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A method of general applicability has been developed, whereby the null geodesic equations of the
Einstein-Straus–de Sitter metric can be integrated simultaneously in terms of the curvature constant k. The
purpose is to generalize the computation of light deflection and time delay by a spherical mass distribution.
Assuming a flat Universe with most recent measurements of the Hubble constant H0 and the cosmological
constant Λ, five time delays between the four bright images of the lensed quasar SDSS J1004þ 4112 have
been forecasted and compared to others in the field, ΔtDC ¼ ð3250� 64Þ days (8.90 yr), ΔtDA ¼
2049þ59

−58 days (5.61 yr), ΔtAC ¼ ð1269� 77Þ days (3.47 yr), ΔtBC ¼ 1176þ78
−77 days (3.22 yr), and

ΔtAB ¼ ð93� 70Þ days. This set of time delays constrains the galaxy cluster mass to be
M ¼ ð2.447� 0.73Þ × 1013M⊙. In addition, we have reviewed the question of the possible contribution
of a positive Λ to reduce the light bending, and concluded that the changes are seemingly too small to be
appreciable on cosmological scales. The same conclusion has been reached regarding the time delay.
Having addressed the question of the effect of the spatial curvature in both closed and open Universe, we
have found that the strong lensing is slightly affected by the expected small curvature density Ωk0 of the
current Universe within its error bar jΩk0j ⪅ 0.001, in such a way that it may safely be neglected. However,
it is only if Ωk0 gets quite larger that the effect being noticeable. While it is only theoretically possible for
Ωk0 to be higher, it is worthwhile to stress that this should impact the light bending and time delay, causing
them to decrease or increase depending upon whether the spatial curvature is positive or negative.
Furthermore, one can infer that the observed light deflection and time delay independently, which are found
to be significantly deviated from those of the flat Universe, may serve as a useful means to provide
constraints on Ωk0, thus making the approach employed in this work more promising than others.
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I. INTRODUCTION

Einstein’s general theory of relativity produces two
famous testable evidences: the deflection of light near a
massive body and the induced time delay. On the occasion
of a total solar eclipse in 1919, Eddington had precisely
measured the deflection angle due to the Sun, which
matched perfectly with what general relativity predicts.
The time delay is nothing more than the result of the light
ray being longer than it would be without the Sun because
of the deflection. This phenomenon is named Shapiro

effect, after the person who discovered it between Earth
and Mercury in 1964. In this case, the Sun, or any other
star, is said to act as a microlens.
As for the large structures of the Universe, it is a matter

of strong and weak lensing effects. Here, it is the strong
lensing that we are concerned about. The light coming from
background sources is strongly bent by a huge body,
modifying the way these sources are seen from Earth
and possibly giving rise to multiple images. The lensed
quasar SDSS J1004þ 4112 (Sloan Digital Sky Survey) is a
case in point. The number and the shape of the images
depend on the lens geometry as well as on the source
position. Moreover, according to observational measure-
ments, the time delay between some widely separated
images may spread over several years.
One of the main aims of this work is to generalize the

computation of light deflection and time delay by a
spherically symmetric mass distribution in the framework
of the Einstein-Straus–de Sitter model (ESdS) [1–4],
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considering the three possible spatial curvatures of the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric:
the positively curved space (closed Universe), the nega-
tively curved space (open Universe), and the flat space
(Euclidian universe). The choice of this swiss-cheese model
is commonly justified by its relevance to the study of the
gravitational lensing on cosmological scales. In such a
model, the static Schwarzschild–de Sitter (SdS) or Kottler
metric inside a vacuole (Schücking sphere) is glued to the
homogeneous and isotropic expanding FLRW metric out-
side. In other words, to be consistent with the observational
Hubble law, the model states that the gravitational lensing
should only occur inside the vacuole to help explain why
the cosmic expansion at larger scales, such as galaxies and
clusters, is unobservable at smaller scales, such us plan-
etary and atomic systems. Consequently, the model makes
it possible to get rid of many assumptions adopted for
simplicity within the SdS model, apart from the spherical
symmetry which is of course impossible to overcome [5].
The observer and the source are allowed to be in movement
with respect to the galaxy cluster lens as well as be in
comovement with respect to a homogeneous isotropic dust
including the other galaxy cluster masses, which mostly
consists of cold dark matter (CDM). It is worth noting that
the spatial curvature outside the vacuole is inherent in the
entire FLRW Universe, not to be confused with the
curvature of the SdS space-time due to the gravitational
field caused by the mass distribution inside the vacuole.
Probing the precise shape of the universe remains an

active area of research in cosmology. Observational current
data, such as Planck measurements of the cosmic micro-
wave background, indicate that the Universe is dominated
by dark energy and CDM, and has a spatial curvature
density very close to zero, Ωk0 ¼ 0.0007� 0.0019 [6].
That is why most papers often focused on the simplest case
of the flat space when dealing with strong lensing, in which
the computation of light deflection and time delay is rather
simple using features common to the Euclidean space
[7–14]. In the nonflat spaces, this ceases to apply, as
the photon no longer travels along straight lines outside
the vacuole. In Ref. [15], we have already extended the
analysis to address the same issue in the case where
the expanding FLRW universe is rather positively curved
than flat. To accomplish this, we have developed a method
relying entirely on Einstein’s postulates of general rela-
tivity, which are notoriously accurate in either flat or
nonflat space-time. In this paper, we will generalize this
method to cover a version of space with a negative
curvature constant (k ¼ −1), which has not yet been
addressed. In this regard, a crucial question naturally arises
as to how the light bending and the time delay are affected
by the spatial curvature density at the present time and, to
be consistent with the observation, whether one could
ignore or not this effect in the limit of a weak spatial
curvature density.

Not one of cosmologists claims that the time delay does
not depend on the cosmological constant Λ, but they do not
concur about the real effect on the deflection of light,
despite the role that it plays in explaining the dark energy
thought to be responsible for the cosmological expansion
[16–31]. This question still unsettled is therefore worth
further reexamining referring to recent measurements of
cosmological parameters.
The paper is organized as follows. Section II is meant to

construct the generalized ESdS metric by connecting the
Schwarzschild–de Sitter metric with the FLRW one on
the vacuole, from which we derive a formula relating the
Schwarzschild coordinate time and that of Friedmann, in
terms of a constant k uniting both the positive/negative and
zero curvature cases. From Sec. III, we get into the details
to calculate the deflection of light and the time delay where
only the implementation of a method based on integrating
differential equations will be relevant to deal with the
general case. We devote Sec. IV to validate our theoretical
results through numerical applications1 to the lensed quasar
SDSS J1004þ 4112, already evoked above, by addressing
each case separately. In the flat case, we provide estimates
about the galaxy cluster mass, the deflection angle, and the
time delays between the quasar images, and also test them
against other recent predictions related to the subject. We
also discuss how the light deflection is related to the
cosmological constant. In the positively and negatively
curved cases, we present a quantitative analysis in order to
describe and discuss the evolution of the galaxy cluster
mass, the deflection of light and the time delay in terms of
the curvature density. In the last section, we end up with
conclusions summarizing our main results and open ques-
tions offering new perspectives.

II. JUNCTION CONDITIONS FOR GENERALIZED
EINSTEIN-STRAUS–DE SITTER METRIC

The first section of this work is about constructing the
generalized ESdS metric by linking the SdS and the
generalized FLRW metrics, following the same treatment
outlined in Refs. [8,10,15]. Let us denote by ðT; r; θ;φÞ
the Schwarzschild coordinates and by ðt; χ; θ;φÞ the
Friedmann coordinates.
The static Schwarzschild–de Sitter metric takes the form

ds2SdS ¼ BðrÞdT2 −BðrÞ−1dr2 − r2dω2;

BðrÞ≔ 1−
rSchw
r

−
Λ
3
r2; dω2 ¼ dθ2 þ sin2θdφ2; ð1Þ

inside a vacuole of radius rSchü, usually named Schücking
radius, (T), r ≤ rSchü, surrounding a spherical mass

1All numerical assessments are performed using Wolfram
Mathematica 11.
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distribution M, with rSchw ≔ 2GM the Schwarzschild
radius. The generalized dynamic FLRW metric,

ds2FLRW ¼ dt2 − aðtÞ2½dχ2 þ SðχÞ2dω2�; ð2Þ
describes the space-time geometry outside the vacuole,
χ ≥ χSchü, where we define the sine-like function SðχÞ to
facilitate handling all three spatial curvatures simultaneously,

SðχÞ≔ k−1=2 sinðk1=2χÞ

¼
8<
:

sin χ k¼þ1 ðpositively curved spaceÞ
χ k¼ 0 ðflat spaceÞ
sinhχ k¼ −1 ðnegativelycurvedspaceÞ

; ð3Þ

and its cosinelike and tangentlike analogs, CðχÞ ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kSðχÞ2

p
and T ðχÞ ≔ SðχÞ=CðχÞ. The evolution of

the scale factor aðtÞ over time is governed by the first order
Friedmann equation

da
dt

¼ aHðaÞ; HðaÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
a3

−
k
a2

þ Λ
3

r
; ð4Þ

where the function HðaÞ is the hubble parameter and A is a
constant coming from the energy conservation law relative to
a nonrelativisticmatter-dominatedUniverse characterized by
a pressureless dust with density ρ, 3A ≔ 8πGρa3. Then,A ¼
ðH2

