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This work continues the investigation in two recent papers on the quantum thermodynamics of
spacetimes, (1) placing what was studied in [Universe 8, 291 (2022)] for thermal quantum fields in the
context of early universe cosmology, and (2) extending the considerations of vacuum compressibility of
dynamical spaces treated in [Phys. Rev. D 109, 065027 (2024)] to dynamical spacetimes with thermal
quantum fields. We begin with a warning that thermal equilibrium condition is not guaranteed to exist or
maintained in a dynamical setting and thus finite temperature quantum field theory in cosmological
spacetimes needs more careful considerations than what is often described in textbooks. A full description
requires nonequilibrium quantum field theory in dynamical spacetimes using “in-in” techniques. A more
manageable subclass of dynamics is where thermal equilibrium conditions are established at both the
beginning and the end of evolution, where the in-thermal state and the out-thermal state are both well
defined. Particle creation in the full history can then be calculated in this in-out asymptotically-stationary
setup via the S-matrix transition amplitudes. Here we shall assume an in-vacuum state. It has been shown
that if the intervening dynamics has an initial period of exponential expansion, such as in inflationary
cosmology, particles created from the parametric amplification of the vacuum fluctuations in the initial
vacuum will have a thermal spectrum measured at the out-state. Under these conditions finite temperature
field theory can be applied to calculate the quantum thermodynamic quantities. Here we consider a massive
conformal scalar field in a closed four-dimensional Friedmann-Lemaître-Robertson-Walker universe based
on the simple analytically solvable Bernard-Duncan model. We calculate the energy density of particles
created from an in-vacuum and derive the partition function. From the free energy we then derive the heat
capacity and the quantum compressibility of these spacetimes with thermal particle creation. We end with
some discussions and suggestions for further work in this program of studies.
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I. INTRODUCTION

This is a sequel to two recent papers on the quantum
thermodynamics of spacetimes, (1) placing the work of [1]
for the heat capacity and quantum compressibility of static
spaces containing quantum fields at finite temperatures in
the context of early universe cosmology, and (2) extending
the dynamic compressibility of spaces containing quantum

fields in a vacuum state considered in [2] to thermal
quantum fields. We have considered in [2] three types of
early universe vacuum quantum processes: the Casimir
effect, the trace anomaly [3–5] and vacuum particle
creation [6–11] in a number of dynamical spaces. Here,
we shall focus only on thermal particle creation in a
Friedmann-Lemaître-Robertson-Walker (FLRW) universe,
with special attention paid to inflationary dynamics with a
period of exponential expansion.
Unlike the settings in the previous two papers, either

thermal quantum fields in a static spacetime or vacuum
quantum field processes in a dynamical spacetime, finite
temperature is predicated upon the existence of a thermal
equilibrium condition, which cannot be assumed a priori
for any dynamical spacetime. Even when such a condition
is fulfilled at one time, particle creation at that moment of
time will steer the system away from equilibrium in a later
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moment. Thus before one discusses the thermodynamic
properties of the universe one needs to first address this
basic conceptual issue of when in a dynamical spacetime
could thermal equilibrium be conditionally established, and
under what conditions can a thermal equilibrium state be
maintained throughout its evolution.

A. Dynamics and thermal field theory

Thermal field theory deals with systems at finite temper-
atures. This is predicated upon an underlying assumption
that the system can be kept in thermal equilibrium with a
finite temperature bath. For time-dependent systems
involved in cosmological particle creation (CPC) and
dynamical Casimir effect (DCE), one key issue which need
be addressed ab initio is how can one ensure cosmological
particle creation or enforce dynamical Casimir effect such
that the equilibrium condition is maintained in the temporal
evolution of the system. This is possible if there is no energy
input into, or entropy generated from, the evolving system
in the process. Otherwise thermal field theory is inadequate
and one needs to use concepts in nonequilibrium (NEq)
statistical mechanics and techniques in nonequilibrium
quantum field theory. In the cosmology setting, this issue
has been addressed in a series of papers [12–15] by one of
the present authors. We summarize the key points from that
body of work relevant to our investigation here:

1. Finite temperature quantum field theory in cosmology

In an evolving universe, allowing for particle creation
from the vacuum, the number of particles, the energy and
entropy of quantummatter may all change. If the expansion
(or contraction) is isotropic such as in a FLRW universe,
and if the particles described by a free field obey con-
formally-invariant field equations (e.g., photons), it can be
shown that no entropy is generated and the gas remains in
thermal equilibrium throughout the evolution.1

In the radiation-dominated era one often encounters the
statement that the (Tolman) temperature T ∝ 1=a, where
aðtÞ is the scale factor and t the cosmic time. This assumes
an isentropic expansion of the universe, where the total
number of photons (assuming that is the dominant particle
species present) measured by Θ≡ TðtÞaðtÞ remains a
constant.
For interacting particles, thermal equilibrium can be

maintained at a temperature TðtÞ provided that the char-
acteristic rate of thermal interaction R is much greater than
the expansion rate of the universe H ¼ ðda=dtÞ=a, i.e.,
R ≫ H. We shall introduce the criterion of nonadiabaticity

and the notion of quasiequilibrium in this context in the
next subsection.

2. Casimir, trace anomaly and particle creation:
From vacuum to radiation dominated

As a simple illustration of the inter-knitted relation
between vacuum effects due to the Casimir energy, the
trace anomaly and particle creation, such as studied
in [2,16], and thermal effects, we mention the following
relation [14]. Consider a massless conformal scalar field at
temperature T in a closed FLRW universe, the total energy
density ρ has vacuum contributions ρ0 comprising the
Casimir (CA) energy density and the trace anomaly (TA)
plus contributions from thermal fields ρT

ρ ¼ ρ0 þ ρT ¼ ðρCA þ ρTAÞ þ ðρR þ ρCÞ; ð1Þ

where ρR ¼ π2T4=30 is the Planck thermal energy density,
and ρC is a correction term which takes on the forms given
below at high and low temperatures. The controlling
parameter is the photon number Θ ¼ Ta, which is a
constant for isentropic expansion.

(i) In the high-temperature T (or small a) limit, large Θ:
ρC → −ρCA (minus the Casimir energy), and thus
ρ → ρTA þ ρR.

