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In this work, we construct galactic halos in order to fit the rotation curves (RCs) of a sample of low
surface brightness (LSB) galaxies. These halos are made of fuzzy dark matter (FDM) with a multimode
expansion of nonspherical modes that in average contribute to the appropriate density profile consisting of a
core and an envelope needed to fit the rotation curves. The coefficients of the expansion are calculated
using a genetic algorithm, that minimizes the difference between the spatial average density of the
multimode order parameter describing the FDM and the target dark matter density that fits the RCs. The
FDM halos are constructed assuming a solitonic core at the center and two types of envelopes, Navarro-
Frenk-White and pseudoisothermal density profiles. The resulting FDM configurations are then evolved in
order to show how the average density changes in time due to the secular dynamical evolution, along with a
condensation process that lead to the growth of the solitonic core.
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I. INTRODUCTION

Fuzzy dark matter (FDM) is a dark matter candidate,
consisting of an ultralight spin zero boson that has received
recent attention because it apparently solves some of the
traditional problems of cold dark matter (CDM), namely
the cusp-core and the too-big-to-fail problems as explained
in recent reviews [1–5]. The reason is that the formation of
very small scale structures is prevented by the uncertainty
principle for such an ultralight particle and the mass power
spectrum is cut off at small scales. In addition, the tiny mass
of the boson implies smooth galactic cores as opposed to
the cuspy shape obtained from predictions of CDM.
At cosmic scales the model has been deeply studied in

structure formation simulations (SFS) (see, e.g., [6–11]),
that are promising and already involve the dynamics of
baryonic matter. At local scales the works concentrate on
the formation of core-tail halos like those obtained in SFS,
for example through the merger of multiple cores (see,
e.g., [7,12,13]) that end up with the core surrounded by a
typical granular structure that in average shows a Navarro-
Frenk-White (NFW) density profile [14]. Construction of

target density profiles is also a subject of current interest,
because thewave function describing the FDMat local scales
suggests a clear multimode dependency. This approach has
been developed for SFS [15] as well at local scales with the
constructionof ondemandmultimodedensity profileswhose
stability is studied with simulations [16,17].
Now, the boson mass mB in the FDM, in order to

address the small scale problems (core density profile and
suppression of the small-scale structure) and to behave
like CDM on large scales, must be of the order of
mB ∼ 10−23–10−21 eV. From the high-redshift luminosity
function of galaxies we have the constraint for the boson
mass mB > 1.2 × 10−22 eV [18], while Iršič et al. [19],
Armengaud et al. [20] derive a stringent constraint,
indicating mB ≳ 2 × 10−21 eV. On the lower limit of the
boson mass, the most used value is mB ∼ 10−22 eV in
order to solve the small-scale problems of CDM. In the
cosmological context, the analysis of cosmic microwave
background (CMB) and galaxy clustering data in, e.g.,
Hlozek et al. [21], establishes a constraint for the boson
mass in the FDM model of mB > 10−24 eV. Considering
the galaxy UV-luminosity function and reionization con-
straints, Bozek et al. [22] determined a minimum mass
requirement of mB > 10−23 eV. Also, from Lyman-α
observations, the constraint is mB > 10−23 eV [23].
This value is in tension with the results by Rindler-
Daller and Shapiro [24], setting the minimum value for
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mB > 10−25 eV. This indicates there is no consensus on
the accurate mass of the ultralight boson and that further
exploration is still necessary. Meanwhile we explore the
viability of the model at local scales. Notice that self-
interaction is another parameter that influences the con-
struction and phenomenology of structures within the
bosonic dark matter model, and that it could substantially
change the constraints on the bosonmass [see e.g. [25–33] ].
In this work, likewise in [17], we focus on the con-

struction of multimode FDM configurations, in particular
with solitonic core and an envelope with NFW and
pseudoisothermal (PISO) density profiles that fit rotation
curves of low surface brightness (LSB) galaxies, and study
their evolution in order to study their behavior and stability
properties.
The article is organized as follows. In Sec. II we describe

the method we use to construct multimode halos, in Sec. III
we study the evolution of these configurations, and finally
in Sec. IV we draw some conclusions.