0 − Λ=3Þa30 þ ka0 obtained by writing (4) in the present
time, where H0 is called the hubble constant and a0 is the
scale factor at the present time. It is customary to rearrange
the Friedmann equation in the usual standard form in terms of
three density parameters: the matter density Ωρ, the spatial
curvature density Ωk, and the dark energy (or vacuum)
density ΩΛ as

1 ¼ Ωρ þ Ωk þΩΛ; Ωρ ¼
A

HðaÞ2a3 ;

Ωk ¼
−k

HðaÞ2a2 ; ΩΛ ¼ Λ
3HðaÞ2 ; ð5Þ

with A ≔ H2
0a

3
0ð1 − Ωk0 −ΩΛ0Þ rewritten in terms of the

present spatial curvature density Ωk0 and the present dark
energy density ΩΛ0.
The two solutions are connected on the vacuole under the

matching condition

rSchüðTÞ ≔ aðtÞSSchü; ð6Þ

with SSchü ≔ SðχSchüÞ. Then, using the fact that M, ρ, and
rSchü are related by 3M ¼ 4πr3Schüρ, the constant Schücking
radius can be expressed in terms of A and rSchw as

SSchü ¼
�
rSchw
A

�1
3

: ð7Þ

So we have on the vacuole

BSchü ≔ BðrSchüÞ ¼ 1 −
�
A
a
þ Λ

3
a2
�
S2
Schü: ð8Þ

We will transform the Schwarzschild coordinates ðT; rÞ
and the Friedmann coordinates ðt; χÞ into the new coor-
dinates ðb; rÞ. In this new coordinates, the SdS metric can
recast as

ds2SdS ¼ BðrÞΨðbÞ2db2 − 1

BðrÞ dr
2 − r2dω2; ð9Þ

by introducing a function ΨðbÞ defined as ΨðbÞ ≔ dT=db.
As for the FLRW metric, an intermediate transformation to
the coordinates ða; χÞ must first be applied using the
Friedmann equation (4), before transforming to the new
coordinates ðb; rÞ by using

a ≔ Φðb; rÞ; SðχÞ ≔ r
Φðb; rÞ : ð10Þ

We obtain, after getting rid of mixed terms,

ds2FLRW ¼
�
∂Φ
∂b

�
2 1 − ½HðΦÞ2 þ kΦ−2�r2

HðΦÞ2ðΦ2 − kr2Þ db2

−
1

1 − ½HðΦÞ2 þ kΦ−2�r2 dr
2 − r2dω2; ð11Þ

with the boundary condition

a ¼ b ¼ Φðb; bSSchüÞ; ð12Þ

that at the Schücking radius, old and new time coordinates
coincide. We get, by differentiating with respect to b,

∂Φ
∂b

����
Schü

¼ 1 −
∂Φ
∂r

����
Schü

SSchü ¼
C2Schü

BSchüðbÞ
; ð13Þ

where CSchü ≔ CðχSchüÞ, and ∂Φ=∂r is given by

∂Φ
∂r

¼ −
ΦHðΦÞ2r

1 − ½HðΦÞ2 þ kΦ−2�r2 : ð14Þ

The continuity condition is insured by equating the SdS
metric components with those of FLRW at the Schücking
radius. This requires

ΨðbÞ ¼ CSchü
bHðbÞBSchüðbÞ

: ð15Þ

Now, the use of the chain rule allows us to calculate the
Jacobian of the transformation from the Schwarzschild
coordinates to the Friedmann coordinates at the Schücking
radius, i.e.,
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∂t
∂T

����
Schü

¼ CSchü;
∂t
∂r

����
Schü

¼ −
aHðaÞSSchü

BSchü
;

∂χ

∂T

����
Schü

¼ −HðaÞSSchü;
∂χ

∂r

����
Schü

¼ CSchü
aBSchü

: ð16Þ

Finally, considering the parametrized curve, T ¼ p, r ¼
bSSchü (θ ¼ π=2, φ ¼ 0) and calculating its 4-velocity, one
can easily relate the Schwarzschild coordinate time T to
that of Friedmann t on the vacuole. The resulting relation-
ship is

dt
dT

����
Schü

¼ dt
dp

dp
dT

¼ BSchü

CSchü
; ð17Þ

which ensure smooth passage of photons through the
boundary between the SdS and FLRW geometries and
vice versa.

III. DEFLECTION OF LIGHT AND TIME DELAY

We suggest to study a typical scenario, as shown in
Fig. 1, in which two photons are emitted by a source S at
times tS and t0S, enter the vacuole on one side at tSchüS and
t0SchüS, exit it on the other side at tSchüE and t0SchüE, and
eventually reach the Earth E at the same time tE ¼ t0E ¼ 0,
where the final FLRW-type conditions are well known. It
seems therefore more practical to carry out the integration
of null geodesic equations backward in time, from the Earth
to the vacuole, inside the vacuole, and from the vacuole to
the source. Meanwhile, the use of the Jacobian trans-
formation as well as its inverse are indispensable to convert
the initial FLRW-type conditions to the final SdS-type
conditions on the vacuole in front of the Earth, and the
initial SdS-type conditions to the final FLRW-type con-
ditions on the vacuole in front of the source. An added
advantage of such a situation is that the time delay between
both photons—difference between their total travel times
from the emission times on the source to the receipt times
being synchronized on Earth—will be simply expressed as
Δt ≔ ΔtS ≔ tS − t0S. We denote by α and α0 the angles
that the two photons make upon receipt on Earth with the

Earth-lens axis, and by rP and r0P, the minimum approach
distances (perilens) at which they get deflected by the lens L.
It is important to note that even though the Friedmann

equation (4) can be analytically solved in the case of
nonzero curvature, with the aid of elliptic integrals of the
second and third kinds, to provide the cosmic time tðaÞ and
the inverse function for the scale factor aðtÞ, which is still
unknown in terms of the curvature constant k, unless in the
case of a flat space k ¼ 0 [10]. Instead, one can opt to solve
the problem by means of the numerical integration method.
The numerical integration of the radial null geodesic

equation

dχ ¼ −
dt
aðtÞ ð18Þ

is also necessary to calculate the Earth-lens and the Earth-
source geodesic distances, χL and χS, where only the minus
sign must be retained since the origin is defined on Earth,
χðt ¼ 0Þ ¼ 0, leading to an increasing geodesic distance
χðtÞ over time. But, this equation involves aðtÞ, which is
only analytically known in the case k ¼ 0. In response to
such a problem, one could introduce the Hubble parameter
HðaÞ and the cosmological redshift z via the Friedmann
equation (4) and the well-known formula 1þ z ¼ a0=a in
order to integrate with respect to the scale factor,

χðzÞ ¼
Z

a0

a0
1þz

da
a2HðaÞ ; ð19Þ

or with respect to z,

χðzÞ ¼
Z

0

z

dz
a0HðzÞ ;

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωρ0ð1þ zÞ3 þ Ωk0ð1þ zÞ2 þΩΛ0

q
: ð20Þ

Hence, χL and χS will be calculated for any given value of
zL and zS; χL ≔ χðzLÞ and χS ≔ χðzSÞ. Concerning the
geodesic distance that joins the lens to the source χLS, it can
be approximated as being aligned with χL,

χLS ≃ χS − χL; ð21Þ

due to the small −φS of the order of a few arc seconds
(∼10−5).

A. Integration of null geodesic equations between
the Earth and the vacuole

In this region, where the generalized FLRW metric (2)
prevails, two geodesic equations are sufficient to describe
the photon trajectory in the equatorial plane θ ¼ π=2,

ṫ ̈tþaȧ½χ̇2 þ SðχÞ2φ̇2� ¼ 0; ð22Þ

FIG. 1. Two photons emitted by a source S, bent inside the
vacuole and finally received at Earth E. The trajectories outside
the vacuole converge in the case of a spherical geometry of
positive curvature, while they diverge in the case of a hyperbolic
geometry of negative curvature. In a flat geometry, they are
straight lines. We have limited ourselves to the spherical case to
avoid overloading the figure.
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1

2

φ̈

φ̇
þ ȧ
a
þ χ̇

T ðχÞ ¼ 0; ð23Þ

where the dot denotes differentiation with respect to p, an
affine parameter other than s since the photon moves along
null geodesics ds ¼ 0.
The final FLRW-type conditions of the upper photon

upon arrival on Earth ðt ¼ 0; χ ¼ χL;φ ¼ πÞ are given by
its 4-velocity

ṫ ¼ 1; χ̇ ¼ cos β0

a0
; φ̇ ¼ sin β0

a0SL
; ð24Þ

where we have used the fact that the physical angle α0
coincides with the coordinate angle arctanðT Ljdφ=dχjχLÞ,
and defined the constant β0 by tan β0 ≔ CL tan α0, with
SL ≔ SðχLÞ, CL ≔ CðχLÞ, and T L ≔ T ðχLÞ. These final
FLRW-type conditions permit a straightforward integration
of (22) and (23) to get

ṫ¼ a0
aðtÞ ; φ̇¼ a0S0

PE

a2SðχÞ2 ; φ¼ π − arcsin
T 0

PE

T ðχÞ þ β0;

ð25Þ

where the perilens χ0PE is defined such that S
0
PE, C

0
PE, and T

0
PE

are related to each other by S0
PE ≔ Sðχ0PEÞ ≔ SL sin β0,

C0PE≔ Cðχ0PEÞ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2β0 þC2L sin

2β0
p

, and T 0
PE≔ T ðχ0PEÞ¼

S0
PE=C

0
PE.

Now, we are going to follow the approach originally
proposed in Ref. [15], in order to determine the scale factor
a0SchüE and its corresponding time t0SchüE, at which the upper
photon emerges from the vacuole. What we know up to
now are the constant Schücking radius χSchü and its
corresponding polar angle φ0