(ii) In the low-temperature T (or large a) limit, small Θ:
ρC → −ρR (minus the Planck energy) and thus
ρ → ρTA þ ρCA.

We see the former case corresponds to a universe
containing hot radiating gas while the latter corresponds
to a cold quantum universe. Any finite value of Θ
corresponds to a universe with some radiation content.
The finite-temperature theory of quantum fields thus pro-
vides a natural framework for the discussion of the interplay
of quantum versus classical processes with vacuum or
matter contents, as well as the occurrence and transition
from the vacuum-dominated to the radiation-dominated
regimes of the early universe.

B. Levels of approximation in treating a basically
nonequilibrium problem

In evolutionary cosmology when the temperature of the
universe at a certain time in history is mentioned one has
already made the assumption that matter at that time has
come to thermal equilibrium, which needs justification.
Cosmological particle creation is fundamentally a non-
equilibrium quantum field process.
For nonconformally invariant quantum fields, be it with

mass, or massless but minimally coupled (e.g., the two
polarizations of gravitons can thus be described), or for
spacetimes which are not conformally static (e.g., the
Kasner or mixmaster universes), particle production can
happen which generates entropy and disrupts the thermal
equilibrium condition. A more accurate and thorough

1This is the situation where there is no particle creation.
Mathematically, the conformal flatness of the FLRW metric and
the conformal invariance of the matter field allow one to perform
a conformal transformation on the field and on the spacetime,
giving rise to a field equation in a flat space where there is no
particle creation.
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treatment would be by way of nonequilibrium quantum field
theory [17], via the “in-in” formalism as an initial value
problem, as mentioned previously.
Having enunciated the conceptual and technical chal-

lenges for treating this intrinsically nonequilibrium prob-
lem, we now ask, are there situations which allows for a
S-matrix or “in-out” treatment via finite temperature
quantum field theory? A subclass of dynamics, albeit
somewhat artificial, is known as the asymptotically sta-
tionary or statically bounded setup. It has the distinct
advantage that the quantum field theory in both asymptotic
regions, thanks to their endowed global timelike Killing
vector, are well defined. Here, one assumes that the in-state
and the out-state of the system are in thermal equilibrium at
temperatures Ti, Tf. In the intervening time there is
particle production, which can be calculated from the
transition amplitudes of a S-matrix. For thermal scalar
fields, the in-state is an n-particle state obeying the Bose-
Einstein distribution. Particle creation from the vacuum
state is known as spontaneous production while from an
n-particle state is known as stimulated production. (See,
e.g., [18]). The assumption that the out-state is also a
thermal state implies that the particles created either
spontaneously or by stimulation have had enough time
and channels to come to equilibrium. The temperature of
the out-state should be calculable as it is related to the
number of particles created, assuming that is the only
entropy generating process. A simple-minded way to see
this is by way of the Stefan-Boltzmann law, where the
energy density is proportional to T4 for a photon gas. In
fact, we can track the increase in energy associated with
the number of particles created in real time, from the in- to
the out-state, even though temperature is not a well-defined
notion in a time-dependent setting.

II. THERMAL PARTICLE CREATION
IN INFLATIONARY UNIVERSE

In the asymptotically stationary set up, there is a special
class of evolutionary cosmology where the particles created
from the in-vacuum has a thermal spectrum measured in the
out state, namely, when there is a period of exponential
expansion. Since this includes the widely popular infla-
tionary universe we shall in this paper focus on this class of
cosmology for studying the thermodynamic properties of
spacetimes due to quantum field processes. Thermal
particle creation was shown in the 1970s in several
statically bounded models which are completely solvable
so one can closely examine all the details (see, e.g., [19]):
One model worked out by Bernard and Duncan [20] is for a
massive conformal scalar field in a two-dimensional
spatially flat FLRW universe with a scale factor aðηÞ
(conformal time dt ¼ adη) following a hyperbolic-tangent
(conformal) time dependence,

a2ðηÞ ¼ Aþ B tanh ρη; ð2Þ

which tends to constant values a2� ≡ A� B at asymptotic
times η → �∞. We see that from an in-static spacetime
with scale factor a− there is an initial exponential rise
measured by the rise parameter ρ, followed by a nearly
linear midsegment and a smooth exit to an out-static
spacetime with scale factor aþ. These authors found that
if aþ ≫ a− to a good approximation the ratio of the
modulus of the Bogoliubov coefficients

jβk=αkj2 ¼ expð−2πωIN=ρÞ; ð3Þ

where ωIN is the mode frequency of the field of the in-state
at η → −∞. For high momentum modes, one can recognize
the Planckian distribution with temperature given by

kBTη ¼
ρ

2πaþ
: ð4Þ

The Bogoliubov coefficients αk, βk are defined as follows:
Call ΦIN;OUT

k ðt; xÞ the positive frequency mode function of
the kth mode of the quantum field in the in- and out-regions
at t ¼ −∞ and t ¼ þ∞, respectively. They are related by
the Bogoliubov coefficients αk, βk defined by

ΦIN
k ðt; xÞ ¼ αkΦOUT

k ðt; xÞ þ βkΦOUT�
−k ðt; xÞ: ð5Þ

The probability Pnðk⃗Þ of observing n particles in mode k⃗ at
late times is [21]

Pnðk⃗Þ ¼ jβk=αkj2njαkj−2: ð6Þ

From this one can find the average number of particles hNk⃗i
created in mode k⃗ (in a comoving volume) at late times
to be

hNk⃗i ¼
X∞
n¼0

nPnðk⃗Þ ¼ jβkj2: ð7Þ

The modulus of their ratio is particularly useful for
identifying the thermal character of particle creation.
In another analytically solvable model, Parker [22]

treated a massless minimally coupled scalar field in a
FLRW universe using a more complicated functional form
for the scale factor’s τ time defined by dτ ¼ a3dt depend-
ence. He showed that significant particle creation occurs
during the early period when the universe expands expo-
nentially fast. In fact the ratio of the modulus of the
Bogoliubov coefficients obtained in a simpler model where
the scale factor takes on an initial exponential rise has the
same form as in this more complicated model (see also
Berger [23]). Both cases studied give rise to a thermal
spectrum with temperatures proportional to the rise
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function, e.g., ρ in conformal time η in the Bernard-Duncan
model, and σ in τ time in the Parker-Berger model.

