnÞ
l1m1

¼
X
ðnÞ

hðnÞl1
TNILC;ðnÞ
l1m1

¼
X
i

X
ðnÞ

hðnÞl1
T̃i;ðnÞ
l1m1

¼
X
i

X
ðnÞ

hðnÞl1

	
Ti;ðnÞWi;ðnÞ


l1m1
:

ð19Þ

We thus have an expression for the spherical harmonic
transform of a NILC map in terms of needlet filters and the
harmonic transforms of weighted frequency maps. The next
step is to explicitly compute the harmonic transform of a
weighted frequency map. Motivated by the MASTER
formalism [48], which gives a simple relationship for the
power spectrum of a masked map in terms of the power
spectrum of the unmasked map and the power spectrum of
the mask, we express the spherical harmonic transform of a
“masked”map (here we treat the weight map as an effective
mask) by doing the following:

½Ti;ðnÞWi;ðnÞ�l1m1
≡
Z

dn̂Ti;ðnÞðn̂ÞWi;ðnÞðn̂ÞY�
l1m1

ðn̂Þ

¼
X
l2m2

Ti;ðnÞ
l2m2

Z
dn̂Yl2m2

ðn̂ÞWi;ðnÞðn̂Þ

×Y�
l1m1

ðn̂Þ
¼
X
l2m2

X
l4m4

ð−1Þm1Gl1l2l4
−m1m2m4

Wi;ðnÞ
l4m4

Ti;ðnÞ
l2m2

¼
X
l2m2

X
l4m4

ð−1Þm1Gl1l2l4
−m1m2m4

hðnÞl2
Wi;ðnÞ

l4m4
Ti
l2m2

:

ð20Þ

TABLE I. Notation and meaning of indices used for NILC power spectrum modeling.

Indices Meaning Sample quantities

y, z Sky components Cyz
l (cross spectrum of components y and z)

p̂; q̂ Preserved components
in NILC maps

Cp̂ q̂
l (cross spectrum of NILC map with preserved component p

and NILC map with preserved component q)
i, j Frequencies gyi (spectral response of component y at the ith frequency)
ðnÞ; ðmÞ Needlet filter scales hðnÞl (needlet filter at scale (n))
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In going from the second to the third line above, we
expanded the weight mapWi;ðnÞðn̂Þ [i.e., the weight map for
the ith frequency channel at needlet filter scale (n)] in terms

of spherical harmonic coefficients, Wi;ðnÞ
l4m4

, and then used
the definition of the Gaunt integral from Eq. (14). Using
Eq. (20) in Eq. (19), we thus obtain

TNILC
l1m1

¼
X
i

X
ðnÞ

X
l2m2

X
l4m4

ð−1Þm1Gl1l2l4
−m1m2m4

hðnÞl1
hðnÞl2

×Wi;ðnÞ
l4m4

Ti
l2m2

: ð21Þ

This result shows how the spherical harmonic transform of
a NILC map can be simply expressed in terms of needlet
filters, the input frequency maps, and weights maps
determined via the NILC algorithm.
With the harmonic coefficients on hand, we can proceed

to evaluate autospectra and cross-power spectra of NILC
maps. To obtain the cross spectrum of a NILC map with
some other NILC map, we add an index denoting which
component is preserved for the construction of each NILC
map, since the preserved component dictates the weight
maps. Thus, to denote a weight map at frequency i and
scale (n) used to build a NILC map with some preserved
component p, we use WpiðnÞ. Then the cross spectrum of a
NILC map with preserved component p and a NILC map
with preserved component q is

hCp̂ q̂
l1
i ¼ 1

2l1 þ 1

Xl1
m1¼−l1

X
i;j

X
ðnÞ;ðmÞ

X
l2m2

X
l3m3

X
l4m4

X
l5m5

× hðnÞl1
hðmÞ
l1

hðnÞl2
hðmÞ
l3

Gl1l2l4
−m1m2m4

Gl1l3l5
−m1m3m5

×
�
WpiðnÞ

l4m4
Ti
l2m2

ðWqjðmÞ
l5m5

Þ�ðTj
l3m3

Þ��: ð22Þ

The above result expresses NILC power spectra in terms of
needlet filters and a four-point correlation function of the

input frequency maps and NILC-determined weight maps.
If the weight maps and frequency maps were uncorrelated,
we could rewrite the four-point function as the product of
two two-point functions, where one two-point function
involves the weight maps alone, and the other two-point
function involves the frequency maps alone, i.e.,