SchüE ≔ φðχSchüÞ via the rela-
tionship between χ and φ (25). So the idea is to relate one of
them with time, χðtÞ or φðtÞ. Removing the affine param-
eter between ṫ and φ̇ in (25) and injecting the result into
the generalized FLRW metric (2) for a photon, we get
immediately

dt
aðtÞ ¼

dχ
gðχÞ ; gðχÞ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

S02
PE

SðχÞ2

s
; ð26Þ

where we have taken into account that χðtÞ is a decreasing
function of time in this region. The left-hand side of this
equation comprises aðtÞ which we fail to know in the
general case, as said before. So we should instead integrate
with respect to the scale factor by inserting the Hubble
parameter HðaÞ through the Friedmann equation (4). The
integration of the right-hand side can be analytically carried
out to provide the function −k−1=2 arcsin½CðχÞ=C0PE� and
evaluated between the vacuole and the Earth to provide the
geodesic distance traveled by the photon. The result is

Z
a0

a0SchüE

da
a2HðaÞ ¼ k−1=2

�
arcsin

CSchü
C0PE

− arcsin
CL
C0PE

�
; ð27Þ

which enables us to obtain a0SchüE by numerical integration.
The corresponding value of t0SchüE is then calculated by
numerical integration of the Friedmann equation, i.e.,

t0SchüE ¼
Z

a0SchüE

a0

da
aHðaÞ ; ð28Þ

if one is interested in that. Let us note that the right-hand
side of (27) reduces to

rhsðk ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2L − χ02PE

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2Schü − χ02PE

q
; ð29Þ

equivalent to the result of Refs. [8,10] in the flat case k ¼ 0,
and to the result of Ref. [15] in the closed case k ¼ þ1. In
the hyperbolic case k ¼ −1, it reduces to

rhsðk¼−1Þ¼ arccosh
coshχL
coshχ0PE

−arccosh
coshχSchü
coshχ0PE

: ð30Þ

The time tSchüE, at which the lower photon emerges from
the vacuole, can be calculated in the same manner as
before, using similar formulas. We just have to replace α0
by −α as well as the polar angle π by −π on Earth.
However, we can proceed, in a way analogous to the flat

and closed cases [10,15], to develop an analytical approxi-
mate expression of the time delay between the two photons
at the exit from the vacuole, i.e., ΔtSchüE ≔ tSchüE − t0SchüE.
Subtracting the right and the left-hand side of (27) from the
ones which correspond to the lower photon, one gets

Z
tSchüE

t0SchüE

dt
aðtÞ ¼ k−1=2

�
arcsin

CSchü
C0PE

− arcsin
CL
C0PE

−
CSchü
CPE

þ arcsin
CL
CPE

�
: ð31Þ

The left-hand side of this equation can be approximated
using the fact that the scale factor varies significantly only
on cosmological timescales, i.e.,

lhs ≃
ΔtSchüE
a0SchüE

; ð32Þ

while an expansion of the right-hand side to the second-to-
leading order in S0

PE and SPE (∼10−6) or in α0 and α (∼10−5)
can be carried out to give

rhs ≃
1

2
ðT −1

Schü − T −1
L ÞS2

LC
2
Lðα02 − α2Þ; ð33Þ
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where T Schü ≔ T ðχSchüÞ. Equating the two sides, we get

ΔtSchüE ≃
1

2
a0SchüEðT −1

Schü − T −1
L ÞS2

LC
2
Lðα02 − α2Þ: ð34Þ

Particularly, this is negative for α0 < α, meaning that the lower photon precedes the upper one at the exit from the vacuole
before they are received all together on Earth.
One can easily recover the results of the flat and the closed ESdS models in Refs. [10,15], taking k ¼ 0 and k ¼ þ1, as

well as the result of the open ESdS model, taking k ¼ −1,

ΔtSchüE ≃
1

2
a0SchüEðcoth χSchü − coth χLÞsinh2χLcosh2χLðα02 − α2Þ: ð35Þ

B. Integration of null geodesic equations inside the vacuole

At this step when the two photons permeate through the SdS space-time, the formulas that we are going to employ are
extremely similar to those used in the flat and closed ESdS cases [10,15]. The only difference arises from the use of the
relationship between the Schwarzschild time T and the Friedmann time t (17), which brings out the curvature constant k. We
will therefore emphasize only what we need to calculate the time delay between the two photons at the entry into the vacuole
represented by ΔtSchüS≔tSchüS−t0SchüS.
Let us first determine the time it takes the upper photon for crossing the vacuole. Thanks to the relationship (17), this travel

time can be expressed in terms of t0SchüE and t0SchüS as

T 0
SchüE − T 0

SchüS ¼ CSchü

Z
t0SchüE

t0SchüS

dt
BSchüðtÞ

: ð36Þ

The same quantity can be expressed otherwise bymaking use of the twowell-known partially integrated geodesic equations of
the SdS space-time (1),

Ṫ ¼ 1

BðrÞ ; ṙ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − J02

BðrÞ
r2

r
; ð37Þ

withJ0 a constant ofmotiondefinedbyJ0 ¼ r0P=
ffiffiffiffiffiffiffiffiffiffiffiffi
Bðr0PÞ

p
and interpreted as an angularmomentumper unitmass, r0P the perilens

given approximately by r0P ≃ r0SchüE sin γ
0
SdS − rSchw=2 [8], where γ0SdS denotes the smaller coordinate angle between the

unoriented direction of the upper photon and the direction toward the lens, i.e., γ0SdS ≔ arctan jr0SchüEφ̇0
SchüE=ṙ

0
SchüEj, with

r0SchüE ≔ a0SchüESSchü (6), φ̇0
SchüE ≔ φ̇ðr0SchüEÞ (25), and ṙ0SchüE calculated in terms of ṫSchüE and χ̇SchüE using the inverse Jacobian

of (16). Eliminating the affine parameter between Ṫ and ṙ in (37), we find

dT ¼ � dr
v0ðrÞ ; v0ðrÞ ≔ BðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − J02

BðrÞ
r2

r
; ð38Þ

which gives

T 0
SchüE − T 0

SchüS ¼
�Z

r0SchüE

r0P

þ
Z

r0SchüS

r0P

�
dr

v0ðrÞ ; ð39Þ

using the fact that r decreases with time from r0SchüS to r0P while it increases from r0P to r0SchüE. It follows from (36)
and (39) that �Z

a0SchüESSchü

r0P

þ
Z

a0SchüSSSchü

r0P

�
dr

v0ðrÞ ¼ CSchü

Z
a0SchüE

a0SchüS

da
aHðaÞBSchüðaÞ

; ð40Þ

where we have, as before, inserted the hubble parameter through the Friedmann equation in order to make possible the
integrationwith respect to the scale factor,with r0SchüS ≔ a0SchüSSSchü. This equation canbenumerically solved toyield thevalue
of a0SchüE. If one is interested in t0SchüS, then one can numerically integrate the Friedmann equation, i.e.,
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t0SchüS ¼
Z

a0SchüS

a0

da
aHðaÞ : ð41Þ

Similar formulas are applied leading to the calculation of the scale factor aSchüS when the lower photon immerses into the
vacuole.
Let us now develop an analytical approximate expression for ΔtSchüS following the same method described in

Refs. [10,15]. We make use of the relationship (17) to write

ΔTSchüE − ΔTSchüS ¼ CSchü

�Z
tSchüE

t0SchüE

−
Z

tSchüS

t0SchüS

�
dt

BSchüðtÞ

≃ CSchü

�
ΔtSchüE
B0
SchüE

−
ΔtSchüS
B0
SchüS

�
; ð42Þ

taking into account that BSchü is only significant on cosmological timescales, with ΔTSchüE ≔ TSchüE−
T 0
SchüE, ΔTSchüS ≔TSchüS−T 0

SchüS, B
0
SchüE ≔ BSchüðt0SchüEÞ, and B0

SchüE ≔ BSchüðt0SchüEÞ. In fact, this express the difference
in the travel times between both photons inside the vacuole. This latter could be written in a different way (differently) by
making use of (38) for the upper photon and its analogous formula for the lower one, i.e.,

ΔTSchüE − ΔTSchüS ¼
�Z

rSchüE

r0SchüE

þ
Z

rSchüS

r0SchüS

�
dr

v0ðrÞ − ΔTSdS; ð43Þ

where we have split up the integrals in such a way as to produce the following expression:

ΔTSdS ≔
�Z

r0SchüE

r0P

þ
Z

r0SchüS

r0P

�
dr

v0ðrÞ −
�Z

r0SchüE

rP

þ
Z

r0SchüS

rP

�
dr
vðrÞ ; ð44Þ

which can be compared to an expression already involved in the calculation of the time delay in the framework of the
Schwarzschild–de Sitter solution [32], i.e.,