II. CONSTRUCTION OF GALACTIC
CORE-HALO PROFILES

A. Basic assumptions

The dynamics of FDM is modeled with the Schrödinger-
Poisson (SP) system:

iℏ
∂Ψ
∂t

¼ −
ℏ2

2mB
∇2ΨþmBVΨ; ð1Þ

∇2V ¼ 4πGðρ − ρ̄Þ; ð2Þ

where Ψ is an order parameter related to the matter density
through ρ ≔ mBjΨj2, with mB the boson particle mass, ℏ
the reduced Planck constant, G the gravitational constant,
and ρ̄ ¼ 1

jDj
R
D ρd3x the spatially averaged density calcu-

lated within a spatial domainD with volume jDj ≔ R
D d3x,

where the construction of configurations is implemented
and where the evolution is carried out. The gravitational
potential V is sourced by the difference between the density
and its spatial average.
We want to construct solutions of the Schrödinger-

Poisson (SP) system that are consistent with some galactic
rotation curves. In order to construct the wave function of
the core-halo, we follow a similar strategy as that designed
in [15,16]. We assume there is a target density profile ρT ,
and the goal is to construct a corresponding wave function
Ψ0 that is consistent with this density profile and satisfies
the SP system. For this, we consider the target density to be
a spherically symmetric function, depending on the radial
coordinate r only. This makes possible to solve Poisson
equation (2) in spherical symmetry which can be written as
the following first order system:

dVT

dr
¼ G

MT

r2
; ð3Þ

dMT

dr
¼ 4πr2ρT; ð4Þ

where ρT is the target density and MT is the radial mass
function. Once Poisson equation is solved, the resulting
potential VT is a function of r. This potential is injected into
the stationary version of the Gross-Pitaevskii equation (1).
This equation is reminiscent of the problem of the hydrogen
atom, with the notable difference being the replacement of
the Coulomb potential by the potential VT , which is written
as a Sturm-Liouville problem

−
ℏ2

2mB

1

r2
∂

∂r

�
r2
∂ψ j

∂r

�
þ ℏ2

2mB

L2

r2
ψ jþmBVTψ j¼Ejψ j; ð5Þ

where

L2 ¼ −
�

1

sin θ
∂

∂θ

�
sin θ

∂

∂θ

�
þ 1

sin2θ
∂
2

∂ϕ2

�
ð6Þ

is the squared angular momentum operator and j labels
the eigenstate ψ j with eigenenergy Ej. To solve this
equation, we assume a separation of variables for ψ j ≔
ψnlmðr; θ;ϕÞ ¼ RnlðrÞYm

l ðθ;ϕÞ, where Ym
l ðθ;ϕÞ are the

spherical harmonics and Rnl is expressed as Rnl ≔ unl=r,
with unl satisfying the following radial equation:

−
ℏ2

2mB

d2unl
dr2

þ
�

ℏ2

2mB

lðlþ1Þ
r2

þmBVTðrÞ
�
unl ¼Enlunl;

ð7Þ

where n, l, and m are “quantum numbers,” and where we
have used the identity L2Ylm ¼ lðlþ 1ÞYlm. We name the
wave function Ψ0 as the one that fits the target density,
which we express as a linear combination of the eigen-
functions ψ j

Ψ0 ¼
X
j

ajψ je−iEjt=ℏ: ð8Þ

The density profile jΨ0j2 associated with the wave
function is given by

jΨ0j2 ¼
�X

j

ajψ je−iEjt=ℏ

��X
k

a�kψ
�
ke

iEkt=ℏ

�

¼
X
j

jajj2jψ jj2 þ
X
j≠k

aja�kψ jψ
�
ke

iðEk−EjÞt=ℏ: ð9Þ

An essential assumption when fitting structure densities
in structure formation simulations or multicore collisions, is
that ρT is a time-averaged quantity, as well as a spatially
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averaged quantity along various radial directions.
Therefore, we assume that the target density can be
decomposed as follows:

hjΨ0j2iT→∞ ≔ lim
T→∞

1

T

Z
T

0

jΨ0ðt; x⃗Þj2dt

¼ 1

4π

X
n;l

ð2lþ 1Þjãnlj2jRnlj2; ð10Þ

where T is the time-window used to calculate time-
averages. To derive Eq. (10) we have used the identityP

m jYlmðθ;ϕÞj2 ¼ ð2lþ 1Þ=4π. In this formula, the coef-
ficients are written as anlm ¼ ãnleiΘnlm , where Θnlm are
random phases with values between 0 and 2π. Another
alternative is to consider a spatial-average over the solid
angle Ω ≔ ½0; π� × ½0; 2π� as follows:

hjΨ0j2iΩ ≔
1

4π

Z
Ω
jΨ0ðt; x⃗Þj2dΩ

¼ 1

4π

X
n;l

ð2lþ 1Þjãnlj2jRnlj2: ð11Þ

In this way, temporal and spatial averages are
assumed equal and the target density must satisfy
ρT ≈mBhjΨ0j2iT→∞ ¼ mBhjΨ0j2iΩ. Then, we can simply
write ρT ≈mBhjΨ0j2i referring to either angular or time
average. However, it must also hold that VT ≈ hVi.
An important aspect of Ψ0 is whether it corresponds to a

virialized configuration or not. In order to answer this
question, we calculate the quantityQ0 ¼ 2K0 þW0, where

