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We investigate the cosmological implications of entropy-based approaches in the context of holographic
dark energy (HDE) and gravity-thermodynamics (GT) formalisms. We utilize the extended Barrow entropy
form, with the index parameter Δ, representing the fractal dimension of the horizon. We also test
implementing different parameter ranges for Δ, which can be extended to Tsallis’ interpretation within the
same formal cosmology. We perform a Bayesian analysis to constrain the cosmological parameters using
the Pantheon+, more recent DESy5, DESI datasets. We find that the HDE model within almost all data
combinations performs extremely well in comparison to the GT approach, which is usually strongly
disfavored. Using the combination of DESy5þ DESI alone, we find that the GTapproaches are disfavored
at j logBj ∼ 5.8 and j logBj ∼ 6.2 for the Barrow and Tsallis limits on Δ, respectively, with respect to the
ΛCDMmodel. While the HDE approach is statistically equivalent toΛCDMwhen comparing the Bayesian
evidence. We also investigate the evolution of the dark energy equation of state and place limits on the
same, consistent with quintessencelike behavior in the HDE approaches.
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I. INTRODUCTION

The discovery of the Universe’s accelerated expansion
through supernova (SNe) observations [1] significantly
transformed cosmological parameter estimation, necessitat-
ing the inclusion of the cosmological constant Λ. The Λ
cold dark matter (ΛCDM) model emerged as the concord-
ance cosmology after surviving numerous subsequent
scrutinies using updated SNe datasets [2–8] and success-
fully explained the cosmic microwave background
(CMB) [9,10]. Despite its success, ΛCDM presents sig-
nificant challenges in achieving a physical understanding,
especially given unresolved tensions in parameter esti-
mates. The most notable of these is the H0 tension, which
has reached a significance greater than 5σ [11–13] (see
also, [13–18]). Note however, that there are other mea-
surements of H0, either with improved methodology or
different combinations of datasets finding tension of lesser
significance [15,16,19–27].
This highlights the necessity to go beyond the standard

model, with one promising avenue being the utilization of
cosmological horizons. These are inspired by studies on

black hole event horizons and their thermodynamic char-
acteristics [28–33], a concept known as the holographic
approach based on the holographic principle [28,34,35]. It
is now widely recognized that black hole systems exhibit
behaviors reminiscent of thermodynamic systems [36–49].
This resemblance is encapsulated by the laws governing
black hole thermodynamics, which include concepts
such as the Bekenstein entropy and the Hawking temper-
ature [50–53].
The Bekenstein entropy, often termed “area entropy,” is

directly proportional to the area of a black hole’s horizon
and, thus, its radius squared [50]. The holographic
approach draws an analogy between a black hole horizon
and the apparent/future cosmological horizon [54–59] of
the universe, suggesting that all the information contained
within the universe is encoded on its horizon, akin to the
event horizon of a black hole [30,60].
Another intriguing approach to understanding cosmic

acceleration and possibly resolving tensions draws from
gravity-thermodynamics formalism [61,62], which is once
again based on the foundational concepts in black hole
physics developed by Hawking and Bekenstein [36,51]. In
this framework, we obtain the expansion history of the
Universe implementing a thermodynamic perspective [63],
leveraging the relationship between entropy and horizon area,
along with assumptions of local equilibrium conditions [64].
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In order to build cosmological models from the above-
mentioned approaches, we can use different nonextensive
entropy formulations. The most common and standard of
these is the Bekenstein-Hawking entropy [36,51–53,65]
given as,

SBH ¼ A
4Gℏ

ð1Þ

where A represents the area, G, ℏ are the gravitational
constant and reduced Planck constant, respectively.
We use nonextensive entropies as in systems with long-

range interactions such as Newtonian gravity, the standard
Gibbs-Boltzmann entropy cannot be used [66] because, for
such systems, the partition function diverges. Similarly, in
the case of correlated systems such as strongly entangled
particles and black holes (systems with entropy area law),
the standard Gibbs extensive entropy does not apply.
In these systems, the entropy is proportional to Ld−1 rather
than Ld (where d represents the dimension of the system).
Inspired by the generalizations of Gibbs-Bekenstein
entropy, generalizations of Bekenstein-Hawking entropy
were put forward mainly to make the black-hole entropy
additive while still keeping it nonextensive. Examples
of such generalized nonextensive entropies include
Tsallis entropy [67], Rényi entropy [68], Barrow entropy
[69], Sharma-Mittal entropy [70,71], and Kaniadakis
entropy [72]. See [73,74] for a few generalized entropy
forms and [75], where the entropy is derived starting with
the gravitational potential. Applying these entropy formu-
lations gives rise to various so-called “entropic cosmology”
models described and studied in [30,62,73,76–90]. How-
ever, our work primarily focuses on exploring Tsallis and
Barrow entropies. Tsallis entropy was postulated to incor-
porate the concept of multifractals by scaling the proba-
bility of occurrence of microstates by a factor, while
Barrow entropy was conceptualized to account for the
effects of quantum gravity spacetime foam on the existing
horizon structure [91]. Although the physical principles
underlying these two entropies are completely different,
their formalisms are quite similar, with the only difference
being the allowed ranges for a particular parameter
(denoted as Δ).
Contrasting the formal implications of entropic gravity

through both the holographic principle (HP) [34,92] imple-
mented in [93] and gravity thermodynamics in [94,95,96]
have earlier concluded that the former is more appropriate
than the latter, which fails to provide a self-consistent
definition for entropy. In this work, we essentially con-
trast the application of HP to the dark energy problem
using the formalism described in [97,98], and gravity-
thermodynamics formalism described in [63,94,95,99]
and estimate the cosmological parameters by fitting the
model against the cosmological observable that include
recently published “Pantheon+”, “DESy5” supernovae [4,6],

baryon acoustic oscillation “DESI” [100] through Bayesian
analysis. We constrain cosmological parameters and
validate their consistency against the standard ΛCDM
model. We further estimate the Bayesian evidence to
determine which of the models is favored by the data as
it is our primary objective to test which of the following
approaches, namely holographic or gravity thermodynam-
ics, is in better agreement with the data and how these two
approaches fare against the ΛCDM. As a supplementary
analysis, we also assess the dark energy equation of the
state and its dynamic behavior within these extended
models.
The paper is structured as follows: Sec. II delves into the

cosmological modeling, Sec. II A and Sec. II B address the
Barrow holographic dark energy and Barrow gravity-
thermodynamics approaches, respectively. The observatio-
nal dataset is presented in Sec. III, followed by our
methodology and results in Sec. IV, and conclusions in
Sec. V. Unless otherwise mentioned, we write all expres-
sions in natural units kB ¼ c ¼ ℏ ¼ 1.