A. General properties of cosmological scale function
for thermal production

In more general terms, Parker speculated that the
exponential form in jβ=αj should hold for a general class
of scale functions which possess the properties that: (1) they
smoothly approach a constant at early time, (2) their values
at late times are much larger than at initial times, and
(3) they and their derivatives are continuous functions. The
exponential factor contained in the scale functions at early
times is responsible for the thermal property of particle
creation, with the temperature proportional to the rise factor
in the exponential function. More noteworthy is that this
property is quite insensitive to the late time asymptotically
static behavior of aðτÞ, namely, it could be the asymptoti-
cally flat behavior of a tanh function, or the continuing
rising behavior of an exponential function.

B. Heat capacity and quantum compressibility

We have specified the setting and identified the focus of
our problem, namely, calculating the energy density of
quantum field processes ranging from the Casimir effect to
the trace anomaly and particle creation. We have chosen to
work with the class of dynamics where there is a period of
exponential expansion which gives rise to a thermal
spectrum of particle production. This thermality condition
facilitates a simpler calculation of the heat capacity and the
quantum compressibility of this class of cosmology.
Focusing only on particle production we can break this
down into several steps:
(1) For the in-out equilibrium state set up, assuming we

begin with the vacuum, i.e., temperature TIN ¼ 0,
calculate the energy density of particles created from
this in-vacuum. For the class of dynamics with a
period of exponential expansion, call it inflationary
cosmology, the particles produced have a thermal
spectrum, the temperature of which is determined by
the expansion rate. Even for a dynamics which does
not become asymptotically stationary at late times,
per what was said above, an initial exponential
expansion period would produce particles with a
thermal spectrum the temperature of which we can
use for our quantum thermodynamics investigations
at the end of that period.

(2) Heat capacity is defined under two separate con-
ditions, constant volume and constant pressure.
For static spacetimes these are well defined, see,
e.g., [1]. For spaces whose volumes change with
time, we have to make sure that all cases in the
exponential expansion family (we may call this
inflationary universe) with different rise parameters
expand to the same volume in the out-state. Inte-
grating the energy density over the same volume

gives the energies in different inflationary universes
with varying expansion rates. The faster the ex-
pansion the larger amount of particles produced, the
bigger the energy and the higher the temperature.
The heat capacity of an inflationary universe is
obtained by calculating the change of the energy
from one member of the family to another with
respect to the temperature change across those two
relevant members of the family.

(3) To calculate the thermal compressibility, one needs
the Helmholtz free energy. From the particle number
one can calculate the entropy2 Combining the two
one obtains the Helmholtz free energy and from there
one can calculate all the thermodynamic quantities.

In the next section we proceed to analyze thermal particle
creation of a massive conformal scalar field in a four-
dimensional closed Friedmann-Lemaître-Robertson-Walker
universe based on the simple analytically solvable Bernard-
Duncan model which is statically bounded with an initial
period of exponential expansion. We calculate the energy
density of particles created from the in-vacuum and derive
the partition function. From the Helmholtz free energy we
then derive the heat capacity and the quantum compress-
ibility of these spacetimes with thermal particle creation. In
the last section we conclude with some discussions and
suggestions for further work in this program of studies.

III. QUANTUM THERMODYNAMICS
OF AN INFLATIONARY UNIVERSE

Consider a massive (m) scalar field ϕ in an expanding
four-dimensional closed Friedmann-Lemaître-Robertson-
Walker (FLRW) universe with line element

ds2 ¼ −dt2 þ a2ðtÞdΩ2
S3 ¼ a2ðηÞð−dη2 þ dΩ2

S3Þ; ð8Þ

where dΩ2
S3 is the line element for a 3-sphere S3, t is the

cosmic time and η≡ R dt=aðtÞ is the conformal time, This
field obeys the wave equation

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νϕ� −m2ϕ − ξRϕ ¼ 0; ð9Þ

2In a textbook description it is often stated that the entropy of a
photon gas is given by the number of photons. Note this assumes
many layers of coarse graining from its point of origin, namely,
the vacuum. Entropy of particles created from the vacuum is a
conceptually subtle issue. Since the vacuum is a pure state
particle pairs created from it remains so—there should be no
entropy generation in vacuum particle production. Only after
some coarse-graining measure, such as paying attention only to
the particle number but ignoring the phase coherence relation or
correlations between the particles [24–26] or if only one particle
in the pair is observable, would such an observer report on
entropy being generated [27,28]. For a summary description of
this subject, see [29].
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where
ffiffiffiffiffiffi−gp ¼ a4, gμν ¼ a−2gμν and gμν is the metric

corresponding to the line element −dη2 þ dΩ2
S3 . The

Ricci scalar R is given by

R ¼ 6

a2

�
1þ a00

a

�
; ð10Þ

where a prime denotes taking the derivative with respect to
the conformal time η. We shall consider conformally
coupled fields where ξ ¼ 1=6 in four dimension.
Spelling out (9) explicitly gives

−
1

a4
∂ηða2∂ηϕÞ þ

1

a2
∇2
S3ϕ −m2ϕ −

1

a2

�
1þ a00

a

�
ϕ ¼ 0;

ð11Þ
where

∇2
S3 ¼ ∂iðgij∂jÞ: ð12Þ

Now let ϕ ¼ χ=a, and Eq. (9) becomes

χ00 − ∇2
S3χ þ ðm2a2 þ 1Þχ ¼ 0: ð13Þ

Since the eigenvalues λl corresponding to ∇2
SD are

λl ¼ −lðlþD − 1Þ for l ¼ 0, 1, 2, � � �. In the case
D ¼ 3, Eq. (13) reduces to

χ00ðηÞ þ ω2
l χðηÞ ¼ 0; ω2

l ¼ ðlþ 1Þ2 þm2a2: ð14Þ

The corresponding physical frequency is ϖl ¼ ωl
a ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ1Þ2
a2 þm2

q
.