K0 ¼
ℏ2

2mB

Z
j∇Ψ0j2d3x ¼ −

ℏ2

2mB

Z
D
Ψ�

0∇2Ψ0d3x; ð12Þ

is the kinetic energy and

W0 ¼
mB

2

Z
D
VT jΨ0j2d3x ð13Þ

is the gravitational energy. In an ideally virialized con-
figuration Q0 ¼ 0. This quantity can be written in terms of
a spectral decomposition as

Q0 ¼
X
n;l

ð2lþ 1Þjãnlj2Qnl; ð14Þ

with Qnl ¼ 2Knl þWnl, where Knl and Wnl are the
matrix elements of the kinetic and potential energies with
respect to the supposed basis of the eigenproblem given by

Knl ¼−
ℏ2

2mB

Z
Rnl

�
d
dr

�
r2
dRnl

dr

�
−lðlþ1ÞRnl

�
dr;

ð15Þ

and

Wnl ¼ mB

2

Z
VTR2

nlr
2dr: ð16Þ

On the other hand, from Eqs. (7), (15), and (16) we
obtain the identity K0 þ 2W0 ¼ E0 with

E0 ¼
1

m

Z X
nl

RnlðrÞ2ð2lþ 1Þjãnlj2Enlr2dr; ð17Þ

whereEnl are the eigenvalues (notice thatE0 is an eigenvalue
and not the total energy that could be confused with
K0 þW0). Therefore, we have Q0 ¼ 2E0 − 3W0 (in com-
ponents formKnlþ2Wnl¼Enl andQnl ¼ 2Enl − 3Wnl).
The mass reads

M0 ¼
Z

ρd3x ¼ mB

Z
jΨ0j2d3x; ð18Þ

hence

M0 ¼
Z X

nl

RnlðrÞ2ð2lþ 1Þjãnlj2r2dr: ð19Þ

We numerically verify that, in general, the individual
terms Qnl are different from zero and can have different
sign for different values of n and l. That is, each mode of
superposition is not virialized, however we find a super-
position such that Q0 ≈ 0.
The construction of Ψ0 reduces to the calculation of the

coefficients ãnl of the expansion for the target density in
equation (10) or equivalently (11) and a specific way in
which the constraint Q0 ≈ 0 is satisfied. Once these
coefficients are determined, it becomes possible to recon-
struct a wave function that is consistent with the stationary
SP system and at the same time has an average density
consistent with a core-halo target density.
The steps to construct the FDM core-halo configuration

are summarized as follows:
(1) Start with a given target density ρT. In order to have a

finite integrated mass we follow the recipe in [16]
that suggests to modulate the target density with a
Gaussian e−r

2=ð2r2
0
Þ, having r0 as the value for

which ρT ð0Þ
ρTðr0Þ ∼ 103.

(2) Solve Poisson equation (3)–(4) for such density in
the domain r∈ ½0; 2r0�, as also suggested in [16].

(3) Use the resulting gravitational potential VT to solve
Eq. (7) for all combinations of n and l to be
considered.

(4) Then find the coefficients aj that minimize an error
function between ρ ≔ mBhjΨj2i and ρT .

In the following subsection, we elaborate on the ingre-
dients of step 4.
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B. Description of the fitting method

The expansion of the wave function (8) can have a large
number of terms, and they have to be such that ρ − ρT , or a
norm of it, is minimum. Notice that this problem is reduced
to locating the minimum of a function (a given norm of the
error) that depends on a large number of parameters [the
coefficients of expansion (8)]. The use of a genetic
algorithm (GA) for the solution of this type of problems
is an option, on the one hand because the concept of DNA
can use a large number of genes that we identify with the
coefficients of the expansion, and on the other hand the
mutation of DNA allows the possibility to exit from local
minima.
A GA is inspired by the theory of evolution, which

assumes the existence of a population of individuals
characterized by their DNA composed of a chain of genes,
which determine their fitness for survival in an environ-
ment. The best-adapted individuals, whose adaptation is
measured in terms of a fitness function, have a greater
chance of surviving and consequently a greater chance of
reproducing, passing their genes on to their offspring in a
new generation. Offspring results from a combination of
their parents’ genes, while a speed up in evolution is due to
mutation. This process over many generations leads to a
population much better adapted than the initial one.
We adapt this method to solve our minimization problem