II. MODELING

In this section, we briefly describe the two entropy-
based approaches, namely the holographic and gravity-
thermodynamics approaches. For this, we utilize the
Barrow entropy formalism [69], which is mathematically
equivalent to the Tsallis entropy formalism [66] as both
formalisms share the same parametric form, however, they
allow for varied parameter spaces and have different
physical interpretations.
The Barrow entropy proposal for the black hole surface

area is based on introducing a fractal structure for the
horizon geometry. This model consists of a three-
dimensional spherical analog of a “Koch snowflake,”
employing an infinite diminishing hierarchy of touching
spheres around the Schwarzschild event horizon. Through
this method, a fractal structure for the horizon is created
with finite volume and infinite area [73,101,102]. Con-
sequently, this model predicts an entropy different from
Bekenstein-Hawking, where the entropy is formalized as

SB ¼
�
A
AP

�
1þΔ

2

: ð2Þ

Here, A is the horizon area, AP is the Planck area, and Δ
is the free parameter representing the fractal dimension,
bounded by 0 ≤ Δ ≤ 1. We keep the introduction to the
modeling brief as it has been studied and discussed
extensively [30,62,73,76–81].

A. Holographic dark energy

According to the holographic principle, the dark energy
density of the Universe is given by ρHDE ¼ SeffL−4 [97,98],
where Seff is the effective entropy and L is the
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cosmological length scale, which can be interpreted as
either the Hubble horizon, particle horizon, or future
horizon. The dark energy density for the Barrow HDE
model [using Eq. (2)], can be expressed as

ρHDE ¼ BLΔ−2; ð3Þ

where B is a free parameter with dimensions ½L�−ðΔþ2Þ. In
the limiting case, where Δ ¼ 0, this formalism reduces to
the standard holographic dark energy (HDE) [97,98],

ρHDE ¼ 3C2MP
2L−2; B ¼ 3C2MP

2: ð4Þ

While the choice of the cosmological length scale is
still an open issue, it has been argued in [103] that
Hubble horizon (H−1) cannot be used in the holographic
dark energy case as it gives rise to inconsistencies, see
also [104,105]. Following the approaches used in
[60,97,102] we utilize the future horizon as the cosmo-
logical length scale, which is given as,

Rh ¼ a
Z

∞

t

dt
a
≡ a

Z
∞

a

da
Ha2

: ð5Þ

Consequently, the dark energy density ρHDE can now be
written as

ρHDE ¼ BRΔ−2
h : ð6Þ

The Friedmann and Raychaudhuri equations in a flat
universe with dark energy (ρHDE), matter (ρm), and radi-
ation (ργ) are

H2 ¼ 1

3MP
2
ðρm þ ρHDE þ ργÞ ð7Þ

−Ḣ ¼ 1

2MP
2
ðρm þ ρHDE þ PDE þ ργ þ PγÞ ð8Þ

where PI¼fHDE;γg are the pressure terms for dark energy and
radiation, respectively. We have already assumed pressure-
less matter (Pm ¼ 0). The radiation pressure and energy
density are related as Pr ¼ ρr

3
. One can now introduce

the convenient fractional energy density parameters as
Ωi ¼ ρi

3MP
2H2, where i∈ fm;HDE; γg can be substituted

for matter, dark energy, and radiation components, respec-
tively. Substituting ρHDE from Eq. (6) for the fractional
energy density and using the future horizon definition in
Eq. (5) yields,

a
Z

∞

a

da
Ha2

¼
�
3MP

2H2ΩHDE

B

� 1
Δ−2 ð9Þ

Finally, ρm ¼ ρm 0=a3 and ργ ¼ ργ0=a4, with ρm 0 and ργ0 as
the value of the matter and radiation-energy density at the

present epoch (a ¼ 1). Therefore,Ωm ¼ Ωm0H2
0=a

3H2 and
Ωγ ¼ Ωγ0H2

0=a
4H2, where the closure condition ensures

Ωm0 þΩHDEða ¼ 1Þ þ Ωγ0 ¼ 1. Using the definitions of
Ωm, Ωγ as mentioned above and the closure condition, we
can write the expansion rate as

HðaÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0a−3 þ Ωγ0a−4

1 − ΩHDEðaÞ

s
: ð10Þ

Utilizing Eq. (10) in Eq. (9) and differentiating both sides
with respect to a gives the evolution of ΩHDE as

Ω0
HDEðaÞ

½1−ΩHDEðaÞ�
¼ ð2þΔÞΩγ0a−4 þ ð1þΔÞΩm0a−3

Ωm0a−3 þΩγ0a−4

þ ½1−ΩHDEðaÞ�
Δ=2
Δ−2ΩHDEðaÞ 1

2−ΔQðaÞ ð11Þ

where,

QðaÞ ¼ 2

�
1 −

Δ
2

��
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0

a3
þ Ωγ0

a4

r � Δ
2−Δ
�

B
3MP

2

� 2
Δ−2
;

and Ω0
HDEðaÞ ¼ d lnðΩHDEÞ=d ln a. Solving the above

Eq. (11) provides us with the expansion rate in Eq. (10).
Establishing the Hubble rate, one can now formulate the
dark energy equation of state (EoS), ωHDE ¼ PDE=ρHDE for
the holographic dark energy using the conservation law,