�
WpiðnÞ

l4m4
Ti
l2m2

ðWqjðmÞ
l5m5

Þ�ðTj
l3m3

Þ��
¼ �WpiðnÞ

l4m4
ðWqjðmÞ

l5m5
Þ�ihTi

l2m2
ðTj

l3m3
Þ��:

We could then apply the standard MASTER result for
relating the power spectrum of a masked map to an
expression involving the product of the power spectrum
of the mask and the power spectrum of the map. The
problem here is that the weight maps and frequency maps
are actually correlated, and thus the separation into two
two-point functions is not possible. Instead, all of the Wick
contractions contribute to the four-point function. The
weight maps determined by the NILC algorithm are
specifically constructed so as to suppress foreground
contamination and instrumental noise, and will thus nat-
urally be correlated with the frequency maps themselves.
We thus require a slightly different approach.
Treating the weight map as an effective mask and noting

that the map at each frequency and the corresponding
weight map are correlated by consequence of the ILC
weight determination algorithm (the ILC weights are
optimized to clean out contaminant fields and noise), we
note that a subset of this problem is very similar to a
problem that has been solved using the reMASTERed
approach [49]. The reMASTERed approach is a generali-
zation of the MASTER approach [48] that provides
correction terms to the MASTER result in the case that
the map and mask fields are correlated. It states that the
ensemble-averaged power spectrum of a masked map,
hC̃l1i, is given by

hC̃l1i ¼
1

2l1 þ 1

Xl1
m1¼−l1

X
l2m2

X
l3m3

X
l4m4

X
l5m5

�
al2m2

a�l3m3
wl4m4

w�
l5m5

�
Gl1l2l4
−m1m2m4

Gl1l3l5
−m1m3m5

¼ 1

4π

X
l2;l3

ð2l2 þ 1Þð2l3 þ 1Þ
�
l1 l2 l3

0 0 0

�
2
�
hCaa

l2
ihCww

l3
i þ hCaw

l2
ihCaw

l3
i þ hw00iffiffiffi

π
p hbaawl1l2l3

i þ ha00iffiffiffi
π

p hbwawl1l2l3
i
�

þ 1

2l1 þ 1

X
l2l3l4l5

�
ρ̂½awaw�l2l4l3l5

ðl1Þ
�
; ð23Þ

where a and w denote the map and mask, respectively. In our case, the first difference is that we have two different
temperature maps and two different weight maps. To make contact with Eq. (22), we revisit the reMASTERed deriva-
tion (Appendix A of Ref. [49]) and note that the result can be generalized as follows for the cross-power spectrum of two
masked maps:
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hCãã0
l1
i ¼ 1

2l1 þ 1

Xl1
m1¼−l1

X
l2m2

X
l3m3

X
l4m4

X
l5m5

hal2m2
ða0l3m3

Þ�wl4m4
ðw0

l5m5
Þ�iGl1l2l4

−m1m2m4
Gl1l3l5
−m1m3m5

¼ 1

4π

X
l2;l3

ð2l2 þ 1Þð2l3 þ 1Þ
�
l1 l2 l3

0 0 0

�
2
�
hCaa0

l2
ihCww0

l3
i þ hCaw0

l2
ihCa0w

l3
i þ hw00i

2
ffiffiffi
π

p hbaa0w0
l1l2l3

i

þ hw0
00i

2
ffiffiffi
π

p hbaa0wl1l2l3
i þ ha00i

2
ffiffiffi
π

p hbwa0w0
l1l2l3

i þ ha000i
2
ffiffiffi
π

p hbwaw0
l1l2l3

i
�
þ 1

2l1 þ 1

X
l2l3l4l5

hρ̂½awa0w0�l2l4l3l5
ðl1Þi; ð24Þ

where a and a0 denote the two maps, w and w0 denote their
respective masks, and ã and ã0 denote the masked maps.
The full derivation of this generalization is shown in the
Appendix. Note that the first term alone on the right-hand
side in the above result, involving hCaa0

l2
ihCww0

l3
i, corresponds

to using the standard MASTER result. Also, note that the
first term does not assume isotropy of the mask/weight map;
however, the other terms do assume isotropy of the mask/
weight map in regions that are correlated with the signal
map. Thus, the result is not exact for masks or weight maps
that are correlated with the signal in an anisotropic manner,