as follows. We start with a population of individuals, each
one with random coefficients in the expansion (8), that may
evolve toward a population of individuals that approach the
condition that a norm of ρ − ρT is small. For this purposewe
define a population of individuals, each onewith genes given
by the sequence of coefficients aj of the expansion (8) and
DNA given by the set of coefficients ãnl. The maximum
number of genes considered isNDNA ¼ nmaxlmax, where the
quantum numbers take on the values n ¼ 1; 2;…; nmax and
l ¼ 0; 1;…;lmax − 1.We define the fitness of an individual
as a decreasing function of the difference between ρ and ρT ,
which is bigger for better-adapted individuals and is near a
virialized state such that Q0 ≈ 0. We thus define the fitness
function as

η ¼ 1

1þ jQ0j
�

1

rmax

Z
rmax

0

ðρT − ρÞ2
ρT

dr

�−1
; ð20Þ

where the term 1þ jQ0j is not significant when jQ0j < 1,
but when jQ0j > 1, the value of the fitness function
decreases for profiles far from a virialized state. Finally,
rmax ¼ 2r0 is the upper boundary of the numerical domain
where the eigenvalue problem (5) is solved.
The operation of the GA is based on the random

generation of an initial population of Norg organisms.
We calculate the fitness function η of all individuals, and
choose the k most fitted organism. Following an elitist
approach, these selected individuals prevail through the
next generation. From these k organisms, Ncross are

randomly chosen to cross-over and produce children for
the next generation; in a biological context, one would
typically choose Ncross ¼ 2, but this is not a limitation in a
GA and Ncross ¼ 5 worked better. These selected parents
will randomly share their genetic material, namely the
coefficients of the expansion, to create a new individual.
This process is repeated Norg − k times until the initial
population size Norg is completed again.
The organisms in the new generation can potentially

adapt more effectively with a mutation process that works
as follows. We generate a new random number βnl ranging
from 0 to 1, representing the likelihood that the gene ãnl
undergoes a mutation. Each gene has its own probability of
change. Subsequently, a new random number γnl is
generated, and the mutation occurs if γnl exceeds βnl.
In such cases, the coefficient ãnl is altered to αãnl, where α
is a randomly selected number within the range of −1.5 to
1.5 for all values of n and l.
Finally, a second type of mutation, known as differential

mutation is applied. This mutation involves selecting the ith

organism with DNA defined by the coefficients ãðiÞnl along
with a fitness ηðiÞ. Subsequently, two other organisms with

DNA ãð1Þnl and ãð2Þnl are randomly selected. A new organism
is then created by linearly combining these coefficients

as ãðnew;iÞnl ¼ ãðiÞnl þ δðãð1Þnl − ãð2Þnl Þ, where δ is a number
between 0 and 1, with fitness ηðnew;iÞ. If it happens that
ηðnew;iÞ > ηðiÞ, the ith organism is replaced by the new
organism. This process is repeated for i ¼ 1; 2;…; Norg.
Notice that the fitness function is a norm of the error

between the density of the multipolar expansion and the
target density. Considering the randomness in various
stages of the GA it could well happen that different sets
of coefficients of the expansion, or equivalently individuals
with different DNA, may have similar values of η. In this
sense, the expansion of the profile can be degenerate.
Now, our goal is to tune the galactic dark matter

densities. Inspired by [15,16] we use a certain type of
target density profile which we discuss below.

C. Models for target density

Core-NFW model. Simulations of binary systems, multi-
core mergers, and more complex scenarios like structure
formation simulations reveal that the time-spatial averages
of the formed structures exhibit a spherical profile with a
soliton core at the center. This core, with density similar to
that of the ground state of the SP system (see, e.g., Guzmán
and Ureña López [34]), is modeled with the empirical
profile [6,12]:

ρcoreðrÞ ¼ ρc

�
1þ 0.091

�
r
rc

�
2
�
−8
; ð21Þ

where we can find the relation between the central density
ρc and the core radius rc from the numerical solution of the
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ground state using the boundary condition ψðr ¼ 0Þ ¼ 1 in
units where ℏ ¼ mB ¼ 4πG ¼ 1. If we fix ρc ¼ 1, we can
find that rc ≈ 1.30569� 0.000113. Using the λ-scaling
relation of the SP system [34], it is found that ρc ≈
ð1.30569=rcÞ4 for an arbitrary value of the core radius
rc. With this, we can translate the central density to
physical units as