A. Asymptotically stationary universe with a period
of exponential expansion

As an example of an asymptotically stationary universe,
we let the scale factor aðηÞ evolve in conformal time as

a2ðηÞ ¼ a2f þ a2i
2

þ a2f − a2i
2

tanh
η

Δ
; ð15Þ

where (see Fig. 5(a) for example) the scale factor transits
from one constant value ai in the asymptotic past to another
constant af in the asymptotic future. In the transition time
of duration Δ (inverse of the rise function), the universe
expands exponentially fast, enabling us to explore the
thermodynamic properties. Note, however, the exponential
expansion considered here is in conformal time, not in
cosmic time. (For the standard inflationary cosmology
aðtÞ ¼ eHt ¼ −1=ðHηÞ ¼ aðηÞ so the exponential form
is not reserved.)
Since the equation of motion for χ is exactly the same as

in the Bernard-Duncan model [20] in a two-dimensional,
spatially flat FLRW spacetime. With the continuous k there

replaced by the discrete values kl ¼ lþ 1 here, their results
apply here. Let

ωIN
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l þm2a2i

q
; ωOUT

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l þm2a2f

q
;

ω�
l ¼ ωOUT

l � ωIN
l

2
; ð16Þ

the Bogoliubov coefficients αkl , βkl in the asymptotic future
are given by

jαkl j2 ¼
sinh2ðπωþ

l ΔÞ
sinhðπωIN

l ΔÞ sinhðπωOUT
l ΔÞ ;

jβkl j2 ¼
sinh2ðπω−

l ΔÞ
sinhðπωIN

l ΔÞ sinhðπωOUT
l ΔÞ ; ð17Þ

with the Wronskian condition, jαkl j2 − jβkl j2 ¼ 1. This
follows from the Bogoliubov transformation

uINkl ðη; xÞ ¼ αklu
OUT
kl

ðη; xÞ þ βklu
OUT�
−kl ðη; xÞ; ð18Þ

where the positive frequency mode ukðη; xÞ ∝ e−iωlη in
both asymptotic regions for the suitable ωl. The particle
number generated during the transition is given by jβkl j2 for
mode kl.
The energy associated with particle creation is obtained

by summing the contributions from all modes

E ¼
X∞
l¼0

dð4Þl

�
jβkl j2 þ

1

2

�
ϖl ð19Þ

where the degeneracy dðDþ1Þ
l in R × SD is

dðDþ1Þ
l ¼ ð2lþD − 1Þ ðlþD − 2Þ!

l!ðD − 1Þ! ¼ ðlþ 1Þ2; ð20Þ

forD ¼ 3 and l ¼ 0, 1, 2, � � �. This quantity associated with
vacuum particle creation is the source of our present
investigation into the quantum thermodynamics of dynami-
cal spacetimes. Note, however, this expression does not
include other contributions to the vacuum energy such as the
trace anomaly. In fact, there is no contribution from the trace
anomaly in the asymptotically stationary out-state because it
only depends on different orders of time derivatives of the
scale factor.

B. Thermal particle production originating
from the in-vacuum

Let us try to understand the physics of particle creation
associated with a universe undergoing exponential expan-
sion by examining jβkl j2 given by Eq. (17). In the case of a
large Δ, corresponding to a very long duration of slow
transition or gradual rise
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πωOUT
l Δ ≫ 1; ð21Þ

we can approximate jβkl j2 by

Nl ¼ jβkl j2 ∼
1

2
cothðπωIN

l ΔÞ − 1

2
; ð22Þ

as shown in Fig. 1. We recognize this as the distribution of
the mean particle number of bosons at finite temperatures.
Thus at late times, in a sufficiently high frequencies in the
out-state, we may identify an effective temperature from the
statistical distribution of the created particles in the out state

βeffϖl

2
¼ πωIN

l Δ; ð23Þ

given by

Teff ¼
1

2πafΔ
ωOUT
l

ωIN
l

: ð24Þ

In particular, for lower l modes, l ≪ mai, the effective
temperature Teff ∼ 1

2πaiΔ
becomes independent of field

parameters.
As a check, that there is no particle creation for a

massless field, notice Eq. (16) gives ωIN
l ¼ ωOUT

l for all
values of l, so we haveω−

l ¼ 0 and jβlj2 ¼ 0. This is a well-
known fact, that there is no particle creation for a
conformally coupled massless field in a conformally static
spacetime.
In the other extreme, for a very small Δ, that is, a

remarkably rapid transition or a very steep rise, with

πωOUT
l Δ ≪ 1; ð25Þ

we find

Nl ¼ jβkl j2 ∼
ðωOUT

l − ωIN
l Þ2

4ωOUT
l ωIN

l

: ð26Þ

This is a rather unusual situation because it yields a
constant independent of Δ, hence independent of the
effective temperature. However, with this fairly strong
constraint, it automatically implies πωIN

l Δ ≪ 1. If we write
Eq. (25) into

1

πωout
l Δ

¼
 

1

2πafΔ
ωOUT
l

2ωIN
l

!
ωIN
l af

ωOUT2
l

≫ 1; ð27Þ

and note that the expression inside the parentheses may be
identified as the effective temperature Teff of the field at late
time after the transition stops, then Eq. (25) is equivalent to
requiring

Teff
ωIN
l af

ωOUT2
l

≫ 1: ð28Þ

The second factor is typically very tiny on considering the
extreme expansion of the spacetime. This then infers that
the effective temperature of the environment is exception-
ally high, which may not be a sensible scenario for the
theory under consideration. Alternatively we can imagine
that the spacetime in this limit needs to expand with a very
large scale change over an exceeding short time in a way
the scale factor behaves like a step function in time. Thus, it
is unlikely that the field can still be assumed to be globally
spatially homogeneous after transition, and expectantly
large field fluctuations may be induced. They can persist
for a long time if there is no interacting environment to
relax them.
Instead we may ease up the limit a bit by demanding

πωIN
l Δ ≪ 1 only, and then we obtain

Nl ¼ jβkl j2 ∼ tanh
πωOUT

l Δ
2

1

2πωIN
l Δ

: ð29Þ

The second factor is nothing but

1

2πωIN
l Δ

¼ ωOUT
l

2πafΔωIN
l

af
ωOUT
l

¼ Teff

ϖl
; ð30Þ

Here ϖl ¼ ωOUT
l =af is the physical frequency of mode l at

late times after the transition ends. This is the expression we
typically see for the particle number in the high temperature
limit. Thus, if Eq. (29) is to describe the well known high
temperature limit, we should require

tanh
πωOUT

l Δ
2

≃ 1: ð31Þ

In other words, by the high temperature limit in the
conventional sense, we mean πωIN

l Δ ≪ 1 as well as
πωOUT

l Δ ≫ 1. Thus, in summary, under the assumption

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

FIG. 1. Dependence of jβkl j2 on Δ is shown in the blue curve.
For comparison, the corresponding result according to the Bose-
Einstein distribution is shown in the orange dashed curve. They
deviate at very small Δ, given by Eq. (26). Here we choose
ωOUT
l ¼ 10 and ωIN

l ¼ 1.
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πωOUT
l Δ ≫ 1, the various temperature limits are determined

by πωIN
l Δ: The low temperature regime corresponds to

πωIN
l Δ ≫ 1 while the high temperature regime occurs

when πωIN
l Δ ≪ 1.