but is still likely to be a very good approximation. In our
simulation-based tests below, we do not see any evidence of
inaccuracy arising from this subtlety.
We apply the result from Eq. (24) to Eq. (22), noting

that the latter two needlet filters’ subscripts in Eq. (22)
must match those of the original maps they filtered (and
the l subscripts of these maps may have changed due to
Kronecker delta functions and index relabeling in the
reMASTERed derivation). Letting a → Ti, a0 → Tj,
w → piðnÞ, and w0 → qjðmÞ [where piðnÞ is shorthand
for WpiðnÞ and similarly for qjðmÞ], this yields

hCp̂ q̂
l1
i ¼

X
i;j

X
ðnÞ;ðmÞ

hðnÞl1
hðmÞ
l1

 
1

4π

X
l2;l3

ð2l2 þ 1Þð2l3 þ 1Þ
�
l1 l2 l3

0 0 0

�
2

×

�
hðnÞl2

hðmÞ
l2

hCTi;Tj

l2
ihCpiðnÞ;qjðmÞ

l3
i þ hðnÞl2

hðmÞ
l3
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l2
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l3
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l2
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00 i
2
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π
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l1l2l3

i
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hðmÞ
l2

hwqjðmÞ
00 i
2
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π
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l1l2l3
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hTi
00i

2
ffiffiffi
π
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l1l2l3

i þ hðnÞl2
hðmÞ
0

hTj
00i

2
ffiffiffi
π

p hbpiðnÞ;Ti;qjðmÞ
l1l2l3

i
�

þ 1

2l1 þ 1

X
l2l3l4l5

hðnÞl2
hðmÞ
l3

hρ̂½Ti; piðnÞ; Tj; qjðmÞ�l2l4l3l5
ðl1Þi

!
: ð25Þ

Noting that the sky map at the ith frequency, Ti, consists of several sky components [labeled by y with associated
component map denoted ayðn̂Þ] with spectral response gyi ≡ gyðνiÞ at frequency νi, we can write Tiðn̂Þ ¼Py g

y
i a

yðn̂Þ and
similarly Tjðn̂Þ ¼Pz g

z
ja

zðn̂Þ, giving

hCp̂ q̂
l1
i ¼

X
y;z

X
i;j

X
ðnÞ;ðmÞ

hðnÞl1
hðmÞ
l1

gyi g
z
j
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4π
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2
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l3
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l3

hCy;qjðmÞ
l2
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l3

i þ hðnÞl1
hðmÞ
l2

hw̄piðnÞihby;z;qjðmÞ
l1l2l3
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hðmÞ
l2
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i þ hðnÞ0 hðmÞ

l2
hȳihbpiðnÞ;z;qjðmÞ

l1l2l3
i þ hðnÞl2

hðmÞ
0 hz̄ihbpiðnÞ;y;qjðmÞ

l1l2l3
i
�

þ 1

2l1 þ 1

X
l2l3l4l5

hðnÞl2
hðmÞ
l3

hρ̂½y; piðnÞ; z; qjðmÞ�l2l4l3l5
ðl1Þi

!
; ð26Þ

where we have used y and z as shorthand for ayðn̂Þ and azðn̂Þ, and have also used the fact that ha00iffiffiffiffi
4π

p ¼ hāiwith ā denoting the
mean of map a. Equation (26) is the main result of this work.
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We note that an alternate, simpler analytic form of
Eq. (26) is

hCp̂q̂
l1
i ¼ 1

2l1 þ 1

X
y;z

X
i;j

X
ðnÞ;ðmÞ

X
l2l3l4l5

hðnÞl1
hðmÞ
l1

gyi g
z
jh

ðnÞ
l2
hðmÞ
l3

× hP̂½y;piðnÞ; z; qjðmÞ�l2l4l3l5
ðl1Þi; ð27Þ

where P̂ is analogous to ρ̂ but for the full unnormalized
trispectrum, as opposed to just the connected unnormalized
trispectrum. However, computationally, it will be much
more efficient to implement Eq. (26) for reasons that will be
discussed in Sec. IV.
As previously mentioned, the derivation of the higher-

order terms in Eq. (26) assumes that the weight maps are
isotropic in regions that are correlated with the input
frequency maps. For many fields of interest, such as the
CMB and tSZ effect, this assumption is valid. However,
one could imagine a setup involving only CMB, dust, and
instrumental noise, and then using NILC to construct a
cleaned CMB map. In such a situation, the weight maps
would be correlated with the anisotropic dust field, as
the NILC acts to suppress the dust contamination in the
final CMB map. The higher-order terms in Eq. (26) would
then not be exact, although likely still a very good
approximation.