ΔTSdS ≃
1

2
ðr2P − r02P Þ

�
1

r0SchüE
þ 1

r0SchüS

�
þ 2rSchw ln

rP
r0P

−
3

8

�
1 −

r02P
r2P

�

×
r2Schw
r02P

ffiffiffiffi
3

Λ

r �
arctanh

� ffiffiffiffi
Λ
3

r
r0SchüE

�
þ arctanh

� ffiffiffiffi
Λ
3

r
r0SchüS

��
: ð45Þ

Furthermore, since the lengths and timescales that we are dealing with are smaller than cosmological ones, the first term on
the right-hand side of (43) can be approximated by�Z

rSchüE

r0SchüE

þ
Z

rSchüS

r0SchüS

�
dr

v0ðrÞ ≃
ΔrSchüE
v0SchüE

þ ΔrSchüS
v0SchüS

≃
�
ΔaSchüE
v0SchüE

þ ΔaSchüS
v0SchüS

�
SSchü

≃
H0

SchüEr
0
SchüEΔtSchüE
v0SchüE

þH0
SchüSr

0
SchüSΔtSchüS
v0SchüS

; ð46Þ

where we have used the matching condition (6) and the Friedmann equation with ΔrSchüE ≔ rSchüE − r0SchüE,
ΔrSchüS ≔ rSchüS − r0SchüS, ΔaSchüE ≔ aSchüE − a0SchüE, ΔaSchüS ≔ aSchüS − a0SchüS, v0SchüE ≔ v0ðr0SchüEÞ, v0SchüS ≔
v0ðr0SchüSÞ, H0

SchüE ≔ Hða0SchüEÞ, and H0
SchüS ≔ Hða0SchüSÞ. Using this together with (45), (43), and (42), we therefore get

ΔtSchüS ≃
ΔTSdS þ ðB0−1

SchüECSchü −H0
SchüEv

0−1
SchüEr

0
SchüEÞΔtSchüE

B0−1
SchüSCSchü þ v0−1SchüSH

0
SchüSr

0
SchüS

: ð47Þ

Of course, this result generates what has been obtained in the flat and closed ESdS models [10,15], as well as that of the
hyperbolic ESdS model,
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ΔtSchüS ≃
ΔTSdS þ ðB0−1

SchüE cosh χSchü −H0
SchüEv

0−1
SchüEa

0
SchüE sinh χSchüÞΔtSchüE

B0−1
SchüS cosh χSchü þ v0−1SchüSH

0
SchüSa

0
SchüS sinh χSchü

: ð48Þ

Remarkably, ΔtSchüS is positive if α0 < α, contrary to ΔtSchüE. This will be explained later, once the total time delay Δt
have been calculated.
We close this section by calculating the polar angles φ0

SchüS and φSchüS needed for the next section, at which the upper and
lower photons penetrate into the vacuole. We shall exploit the third well-known equation, which for the upper photon reads

dφ ¼ � dr
u0ðrÞ ; u0ðrÞ ≔ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

r02P
− 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rSchw
r0P

�
r0P
r
þ 1

1þ r0P=r

�s
: ð49Þ

This results from eliminating the affine parameter between ṙ in (37) and φ̇ of the third well known partially integrated
geodesic equation,

φ̇ ¼ J0=r2; ð50Þ

where the cosmological constant Λ is incidentally erased. The integration of the above equation leads to

φ0
SchüE − φ0

SchüS ¼
�Z

r0SchüE

r0P

þ
Z

r0SchüS

r0P

�
dr

u0ðrÞ ; ð51Þ

taking into account that φ increases when the upper photon approaches the lens as well as when it moves away. This gives,
to the first leading order in the ratio rSchw=r0P,

φ0
SchüS ≃ φ0

SchüE − π þ arcsin
r0P

r0SchüE
þ arcsin

r0P
r0SchüS

−
rSchw
2r0P

"�
1þ 1

1þ r0P=r
0
SchüE

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r02P
r02SchüE

s

þ
�
1þ 1

1þ r0P=r
0
SchüS

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r02P
r02SchüS

s #
: ð52Þ

In the same manner, we obtain a similar expression for the
lower photon, where φSchüS and φSchüE differ from those of
the upper one by a minus sign.

C. Integration of null geodesic equations
between the vacuole and the source

In this part of space-time, the motion of photons are ruled
by the same geodesic equations of the FLRW metric, (22)
and (23). To integrate them, we shall adopt the same
technique previously developed in Sec. III A, taking into
account the final FLRW-type conditions of the upper
photon at the entry into the vacuole ðt ¼ t0SchüS;
χ ¼ χSchü;φ ¼ φ0

SchüSÞ, i.e.,

ṫ ¼ ṫ0SchüS; χ̇ ¼ χ̇0SchüS; φ̇ ¼ φ̇0
SchüS: ð53Þ

These final FLRW-type conditions are calculated by
converting the initial SdS-type conditions ðṪ 0

SchüS; ṙ
0
SchüSÞ

(37) using the Jacobian (16). We obtain

ṫ ¼ E0

aðtÞ ; φ̇ ¼ J0

a2SðχÞ2 ;

φ ¼ φ0
SchüS þ arcsin

T 0
PS

T ðχÞ − γ0FLRW; ð54Þ

with E0 being a second constant of motion given by
E0 ≔ a0SchüSṫ

0
SchüS, involved, with J0 (37), in the definition

of the perilens χ0PS such that S
0
PS, C

0
PS, and T

0
PS are related to

each other by S0
PS ≔ Sðχ0PSÞ ≔ J0=E0, C0PS ≔ Cðχ0PSÞ ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kJ02=E02p
, T 0

PS ≔ T ðχ0PSÞ ¼ S0
PS=C

0
PS, and γ0FLRW is

an angle defined by sin γ0FLRW ≔ T 0
PS=T Schü. It is note-

worthy that one could easily check that γ0FLRW represents
the smaller physical angle between the unoriented direction
of the upper photon and the direction toward the lens,
i.e., γ0FLRW ≔ arctanðT Schüjdφ=dχjSchüSÞ.
Hence, the inclination angle of the source φ0

S corre-
sponds to the geodesic distance between the lens to the
source χLS (21), i.e.,

−φ0
S ¼ −φ0

SchüS − arcsin
T 0

PS

T LS
þ γ0FLRW; ð55Þ

with T LS ≔ T ðχLSÞ ¼ SLS=CLS, SLS ≔ SðχLSÞ, and
CLS ≔ CðχLSÞ. Following the same reasoning as for the
upper photon, one arrives at similar formulas for the lower
photon, where only the constant J0 differs from the first
one by a minus sign. We restrict ourselves to giving the
expression of the inclination angle φS,
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−φS ¼ −φSchüS þ arcsin
T PS

T LS
− γFLRW; ð56Þ

which must be equal to φ0
S, since both photons are emitted

by the same source, where T PS ≔ T ðχPSÞ ¼ SPS=CPS,
SPS ≔ SðχPSÞ ≔ J=E, CPS ≔ CðχPSÞ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kJ2=E2

p
,

E ≔ aSchüSṫSchüS, and sin γFLRW ≔ T PS=T Schü.
However, these angles φ0

S and φS differ for randomly
selected parameters. As explained in Ref. [15], of all the
parameters involved, fitting the value of the lens mass turns
out to be the only way to fulfil the required equality
between them. Once the desired mass value is well
established, we move to calculate the time delay thereafter.
Let us determine the scale factor a0S at the emission time

t0S of the upper photon. Applying the same method followed
in the Sec. III A, one finds easily an equation similar to (26)
relating χ to the time, by using S0

PS instead of S0
PE,

dt
aðtÞ ¼ −

dχ
h0ðχÞ ; h0ðχÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

S02
PS

SðχÞ2

s
; ð57Þ

where the minus sign ensures that χ decreases over time
between the source and the vacuole. Similarly, integrating
the right-hand side of the previous equation between χLS
and χSchü, one arrives at

Z
a0SchüS

a0S

da
a2HðaÞ ¼ k−1=2

�
arcsin

CSchü
C0PS

− arcsin
CLS
C0PS

�
; ð58Þ

which, through the use of the Friedmann equation, can be
numerically solved for obtaininga0S. Then, if one is interested
in t0S, it suffices us to use the Friedmann equation, i.e.,

t0S ¼
Z

a0S

a0

da
aHðaÞ : ð59Þ

Likewise, the scale factor aS and its corresponding
emission time tS of the lower photon are calculated by
similar formulas to (58) and (59), replacing a0SchüS by
aSchüS, and χ0PS by χPS.
Again, it is possible to proceed differently, such as in the

flat and closed cases [10,15], by directly calculating the
time delay through an approximate analytical expression,
instead of calculating aS and tS separately. The idea
consists of subtracting the two sides of (58) from their
analogs of the lower photon and evaluating the integrals
with respect to time. One gets

Z
tSchüS

t0SchüS

dt
aðtÞ−

Z
tS

t0S

dt
aðtÞ¼ arcsin

CSchü
C0PS

− arcsin
CLS

cosχ0PS

− arcsin
CSchü
CPS

þ arcsin
CχLS
CPS

: ð60Þ

As before, because the scale factor aðtÞ varies noticeably
only over cosmological timescales, the left-hand side of the
above equation can be approximated as

lhs ≃
ΔtSchüS
a0SchüS

−
ΔtS
a0S

: ð61Þ

TABLE I. Galaxy cluster massM, position angle −φS, and time
delay for the observed image pairs, ðA; BÞ, ðA;CÞ, ðD;AÞ, ðB;CÞ,
and ðD;CÞ of the lensed quasar SDSS J1004þ 4112 in flat
Einstein-Straus–de Sitter space-time (k ¼ 0). Bold values corre-
spond to upper and lower limits.