C. Energy, pressure, entropy, heat capacity,
quantum compressibility

Having established the linkage in Eq. (23) with thermal
field theory, we may now explore the quantum thermo-
dynamics of exponentially expanding spacetimes with
thermal particle creation. Since we are working with the
out-state where spacetime is stationary the partition func-
tion would be similar to that in Minkowski space thermal
field theory

Z ¼
Y∞
l¼0

"X∞
Nl¼0

e−ðNlþ1=2Þβeffϖl

#
dð4Þl

¼
Y∞
l¼0

�
e
βeffϖl

2

eβeffϖl − 1

�
dð4Þl

:

ð32Þ

The summation is over all modes even though the high
frequency modes are less easily excited while their con-
tributions are suppressed by a Boltzmann-like factor. The
Helmholtz free energy F associated with thermal particle
production then follows

F ¼−
1

βeff
lnZ¼

X∞
l¼0

dð4Þl

�
ϖl

2
þ 1

βeff
lnð1−e−βeffϖlÞ

�
: ð33Þ

The first term in the square brackets gives the vacuum
contribution from the zero-point energy of each mode at
the out-state. The finite-temperature contribution is from
the second term. Notice that the free energy is always
negative, becoming more negative with increasing temper-
ature, due to the increasingly significant role of entropy.
Since at late times we essentially have an effective

thermal field in a constant radius S3 with fixed volume
V, we can use this free energy to find the internal energy E,
entropy S, and the other thermodynamic quantities

FIG. 2. Mode dependence of thermal energy, entropy and heat capacity at constant volume. In each plot, we show the curves
corresponding to three choices of Δ, whose inverse is proportional to the effective temperature Teff of the field after the transition is
completed. These plots are consistent with the low-temperature approximations in Eqs. (37)–(39). The values of the parameters used
here are m ¼ 1, a1 ¼ 1, af ¼ 20. For these choices, most of the modes fall within the low temperature regime βeffϖl ≫ 1. The plot
marker blue dot is used for Δ ¼ 0.05, orange square for Δ ¼ 0.1, and green diamond for Δ ¼ 0.5. (a) Thermal energy Eβ. (b) von
Neumann entropy S. (c) Heat capacity CV.
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E ¼ −
∂

∂βeff
lnZ ¼

X∞
l¼0

dð4Þl
ϖl

2
coth

βeffϖl

2
; ð34Þ

S ¼ β2eff

�
∂F
∂βeff

�
V
¼
X∞
l¼0

dð4Þl

�
βeffϖl

eβeffϖl − 1
− lnð1− e−βeffϖlÞ

�
;

ð35Þ

CV ¼ −β2eff

�
∂E
∂βeff

�
V
¼ −

X∞
l¼0

dð4Þl
β2effϖ

2
l

4
csch2

βeffϖl

2
;

ð36Þ

where Eq. (23) can be used for the expression βeffϖl.
The contributions of each mode in the thermodynamic

quantities, Eqs. (34)–(36) take on the familiar forms in the
low- and the high-temperature limits, as follows

(i) low-temperature, βeffϖl ≫ 1:

El ≃
ϖl

2
þ ωle−βeffϖl þ � � � ; ð37Þ

Sl ≃ ð1þ βeffϖl þ � � �Þe−βeffϖl ; ð38Þ

CV ≃ ðβ2effϖ2
l þ � � �Þe−βeffϖl ; ð39Þ

(ii) high-temperature, βeffϖl ≪ 1:

El ≃
1

βeff
þ βeffϖ

2
l

12
þ � � � ; ð40Þ

Sl ≃ ln
1

βeffϖl
þ 1þ β2effϖ

2
l

24
þ � � � ; ð41Þ

CV ≃ 1 −
β2effϖ

2
l

12
þ � � � . ð42Þ

These are consistent with results shown in Figs. 2
and 3, where we have chosen the parameters such that

FIG. 3. Mode dependence of thermal energy, entropy and heat capacity at constant volume, similar to Fig. 2, except for a different
af ¼ 200. For these choices, the contributions of the modes within the high temperature regime βeffϖl ≪ 1 can be better seen. They are
consistent with the approximations in Eqs. (40)–(42). The plot marker blue dot is used for Δ ¼ 0.005, orange square for Δ ¼ 0.05, and
green diamond for Δ ¼ 0.5. (a) Thermal energy Eβ. (b) von Neumann entropy S. (c) Heat capacity CV.
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πωOUT
l Δ ≫ 1 as discussed earlier, and generated the result

for each mode according to Eqs. (34)–(36) with βeffϖl

replaced by 2πωIN
l Δ.