C. Derivation of the cross spectrum of a NILC map
with an arbitrary map

In this subsection, we derive an expression for the
contributions to the cross-power spectrum of a NILC map
with some other arbitrary map (which is not a NILC map).
This is not necessary for, e.g., likelihood analysis of a NILC
map power spectrum, but may be useful for other purposes.
We denote the harmonic coefficients of the arbitrary map
as T 0

l1m1
and the harmonic coefficients of the NILC map

as T̂l1m1
. Then using Eq. (21), we seek to compute the

following:

hCT̂T 0
l1

i ¼ 1

2l1 þ 1

Xl1

m1¼−l1

hT̂l1m1
T 0�

l1m1
i

¼ 1

2l1 þ 1

Xl1

m1¼−l1

X
i

X
ðnÞ

X
l2m2

X
l4m4

ð−1Þm1

× Gl1l2l4
−m1m2m4

hðnÞl1
hðnÞl2

hWiðnÞ
l4m4

Ti
l2m2

T 0�
l1m1

i; ð28Þ

where T̂ denotes the NILC map [the same as TNILC

in Eq. (21)].
A subset of this problem was solved in Appendix B of

Ref. [49], which found that the cross spectrum of a masked
map and the (unmasked) map itself is given by

hCãa
l1
i ¼ 1

2l1 þ 1

Xl1
m1¼−l1

X
l2m2

X
l4m4

ð−1Þm1

× Gl1l2l4
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¼ 1

4π
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ð2l2 þ 1Þð2l3 þ 1Þ
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0 0 0

�
2

× hbaawl1l2l3
i þ hw00iffiffiffiffiffiffi

4π
p hCaa

l1
i þ ha00iffiffiffiffiffiffi

4π
p hCaw

l1
i; ð29Þ

where a, w, and ã denote a map, mask, and masked map,
respectively. The first difference here is that we have two
different maps T and T 0. We thus generalize the result in
Eq. (29) as follows:

hCãa0
l1
i ¼ 1

4π

X
l2;l3

ð2l2 þ 1Þð2l3 þ 1Þ
�
l1 l2 l3

0 0 0

�
2

× hba0awl1l2l3
i þ hw00iffiffiffiffiffiffi

4π
p hCaa0

l1
i þ ha00iffiffiffiffiffiffi

4π
p hCa0w

l1
i; ð30Þ

where a0 is the second map. Applying this result to Eq. (28),
and noting that the latter needlet filter’s subscript must
match that of the original map it filtered (and the l
subscripts of these maps may have changed due to
Kronecker delta functions and index relabeling), we obtain

hCT̂T 0
l1

i ¼
X
i;ðnÞ

hðnÞl1

 
1
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hðnÞl2

X
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00 iffiffiffiffiffiffi
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hCTiT 0

l1
i

þ hTi
00iffiffiffiffiffiffi
4π

p hðnÞ0 hCT 0WiðnÞ
l1

i
!
: ð31Þ

Finally, noting again that Ti can be represented as a sum
over the contributions from all sky components,
Ti ¼Py g

y
i a

yðn̂Þ, we thus obtain

hCT̂T 0
l1

i ¼
X
i

X
ðnÞ

hðnÞl1
gyi

 
w̄iðnÞhðnÞl1
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l1

i þ ȳhðnÞ0 hCT 0WiðnÞ
l1

i

þ 1

4π
hðnÞl2

X
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ð2l2 þ 1Þð2l3 þ 1Þ

×

�
l1 l2 l3

0 0 0

�
2

hbT 0yWiðnÞ
l1l2l3

i
!
; ð32Þ

where y is used as shorthand for ayðn̂Þ and we have used

the fact that ha00iffiffiffiffi
4π

p ¼ hāi with ā denoting the mean of map a.
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IV. COMPUTATIONAL IMPLEMENTATION