ρ̇HDE þ 3HρHDEð1þ ωHDEÞ ¼ 0; ð12Þ

where,

ρ̇HDE ¼ BðΔ − 2Þ
�
ρHDE
B

�Δ−3
Δ−2
�
H

�
ρHDE
B

� 1
Δ−2

− 1

�
ð13Þ

we obtain the EoS parameter as

1þ ωHDE ¼
�
Bð2 − ΔÞ
3HρHDE

�
ρHDE
B

�Δ−3
Δ−2
�
H

�
ρHDE
B

� 1
Δ−2

− 1

��
ð14Þ

and given the values of B [Eq. (4)], ρHDE [Eq. (11)] and H
[Eq. (10)], one can easily evaluate the DE EoS within the
current holographic dark energy approach.
Note that the current formalism is a generalization of the

standard holographic dark energy model, assuming the
future horizon as the cosmological length scale. As afore-
mentioned, a similar approach can be taken for the Hubble
or particle horizon as well, whose implications have been
discussed in [54,97,106]. In our current implementation,
we remain with the standard assumption.
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B. Gravity thermodynamics

In the gravity-thermodynamic approach, one can derive
the Friedmann equations from entropy formulations by using
the first law of thermodynamics [94]. It is interesting to note
that by using the standard Bekenstein-Hawking entropy
[Eq. (1)] we obtain the standard ΛCDM model, where Λ
emerges as an integration constant [63,95,99]. As shown in
[31,62,73], this formalism can be easily extended to gener-
alized entropy functions to obtain modified Friedmann
equations. In this context, aside from naturally having the
cosmological constant at late times, one can obtain additional
nonzero corrections to the early-time radiation epoch [102].
Contrary to the holographic approach, within this formalism,
we choose Hubble horizon as the cosmological length scale
to maintain consistency with the previous works done in the
gravity-thermodynamics approach [62,73],

Rh ¼
1

H
: ð15Þ

In order to derive the Friedmann equation for this approach,
we first calculate the change in energy (dE=dQ) contained
in the region within the cosmological horizon,

dQ ¼ −dE ¼ −
4π

3
R3
hρ̇dt ð16Þ

where ρ represents the energy density. Further dQ can also
be obtained from the first law of thermodynamics as,

dQ ¼ TdSeff ð17Þ

where T is the Gibbons-Hawking temperature [52] and is
defined as T ¼ 1

2πRh
. Seff in this case corresponds to Eq. (2).

Substituting the above expressions in Eq. (17) and further
simplifying it gives

−
4π

3
ρ̇ ¼ 1

πR3
h

�
1þ Δ

2

��
4π

AP

�
1þΔ

2

RΔ
h Ṙh ð18Þ

Integrating both sides of Eq. (18) and rearranging the terms
gives us a modified Friedmann equation.

H2 ¼ 1

3MP
2
ðρm þ ργ þ ρGTÞ;

ρGT ¼ 3

MP
−2

�
Λ
3
þH2

�
1 −

�
π

G

�Δ
2

�
2þ Δ
2 − Δ

�
H−Δ

��
ð19Þ

Following the work done in [73], we have set AP ¼ 4G
to derive the above equation. However, in our analysis, we
leave it as a free parameter [62].
Inserting the expression of ρGT into the Friedmann

equation yields the following relation between the density
parameters implying the closure equation as

Ωm þΩγ þΩGT ¼ 1 ð20Þ

where dark energy parameter ΩGT is given by

ΩGT ¼ 1þΩΛ −
�
π

G

�Δ
2

�
2þ Δ
2 − Δ

�
H−Δ: ð21Þ

In the limit Δ tends to 0, we recover the equations in the
standard ΛCDM model. Similarly, the expression of the
expansion rate can be written in terms of the density
parameters at the present epoch as

EðzÞ ¼ H
H0

¼
�
β

�
2 − Δ
2þ Δ

��
Ωm0ð1þ zÞ3

þ Ωγ0ð1þ zÞ4 þΩΛ
�� 1

2−Δ ð22Þ

where the parameter β is defined as

β ¼ HΔ
0

�
G
π

�Δ
2

: ð23Þ

Note that, from Eq. (22) the standard ΛCDM model is
recovered for parameter values Δ ¼ 0 and β ¼ 1. Using
the Raychaudhuri equation, similar to the approach in
Sec. II A, and substituting for energy densities and
pressure terms (calculated using the conservation law
ρ̇þ 3Hðρþ PÞ ¼ 0) [62] one can determine the Dark
energy EoS (ωGT ¼ PGT=ρGT) as

1þ ωGT ¼ 2ð1þ zÞEðzÞE0ðzÞ�1 − 	
1þ Δ

2


ðEðzÞβÞ−Δ�
3ΩΛ þ 3E2ðzÞ�1 − 	

2þΔ
2−Δ


ðEðzÞβÞ−Δ�
ð24Þ

where E’(z) is defined as the derivative of E with
respect to z.

C. Model interpretation

We now discuss the difference in the interpretation
between the two approaches and the corresponding limits
of the parameter Δ for the two formalisms. Within the
Barrow entropy formalism, the allowed range for the values
of the index (Δ) is strictly limited to Δ∈ f0; 1g, based on
the physical reasoning of the fractal nature of the correc-
tions on the surface of the black hole horizon. On the
contrary, in the Tsallis interpretation, there exist no imme-
diate limits on the values of Δ and can extend beyond the
above-mentioned range [102]. Therefore, for the sake of
analysis, we assume a larger yet consistent range of
parameter space Δ∈ f−3; 3g, which encompasses the
range allowed for the Barrow interpretation of the entropy.
Note that these limits become extremely important from a
model selection point of view, allowing one to assess the
viability of the models in a Bayesian comparison. Needless
to say, while the larger allowed parameter space in Tsallis’
case can clearly yield a better fitting of the data in terms of
the χ2 it cannot be taken for granted in terms of the
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Bayesian evidence, which takes into account the allowed
prior volume that the data allows within the posteriors.
Note also that arbitrarily increasing the prior volume in the
case of Tsallis will penalize the model even more.
Therefore, we remain with a conservative limit mentioned
earlier, which scales the value of the index S ∼ Aδ1 as
δ∈ f−0.5; 2.5g (see Table I).
Alongside the physical limits of the index, the current

formalisms heavily rely on the assumption of the Horizon
length scale. For instance, while the HDE approach usually
assumes the future horizon following [97], it is also
possible to obtain a consistent cosmology using the
Hubble horizon [[105,106], see also [104]]. Similarly,
the use of Hubble horizon in the GT approach eases the
formalism, providing simpler analytical formalism. In the
current line of investigation, i.e., utilizing data to assess
preference for different entropic approaches, it could be of
utmost importance to assess the assumptions of the horizon
as well, which we intend for dedicated future work.