Images ðΩΛ0; α; α0Þ M½1013M⊙� −φS½00� Δt½days�
ðA; BÞ ðþ;þ;þÞ 2.735 0.2196 94

ðþ;−;þÞ 2.709 0.3837 163
ð�0;�0;�0Þ 2.706 0.2211 93
ð−;þ;−Þ 2.702 0.0561 23
ð−;−;−Þ 2.677 0.2225 93

ðA;CÞ ðþ;þ;þÞ 3.137 2.7878 1277
ðþ;−;þÞ 3.108 2.9519 1346

ð�0;�0;�0Þ 3.106 2.8069 1269
ð−;þ;−Þ 3.103 2.6588 1192
ð−;−;−Þ 3.074 2.8252 1260

ðD;AÞ ðþ;þ;þÞ 1.764 5.9872 2066
ðþ;−;þÞ 1.738 6.1514 2108

ð�0;�0;�0Þ 1.740 6.0282 2049
ð−;þ;−Þ 1.742 5.9012 1991
ð−;−;−Þ 1.717 6.0675 2032

ðB;CÞ ðþ;þ;þÞ 3.177 2.5682 1184
ðþ;−;þÞ 3.147 2.7324 1254

ð�0;�0;�0Þ 3.145 2.5858 1176
ð−;þ;−Þ 3.143 2.4363 1099
ð−;−;−Þ 3.113 2.6027 1168

ðD;CÞ ðþ;þ;þÞ 2.049 8.7749 3276
ðþ;−;þÞ 2.019 8.9391 3314

ð�0;�0;�0Þ 2.023 8.8350 3250
ð−;þ;−Þ 2.026 8.7263 3186
ð−;−;−Þ 1.997 8.8926 3224

TABLE II. Uncertainties in the galaxy cluster mass M, the
position angle −φS and the time delay of the observed images,
ðA; BÞ, ðB;CÞ, ðA;CÞ, ðD;AÞ, and ðD;CÞ of the lensed quasar
SDSS J1004þ 4112 in flat Einstein-Straus–de Sitter space-time
(k ¼ 0), with Δα ≔ α − α0.

Images Δαð00Þ M½1013M⊙� −φS½00� Δt½days�
ðA; BÞ 0.11 2.706� 0.029 0.2211þ0.1626

−0.1650 93� 70

ðB;CÞ 1.25 3.145� 0.032 2.5858þ0.1466
−0.1495 1176þ78

−77
ðA;CÞ 1.36 3.106� 0.032 2.8069þ0.1450

−0.1481 1269� 77

ðD;AÞ 2.92 1.740þ0.024
−0.023 6.0282þ0.1232

−0.1270 2049þ59
−58

ðD;CÞ 4.28 2.023� 0.026 8.8350þ0.1041
−0.1087 3250� 64
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TABLE III. Variation of the galaxy cluster mass M, the position angle −φS, and the time delay Δt versus the
cosmological constant Λ within its error bar �2.90744 × 10−54 m−2 for the observed image pairs ðA; BÞ, ðB;CÞ,
ðA;CÞ, ðD;AÞ, and ðD;CÞ of the lensed quasar SDSS J1004þ 4112 in flat Einstein-Straus–de Sitter space-time
(k ¼ 0). The angles α and α0 are fixed in their central values.

Images ðΩΛ0; α; α0Þ δΛ½%� M½1013M⊙� δM½%� −φS½00� δφS½%� Δt½days� δΔt½%�
ðA; BÞ ð−;�0;�0Þðþ;�0;�0Þ 5.33897 2.702196 0.271264 0.22251 −1.32403 93.0302 0.44038

2.709526 0.21957 93.4399

ðB;CÞ 3.140887 0.271134 2.60266 −1.32411 1173.49 0.44219
3.149403 2.56820 1178.68

ðA;CÞ 3.101231 0.271150 2.82518 −1.32398 1265.88 0.44253
3.109640 2.78777 1271.49

ðD;AÞ 1.737773 0.271580 6.06753 −1.32362 2044.69 0.45774
1.742492 5.98721 2054.05

ðD;CÞ 2.019884 0.271501 8.89263 −1.32376 3242.31 0.47344
2.025368 8.77491 3257.66

TABLE IV. Variation of the galaxy cluster mass M, the position angle −φS, and the time delay Δt versus the
present curvature density Ωk0 within the range ½−0.3; 0.3� for the observed image pair ðA; BÞ of the lensed quasar
SDSS J1004þ 4112 in curved Einstein-Straus–de Sitter space-time ðk ¼ �1Þ. The angles αA and αB as well as the
present dark energy density ΩΛ0 are fixed in their central values.

ðA; BÞ k ¼ þ1 k ¼ −1

jΩk0j M½1013M⊙� −φS½00� Δt½days� M½1013M⊙� −φS½00� Δt½days�
0.0001 2.705905 0.221071 93.2337 2.706151 0.221158 93.2802
0.0002 2.705775 0.221069 93.2284 2.706268 0.221243 93.3220
0.0003 2.705646 0.221068 93.2236 2.706385 0.221328 93.3632
0.0004 2.705516 0.221066 93.2184 2.706501 0.221414 93.4049
0.0005 2.705386 0.221065 93.2131 2.706618 0.221499 93.4462
0.0006 2.705256 0.221064 93.2083 2.706735 0.221584 93.4879
0.0007 2.705128 0.221062 93.2030 2.706851 0.221670 93.5291
0.0008 2.704997 0.221061 93.1977 2.706968 0.221755 93.5709
0.0009 2.704867 0.221059 93.1925 2.707085 0.221841 93.6121
0.001 2.704738 0.221058 93.1877 2.707202 0.221926 93.6539
0.002 2.703442 0.221043 93.1359 2.708369 0.222782 94.0701
0.003 2.702147 0.221029 93.0847 2.709538 0.223639 94.4874
0.004 2.700854 0.221014 93.0335 2.710707 0.224499 94.9054
0.005 2.699562 0.221000 92.9829 2.711877 0.225360 95.3251
0.006 2.698271 0.220985 92.9317 2.713048 0.226223 95.7459
0.007 2.696981 0.220971 92.8811 2.714219 0.227088 96.1680
0.008 2.695692 0.220956 92.8299 2.715392 0.227955 96.5912
0.009 2.694405 0.220941 92.7786 2.716565 0.228824 97.0156
0.01 2.693118 0.220927 92.7280 2.717739 0.229694 97.4412
0.02 2.680320 0.220780 92.2230 2.729522 0.238505 101.763
0.03 2.667640 0.220632 91.7232 2.741385 0.247511 106.209
0.04 2.655076 0.220482 91.2288 2.753326 0.256720 110.785
0.05 2.642627 0.220332 90.7396 2.765345 0.266137 115.495
0.06 2.630291 0.22018 90.2563 2.777441 0.275773 120.344
0.07 2.618069 0.220028 89.7778 2.789613 0.285633 125.339
0.08 2.605957 0.219875 89.3045 2.801859 0.295727 130.486
0.09 2.593956 0.219720 88.8360 2.814178 0.306064 135.790
0.1 2.582064 0.219566 88.3727 2.826569 0.316654 141.258
0.2 2.468865 0.217984 83.9951 2.953836 0.438974 206.765
0.3 2.365248 0.216372 80.0388 3.083522 0.60307 300.287
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Concerning the right-hand side, one gets up to the second-
to-leading order in S0

PS and SPS (∼10−6) or in φ0
SchüS − φS

and jφSchüS − φSj (∼10−4) on account of (55) and (56),

lhs ≃
1

2

ðφSchüS − φSÞ2 − ðφ0
SchüS − φSÞ2

T −1
Schü − T −1

LS
: ð62Þ

Equating the two sides, one finally arrives at the expression
of the total time delay

Δt ≃ a0S

�
ΔtSchüS
a0SchüS

−
1

2

ðφSchüS − φSÞ2 − ðφ0
SchüS − φSÞ2

T −1
Schü − T −1

LS

�
;

ð63Þ

which is positive for α > α0. Obviously, this expression
reproduces the time delays already calculated in
Refs. [10,15] in the flat and closed ESdS models, as well
as that of the hyperbolic ESdS model,

Δt ≃ a0S

�
ΔtSchüS
a0SchüS

−
1

2

ðφSchüS − φSÞ2 − ðφ0
SchüS − φSÞ2

cothðχSchüÞ − cothðχLSÞ
�
:

ð64Þ

Overall, we realize that the upper photon after being the
first emitted by the source arrives at the vacuole earlier than
the lower one, but in turn, comes out from it later in such a
way as to be eventually received on Earth simultaneously
with the lower photon. As a matter of fact, this happens
because the upper photon, which takes the nearest path
from the lens (r0P < rP), as illustrated in Fig. 1, more
intensely experiences the space-time curvature around the
lens mass.
For symmetry reasons, one can expect that the polar

angle and the time delay cancel, φS ¼ 0, Δt ¼ 0, when
α ¼ α0, in which case the Earth and the lens, as well as the
source are fully aligned to each other.

TABLE V. Variation of the galaxy cluster mass M, the position angle −φS, and the time delay Δt versus the
present curvature density Ωk0 within the range ½−0.3; 0.3� for the observed image pair ðB;CÞ of the lensed quasar
SDSS J1004þ 4112 in curved Einstein-Straus–de Sitter space-time ðk ¼ �1Þ. The angles αB and αC as well as the
present dark energy density ΩΛ0 are fixed in their central values.