A. Simulated sky model

As a simple demonstrative example, we consider a
simulated sky model in which there are two (independent)
signals: the thermal Sunyaev-Zel’dovich (tSZ) effect
[50–52] and the CMB, along with noise. We assume that
we have only two frequency maps with frequencies of 90
and 150 GHz. Moreover, we amplify the tSZ signal by a
factor of 1000 at the map level and refer to it as the “fake”
tSZ signal or “ftSZ.” This is done for demonstration
purposes to show how a large non-Gaussian foreground
propagates to NILC maps.
Lensed alm for a single CMB realization are obtained

from the WebSky Extragalactic CMB Mocks2 [53]. To
obtain a realistic, non-Gaussian tSZ map realization, the
HALOSKY

3 package is used. The code works by Poisson
sampling from the Tinker et al. (2008) halo mass func-
tion [54] (using the WebSky [53] linear matter power
spectrum based on the Planck 2018 cosmological parameters
[55] to determine halo abundance) and populating a catalog
of halos along the light cone. We use redshift limits 0 ≤
z ≤ 5.0 and mass limits 5 × 1014M⊙ ≤ M ≤ 1016M⊙ in this
construction, the latter chosen simply for computational
efficiency. The pressure profile used is the Battaglia et al.

(2012) AGN (active galactic nuclei) feedback profile [56].
The tSZ map is amplified by a factor of 1000 for our
simulations, since we are interested in demonstrating the
validity of our analytic results in the presence of large non-
Gaussian components, for which the higher-point functions
in Eqs. (26) and (32) become significant. For the noise power
spectrum, we use the standard model given by Ref. [57]:

Nl ¼ W2elðlþ1Þσ2 with σ ¼ θFWHM=
ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
;

where θFWHM ¼ 1.4 arcmin for both the 90 and 150 GHz
beams and W90 ¼ W150 ¼ 3 × 104 μKCMB · arcmin in our
simulations. We use these large noise power spectra so that
the amplitudes of the noise spectra are comparable to those
of the ftSZ power spectra. This is important for our simple
two-frequency, two-component-plus-noise sky model,
where we do not want the NILC maps to completely clean
the contaminating foregrounds (thus giving a realistic
representation on what would happen with actual data
where there are several sky components that cannot all be
simultaneously cleaned completely). The simulated CMB
and amplified Compton-y maps (with HEALPix resolution
parameter Nside ¼ 32), as well as the total sky map at each
frequency (comprising CMB, amplified tSZ, and instru-
mental noise), are shown in Fig. 1. The power spectra of
these simulated maps are shown in the top panel of Fig. 2.
We limit ourselves to low lmax and low map resolution for
computational efficiency, since this is simply a validation
check of our analytic result. The maps are bandlimited at

FIG. 1. Input CMB and amplified Compton-ymap, as well as the total sky map at each frequency. The total sky map consists of CMB,
amplified tSZ signal, and instrumental noise. All maps are shown in units of K, except for the Compton-y map, which is dimensionless.

2https://mocks.cita.utoronto.ca/index.php/WebSky_Extragalactic_
CMB_Mocks.

3https://github.com/marcelo-alvarez/halosky.
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lmax ¼ 20 to avoid having to compute sums over arbitrarily
high l in Eq. (26).

B. Computational implementation of NILC power
spectrum analytic result

To validate the result in Eq. (26) and assess the relative
importance of the different terms, we compute the propa-
gation of both the signal of interest and the contaminating

foreground to the autopower spectrum of each NILC map
(i.e., we consider both a CMB-preserved NILC map
and a tSZ-preserved NILC map). Specifically, we rewrite
Eq. (26) as

hCp̂ q̂
l1
i ¼

X
y;z

Cy→p̂;z→q̂
l ; ð33Þ

where
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l ≡X
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X
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2

×
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l2
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l2
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l3
i þ hðnÞl2

hðmÞ
l3

hCy;qjðmÞ
l2

ihCz;piðnÞ
l3

i þ hðnÞl1
hðmÞ
l2

hw̄piðnÞihby;z;qjðmÞ
l1l2l3

i

þ hðnÞl1
hðmÞ
l2

hw̄qjðmÞihby;z;piðnÞl1l2l3
i þ hðnÞ0 hðmÞ

l2
hȳihbpiðnÞ;z;qjðmÞ

l1l2l3
i þ hðnÞl2

hðmÞ
0 hz̄ihbpiðnÞ;y;qjðmÞ

l1l2l3
i
i

þ 1

2l1 þ 1

X
l2l3l4l5

hðnÞl2
hðmÞ
l3

hρ̂½y; piðnÞ; z; qjðmÞ�l2l4
l3l5

ðl1Þi
!
: ð34Þ

Intuitively, Cy→p̂;z→q̂
l is the (cross)power spectrum of the

propagation of component y to a p-preserved NILC map
and the propagation of component z to a q-preserved
NILC map.
There are two ways to compute Cy→p̂;z→q̂

l . The first is via
computation of all the n-point functions in Eq. (34). The
second is via a simulation-based approach, as follows:

Using the full 90 and 150 GHz frequency maps, determine
the NILC weight maps for the preserved component p.
Next, consider only the contributions of component y to
the 90 and 150 GHz maps. Using these as the new fre-
quency maps, along with the previously determined weight
maps, build the resulting NILC map using the steps in
Sec. II C. This gives the contribution of component y to a
p-preserved NILC map. Repeat the procedure for compo-
nent z and preserved component q. Taking the (cross)power
spectrum of the resulting two NILC maps gives Cy→p̂;z→q̂

l .
Below, we compare the results from the analytic n-point
calculation approach and the simulation-based approach as
a demonstration of the validity of Eq. (26).
For our setup, we use three needlet filter scales. The

filters are obtained by taking the differences of successive
Gaussians (as in Ref. [23]), where our Gaussians have
FWHM of 1000 and 800 arcmin, chosen to have differing
scale dependence on the large scales for which we per-
form this analysis. These filters are shown in the bottom
panel of Fig. 2. We consider only three filters here for
computational efficiency. With more filters, the NILC
algorithm is able to capture more scale-dependent and
spatially varying information and is thus expected to
clean non-Gaussian foregrounds even more effectively.
Next, the simulated sky maps at 90 and 150 GHz are
run through a pipeline that generates NILC weight maps,
PYILC

4 [15,37].
For computation of the bispectra and trispectra we adapt

code from POLYBIN
5 [47], and for calculation of the various

FIG. 2. Top: the power spectra, plotted as lðlþ 1ÞCl=ð2πÞ, of
each component at each frequency used in this work. Note that
the tSZ field has been amplified by a factor of 1000 at the map
level, so as to provide a large non-Gaussian contaminant to the
CMB on large angular scales. Bottom: needlet filters used in this
work. These filters are found by taking the difference of two
Gaussians, where the Gaussians have FWHM of 1000 and
800 arcmin.

4https://github.com/jcolinhill/pyilc.
5https://github.com/oliverphilcox/PolyBin.
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terms in Eq. (26) we adapt code from REMASTERED
6 [49].

In most cases of physical interest, the first term in Eq. (26)
is dominant. Since calculation of the bispectrum and
trispectrum terms is the computational bottleneck, it would
be possible to bin in l for calculation of these terms in cases
where their effects are small. For this reason, we prefer to
implement Eq. (26) over Eq. (27), as computing Eq. (27)
with our desired precision would bar the use of l-space
binning for the full trispectrum calculation, significantly
slowing the run-time. However, in the demonstrations here,
we do not use any l-space binning and instead perform the
computations only at very low l, as our goal is primarily to
validate our analytic results.
For our demonstrations, we consider the specific case of

y ¼ z and p̂ ¼ q̂, or in other words, how the autopower

spectrum of some component propagates into the auto-
power spectrum of some NILC map (note that the propa-
gating component does not have to be the same as the
component preserved in the NILC map). In particular,
Fig. 3 shows the CMB and ftSZ propagation into CMB and
ftSZ NILC map autopower spectra. As expected, the
“directly computed” simulation-based results (solid green
curves) and the analytic results from Eq. (26) (dotted
magenta curves) agree, for both the signal of interest
and the contaminant. Moreover, as expected, the signal
of interest propagates in an unbiased fashion to the
resulting NILC map, matching the input power spectrum
of that signal (dashed light blue curve in the top left and
bottom right panels of Fig. 3). In those panels, the solid
green, dotted magenta, and dashed light blue curves all lie
directly on top of each other, as expected (the directly
computed [solid green] and analytic [dotted magenta]
results should always agree if our analytic results are