III. METHODOLOGY AND DATASETS

Our work employs supernovae (SNe) and baryon acous-
tic oscillations (BAO) datasets. The SNe dataset is currently
the best representative of standard candles, while the BAO
is the best representative of the standard rulers. Being low-
redshift datasets, they are particularly effective at con-
straining dark energy, as the observations indicate that dark
energy has only recently (z≲ 0.6) [107–111] begun to
dominate the evolution of the Universe.
SNe: The luminosity distance of a distant source such as

type Ia supernovae is estimated for a given cosmological
model assuming the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric for a flat Universe as,

DLðzÞ ¼ ð1þ zÞ c
H0

Z
z

0

dz̄
Eðz̄Þ ; ð25Þ

where H is the expansion history of the universe, see
Eqs. (10) and (22). Given the luminosity distance DL,
the corresponding distance modulus is given by μðzÞ ¼
mBðzÞ −MB, where MB is the absolute magnitude of type
Ia supernovae and mBðzÞ is the apparent magnitude at the
redshift z,

mBðzÞ ¼ 5 log10

�
DLðzÞ
1 Mpc

�
þ 25þMB; ð26Þ

The cosmological parameters are constrained by mini-
mizing a χ2 likelihood,

−2 lnLSN ¼ χ2SN ¼ ΔμTðCSNÞ−1Δμ

where Δμ is the difference between the observed distance
modulus and theoretical distance modulus, and the corre-
sponding covariance matrix CSN of the measurements
comprises both statistical and systematic errors.
We utilize the well-established Pantheonþ ðPanþÞ data-

set [4] alongside the more recent DESy5 [6] dataset. Panþ
dataset is a compilation of spectroscopically confirmed
type-Ia SNe, which has been widely utilized and well
studied, and includes 1550 SNe observed over the redshift
range from z ¼ 0.001 to z ¼ 2.26. We adopt the publicly
available likelihood presented in [112] with a lower redshift
bound of z > 0.01,2 to reduce the effect of peculiar
velocities on the more local SNe (see [113]). When
utilizing the Panþ data alone (corresponding to the first
block of Table II), we also impose a prior on the absolute
magnitudeMb ¼ −19.253� 0.029,3 which is equivalent to
the Cepheid calibration presented in [4]. On the other hand,
the more recent DESy5 dataset presents the collection of
supernovae from the five-year DES supernova program. To
classify these supernovae, the DES Supernova program
uses a machine learning algorithm applied to their light
curves in four photometric bands [114]. In this survey, 1830
type Ia supernovae were identified within a redshift range
of 0.02≲ z≲ 1.13. While the DESy5 SNe has not been
scrutinized to the extent of the earlier Panþ dataset, we
intend to update the constraints and draw parallels to the
recent dynamical dark energy claims in [100]. It should be
noted that in the joint analysis, both Panþ and DESy54 are
uncalibrated.
BAO: We utilize a compilation of the most recent

BAO [100] dataset for our analysis. Dark Energy

TABLE I. Priors used in the Bayesian analysis.

Parameter Model Prior

Ωm0 [0.1, 0.5]
H0 [40.0, 100.0]
Δ Tsallis ½−3.0; 3.0�

Barrow [0.0, 1.0]
Ca [0.0, 10.0]
β [0.5, 1.5].
rd [125, 160].
Mb ½−20.5;−18.5�.

aHDE normalization parameter, see Appendix A for a
discussion on the effects of the priors on C.

1Note that δ is the usual notation utilized in writing the Tsallis
entropy [66]. The values of δ ≤ 0 are already beyond physicality
of the model, with δ → 1, retrieving the standard BH entropy
in Eq. (1).

2This limits the dataset to 1590 correlated measure-
ments taking into account both the systematic and statistical
uncertainties.

3We do not perform a complete SH0ESþ Panþ analysis as it is
equivalent to the simple Mb prior imposed here and is anyhow
neither are suitable for the joint analysis with BAO data.

4DESy5 dataset is provided by analytically marginalizing upon
the absolute magnitude calibration and cannot be utilized to
infer H0 [114].
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Spectroscopic Instrument (DESI) survey provides us with
observables DH=rd and DM=rd. The observations are
available across seven uncorrelated redshift bins utilizing
over 6 million extragalactic objects within the redshift
range 0.1 < z < 4.2, see Table 1 of [100]. The likelihood
for the BAO data, LBAO, is written taking into account both
observables and their corresponding correlation at each
redshift (please see Sec. 2. 1 in [100] for more details). In
summary, we use the uncalibrated BAO dataset, wherein
the sound horizon rd remains a free parameter and is set/
calibrated using the CMB priors, as elaborated in the
following paragraph.
The inclusion of the cosmic microwave background

(CMB) data/priors, as was earlier done in [102], can
immensely aid in parameter estimation. However, we refrain
from using strong CMB priors such as the reduced CMB

likelihood [115,116], which is heavily reliant on the assumed
cosmology in obtaining the so-called shift parameters in the
ΛCDMmodel. In contrast, we utilize less stringent priors on
frd; Hrecg5 which are known to be independent of late-time
cosmology [117]. We adopt the values and their correspond-
ing covariance from [118], which were obtained utilizing the
Planck 2018 likelihoods [10]. Wemainly intend this addition
as the inverse distance ladder analysis of the BAO data, only
mildly aiding the constraints on the late-time parameters and
providing a value of H0. Finally, we also assume a prior on
the radiation density Ωγ0h2 ¼ 4.18343 × 10−5, following
present-day CMB temperature of TCMB ¼ 2.7255 [10,119].

TABLE II. Constraints (68% C.L.) on the free model parameters of the entropic models and the ΛCDM model. The parameter H0 is
measured in units of km=sMpc−1. In the last column, we show the Bayesian evidence for each model computed against the ΛCDM
model. We remind that in our comparison a positive value of logB implies that the model in comparison is disfavored with respect to the
ΛCDM model.