To find the thermodynamic quantities of the field, for
simplicity we will assume πmafΔ ≫ 1, which can be
translated into

af
ai

m
Teff

≫ 1: ð43Þ

This seems plausible for a quantum field of finite mass, in
consideration of the extreme change of the scale factor
under an exponential expansion. It allows the lower bound
of the summation to start from l ¼ 0. When high frequency
modes are included in the sum over all modes, the
thermodynamic quantities of the field may diverge and
regularization measures need be introduced, as is usually
done with the calculation of the field energy.3On a closer
inspection, except for the internal energy, we note that for a
fixed effective temperature, the high-frequency contribu-
tions to the entropy and the heat capacity are all exponen-
tially suppressed, so when we add up the contributions of
all modes, the entropy and the heat capacity of the field are
well defined.
As for the internal energy, if we leave out the contribu-

tions of vacuum fluctuations in the out-state, and consider
only the thermal energy Eβ of created particles from the
parametric amplification of the vacuum fluctuations in the
in state, then

Eβ ¼
X∞
l¼0

dð4Þl
ϖl

eβeffϖl − 1
; ð45Þ

the result is also well defined. Since the contributions to the
thermodynamic quantities from sufficiently high frequency
modes are exponentially suppressed, we may truncate the
infinite series to finite sums in performing numerical
computations. For very small Δ, many more terms must
be included in the summation in order to obtain stably
convergent results.
The results are shown in Fig. 4. At late times after the

transition ends, in the regime of high effective temperature,
the energy scales like T4

eff and the constant volume heat
capacity is proportional to T3

eff . Meanwhile the entropy
grows with T3

eff . They behave very similar to those of
bosonic particles in the relativistic limit in thermal equi-
librium [30] at temperature Teff .

To calculate thermodynamic quantities such as the
pressure, and from it the compressibility, we need variable
volumes. For this purpose we consider a different scenario,
namely, We fix the initial scale factor ai and the duration of
transition Δ, as shown in Fig. 5(b), and then examine the
dependence of the Helmholtz free energy F on the final
scale factor af. Then the pressure will be given by

P ¼ −
�
∂F
∂V

�
T
; ð46Þ

and the compressibility κt

κt ¼ −
1

V

�
∂V
∂P

�
T
: ð47Þ

The volume V of S3 is 2π2a3, so at late times after the end
of transition, we formally obtain

P ¼ −
X∞
l¼0

dð4Þl

�
∂ϖl
∂af

�
T�

∂V
∂af

�
T

�
1

2
þ 1

βeffϖl
lnð1 − e−βeffϖlÞ

�

¼
X∞
l¼0

dð4Þl
ðlþ 1Þ2
6π2a5fϖl

�
1

2
þ 1

βeffϖl
lnð1 − e−βeffϖlÞ

�
; ð48Þ

where the factor βeffϖl ¼ 2πωIN
l Δ is independent of af and

ϖ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2=a2f þm2

p . In fact, Eq. (48) gives only the

partial pressure due to particle creation. Here we can see for
the very high modes l ≫ maf, we may approximate the

fractional before the square brackets by

ðlþ 1Þ2
6π2a5fϖl

∼
1

3

ϖl

2π2a3f
; ð49Þ

and formally obtain

P ∼
ρF
3
; ð50Þ

where ρF is the free-energy density F=V.
Formally, the redshift in the physical frequency due to

the expansion of the spacetime, for a fixed Δ, will decrease
the energy of each mode l, as shown in Eq. (34). There,
since the factor βeffϖl is independent of af, the mean
particle number 1

eβeffϖl−1 of each mode and the entropy are
independent of af. However, to see the full behavior of the
pressure, we need to include the zero-point contributions of
all modes of the whole field, and deal with the divergences
of both the energy and the pressure. (See [2].)
If we are interested in only the thermal contribution F β

of the free energy, and Pβ of the pressure, then by

3For example, the vacuum contribution to the renormalized
internal energy in the out-state is given by

EVAC ¼
Z

∞

maf

dξ
ξ2

e2πξ − 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2

a2f
−m2

s
: ð44Þ
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subtracting off the zero-point contributions in (48), we find
Pβ is always negative due to the effect of redshift. This is
the contribution to the isothermal compressibility from
particles created via the parametric amplification of the
vacuum fluctuations in the in-vacuum by the expansion of

the spacetime. The result is rather counter-intuitive against
our understanding of photon gas in thermal equilibrium,
and against the similarities between the earlier results and
the counterparts of the bosonic particles. On a closer
comparison, we note that the finite-temperature part of

FIG. 4. Here we show Eβ, S, and Cv of the whole field after we add up the contributions of all modes. We see the familiar results of Eβ

growing like T4
eff (Stefan-Boltzmann) while S, and Cv grow like T3

eff for sufficiently large Teff . Here we choose ai ¼ 1, af ¼ 200,
m ¼ 1. (a) Thermal energy Eβ. (b) von Neumann entropy S. (c) Heat capacity CV.

FIG. 5. Shown here are the behaviors of a2ðtÞ for several scenarios we have considered: In (a), the final scale factor af is fixed while
varying Δ, so that we can compare the results for different effective temperatures. In (b) the rise time Δ is fixed, while af takes on
different values. This corresponds to keeping the temperature constant while varying the volume. (a) Fixed af . (b) Fixed Δ.
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the free energy of the photon gas is proportional to the
volume with a negative proportionality factor, so its
∂F β=∂V < 0. In contrast, here due to the redshift in the
frequency, we have ∂F β=∂V > 0 instead. That makes
the pressure Pβ of the photon gas positive but renders
Pβ of the massive field negative with increasing volume.
With this understanding, now we show in Fig. 6, the

mode dependence of the pressure for a fixed transition
duration Δ and final scale factor af in (a) and the
dependence of the pressure of a chosen mode on the final
scale factor for a fixed transition interval in (b). A smaller
value of Δ represents a higher value of the effective
temperature, so in (a) the curve showing the dependence
of the pressure on the mode has a more prominent feature

for smaller Δ, but drops rapidly with a greater value of l
because it is more difficult to excite the higher modes. In
(b) we choose the mode l ¼ 10, and see that the pressure,
although negative, falls off to zero very fast with af,
Moreover, for larger values of Δ the pressure becomes
extremely small. The former can be understood from the
key observation that the mean number of particles produced

1
eβeffϖl−1 due to expansion depends only on Δ for a fixed ai,
and is independent of af, as seen in Eq. (23). Thus as the
volume expands, the particle density is quickly diluted,
leading to a decreasing pressure for each mode.
To compute the compressibility κt, we follow the same

path to first calculate ð∂P=∂afÞT at late times

�
∂P
∂af

�
T
¼
X∞
l¼0

dð4Þl
ðlþ 1Þ2
6π2

�
∂

∂af

1

a5fϖl

�
T

�
1

2
þ 1

βeffϖl
lnð1 − e−βeffϖlÞ

�

¼ −
X∞
l¼0

dð4Þl
ðlþ 1Þ2ð4ϖ2

l þm2Þ
6π2a6fϖ

3
l

�
1

2
þ 1

βeffϖl
lnð1 − e−βeffϖlÞ

�
: ð51Þ

Then we calculate the factor

1

V

�
∂V
∂af

�
T
¼ 3

af
; ð52Þ

finally arriving at the inverse of the isothermal compress-
ibility, that is, isothermal bulk modulus