FIG. 3. Propagation of components to NILC map autospectra. Top left: propagation of the CMB signal of interest to a CMB-preserved
NILC map autospectrum. Top right: propagation of the CMB contaminant to a ftSZ-preserved NILC map autospectrum. Bottom left:
propagation of the ftSZ contaminant to a CMB-preserved NILC map autospectrum. Bottom right: propagation of the ftSZ signal of
interest to a ftSZ-preserved NILC map autospectrum. In all plots, the analytic propagation of the component (dotted magenta) is
compared to the directly computed (simulation-based) propagation of the component (solid green). As expected, these agree exactly
(i.e., the dotted magenta lines lie precisely on top of the solid green lines), thus validating both the analytic result and its computational
implementation. Contributions from the various terms in Eq. (26) are also shown individually as labeled. For the CMB propagation to a
CMB-preserved NILC and ftSZ propagation to a ftSZ-preserved NILC, we also show the input power spectra (dashed light blue). These
match the directly computed and analytic results, verifying that the signal of interest propagates in an unbiased fashion to the final map,
as expected in the NILC method. All curves are plotted as Dl ¼ lðlþ 1ÞCl=ð2πÞ, in units of K2 for the left two panels and in
dimensionless Compton-y units for the right two panels.

6https://github.com/kmsurrao/reMASTERed.
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correct, and the input spectrum [dashed light blue] should
match both of those if we consider how a component
propagates to its own NILC map, assuming negligible ILC
bias). Contributions of various terms (power spectrum,
bispectrum, and trispectrum) in Eq. (26) are also plotted,
as described in the figure legend, to assess the relative
contributions of the terms. Of particular note is the bottom
left panel of Fig. 3, where the red curve involving a
bispectrum factor is of comparable magnitude to the cyan
curve involving power spectrum factors. This is the case
because the non-Gaussian ftSZ field has a nonzero bispec-
trum. When building a CMB NILC map, the weights aim to
downweight the ftSZ contaminant and will thus be corre-
lated with that contaminant. Hence, the bispectrum term
involving two factors of the ftSZ field and one factor of the
weight map that acts to suppress that field is also nonzero.
We also note the units of the different panels of the

figure. Specifically, the power spectrum of a CMB NILC
map in this setup has units of K2, and the power spectrum
of a NILC Compton-y map is dimensionless. Thus, the
contribution to the power spectrum from a component that
propagates into a CMB NILC map power spectrum must
also be in K2, while the contribution to the power spectrum
from a component that propagates into an ftSZ NILC map
power spectrum must be dimensionless. It may be some-
what surprising that the ftSZ propagation into a CMBNILC
map has units of K2, given that we are computing the
propagation of the Compton-y field, not the propagation of
the ftSZ field at a given frequency (or pair of frequencies).
However, looking at Eq. (34), we note that the propagation
is actually being summed over all possible frequency pairs
to get the total contribution. Thus, the contribution from the
ftSZ field comes from all frequencies instead of singling
out any individual frequency or pair of frequencies. The
code used for these demonstrations is publicly available in
NILC-PS-MODEL. We discuss how non-Gaussian information
is captured by the NILC process in the next section.

V. DISCUSSION

In this paper, we have derived an analytic expression for
the autospectra and cross spectra of NILC maps in Eq. (26)
and an expression for the cross spectrum of a NILC map
with an arbitrary second map in Eq. (32). Equation (26)
elucidates how NILC power spectra capture non-Gaussian
information. The equation involves correlators of the maps
and weight maps, including connected three- and four-point
functions. Since the NILC weight maps are constructed to
suppress contaminants, the weight maps themselves are
functions of the contaminant fields. Thus, the higher-point
functions of the maps and weight maps contain the non-
Gaussian information about the contaminant foregrounds.
Figure 3 demonstrates the relative importance of the
various terms. In particular, we note the importance of
the connected bispectrum involving two factors of the map
and one factor of the weight map. This term appears to play

an important role for the propagation of non-Gaussian
components, as seen in the bottom left panel of that figure.
Comparing with the top right panel, we see that the higher-
point functions are significantly less important for propa-
gation of Gaussian random fields, as one would expect.
Notably, for the signal of interest to propagate in an