Dataset Model Ωm H0 Δ C=β Mb rd logB

Panþ ΛCDM 0.332þ0.018
−0.018 73.250þ1.021

−0.995 − − −19.252þ0.029
−0.029 − 0

BGT >0.243 73.309þ1.011
−0.941 <0.627 >0.725 −19.253þ0.029

−0.027 − 2.154

BHDE 0.249þ0.057
−0.062 73.154þ1.040

−1.041 >0.282 >2.09 −19.250þ0.030
−0.029 − 1.936

TGT −− 73.136þ0.986
−0.980 −0.411þ0.473

−0.441 −− −19.254þ0.029
−0.028 − 2.354

THDE 0.253þ0.062
−0.070 73.020þ1.039

−0.955 0.674þ0.281
−0.459 −− −19.255þ0.029

−0.027 − 3.329

DESy5 ΛCDM 0.353þ0.017
−0.017 69.481þ20.840

−19.853 − − − − 0

BGT >0.256 69.693þ20.854
−20.261 <0.776 >0.775 − − 1.842

BHDE <0.324 69.128þ20.347
−19.716 −− >1.9 − − 0.932

TGT −− 70.558þ20.001
−20.380 −0.502þ0.570

−0.519 −− − − 2.018

THDE <0.332 66.345þ22.919
−18.780 0.573þ0.386

−0.546 −− − − 2.568

DESI ΛCDM 0.296þ0.007
−0.007 69.187þ0.649

−0.615 − − − 147.263þ0.334
−0.323 0

BGT >0.263 69.743þ0.941
−0.948 <0.016 0.762þ0.194

−0.128 − 147.254þ0.329
−0.336 6.453

BHDE 0.280þ0.022
−0.024 71.065þ3.355

−2.724 >0.241 3.777þ1.655
−1.961 − 147.284þ0.348

−0.312 4.129

TGT 0.320þ0.101
−0.085 69.525þ0.983

−0.973 0.003þ0.008
−0.009 −− − 147.236þ0.340

−0.339 7.471

THDE 0.278þ0.021
−0.025 71.365þ3.489

−2.640 0.960þ0.208
−0.352 −− − 147.280þ0.344

−0.364 5.022

Panþ þ DESI ΛCDM 0.301þ0.006
−0.006 68.825þ0.583

−0.610 − − −19.398þ0.017
−0.018 147.149þ0.323

−0.317 0

BGT >0.314 68.566þ0.781
−0.740 <0.011 0.764þ0.115

−0.106 −19.405þ0.021
−0.020 147.228þ0.331

−0.332 6.681

BHDE 0.309þ0.007
−0.007 67.673þ0.694

−0.778 >0.502 5.253þ1.386
−1.984 −19.427þ0.018

−0.020 147.330þ0.357
−0.339 4.281

TGT >0.218 68.446þ0.777
−0.794 −0.002þ0.007

−0.008 −− −19.407þ0.021
−0.022 147.258þ0.341

−0.340 7.355

THDE 0.308þ0.008
−0.007 67.698þ0.715

−0.794 0.988þ0.124
−0.356 >0.279 −19.426þ0.019

−0.020 147.328þ0.319
−0.343 6.073

DESy5þ DESI ΛCDM 0.305þ0.006
−0.006 69.488þ0.589

−0.568 − − − 147.067þ0.326
−0.329 0

BGT >0.346 67.893þ0.720
−0.692 <0.008 0.743þ0.094

−0.068 − 147.251þ0.343
−0.334 5.759

BHDE 0.316þ0.007
−0.007 66.891þ0.700

−0.729 >0.565 5.901þ1.290
−2.055 − 147.352þ0.324

−0.337 1.815

TGT 0.311þ0.098
−0.073 67.722þ0.726

−0.716 −0.005þ0.007
−0.007 >0.709 − 147.225þ0.339

−0.338 6.152

THDE 0.315þ0.007
−0.007 67.028þ0.715

−0.726 0.987þ0.104
−0.212 >3.12 − 147.319þ0.339

−0.311 2.276

5The value of Hrec is evaluated at recombination redshift of
zrec ¼ 1089, which is independent of most common late-time
modifications [117].
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A full Bayesian joint analysis is performed utilizing the
publicly available EMCEE

6 package [120] which imple-
ments an affine-invariant ensemble sampler. We analyse the
generated MCMC samples using CORNER

7 and/or GetDist
8

[121] packages. Finally, we compute the Bayesian evi-
dence ΔB [122–124]. For this purpose, we utilize
MCEvidence

9 [125]. In our comparison, we utilise the con-
vention that a positive value of Δ logB ¼ logBRef¼ΛCDM −
logBI would imply that reference model (ΛCDM) is
preferred over model I. As is the usual practice we refer
to Jefferys’ scale [126,127] (see also [123,128]) for
assessing the strength at which a given model is preferred.
In Table I we summarize the priors utilized on the
parameters within the Bayesian analysis. It is indeed the
priors on the parameter Δ that distinguish the Barrow and
Tsallis models, which we denote hereafter as Barrow holo-
graphic dark energy (BHDE) or Barrow gravity thermo-
dynamics (BGT) and similarly THDE/TGT, respectively.

IV. RESULTS AND DISCUSSION

We begin by presenting our results for the constraints
obtained for the extended models and then proceed to
discuss the model selection based on Bayesian evidence.
As we have described in the Sec. II, the essential difference
between the Barrow or the Tsallis interpretation of the
functional model is solely the prior ranges which define the
physical viability of the model.

A. Constraints

All the parameter constraints are summarized in Table II,
which are obtained utilizing combinations of Panþ and
DESy5 datasets, respectively. Although we present the
results using both Panþ and DESy5 the supernovae
compilations, we mainly refer to the former for our final
results, while utilizing the latter for a comparative dis-
cussion as it is the most recent and latest dataset available.
We first discuss the results obtained using the holographic
principle, followed by a discussion of the same using
gravity-thermodynamics formalism, before presenting a
comparative analysis.
Holographic principle: We find that our constraints are

consistent with the limits quoted in earlier works for the
BHDE [61,102,105]. Our results also align with other
works in the context of THDE [30,129,130], where the
HDE normalization parameter C ¼ 1