ðB;CÞ k ¼ þ1 k ¼ −1

jΩk0j M½1013M⊙� −φS½00� Δt½days� M½1013M⊙� −φS½00� Δt½days�
0.0001 3.145197 2.58578 1176.06 3.145484 2.58589 1176.23
0.0002 3.145046 2.58576 1176.00 3.145620 2.58599 1176.33
0.0003 3.144895 2.58574 1175.93 3.145757 2.58608 1176.43
0.0004 3.144744 2.58572 1175.87 3.145894 2.58618 1176.53
0.0005 3.144594 2.58571 1175.81 3.146030 2.58628 1176.63
0.0006 3.144443 2.58569 1175.74 3.146167 2.58637 1176.73
0.0007 3.144292 2.58567 1175.68 3.146303 2.58647 1176.83
0.0008 3.144141 2.58566 1175.61 3.146440 2.58656 1176.93
0.0009 3.143990 2.58564 1175.55 3.146576 2.58666 1177.03
0.001 3.143840 2.58562 1175.48 3.146713 2.58676 1177.13
0.002 3.142334 2.58545 1174.83 3.148080 2.58773 1178.12
0.003 3.140829 2.58528 1174.19 3.149447 2.58869 1179.12
0.004 3.139326 2.58511 1173.54 3.150816 2.58967 1180.12
0.005 3.137824 2.58494 1172.89 3.152185 2.59064 1181.13
0.006 3.136324 2.58477 1172.25 3.153556 2.59161 1182.13
0.007 3.134825 2.58460 1171.61 3.154927 2.59259 1183.14
0.008 3.133327 2.58443 1170.96 3.156300 2.59356 1184.15
0.009 3.131830 2.58426 1170.32 3.157673 2.59454 1185.16
0.01 3.130335 2.58409 1169.68 3.159047 2.59552 1186.17
0.02 3.115461 2.58237 1163.30 3.172843 2.60542 1196.39
0.03 3.100723 2.58064 1156.98 3.186733 2.61548 1206.80
0.04 3.086121 2.57890 1150.74 3.200718 2.62571 1217.40
0.05 3.071652 2.57714 1144.56 3.214797 2.63613 1228.20
0.06 3.057315 2.57537 1138.45 3.228968 2.64672 1239.21
0.07 3.043109 2.57359 1132.41 3.243231 2.65751 1250.43
0.08 3.029033 2.57179 1126.43 3.257585 2.66850 1261.87
0.09 3.015085 2.56999 1120.52 3.272027 2.67969 1273.53
0.1 3.001262 2.56818 1114.66 3.286557 2.69109 1285.43
0.2 2.869695 2.54969 1059.38 3.436029 2.81872 1419.22
0.3 2.749263 2.53084 1009.41 3.589010 2.98000 1588.39
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IV. APPLICATION TO THE LENSED
QUASAR SDSS J1004 + 4112

The system SDSS J1004þ 4112 discovered in the Sloan
Digital Sky Survey has a background source at a redshift
zS ¼ 1.734, identified as a quasar lensed into five images,
A, B, C, D, and E, by an intervening galaxy cluster at a
redshift zL ¼ 0.68 [33–37]. The galaxy cluster is assumed
to have a spherical inner structure, despite the fact that the
presence of five images obviously violates this assumption.
We find it convenient to express the observed position
angles of images with respect to the galaxy cluster as

αA ¼ 800:37� 000:04; αB ¼ 800:48� 000:04;

αC ¼ 900:73� 000:04; αD ¼ 500:45� 000:04;

αE ¼ 000:21� 000:04; ð65Þ

where we have taken the same position angle error used in
Refs. [38,39].
Throughout the application, we adopt, for the

Hubble constant and the present dark energy density, a
ΛCDM model’s best-fit values provided by Planck col-
laboration [6]—H0 ¼ ð67.36� 0.54Þ km s−1 Mpc−1 and
ΩΛ0 ¼ 0.6847� 0.0073—from which we deduce the
cosmological constant value, Λ ¼ ð1.08914� 0.02907Þ×
10−52m−2. Accordingly, the present matter and the present
curvature densities are related by Ωρ0 ¼ 0.3153 −Ωk0.

A. Flat universe (k= 0)

We start by addressing the case without spatial curvature
in order, inter alia, to appreciate discrepancies when the
nonflat spaces will be considered afterward. The calcu-
lation of the source position angle −φS using (55) or (56),
and the time delayΔt using (63), for the image pairs ðA; BÞ,

TABLE VI. Variation of the galaxy cluster mass M, the position angle −φS, and the time delay Δt versus the
present curvature density Ωk0 within the range ½−0.3; 0.3� for the observed image pair ðA;CÞ of the lensed quasar
SDSS J1004þ 4112 in curved Einstein-Straus–de Sitter space-time ðk ¼ �1Þ. The angles αA and αC as well as the
present dark energy density ΩΛ0 are fixed in their central values.

ðA;CÞ k ¼ þ1 k ¼ −1

jΩk0j M½1013M⊙� −φS½00� Δt½days� M½1013M⊙� −φS½00� Δt½days�
0.0001 3.105487 2.80685 1268.67 3.105771 2.80696 1268.84
0.0002 3.105339 2.80683 1268.60 3.105906 2.80706 1268.94
0.0003 3.105190 2.80681 1268.53 3.106041 2.80715 1269.05
0.0004 3.105040 2.80679 1268.46 3.106176 2.80725 1269.15
0.0005 3.104892 2.80677 1268.39 3.106311 2.80735 1269.25
0.0006 3.104743 2.80675 1268.32 3.106446 2.80744 1269.36
0.0007 3.104594 2.80674 1268.25 3.106580 2.80754 1269.46
0.0008 3.104445 2.80672 1268.18 3.106716 2.80764 1269.56
0.0009 3.104296 2.80670 1268.11 3.106851 2.80773 1269.67
0.001 3.104147 2.80668 1268.04 3.106985 2.80783 1269.77
0.002 3.102661 2.8065 1267.34 3.108336 2.8088 1270.81
0.003 3.101175 2.80631 1266.64 3.109687 2.80976 1271.85
0.004 3.099691 2.80613 1265.94 3.111040 2.81073 1272.89
0.005 3.098208 2.80594 1265.25 3.112393 2.81170 1273.93
0.006 3.096726 2.80576 1264.55 3.113747 2.81268 1274.98
0.007 3.095246 2.80557 1263.85 3.115102 2.81365 1276.02
0.008 3.093767 2.80539 1263.16 3.116458 2.81463 1277.07
0.009 3.092290 2.80520 1262.47 3.117815 2.8156 1278.12
0.01 3.090814 2.80502 1261.77 3.119173 2.81658 1279.17
0.02 3.076127 2.80315 1254.89 3.132804 2.82646 1289.80
0.03 3.061575 2.80127 1248.08 3.146530 2.8365 1300.61
0.04 3.047157 2.79938 1241.34 3.160349 2.84671 1311.62
0.05 3.032870 2.79747 1234.68 3.174261 2.85709 1322.83
0.06 3.018715 2.79555 1228.08 3.188265 2.86765 1334.24
0.07 3.004688 2.79361 1221.56 3.202360 2.87839 1345.87
0.08 2.990789 2.79167 1215.11 3.216545 2.88932 1357.73
0.09 2.977018 2.78971 1208.73 3.230817 2.90046 1369.81
0.1 2.963370 2.78774 1202.41 3.245176 2.91179 1382.12
0.2 2.833462 2.76767 1142.76 3.392920 3.03827 1520.14
0.3 2.714550 2.74721 1088.85 3.544203 3.19707 1693.42
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ðA;CÞ, ðD;AÞ, ðB;CÞ, and ðD;CÞ, are carried out by fitting
the galaxy cluster mass in function of maximum þ, central
�0, and minimum − values of ΩΛ0, α, and α0. For
convenience, the present scale factor a0 is normalized to
unity.2 The results are displayed in Table I, where only some
specific combinations of ðΩΛ0;α; α0Þ within their error bars
have been shown, corresponding to the upper, central, and
lower limit values of M, −φS, and Δt, which are sufficient
for estimating their uncertainties summarized in Table II.
At first sight, the Table II indicates that a small image

angular difference Δα leads to a small polar angle −φS as
well as a small time delay and vice versa. This offers
remarkably two important consequences. First, it concords
with our theoretical model which states that −φS and Δt
vanish for α ¼ α0. Second, the reported time delays obey

the temporal ordering sequence C-B-A-D, where the
longest and shortest time delays correspond to the longest
and shortest angular differences Δα—the more widely
separated C and D images and the more closely separated
A and B images—respectively. This is all to say that a larger
Δα leads to a larger −φS as well as a longerΔt. The angular
difference has then the same implications on the time delay
hierarchy as it would be the case for the commonly used
image angular separation. In particular, the broad range of
time delays provides lower and upper bound estimates
on the galaxy cluster mass, 1.717 × 1013M⊙ ≤ M ≤
3.177 × 1013M⊙, or M¼ð2.447�0.73Þ×1013M⊙, which
matches perfectly with the enclosed massewithin a radius of
60 kpc, measured by Williams et al. (∼2.5 × 1013M⊙) with
Chandra x-ray observations, but roughly twice as small
as their measurements within 100 kpc (∼5 × 1013M⊙)
[35,39–41]. Additionally, the time delay between A and B
images is affected by a margin of uncertainty that is large

TABLE VII. Variation of the galaxy cluster mass M, the position angle −φS, and the time delay Δt versus the
present curvature density Ωk0 within the range ½−0.3; 0.3� for the observed image pair ðD;AÞ of the lensed quasar
SDSS J1004þ 4112 in curved Einstein-Straus–de Sitter space-time ðk ¼ �1Þ. The angles αD and αA as well as the
present dark energy density ΩΛ0 are fixed in their central values.