ρc ¼
ℏ2

4πGm2
B

�
1.30569

rc

�
4

≈ 1.983 × 107
�
kpc4

m2
22r

4
c

�
M⊙; ð22Þ

where m22 is defined as m22 ¼ mB × 10−22 eV−1, and the
units for rc are ½rc� ¼ kpc.
Outside of this core, there is an envelope region that can

be approximated by the NFW profile [6]:

ρNFWðrÞ ¼
ρs

r
rs
ð1þ r

rs
Þ2 ; ð23Þ

where ρs and rs are halo parameters. The complete profile
of the structure takes the form [35]:

ρCNðrÞ ¼ ρsolðrÞΘðr − rtÞ þ ρNFWðrÞΘðrt − rÞ: ð24Þ

In this equation, we assume continuity, which fixes
one of the two halo parameters with the relation ρs ¼
ρsolðrtÞ rt

rs
ð1þ rt

rs
Þ2.

Core-PISO model. It is well-known that a soliton nucleus
forms within the halo in the FDM model since the ground
state is an attractor of the SP system. However, in the
envelope region, it is possible to discuss what may be the
best approximation for the average profile of the envelope.
One of the alternative proposals to the NFW model is the
pseudoisothermal profile, which is written as

ρPISOðrÞ ¼
ρp

1þ ð rrpÞ2
; ð25Þ

in this case, ρp and rp are halo parameters. The complete
profile of the structure takes the form

ρCPðrÞ ¼ ρsolðrÞΘðr − rtÞ þ ρPISOðrÞΘðrt − rÞ; ð26Þ

similar to the core-NFW model, in which we assume
continuity in the density. In this case the envelope param-
eters can be related as

ρp ¼ ρsolðrtÞ
�
1þ

�
rt
rp

�
2
�
: ð27Þ

which reduces the number of fitting parameters.

D. Fitting of LSB galaxies

LSB galaxies are dominated by dark matter, thus we
assume that we can fit their rotation curves with the core-
NFWor core-PISO profiles. The independent parameters of
a core-NFW profile are rc, rt, and rs, and for the core-PISO
profile, they are rc, rt, and rp. We use the same strategy
presented in Bernal et al. [36] to obtain the appropriate
values for observational data in [37,38]. We additionally
find the radius r0 of the resulting configurations. Table I
provides the best-fit free parameters for these galaxies.
Now, according to [39–41], the halo surface density is

nearly constant and independent of the galaxy luminosity,
with value Σ0 ¼ ρ0r0 ¼ 140þ80

−30M⊙pc−2, where ρ0 and r0
the halo central density and core radius [41]. We include in
Table I the corresponding surface densities for both the core-
NFW and core-PISO profiles, as defined in Chavanis [42],
for the soliton FDM configurations: Σ0 ¼ ρðrtÞrh, with rh
the radius where the density is ρðrhÞ ¼ ρðrtÞ=4, for rt the
transition radius outside the soliton region. As discussed in
Appendix L of [42], the constant Σ0 observational value is
not consistent with the soliton, it decreases like 1=r3 as the
size of the soliton increases. This suggests (see Sec. VII
of [42]) to defineΣ0with the density at the interface between
the soliton and the NFWenvelope, at the transition radius rt.
As seen in Table I, from the small sample we are

studying, the results do not coincide with the observational
value, except for ESO4880049 with the core-PISO profile.
For the core-PISO profile, the results are closer to the value
obtained in [41]. The discrepancy may arise from the
density profile assumed to model their huge sample of
galaxies, a Burkert profile. In our case, the core-PISO
profile decays slowly and is closer to the Burkert profile.
We would need to simulate a large sample of galaxies with
a profile closer to Burkert’s to conclude if our results are in
agreement with a universal surface density of dark matter.

TABLE I. Best-fit parameters for three LSB galaxies using the
core-NFWand core-PISO density profiles, obtained by fixing the
boson mass mB ¼ 10−23 eV.

Core-NFW

Galaxy
rc

(kpc)
rt

(kpc)
rs

(kpc)
r0

(kpc)
Σ0

(M⊙ pc−2)

ESO4880049 2.157 1.102 15.25 52.77 243
UGC11616 1.860 1.676 7.434 38.04 386
F730V1 1.867 1.841 8.118 40.01 370

Core-PISO

Galaxy
rc

(kpc)
rt

(kpc)
rp

(kpc)
r0

(kpc)
Σ0

(M⊙ pc−2)