10 is sometimes
assumed. As seen in Fig. 1, when C ¼ 1 is imposed,
our results converge to the constraints presented in these
works, providing extremely tight constraints on the index

parameter Δ. Note that our constraints are slightly less
stringent, being Δ > 0.48 at 2σ C.L., compared to Δ >
0.63 [102], as we only use SNe and BAO datasets (even
with the more recent DESI) and do not include very strong
CMB constraints. However, it is interesting and validating
that the inclusion of additional datasets in [102] such as
cosmic chronometers [131,132] and strong lensing data-
sets [133] only mildly aid the joint constraints, while the
latter prefers a slightly larger value of Ωm0.
However, the above interpretation of consistency comes

with the caveat that the posteriors are subject to the
assumed prior volume. This is evident as the sampling
effects11 on the parameter space when the prior volume is
increased to that of the Tsallis bounds. On the other hand,
we find an upper limit on Δ completely driven by the upper
limit of C < 10. In turn, we find that Δ ¼ 0 is a disfavored
scenario within both the Barrow and Tsallis priors, as
presented in [102], thus deviating from the standard
Holographic dark energy [97]. It should be noted that only
the BAO datasets are able to provide strong limits on Δ,
being constrained by the combination of both distance and
expansion rate.
The constraints obtained on the parameters fH0;Ωm0g

are completely consistent with those obtained in theΛCDM
model. While the SNe datasets alone are unable to constrain
the matter density parameter Ωm0, the BAO dataset along
with the inverse distance ladder priors from CMB is able to
provide a tight constraint on the parameter. Additionally,
the inclusion of SH0ES calibration (Mb-prior) to the SNe
dataset or the rd prior to the BAO dataset does not influence
the constraints on the holographic entropy parameters.
Interestingly, the HDE approach is able to solve the
H0-tension [12] while satisfying the inverse distance ladder
prior, aided by mildly lower values of Ωm0 ∼ 0.28.
However, this is disfavored when the SNe is included in
the analysis, showing no advantage in solving the
H0-tension. Furthermore, the most recent dataset combi-
nations of DESIþ DESy5 and DESIþ Panþ show no
difference in the constraints on the HDE parameters.
However, the inclusion of the most recent DESy5 SNe
dataset provides strong implications for model selection,
which is indeed the primary focus of our investigation.
In this context, it is interesting to note that earlier [134],

have shown that there are discrepancies within the con-
straints of the Δ parameter when estimated using SNe and
BAO datasets, essentially when C ¼ 1 is fixed.
Gravity thermodynamics: The joint analysis indicates

that the cosmological parametersH0 andΩm0 are consistent
with the concordance cosmology. However, there is a
strong degeneracy between the matter density (Ωm0) and

6http://dfm.io/emcee/current/.
7https://corner.readthedocs.io/en/latest/.
8https://getdist.readthedocs.io/.
9https://github.com/yabebalFantaye/MCEvidence.
10Note that there is no immediate physical argument to fix

C ¼ 1.

11Such sampling effects are common in cases where the
posterior tends to converge to the limits of the prior volume,
where the MCMC-based sampling tends to provide incorrect
confidence limits. Please see Appendix A for a detailed
discussion.
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the normalization parameter β, as seen in the right panel of
Fig. 1. The range of β > 1.0 prefers low values of Ωm0, and
the opposite is observed for β < 1. In comparison to the
results presented in [62], where strong CMB priors are
imposed on Ωm0 to obtain strong constraints on β, we do
not find such constraints in our analysis. As anticipated
in Sec. II B, Δ → 0 and β → 1 indicate that the model
converges to ΛCDM cosmology. In our analysis, we find
that β ≤ 1 at least at a ∼2σ C.L. when Δ → 0, indicating a
deviation from the ΛCDMmodel, which is also reflected in
the Bayesian evidence (see Sec. IV B). This deviation is
evident in the constraints with β ∼ 0.75, as seen in Table II
and the upper triangle of the left panel in Fig. 1, when the
Barrow limits are adopted. When the limits on Δ are
extended to the Tsallis model, β ∼ 1 does obtain a posterior
peak, although it remains completely unconstrained while
retaining the deviation from the ΛCDM case at ∼2σ.
We find the significance of this deviation in BHDE limits
to be at 1.23σ; 2.05σ; 3.45σ using the DESI, Panþ þ DESI,
DESy5þ DESI datasets, respectively. The latter of the
three data combinations is a significant deviation, being
equivalent to the deviation from ΛCDM quoted in [100]
using phenomenological modeling of dynamical dark
energy, namely the CPL [135,136] model considerations.
Further discussion on this topic is provided in Sec. IV C.
In [137–139], limits on the exponent (Δ) were placed

considering the big bang nucleosynthesis at early times [see
also [140,141], for limits based on inflation]. In the context
of the equivalent GT approach as explored here, extremely

tight bounds of Δ ≤ 1.4 × 10−4 were presented over the
allowed values [137]. More recently, in [140], a less
stringent limit of Δ ∼ 0.008 is reported, considering a
similar analysis. These limits are subject to the cosmo-
logical approach followed using the Seff and are valid only
within the GT approach. Also, the normalization parameter
β is usually set to unity in most of the aforementioned
analyses. When imposing the Barrow limits of Δ > 0, we
find the 95% C.L. upper limit to be Δ < 0.011 and Δ <
0.008 using the Panþ þ DESI and DESy5þ DESI, respec-
tively. We find that our constraints here are in very good
agreement with the limits set in the aforementioned
analyses, which consider completely different epochs.
When imposing the Tsallis limits, we find that the median
of the posteriors tends to Δ < 0while being consistent with
Δ → 0 within 1 − 2σ C.L. for all dataset combinations.
Comparing the HDE and GT approaches, we find Ωm0 is

better constrained in the former than in the latter, where the
upper limit on the same is weakened in almost all the data
combinations. Interestingly, the BGTwith tighter bounds of
Δ tends to push the Ωm0 values to be larger than in the TGT
case with wider Δ priors, which in turn provides no upper
bound. While the HDE approach usually constrainsΩm0, to
be larger than the ΛCDM value.