ðD;AÞ k ¼ þ1 k ¼ −1

jΩk0j M½1013M⊙� −φS½00� Δt½days� M½1013M⊙� −φS½00� Δt½days�
0.0001 1.740161 6.02817 2049.34 1.740321 6.02829 2049.58
0.0002 1.740078 6.02813 2049.22 1.740398 6.02837 2049.70
0.0003 1.739994 6.02809 2049.11 1.740475 6.02846 2049.83
0.0004 1.739911 6.02805 2048.99 1.740552 6.02854 2049.95
0.0005 1.739827 6.02801 2048.88 1.740628 6.02862 2050.08
0.0006 1.739744 6.02797 2048.76 1.740705 6.02870 2050.21
0.0007 1.739660 6.02793 2048.65 1.740782 6.02879 2050.33
0.0008 1.739577 6.02789 2048.54 1.740859 6.02887 2050.46
0.0009 1.739493 6.02785 2048.42 1.740936 6.02895 2050.58
0.001 1.739410 6.02781 2048.31 1.741012 6.02904 2050.71
0.002 1.738577 6.02741 2047.16 1.741781 6.02987 2051.97
0.003 1.737744 6.02702 2046.02 1.742550 6.03070 2053.23
0.004 1.736912 6.02662 2044.88 1.743320 6.03153 2054.49
0.005 1.736081 6.02622 2043.74 1.744090 6.03236 2055.76
0.006 1.735250 6.02583 2042.61 1.744861 6.03319 2057.02
0.007 1.734421 6.02543 2041.47 1.745632 6.03402 2058.29
0.008 1.733591 6.02503 2040.33 1.746404 6.03486 2059.56
0.009 1.732763 6.02463 2039.20 1.747177 6.03569 2060.83
0.01 1.731936 6.02423 2038.07 1.747950 6.03653 2062.11
0.02 1.723704 6.02022 2026.81 1.755712 6.04490 2074.93
0.03 1.715547 6.01617 2015.68 1.763531 6.05334 2087.92
0.04 1.707465 6.01209 2004.67 1.771406 6.06183 2101.09
0.05 1.699457 6.00799 1993.78 1.779338 6.07038 2114.43
0.06 1.691523 6.00385 1983.01 1.787325 6.07899 2127.96
0.07 1.683661 5.99969 1972.36 1.795368 6.08765 2141.67
0.08 1.675870 5.99550 1961.82 1.803466 6.09638 2155.57
0.09 1.668151 5.99129 1951.40 1.811618 6.10517 2169.67
0.1 1.660502 5.98706 1941.09 1.819824 6.11403 2183.96
0.2 1.587690 5.94388 1843.74 1.904550 6.20611 2338.84
0.3 1.521045 5.89987 1755.85 1.992164 6.30499 2519.23

2In the flat Universe, the present scale factor a0 can be set
arbitrarily without loss of generality.
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enough to allow a plausible comparison with the results of
Kawano and Oguri [37], ΔtAB ≲ 28 days, and Fohlmeister
et al. [36] ΔtAB ¼ ð40.6� 1.8Þ days. Our predicted time
delays between B and C, and between D and C are further
consistent with what Kawano and Oguri have obtained,
ΔtBC ≲ 1400 days, and ΔtDC ≲ 3700 days. Fohlmeister
et al. have used a mass model to predict a time delay of
approximately 2000 days between D and A, in agreement
with our result. The same authors have measured relative to
the image pairs ðB;CÞ and ðA;CÞ, the following time delays:
ΔtBC ¼ ð782� 7Þ days, ΔtAC¼ð821.6�2.1Þdays, which
are nonetheless quite shorter than our predictions. Likewise
for Liu et al.who have lately reported inRef. [42] time delays
that differ from ours, but coincide with those of Muñoz et al.
[43] and recent measurements by Perera et al. [41]:
ΔtBC¼ð781.92�2.20Þdays, ΔtAC¼ð825.99�2.10Þdays,
and ΔtDC ¼ ð2456.99� 5.55Þ days.

Failing to answer the question of what and how much is
the effect of a positive Λ on the bending of light, we have
made Table III, based upon the variation of the cosmo-
logical constant Λ within its error bar, from the lower value
to the upper one, with keeping α and α0 fixed in their central
values. Quantitatively, all parameters are related monoto-
nously to each other, but an increase of Λ by 5.34% leads to
a relatively slight decrease of −φS by 1.32% associated
though with a very slightly increasing mass by 0.27%. The
same values hold for all the image pairs. Even though the
method is somewhat less robust than desired, the effect
appears to be very small on cosmological scales. Note also
that the time delay gets a relatively very slight increase as
well: 0.44% for the image pairs ðA;BÞ, ðBCÞ, and ðA;CÞ
and 0.46% for ðD;AÞ, and 0.47% for ðD;CÞ, which are
almost the same. While this statement has only been made
in the framework of flat ESdS model, Hu et al. [29] have

TABLE VIII. Variation of the galaxy cluster mass M, the position angle −φS, and the time delay Δt versus the
present curvature density Ωk0 within the range ½−0.3; 0.3� for the observed image pair ðD;CÞ of the lensed quasar
SDSS J1004þ 4112 in curved Einstein-Straus–de Sitter space-time ðk ¼ �1Þ. The angles αD and αC as well as the
present dark energy density ΩΛ0 are fixed in their central values.

ðD;CÞ k ¼ þ1 k ¼ −1

jΩk0j M½1013M⊙� −φS½00� Δt½days� M½1013M⊙� −φS½00� Δt½days�
0.0001 2.022659 8.83494 3249.92 2.022846 8.8351 3250.3
0.0002 2.022562 8.83488 3249.74 2.022936 8.83519 3250.49
0.0003 2.022465 8.83483 3249.56 2.023026 8.83529 3250.69
0.0004 2.022368 8.83477 3249.37 2.023116 8.83539 3250.88
0.0005 2.022271 8.83471 3249.19 2.023206 8.83549 3251.07
0.0006 2.022174 8.83465 3249.00 2.023296 8.83558 3251.27
0.0007 2.022077 8.83459 3248.82 2.023386 8.83568 3251.46
0.0008 2.021981 8.83454 3248.64 2.023476 8.83578 3251.65
0.0009 2.021884 8.83448 3248.45 2.023566 8.83588 3251.85
0.001 2.021787 8.83442 3248.27 2.023656 8.83597 3252.04
0.002 2.020818 8.83384 3246.44 2.024556 8.83695 3253.97
0.003 2.019850 8.83326 3244.60 2.025457 8.83792 3255.91
0.004 2.018883 8.83268 3242.78 2.026359 8.83890 3257.85
0.005 2.017917 8.8321 3240.95 2.027261 8.83987 3259.79
0.006 2.016952 8.83151 3239.12 2.028164 8.84085 3261.74
0.007 2.015987 8.83093 3237.30 2.029068 8.84183 3263.68
0.008 2.015024 8.83035 3235.48 2.029972 8.8428 3265.63
0.009 2.014061 8.82976 3233.66 2.030877 8.84378 3267.58
0.01 2.013100 8.82918 3231.84 2.031783 8.84476 3269.54
0.02 2.003532 8.82330 3213.78 2.040877 8.85454 3289.21
0.03 1.994052 8.81737 3195.92 2.050039 8.86435 3309.14
0.04 1.984659 8.81140 3178.26 2.059270 8.87419 3329.31
0.05 1.975351 8.80538 3160.8 2.068568 8.88405 3349.75
0.06 1.966129 8.79932 3143.52 2.077934 8.89394 3370.44
0.07 1.956992 8.79322 3126.44 2.087367 8.90385 3391.41
0.08 1.947937 8.78709 3109.55 2.096867 8.91378 3412.64
0.09 1.938965 8.78092 3092.84 2.106432 8.92373 3434.16
0.1 1.930074 8.77472 3076.30 2.116063 8.93369 3455.96
0.2 1.845448 8.71147 2920.35 2.215671 9.03380 3690.85
0.3 1.767987 8.64699 2779.69 2.319147 9.13166 3960.63
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proceeded otherwise and more rigourously using a curved
ESdS model in a simple case where the source is not
inclined but aligned with both the lens and the observer.
They isolate all affects that can be produced by other

parameters on the bending of light when varying Λ.
Especially, they fix the angular diameter distance as well
as the massM and the radius of the vacuole by compensat-
ing the changes in ΩΛ0 by Ωk0. The calculations were

FIG. 2. Evolution of the galaxy cluster massM, the position angle −φS, and the time delay Δt versus the present curvature densityΩk0
within the range ½−0.3; 0.3� for the observed image pair ðA; BÞ of the lensed quasar SDSS J1004þ 4112 in curvedEinstein-Straus–de Sitter
space-time ðk ¼ �1Þ. The angles αA and αB as well as the present dark energy density ΩΛ0 are fixed in their central values.
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FIG. 3. Evolution of the galaxy cluster massM, the position angle −φS, and the time delay Δt versus the present curvature densityΩk0
within the range ½−0.3; 0.3� for the observed image pair ðB;CÞ of the lensed quasar SDSS J1004þ 4112 in curved Einstein-Straus–
de Sitter space-time ðk ¼ �1Þ. The angles αB and αC as well as the present dark energy density ΩΛ0 are fixed in their central
values.
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FIG. 4. Evolution of the galaxy cluster massM, the position angle −φS, and the time delay Δt versus the present curvature densityΩk0
within the range ½−0.3; 0.3� for the observed image pair ðA;CÞ of the lensed quasar SDSS J1004þ 4112 in curved Einstein-Straus–
de Sitter space-time ðk ¼ �1Þ. The angles αA and αC as well as the present dark energy density ΩΛ0 are fixed in their central
values.