κ−1t ¼
X∞
l¼0

dð4Þl
ðlþ 1Þ2ð4ϖ2

l þm2Þ
18π2a5fϖ

3
l

×

�
1

2
þ 1

βeffϖl
lnð1 − e−βeffϖlÞ

�
: ð53Þ

Let us first examine the expressions inside the square
brackets in the low and the high effective temperature
limits. The first term represents the zero-point contribu-
tion, while the second term accounts for particle creation

FIG. 6. (a) We show the finite-temperature contribution of the partial pressure of each mode. We choose three different effective
temperatures but fix the final scale factor af. Only the modes with physical frequencies closely matching the effective temperature would
be effectively excited. In (b) the partial pressure of the mode drops quickly with the spatial volume because the mean particle number is
fixed by Δ. The plot marker blue dot is used for Δ ¼ 0.05, orange square for Δ ¼ 0.1, and green diamond for Δ ¼ 0.5. (a) Fixed af.
(b) Fixed l.
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resulting from the parametric amplification of the in-
vacuum by the expansion of the spacetime. We find

1

βeffϖl
lnð1− e−βeffϖlÞ

¼
8<
:

lnβeffϖl
βeffϖl

; βeffϖl ≪ 1; high temperature regime;

e−βeffϖl

βeffϖl
; βeffϖl ≫ 1; low temperature regime:

ð54Þ

Since the factor ln z=z gives a very large negative number
as z → 0, in the high temperature regime, the vacuum
contribution in κ−1t can be safely ignored for modes whose
values of l are not too high. However, with increasing l, the
modes behave more like that in the low temperature regime
since βeffϖl ¼ 2πωIN

l Δ. The summation in (53) eventually
leads to divergences for a fixed af, and renormalization
procedures need be introduced. From (48), the renormal-
ized zero-point contribution of the pressure is given by
[31]

PVAC ¼ 1

6π2a5f

Z
∞

maf

dx
x4

ðe2πx − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=a2f −m2

q ð55Þ

by the Abel-Plana formula. If we suppose maf ≫ 1,
Eq. (55) is approximately given by [32]

PVAC ≃
ðmafÞ72
12π2a4f

e−2πmaf : ð56Þ

This is a very tiny positive quantity. The corresponding
term in (51) is

�
∂PVAC

∂af

�
T
¼ −

1

2

X∞
l¼0

dð4Þl
ðlþ 1Þ2ð4ϖ2

l þm2Þ
6π2a6fϖ

3
l

≃ −
m3 ffiffiffiffiffiffiffiffiffimaf

p ð4πmaf þ 1Þ
24π2a2f

e−2πmaf : ð57Þ

Again this is exponentially small in the limit, maf ≫ 1.
Thus we only need to consider the finite-temperature
contribution in (53), which is given by

κ−1t ≃
X∞
l¼0

dð4Þl
ðlþ 1Þ2ð4ϖ2

l þm2Þ
18π2a5fϖ

3
l

×
1

βeffϖl
lnð1− e−βeffϖlÞ:

ð58Þ

In Fig. 7(a), we see that the isothermal compressibility κt
takes on smaller negative values if the effective temperature
is higher, associated with more rapid expansion for the same
af. The physical meaning of a negative κt poses some
challenge.4 It would be totally counterintuitive if one
invokes examples of ordinary matter such as the gas
dynamics of a closed system, where the volume is inversely
related to the pressure such that the compressibility is
positive. In the current case, the system is not closed.
Expansion of the universe (or in analog gravity, an external
agent which drives the system) imparts energy into space-
time resulting in particle creation via the parametric ampli-
fication of the vacuum fluctuations. (For a description of
this process in terms of the fluctuation-dissipation relation,
see [33,34].) Having this in mind, it may not be too

FIG. 7. Shown in (a) is the temperature dependence of the isothermal compressibility κt, computed by Eq. (58),
leaving out the renormalized zero-point contribution. For fixed af, the space behaves “stiffer” with increasing temperature. Shown
in (b) is the volume dependence of κt. In contrast, the space with larger volume becomes more compressible. In both plots we choose
m ¼ 1, ai ¼ 1. (a) Temperature dependence. (b) Volume dependence.

4It is interesting to note that the expressions inside the square
brackets in (53) can be zero when e−

βeffϖl
2 ¼

ffiffi
5

p
−1
2

< 1. Since
βeffϖl

2
¼ πωIN

l Δ from (23), we understand that this occurs only for
a specific mode for a fixed Δ and thus it will not render κ−1t zero.
In other words, the isothermal compressibility κt is well defined.
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surprising to see the thermodynamic behavior of the
spacetime under study: the volume of the universe does
not change as fast as the increase in pressure caused by
particle creation due to the rapid expansion of the
spacetime or, in analog gravity, driven by an external
potential. In addition, according to (54), a spacetime filled
with massive quanta of a conformally coupled field would
appear to be “stiffer” at higher temperatures. In contrast, as
shown in Fig. 7(b), at the same effective temperature, that
is, with a fixed Δ the space is more compressible if it
reaches a larger final volume. This characteristic is
attributed to the simple fact that the particle density
is more diluted in a larger spatial volume. Note that it
is consistent with Fig. 6(b), where the finite-temperature
contribution of the partial pressure of a specific mode
drops off quickly with the final scale factor af.