B. Bayesian evidence

We estimate the Bayesian evidence comparing against
the ΛCDM model as presented in the last column of
Table II, and Fig. 2. As anticipated, we find that the

FIG. 1. Contours for the 68% and 95% confidence limits on the holographic dark energy approach (left) and the gravity-
thermodynamics approach (right), for all data combinations under considerations. The upper and lower triangle plots show the
constraints when imposing the Barrow and Tsallis limits on the parameter Δ, respectively.
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ΛCDMmodel is almost always preferred over the extended
HDE and GT approaches both within the Barrow and
Tsallis limits. However, we mainly focus on our primary
motive of assessing the performance of HDE and GT
Entropic approaches against each other. As can be seen
from the SNe-only analysis, neither the Panþ nor the
DESy5 is able to strongly constrain the parameters nor
provide a strong preference for the ΛCDM model. SNe
datasets provide maximum Bayesian evidence against the
THDE model of the order logB ∼ 3.3 using the Panþ
compilation, which is moderate evidence disfavoring the
model. On the other hand, the DESI dataset is consistently
able to disfavor all the extended models with almost a
strong significance of logB ≳ 5. However, in this case, the
GT approaches are more strongly disfavored than the HDE
approaches.
Having established the preferences of individual data-

sets, we now turn to the joint analysis of the SNe and BAO
datasets. In Fig. 2, within each heatmap, we show the
comparison of the logB and Δχ2bf , in the lower and upper
triangles, respectively. The values in each cell are computed
as the difference between the value corresponding to the
model on the x-axis with respect to the respective model on
the y-axis. For instance, the first column shows the differ-
ence between the Evidence for the models on the y-axis
with respect to ΛCDM on the x-axis, where we see that the
ΛCDM is always preferred over the extension. Similarly,
the top row shows that all the models on the x-axis have
better χ2bf than that in the ΛCDM model. This is indeed
what one would expect, with increasing number of param-
eters in the extended models they will fit the data better in
terms of χ2. However, since the number of parameters in
GT and HDE models is the same, even χ2 can be used to
compare these two approaches. We find that these results
are in line with the Bayesian evidence results i.e., χ2bf of the
HDE model is lower than the Δχ2bf in the GT approach.
We find that the Panþ þ DESI dataset once again dis-

favors all the extended models strongly, i.e., logB ≳ 5. The
BHDE is disfavored with respect to the ΛCDM model

having logB ∼ 4.3, which is equivalent significance
reported in [102], while using a different set of data.12

However, very interestingly now replacing the Panþ with
the more recent DESy5 SNe we find a clear preference for
the HDE models over the GT approaches. The aforemen-
tioned significance of logB ∼ 4.3 is now reduced to
logB ∼ 1.8 using the more recent DESIþ DESy5 dataset,
implying BHDE performs very well. We find that the newer
DESy5þ DESI data compilations fit the HDE models with
better Δχ2bf ∼ −7 for both the Barrow and Tsallis bounds.
This, in turn, reflects positively in terms of evidence as the
HDE models can be interpreted to fit almost equivalently to
the ΛCDM model. On the other hand, the GT approaches,
while having slightly better Δχ2bf ∼ −3.4 (Barrow) and
Δχ2bf ∼ −4.1 (Tsallis), fare extremely poorly being disfa-
vored with logB ∼ 5.8 and logB ∼ 6.2 in terms of
Bayesian evidence, respectively. The THDE and BHDE
models, on the other hand, perform equally well as the
ΛCDM model. In this context, we almost most definitely
find that the HDE approach performs better than the GT
approach.
In a similar way, comparing the GT approaches with the

BHDE model, we find that the TGT and BGT approaches
are disfavored at logB ∼ 4.0 and logB ∼ 4.3, respectively,
when using DESy5þ DESI data. With the Panþ þ DESI
we find a moderate preference of logB ∼ −3.1 for the
BHDE over the TGT model. From the evidence analysis,
we can also note that generally, the Barrow entropic models
are mildly favored over their corresponding Tsallis counter-
parts for all the combinations of datasets.

C. Dark energy implications

We now turn to estimate the dark energy equation of
state, wðzÞ for the two entropic formalisms. As is very well
known, the HDE and GT approaches provide dynamical
behavior to the dark energy density (ΩHDE;ΩGT). We
construct the wðzÞ and also compute the derivative of
the same to construct the fw0; wag13,14 parameter space.
This assessment is also necessary to better understand the
constraints obtained in the parameter space formally
utilized when assessing deviations from the standard
ΛCDM scenario. For ease of comparison, we display both
the functional evolution of wðzÞ in Fig. 4 and the w0 vs wa
parameter space (see Fig. 3). As we show in Fig. 3, the
BHDE models are constrained in similar parameter ranges

FIG. 2. Comparison of the Bayesian Evidence and the best-fit
Δχ2 for all the combinations of models under consideration. The
left panel shows the data combination Panþ þ DESI and the right
panel is shown for the more recent DESy5þ DESI.

12As mentioned in Sec. III, we have compared our results with
the earlier completed SDSSþ Panþ dataset combination finding
that the BHDE model is disfavored with respect to ΛCDM at
logB ∼ 4.8, which is a similar inference made in [102] (see
Table I. therein).

13Here wa is the derivative of the wðzÞ with respect to scale
factor a today (a → 1) and w0 ¼ wðz ¼ 0Þ.

14In this formalism, the dynamical dark energy is modeled
through the EoS wðzÞ ¼ w0 þ wað1 − aÞ, and is usually depicted
as Fig. 3.
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as the phenomenological CPL parameters. The larger pos-
teriors of CPL parameter space are completely in agreement
with the much tighter posteriors within the HDE model.
As shown in the top panels of Fig. 4, we find that the

dark energy equation of state (ωGT) in the TGT approach

shows a singularity at z ∼ 1.8 transitioning from the
ωGTðz≲ 1.8Þ ∼ −1 to ωGTðz≳ 1.8Þ ∼ 0, consistent with
ΛCDM at late-times and transitioning to a radiationlike
behavior at higher redshifts. This is a formal assessment of
the argument presented in [102] that the GT approach can
mimic the ΛCDM model at late times while only being a
radiation correction to the standard ΛCDMmodel at higher
redshifts. Note that the singularity present in the TGT
model is not present in the BGT model, which shows a
smooth transition to ωGT → 0. This difference is driven by
the fact that posterior for Δ < 0 is allowed in the TGT
models, while it is forced to be positive in the BGT limits.
This changes the nature of the denominator in Eq. (24),
which allows for some of the parameter space to provide
the singular behavior. In top-right panel of Fig. 4, we
show in the inset highlighting the range a∈ f0.05; 0.6g,
the curves obtained for ωGT for Δ > 0 (orange) and
Δ < 0 (green).
Our results for the BGT models here are in good

agreement with those presented in [62], where a simple
quintessencelike EoS was obtained, which is also com-
plemented by their inclusion of strong ΛCDM based CMB
priors on Ωm0 assumed therein. As found in [62], and
shown in the lower-right panel of Fig. 4 for the BGTmodel,
we find possible negative values of ΩGT, which is not
observed in the TGT approach. This is driven by the larger
values ofΩm obtained within the BGTmodel (see Table II),
in contrast to lower values of Ωm and corresponding
negative values of Δ. Several recent works [142,143], have
projected a possibility of a transition of dark energy density

FIG. 3. Contours for Barrow holographic dark energy (BHDE)
cosmology obtain the dataset combinations of SNeþ DESI. The
phenomenological CPL model is also shown for comparison.