EFFECT OF THE SPATIAL CURVATURE ON LIGHT BENDING … PHYS. REV. D 110, 063508 (2024)

063508-17



FIG. 5. Evolution of the galaxy cluster massM, the position angle −φS, and the time delay Δt versus the present curvature densityΩk0
within the range ½−0.3; 0.3� for the observed image pair ðD;AÞ of the lensed quasar SDSS J1004þ 4112 in curved Einstein-Straus–
de Sitter space-time ðk ¼ �1Þ. The angles αD and αA as well as the present dark energy density ΩΛ0 are fixed in their central
values.
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FIG. 6. Evolution of the galaxy cluster massM, the position angle −φS, and the time delay Δt versus the present curvature densityΩk0
within the range ½−0.3; 0.3� for the observed image pair ðD;CÞ of the lensed quasar SDSS J1004þ 4112 in curved Einstein-Straus–
de Sitter space-time ðk ¼ �1Þ. The angles αD and αC as well as the present dark energy density ΩΛ0 are fixed in their central
values.
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performed for different masses and showed that theΛ effect
on light bending is very tiny and can be neglected.

B. Positively curved universe (k= + 1)

Now, we are going to study the effect of a positive spatial
curvature on light deflection and time delay in the frame-
work of a closed ESdS model. A better way to do this is to
let the present curvature density Ωþ0 free to vary discretely
upon a set of (ΩΛ0; α; α0) fixed in their central values.
Thereupon, we fit the galaxy cluster mass for various values
of Ωþ0, within the range ½−0.3;−0.0001�,3 to calculate the
polar angle −φS and the time delay Δt of the four image
pairs. The results are quoted in the Tables IV, V, VI, VII,
and VIII. It would also be best to make use of plots, by
interpolating the data points ðM; jΩþ0jÞ, ð−φS; jΩþ0jÞ, and
ðΔt; jΩþ0jÞ separately. We note that inserting the logarithm
function onto the y axis allows better visualization of the
real effect in the vicinity of smaller jΩþ0j.
According to the Tables IV, V, VI, VII, and VIII, as well

as the Figs. 2, 3, 4, 5, and 6, the galaxy cluster massM, the
polar angle −φS as well as the time delay Δt follow the
same behavior against the present curvature density jΩþ0j.
Specifically, they decrease significantly upon increasing
jΩþ0j within its larger values. This is what the downward
sloping part of graphs demonstrates. However, for smaller
jΩþ0j, the parameters increase very slightly until they
become steady. These limiting values through smaller
jΩþ0j are none other than those of the flat ESdS model
in the Table I. These features remain the same regardless of
which values are chosen forΩΛ0, α, and α0 within their error
bars. An added feature that is easy to check would be that
the parameters M,−φS, and Δt are correlated almost
linearly to each other through all the range of jΩþ0j. In
view of this finding, we conclude that a small curvature
density does not significantly impact the light deflection
and the time delay.

C. Negatively curved universe (k= − 1)
Analogously, we allow several values of Ω−0 within the

range [0.0001, 0.3] to show its impact onM,−φS and Δt in
the hyperbolic ESdS space-time. The results are reported in
Tables IV, V, VI, VII, and VIII, and graphically presented in
Figs. 2, 3, 4, 5, and 6. Conversely to the closed ESdS
model, it is easy to see that the three parameters grow
significantly upon increasingΩ−0 beyond its smaller values
(the upward sloping part of graphs), whereas they decrease
very slightly within smaller Ω−0, until they become steady
once reaching the parameter values of the flat ESdS model
in the Table I. In this context one should note that this
reverse effect is quite expected since the spatial curvature
has changed its sign. Again, one can easily check that the

relationship between the parameters are approximately
described by a linear function through all the range of
Ω−0. Finally, we have come to the same conclusion as for
the closed Universe: including a small spatial curvature in
the ESdS metric does not appreciably affect the light
deflection and time delay.

V. CONCLUSION

In this work, we have generalized the computation of
light deflection and time delay in the Einstein-Straus–de
Sitter space-time, by modeling the gravitational lens as a
static Schwarzschild–de Sitter vacuole embedded in an
external FLRW Universe, with the purpose of covering
together all three types of spatial curvature, k ¼ 0 (flat
Universe), k ¼ þ1 (closed Universe), and k ¼ −1 (open
Universe). This study results in generalized analytical
expressions for the light deflection and the time delay.
After that, numerical applications to the lensed quasar

SDSS J1004þ 4112 have been thoroughly performed for
each case separately. Assuming first the flat Einstein-Straus–
de Sitter background, predictions of five time delays between
the four bright images of the aforementioned lensed quasar
have been obtained and compared to some measurements in
other research, ð3250� 64Þ days for thewell-known longest
time delay between the imagesD andC, and ð93� 70Þ days
for the shortest one between the imagesA andB. For the other
three time delays, we have gotten 2049þ59

−58 days between the
images D and A, ð1269� 77Þ days between the images A
andC, and1176þ78

−77 days between the imagesB andC. These
time delays follow from the fit of the galaxy cluster mass for
each image pair independently. The average mass that we
have found is estimated to be 2.447 × 1013M⊙, with an
accuracy of about 30%.
Additionally, we have shortly discussed the relationship

between the light deflection and the cosmological constant
and reached the following conclusion. Although the light
deflection is attenuated in the presence of a positive
cosmological constant, the results apparently seem to tell
us that the effect is numerically less significant on cosmo-
logical scales, as has been recently asserted by Hu et al.
[29]. The same conclusion holds for the time delay [11]. As
for whether the instruments could observe this tiny effect,
that is, in our view, another mission much more difficult.
After that, we have successively considered the Einstein-

Straus–de Sitter model with positive and negative spatial
curvature. A discrete variation of the present curvature
density in the range ½−0.3; 0.3� is permitted to investigate
its contribution to three parameters, the galaxy cluster mass,
the light deflection, aswell as the time delay. The results have
been reported in tables, and graphically shown in figures,
from which a number of conclusions have been drawn.
Although the three parameters are linearly influenced by
each other, assigning larger values to the present curvature
density will impact them significantly. Clearly, the param-
eters are not subject to the same dependence on the modulus

3According to (5), the present curvature density is constrained
by Ωk0 < 0.3153, since the present matter density Ωρ0 must be
positive definite.
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of the present curvature density jΩk0j as it increases; they are
decreasing in the closed Universe whereas they are increas-
ing in the openUniverse. This reversing effect is expected for
cosmological models with different signs of curvature.
However, the effect thereof is increasingly disappearing
when the curvature density gets smaller and smaller
jΩk0j ⪅ 0.001, covering the parameters of the flat
Universe. This characteristic holds true for both closed
and open Einstein-Straus–de Sitter models. The precise
value of the curvature density is currently still under active
investigation, but if the observations truly trend in favor of
small values thereof, one may feel confident saying that the
expected small curvature of the current Universe is, as it
were, not needed for the computation of light deflection and
time delay in the Einstein-Straus–de Sitter model. On the
other hand, in the cases where the present curvature density
becomes important, this will profoundly influence the strong
lensing phenomenon. These results indicate the robustness of
our generalized approach, and, more importantly, they allow
us to accurately constrain the spatial curvature on the basis of
observational light deflection and time delay data.
To our knowledge, very little research tackles the

question of Ωk0 effect on gravitational lensing. The author
of Ref. [44] exploits weak-lensing data to constrain the
curvature density on which the angular diameter distance
between the lens and the source depends. A similar study is
carried out in Ref. [45]. In Ref. [46], it was shown that the
supernova light-curve parameters are unaffected by the
curvature density. In Ref. [47], a closed Universe has been
considered to analyze the evolution of the dark energy and

matter densities against Ωk0, demonstrating that the only
conceivable values correspond to small curvature densities.
The dependence of the gravitational potential on the spatial
curvature in the weak field limit has been proved in
Ref. [48], using the same cosmological parameters as ours
with realistic small curvature densities [6]. Finally, in
Ref. [49], the authors have derived a particular local static
FLRW metric from the osculating de Sitter metric, con-
cluding that the spatial curvature effects on the local
dynamics are minor but may not be negligible.
Recently in Ref. [41], Perera et al. have estimated a

shorter time delay of roughly 8 yr between the image C
and the faint fifth image E [50], very close to what Forés-
Toribio et al. have obtained before [39], and a longer one
of roughly 9 yr. We have overlooked the image E in this
work owing to the fact that fitting the cluster mass is not
possible or yields values that are far from acceptable. The
image in question is located very close to the center of the
galaxy cluster (∼0.2 arcsec) (65), meaning that the asso-
ciated photon inevitably encounters the mass distribution
along the path. While it may depend on the nonspherical
mass distribution, to which the photon is more sensitive,
we think including an interior Schwarzschid–de Sitter
solution [51] to the Einstein-Straus–de Sitter model would
likely be a possible route to circumvent this problem. We
are currently challenging ourselves to respond to this
question in the hope it will be issued in the near future.
Another avenue to test whether our findings are reliable
would be to expand our analysis to cover other lensed
quasar systems.
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