unbiased fashion to a NILC map, only the first term in
Eq. (26) can be nonzero when either y or z represents the
component of interest. As long as the local real-space
domains on which the needlet ILC is performed are large
enough, the weight maps should not be correlated with
the signal of interest, forcing the other terms to zero, as
required. However, if the size of these domains is too small,
there may be correlations of the signal field with the weight
maps, biasing the way the signal propagates into the final
NILC map. This is equivalent to the usual ILC bias that
results from computing the covariances for ILC weights
using an insufficient number of modes [14]. In our
demonstrations, PYILC allows the user to specify an ILC
bias tolerance, which we set to 1%. This bias tolerance
determines how large the real-space domains used for
computing covariance matrices in the NILC algorithm
need to be in order to keep the bias below that threshold.
Figure 3 demonstrates the lack of ILC bias in our
demonstration, as each component propagates in an
unbiased fashion to the NILC map which preserves that
component, matching the input power spectrum of the
signal (see top left and bottom right panels). As required,
only the first term in Eq. (26) is nonzero in that case.
Because the weight maps are functions of the fields, our

analytic results demonstrate that the parameter dependence
of NILC power spectra is nonlinear, when the input fields
are parametrized via an overall amplitude parameter for
each component power spectrum. Parametrizing a compo-
nent at the power spectrum level alone is no longer
sufficient to describe that component’s contribution to a
NILCmap power spectrum. Instead, one needs a model that
(at least) describes the two-, three-, and four-point functions
(and thus, ideally, a field-level model). In some cases, we
find that when the amplitude of a contaminant increases, its
contribution to the power spectrum of a cleaned NILC map
actually decreases since the weight maps then prioritize
suppressing that component over the others. Because of this
complicated parameter dependence, it is unfortunately not
obvious how to use Eq. (26) for performing cosmo-
logical parameter inference analytically. In paper II of
this work [58], we numerically determine the parameter
dependence of NILC power spectra by computing their
derivatives with respect to the amplitude of each input
component map and performing symbolic regression. We
also investigate likelihood-free inference, where the param-
eter dependence is learned implicitly via normalizing flows.
In particular, since the Gaussian likelihood would be
inaccurate in cases of interest here, likelihood-free infer-
ence is technically necessary. We use neural posterior
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estimation for this purpose [59]. This analysis will be
described in our companion work [58].
Because full fields need to be simulated to obtain weight

maps that contain spatial information, and because, cur-
rently, it is significantly slower to compute component
propagation to a NILC map via our n-point function
result than it is to compute it directly using simulations,
these analytic results are intractable to use directly in
cosmological parameter inference pipelines at this time.
Nevertheless, our analytic results clearly demonstrate the
ability of NILC to capture non-Gaussian information, and
furthermore provide a significant step forward in under-
standing the sky component contributions contained in
NILC maps.

Our code to produce the results in this paper is available
in NILC-PS-MODEL [60].
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APPENDIX: GENERALIZED RESULT FOR THE
CROSS SPECTRUM OF TWO MASKED MAPS

In this Appendix we derive the expansion of the cross-
power spectrum of two masked (or weighted) maps in
terms of n-point functions, the results of which are given in
Sec. III. We refer the reader to Appendix A of [49] for the
full derivation of the autospectrum of a masked map. We
closely follow that derivation but use a and a0 to denote two
maps, w and w0 to denote their respective masks, and ã
and ã0 to denote the respective masked maps. Then the
ensemble-averaged masked map cross spectrum is given by
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where we have written out the Wick contractions of the four-point function in the final line. Using definitions of the power
spectrum, bispectrum, and trispectrum,
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where we have assumed isotropy of the mask in regions correlated with the fields. Applying the Kronecker deltas gives
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where the permutations are taken over just the final two Gaunt factors and reduced trispectrum in the last line. We refer
to each of the above terms schematically as haaihwwi, hawihawi, hwihaawic, haihwawic, and haawwic.
Using properties of the Wigner symbols, we simplify each of the terms in Eq. (A3) separately.7 First consider the

haaihwwi term:
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This is the analog of the usual term computed in the MASTER formalism [48]. The first hawihawi term from Eq. (A3)
becomes

7https://functions.wolfram.com/HypergeometricFunctions/ThreeJSymbol/.
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Now consider the second hawihawi term in Eq. (A3):
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The first hwihaawic term in Eq. (A3) becomes the following:
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The other hwihaawic term and the haihwawic terms in Eq. (A3) are similarly simplified. Finally, consider the haawwic term
in Eq. (A3). From Eq. (18), this term is simply
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Combining the results for all the terms yields
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