FIG. 4. We show the evolution of different density contributions (bottom) and corresponding dark energy EoS (top) in both the
formalisms, Gravity-thermodynamics (right) and holographic approach (left). The shaded region indicates the 68% C.L. regions
obtained utilizing the BAO ðDESIÞ þ SNeðPanþÞ datasets. In the top-right plot showing the DE EoS for the GT approach, we highlight
the constraints for ωGT in the range a∈ f0.6; 1g and the singularity around a ∼ f0.05; 0.6g.
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from a negative to a positive value. We recover a similar
behavior in the BGT model, however, requiring the closure
equation to be satisfied, which yields no additional advan-
tage in addressing cosmological (H0) tensions [17]. Also,
note that we find the ΩGT to be consistent with zero within
∼2σ C.L. in contrast to the ∼1σ level reported in [62].
On the other hand, the HDE shows a more quintessence-

like behavior mimicking a freezing field [144] with
ωHDE ≳ −1 at all redshifts. Note that this is in contrast
to the recent claims of dynamical dark energy at higher
redshifts [100] (see also [145]), where a late-time quintes-
sence with phantom-crossing was observed using the
standard Chavelier-Polarski-Linder ðCPLÞ14 parametriza-
tion [135,136]. While we do not formally compare the CPL
model and our HDE model, it is evident that the HDE
model is consistent with the dynamical dark energy claims
within 2σ limits. We find that the w0 estimates in all the
entropic scenarios are consistent within 1σ with cosmo-
logical constant.

V. CONCLUSIONS

We have implemented and assessed the viability of widely
used cosmological models based on entropic approaches
implementing the holographic principle (HDE) [97] and
gravity thermodynamics (GT) [94,95] using the most recent
late-time cosmological observables, namely SNe from
Panþ [4] and DESy5 [6] and BAO from DESI [100].
This is then followed by our primary objective, which is
to perform model selection utilizing the Bayesian evidence
to asses which of the two approaches is preferred by the data.
We summarize our final results as follows:

(i) We find the SNe datasets, both Panþ and DESy5, are
unable to strongly disfavor the entropic approaches,
performing equivalently as the ΛCDM model.

(ii) The more recent BAO (DESI) dataset is able to
provide strong evidence against the GT models
while moderately disfavoring the HDE approach.

(iii) We find that when using the combination of most
recent datasets, DESIðBAOÞ þ PanþðSNeÞ, we find
that all the models are strongly disfavored, except
the BHDE model, which is moderately disfavored.

(iv) However, interestingly, using the more recent DESy5
dataset in combination with the recent DESI data, we
find that the GT approaches are strongly disfavored
logB ≳ 6. On the other hand, the HDE approach
performs equivalently to the ΛCDM model.

(v) This establishes a clear result that among the entropic-
based approaches to late-time cosmology, the HDE
and hence the holographic principle is the preferred
direction to explore given the most recent data.

(vi) Alongside assessing the viability of the models, we
also present the dark energy constraints for the HDE
and GT approaches.

(vii) We find the HDE approaches to be consistent with
simple quintessencelike behavior without phantom

crossing. The GT approach, on the other hand, does
present mild phantom crossing with radiationlike
behavior at high redshift.

Entropic approaches provide a simple yet natural extension
to standard cosmology based on cosmological constant. As
indicated earlier in [96], the implementation through the
holographic principle and gravity thermodynamics conjecture
differ formally. However, given the diversity in the existing
possibilities, it is important to assess the possible directions
that need to be explored in the future. In this context, we have
attempted to contrast the HP-based applications to dark
energy and modifications to cosmological constant through
GT conjecture, finding a clear preference for the former. We
intend to extend our current analysis to the application of
more general entropy forms [73] to cosmology. Also, in light
of the more precise late-time data from EUCLID [146,147],
LSST [148] to arrive, it is both necessary and imminent to
establish viable directions to explore within the vast land-
scape of available entropic approaches.
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APPENDIX A: EFFECT OF PRIORS ON THE
CONSTRAINTS

As we have earlier mentioned in Table I, we have utilized
C∈ f0; 10g, in our main analysis for both THDE and
BHDE models. However, as can be seen in Fig. 5 when the

FIG. 5. Contours for 68%; 95% C.L., in the THDE model with
varied limits on the normalization parameter (C). The posteriors
are obtained utilizing the datasets BAOðDESIÞ þ SNeðPanþÞ.
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limits are increased to C∈ f0; 100g, the posterior in C vs Δ
parameter space is completely beyond the limits presented
in the main analysis. The case of BHDE allows for the
possibility of constraining C as well, guided by the limit of
Δ < 1.0. This, however, is not true for the THDE model.
Conservatively, we maintain the same limits as those used
for the BHDE, which also maintains consistency in the
context of comparing the Bayesian evidence. Increasing the
prior volume of THDE can additionally penalize the model
while providing better Δχ2bf. However, this choice of the
prior does not influence our final inference that the HDE
approach performs better than the gravity-thermodynamics.

For instance, when using the Panþ þ DESI dataset, we find
THDE with extended priors on C to be disfavor moderately
at logB ∼ 3.48, in contrast to the strong evidence of
logB ∼ 6.07 (see Table II) obtained against the model in
the main analysis.

APPENDIX B: TABLES OF CONSTRAINTS
AND CONTOUR PLOTS

For brevity in the main text, we show our tables of
constraints here in the appendix.
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