ESO4880049 2.269 3.260 2.631 66.49 155
UGC11616 1.850 2.474 1.792 52.82 294
F730V1 1.869 2.082 1.625 54.41 345
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As described earlier, there is no consensus on the correct
mass of the boson, and in our study we use a boson mass
mB ¼ 10−23 eV because it is near the upper bound, and
allows the profiles to be adjusted for the LSB galaxies in our
analysis. This mass value is on the boundary with the
cosmological constraints found in [22] from the galaxy
UV-luminosity function and reionization observations, and
in [23] from Lyman-α observations,mB > 10−23 eV. It also
falls within the constraints provided by [21], from CMB and
galaxy clustering data, mB > 10−24 eV.
Now, concerning the fitting method, the parameters

parameters of the GA are a population of Norg ¼ 200

organisms, each having nmax ¼ lmax ¼ 41. This implies that
the DNA of each organism consists ofNDNA ¼ 1681 genes,
resulting in a total of approximately 105 coefficients anlm, a
similar number as in [16]. During reproduction, Ncross ¼ 5
organisms contribute to creating a new organism, selected
from a pool of k ¼ 100 parents. Additionally, for the
differential mutation, we set δ ¼ 0.1. These parameters
have proven effective in identifying organisms with a fitness
η ≈ 105, or equivalently, a proportional χ2 error 1=η ≈ 10−5

within the initial 1000 generations, and in general a
virialization factor in the range jQ0j < 10−5 in code units.
Using these parameters, we determined the suitable

coefficients for each of the considered galaxies in
Table I. The results appear in Fig. 1, which illustrate
how the GA is able to construct multimode configurations
that approximate the target density within the region
r < r0. Beyond this radius, the adjustment becomes more
challenging, as seen after the a vertical red dotted line.

III. EVOLUTION OF THE
GALACTIC PROFILES

We investigate the evolution of the core-halo profiles
described in the previous section by evolving the wave
function with the fully time-dependent SP system (1)–(2),
for whichwe use the code CAFE [43,44]. In order to prevent
the wave function from decaying into an isolated solitonic
profile as suggested in Guzmán and Ureña López [45] and
Bernal and Guzmán [46], and later confirmed with CAFE
in [44], we implemented periodic boundary conditions that

FIG. 1. Target, fitted, and average density profiles using the
GA. The first, second, and third rows correspond to the galaxies
ESO4880049, UGC11616, and F730V1, respectively. The ver-
tical red line indicates the radius r0 used in the weighted
exponential function for the target density. The first column
corresponds to the core-NFW profile, and the second column
corresponds to the core-PISO profile. The continuous blue line
represents the target density, while the orange dotted line
illustrates the fitted density obtained in the 1000th generation.
Finally, the green dotted line represents the average in time of the
spatial averaged density of snapshots during 7 Gyr of evolution
that we describe below; notice the that the evolution clearly
distorts the density profile.

FIG. 2. The first, second, and third rows show snapshots of
the density in the plane z ¼ 0, for galaxies ESO4880049,
UGC11616, and F730V1, respectively, assuming the core-
NFW target profile. The first column corresponds to initial time,
while the second and third columns correspond to times t ¼ 1 and
2 Gyr, respectively. The fourth row shows snapshots at 0, 1 and
2 Gyr of the velocity field for the galaxy F730V1, for illustration.
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guarantee the persistence of a core surrounded by an
envelope, as well as the constancy of mass and total energy.
As initial conditions, we inject the wave function (8) at

time t ¼ 0, Ψð0; x⃗Þ ¼ Ψ0 centered in the 3D cubic box
D ¼ ½−r0; r0�3. It is worth noticing that when the coef-
ficients are fixed, the wave function can possess an
overall momentum different from zero, calculated as
p⃗0 ¼ −iℏ

P
j;k a

�
kaj

R
D ψ�

k∇ψ jd3x. Then, we correct the

initial wave function to be Ψð0; x⃗Þ ¼ Ψ0e−ip⃗0·x⃗=M, where
M ≔

R
D ρd3x represents the total mass in the domain. This

choice ensures that the initial wave function has zero total
linear momentum, and the evolution remains with the core
nearly at the center of the domain. The domain was
discretized with a spatial resolution of Δ ¼ r0=128 along
the three spatial directions. To capture the temporal
dynamics, a time resolution satisfying Δt=Δ < 0.25 in
code units was employed, and the evolution was carried out
over a time-window of 2 Gyrs.