IV. BRIEF SUMMARY AND FURTHER
DEVELOPMENTS

In this work we have treated a conformally coupled
massive scalar field in a spacetime statically bounded in the
asymptotic past and future. We assume the scale factor rises
exponentially fast in conformal time from one constant and
smoothly transits to anther one, as exemplified by the
Bernard-Duncan model, In the limit when the product of
the mode frequency of the field in the out-state and the
transition time is much greater than unity, cf. Eq. (21), once
evolved from the in-vacuum in the asymptotic past, the
quantum field in the out-state after such an expansion
behaves nicely like a massive thermal scalar field in a
Minkowski spacetime. The created particle obey the Bose-
Einstein distribution at a effective temperature which is
inversely proportional to the transition time. Thus, thermality
results from the exponential expansion (or contraction) of
spacetime, and under the thermal equilibrium condition we
can work out the thermodynamics of the quantum field in the
out-state. We explicitly verify this point by examining the
behavior of the Helmholtz free energy, internal energy,
entropy and the heat capacity for each mode of the field
and then for the field as a whole. They are consistent with the
well-known results in the thermal field theory. We further
examine the pressure and the isothermal compressibility.
The latter is a less familiar notion in this context. We find
that thermal particle creation under the rapid expansion of
spacetime results in a negative value in the finite-temperature
contribution to the pressure. We see this as a consequence of
the redshift in the physical frequency of the modes of the
field. Thus it gives a counteracting component to the total
pressure. The compressibility typically takes on small
negative values. This is understood as the fact that under
the current scenario, the volume does not increase as fast as
the pressure does when the spacetime is expanded to various
sizes over a fixed transition time. Moreover spacetime filled
with massive quanta of a conformally coupled field exhibits
increased stiffness at higher temperatures.

What we have presented here is only a model calculation,
taking advantage of the simple analytic form of the scale
function a2ðηÞ ∼ tanhðη=ΔÞ working in conformal time η.
Two extensions of more realistic significance can readily be
made: One is to consider a massive conformal field in
spatially flat FLRWuniverse with an exponential expansion
stage in cosmic time t. The other extension is to treat a
massless minimally coupled scalar field, which depicts one
polarization of the graviton field, in the Poincare patch of
de Sitter space, also in cosmic time5 The calculations will
be a bit more involved, but the track laid down here toward
deriving the thermodynamic functions can be used just as
well. The crucial observation is that one does not need to
impose the somewhat artificial static out-state, because
most of the particle production happens in the initial
exponential expansion stage. As long as the particle
production has a thermal spectrum the procedures illus-
trated here can be adopted. Alternatively, an even better and
conceptually clearer approach is to adopt the in-in or
closed-time-path or Schwinger-Keldysh formalism, as we
alluded to in the beginning. Only a well defined initial state,
or unambiguous Fock state is needed and the nonequili-
brium dynamics will guide the ensuing evolution of the
physical observables with respect to the initial state. At
least for Gaussian systems, following the strategy outlined
in [36], the final state is always in the form of a squeezed
state, from which one can extract the effective temperature
and the coherent, squeezed parameters up to a constant. The
in-in formalism does not require the spacetime to be
asymptotically stationary as it does in an in-out S-matrix
formulation.
Zooming out to the bigger picture, as we explained in

our earlier paper [2] (see references cited therein) space-
time thermodynamics offers a refreshing and perhaps even
correct way of viewing the nature of spacetime, namely, as
an effective theory which describes the low energy, long
wavelength limit of quantum gravity—theories about
spacetime’s microscopic constituents. The novel notions
of quantum capacity and dynamical compressibility intro-
duced there and the theoretical results obtained herewith
associated with thermal particle production have bearings
on two ends of a broad spectrum, namely, the conceptu-
alization of emergent gravity and the observational
possibilities in analog gravity, specifically, dynamical
Casimir effect experiments in the laboratory. Their

5Note the thermal particle creation in an inflationary universe
with a period of exponential expansion where the scale factor
aðtÞ ∼ eHt in the flat FLRW coordinatization of de Sitter space is
different from the thermal radiance felt by an observer in a static
coordinatization of the de Sitter space, the former is due to
parametric amplification of vacuum fluctuations whereas the
latter is due to the Gibbons-Hawking effect akin to the Hawking
effect in black holes or the Unruh effect for uniformly accelerated
detectors. For a broader viewpoint of de Sitter thermality and
calculations of thermodynamic functions, see, e.g., [35].
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physical meanings need be savored more and expounded
further in these contexts.
In the study of spacetime quantum thermodynamics of

dynamical spacetimes with particle creation, two processes
we mentioned in the Introduction are worthy of further
investigation: For one, the inclusion of stimulated particle
creation. So far we have only considered spontaneous
particle creation from the vacuum, i.e., parametric ampli-
fication of the zero-point energy due to the expansion (or
contraction) of the universe. Even the thermal field in this
paper is of vacuum origin, albeit the spectrum of particles
created obey a Planck distribution, thanks to a period of
exponential expansion. To be complete, stimulated pro-
duction, i.e., parametric amplification of particles already
present needs be included at every moment. This is
because at any moment whatever amount of particles
created spontaneously from the vacuum at an earlier
moment will also be amplified. This will greatly enhance
(for bosons) the amount of energy produced. In fact, we
think the great enhancement factor reported in [37] whose
authors regard as owing to finite temperature effect, is
fundamentally due to stimulated particle production. Here,
one sees the theoretical difference between thermal particle
production and stimulated particle production: the stimu-
lated production mechanism is more basic and general,
even though it applies to thermal particle creation, it is not
limited to thermal fields. Thermal field refers to the state
of the quantum field while stimulated production refers to
the dynamical process. It is this stimulated amplification
process, like stimulated emission in lasers, which results in
a much stronger effect than vacuum creation, like sponta-
neous emission.

The other task is the application of nonequilibrium
quantum field theory methods (e.g., [17]) for a fuller
treatment of quantum field processes in the early universe.
Nonequilibrium treatments do not rely on thermal notions
nor require equilibrium states as preconditions. In fact there
is no place for the notion of temperature—temperature is a
derived concept, taking shape only after thermalization can
be actuated. Quantum field processes like particle creation
in evolutionary cosmology or in dynamical Casimir effects
are intrinsically time-dependent processes, whereas finite
temperature theories are predicated upon the existence of a
thermal equilibrium state under stationarity conditions. It is
now possible to treat the thermodynamics of quantum field
processes in dynamical spacetime from a nonequilibrium
quantum field theory approach because a nonequilibrium
free energy density functional related to the influence
action has recently been established for dynamical quantum
systems interacting with a quantum field environment [36].
The approach and results reported there are useful for the
investigations in the present research program. We hope to
report on progresses along these two fronts in our future
works [38,39].
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