The evolution of each galaxy is depicted through snap-
shots of the density and velocity vector field in the z ¼ 0
plane at times t ¼ 0, 1, and 2 Gyr in Figs. 2 and 3. These
simulations use the initial conditions with core-NFW and
core-PISO target density profiles, respectively.
It is evident that even though the configurations are

initially near a virialized state, they evolve and in fact the
configurations do not remain stationary and not even in
average, instead they develop some dynamics. In order to
understand better the evolution of the whole configuration,
we look into the time dependence of the core mass for each
of the galaxies of the sample. The core mass Mc is the
integral of the density (21) from the origin until rc and its
value as function of time is shown in Fig. 4 for six of the
configurations during 7 Gyr. Notice that the core mass
oscillates with an overall growing trend that can be
understood as the accretion of matter from the granular
envelope, indicating that the growth mass is due to colli-
sional effects [47,48], interpreted as condensation in the
kinetic regime [49] or wave condensation [50]. This slow,
but never ending core mass growth, has been shown to
happen after the saturation time [51]. This core mass

FIG. 3. The first, second, and third rows show snapshots of the
density in the plane z ¼ 0, corresponding to the galaxies
ESO4880049, UGC11616, and F730V1, respectively, assuming
the core-PISO target profile. The first column corresponds to
initial time, while the second and third columns correspond to
times t ¼ 1 and 2 Gyr, respectively. The fourth row shows
snapshots at 0, 1 and 2 Gyr of the velocity field for the galaxy
F730V1, for illustration.

FIG. 4. Evolution of Mc as function of time during 7 Gyr. The
first, second, and third rows correspond to the galaxies
ESO4880049, UGC11616, and F730V1, respectively. The first
column corresponds to the core-NFW profile, and the second
column corresponds to the core-PISO profile. The plots indicate
that the core accretes mass in the long term, which implies a time-
dependent concentration of matter. This process is interpreted as
the accretion from the granular envelope. This mass growth has
been shown to happen after core saturation after relaxation [51]
and seems to be universal in core-halo structures that evolve [49].
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growth seems inevitable and the reason why possibly any
configuration with granular structure will lead to evolu-
tion and core growth. As a result, the dynamics is
influenced and the average density in the evolution
deviates from the averages of the initial data, an effect
also described in [16].
The implication is that the redistribution of density will

also distort the rotation curve. We illustrate this difference
by calculating the spatiotemporal density average hρi,
which is now only a function of the radial coordinate.
Once the average density is obtained, we compute the radial
rotation curve as vRC ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GmðrÞ=rp
, where mðrÞ is the

mass density integrated until radius r. For each halo, the
results are presented in Fig. 5. The discrepancy between
the initial and the evolved configuration is noticeable.
The concentration of matter in the core region definitely
changes the RC with a characteristic peak of a concen-
trated mass.

IV. CONCLUSIONS

We present a method to construct FDM halos, with
multimode expansions characterized by a core-halo profile
associated to observational rotation curves. The target

density profiles were of type core plus an envelope with
NFW and pseudoisothermal profiles that fit rotation curves
of a sample of LSB galaxies. While the core is dominated
by the first term in an expansion in spherical harmonics, the
envelope contains the expected granular structure. When
averaged on the solid angle, the density profile approaches
the target density that fits rotation curves.
Even though the constructed configurations are nearly

virialized, it seems unavoidable the evolution of the
configuration that degrades the quality of the RCs fittings.
We then evolved these configurations during 7 Gyr
and measured the core mass as function of time, we
found the generic result, namely, the core permanently
accretes matter from the granular envelope, an effect
already measured after the formation and saturation time
of cores [51], with a slow but permanent growth that goes
as t1=8. The core-halos are stable in the “collisionless”
regime but they evolve due to “collisions” (granularities)
on a secular timescale. Note that this is not an instability
but a natural secular dynamical evolution, accompanied
by a condensation process and the growth of the soliton.
This is in agreement with kinetic theory as described
in [47,48].
A direct implication of the core growth is that matter

concentrates near the center of the galaxy and the rotation
curve develops a characteristic peak at a small radius,
observed in some galaxies (e.g., in [36]). A lesson from our
analysis is that no matters how well RCs are fitted with a
core surrounded a granular envelope, and how virialized to
model is, FDM configurations will evolve and get distorted
by the core accretion.
A considerable enhancement to this analysis would be

the contribution of luminous matter during the evolution,
which if gravitationally coupled to FDM and would
influence the dynamics of the whole structure.
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APPENDIX: CONNECTION BETWEEN
THE WAVE DESCRIPTION

AND THE KINETIC DESCRIPTION

In this Appendix, we discuss the connection between the
wave description and the kinetic description. We recall the
relation between the wave superposition coefficients jãnlj2
and the particle distribution function fðϵÞ following [16].
We then use this relation to recover the classical energy
functionals and the classical virial theorem from the
quantum ones in the WKB (high energy) limit.

FIG. 5. Target, fitted, and average rotation curve of three
galaxies of the sample. The first, second, and third rows
correspond to ESO4880049, UGC11616, and F730V1, respec-
tively. The first column corresponds to the core-NFW profile, and
the second column corresponds to the core-PISO profile. The
continuous blue line represents the rotation curve associated with
the target density, while the orange dotted line illustrates the fitted
density obtained in the 1000th generation. The green dotted line
represents the time-average of the spatial averages during 7 Gyr
of evolution.
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1. Classical kinetic description based
on the Vlasov-Poisson equations

In a classical description (applying for example to stellar
systems or to the time-averaged envelope of DM halos) the
density is given by

ρ ¼
Z

fdv; ðA1Þ

where fðr; v; tÞ is the distribution function for particles of
mass mB, i.e., fðr; v; tÞ gives the mass density of particles
with position r and velocity v at time t. It is normalized
such that

R
fdrdv ¼ Menvelope. We assume that the

envelope is spherically symmetric with a DF f ¼ fðϵÞ
that is a function of the energy alone. Such a DF determines
a steady (virialized) state of the classical Vlasov-Poisson
equations. We have introduced the energy per unit mass
ϵ ¼ E=mB ¼ v2=2þ V, where V is the gravitational poten-
tial. Eq. (A1) can then be rewritten as

ρ ¼
Z

0

VðrÞ
fðϵÞ4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðϵ − VÞ

p
dϵ: ðA2Þ

In practice it is difficult to predict the DF f of the
envelope resulting from the process of violent relaxation.
Note that there is no rigorous derivation of the NFW and
Burkert profiles so these profiles remain essentially empiri-
cal. Actually, a prediction of the DF may be attempted from
the statistical theory of Lynden-Bell [52,53] However, this
“naive” prediction leads to a DF with an infinite mass so it
is necessary to take into account the evaporation of high
energy particles to have a more physical model. This leads
to the fermionic King model [54] where the “fermionic”
nature of the DF arises from the specificities of the Vlasov
equation in the Lynden-Bell statistical theory. In many
cases “degeneracy” effects can be neglected leaving us with
the classical King model. The King model determines a
sequence of equilibrium states (indexed by the central
concentration) ranging from a pure polytrope of index
n ¼ 5=2 to an isothermal distribution (n ¼ ∞) [55,56]. It is
shown that the King model at the critical point of marginal
stability, just before the system undergoes the gravothermal
catastrophe, gives a good agreement with the Burkert
profile (see the comparison between the different density
profiles reported in Fig. 18 of [56] and Fig. 1 of [57].
Therefore, the (fermionic) King model may be a relevant
model of DM halos that is physically motivated.

2. Quantum wave description based
on the Schrödinger-Poisson equations

in the WKB approximation

The quantum wave description of DM halos is discussed
in the main text. Because of the process of violent
relaxation or gravitational cooling, the envelope of DM
halos may be viewed as a superposition of excited states

with energies Enl and amplitude ãnl. This is similar to the
orbits of particles with energies ϵ and DF fðϵÞ in classical
systems. By contrast, the core (soliton) of quantum DM
halos corresponds to the ground state of the Schrödinger-
Poisson equations that has no counterpart in classical
systems. Here, we focus on the envelope and we consider
sufficiently high energies E so that the WKB approxima-
tion can be employed (see [16] for details).
In the WKB approximation (large E limit), the radial

function is given by

RnlðrÞ ¼
Nnl

r
ffiffiffiffiffiffiffiffiffi
pðrÞp sin

�
1

ℏ

Z
r

r1

pðr0Þdr0 þ π

4

�
; ðA3Þ

where

pðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mB

�
Enl −

lðlþ 1Þℏ2

2mr2
−mBV

�s
ðA4Þ

is the classical radial momentum. The normalization con-
dition is chosen such that

R
r2
r1
RnlðrÞ2r2dr ¼ 1 giving

N2
nl ¼

1R
r2
r1

dr
2pðrÞ

; ðA5Þ

where we have approximated the square of the sine as 1=2.
In the above expressions, r1 and r2 are the turning points
where p vanishes. The energy eigenvalues Enl satisfy the
Bohr-Sommerfeld quantization condition

Z
r2

r1

pðrÞdr ¼ πℏ

�
nþ 1

2

�
: ðA6Þ

To compute the time-average density of the envelope we
approximate the sum over n and l in Eq. (10) by integrals
and write

ρðrÞ ¼ 1

4π

Z
dϵdl

dn
dϵ

RnlðrÞ2ð2lþ 1Þjãnlj2 ðA7Þ

with ϵ ¼ Enl=mB. The Jacobian dn=dl can be obtained by
differentiating the quantization condition from Eq. (A6)
yielding

dn
dϵ

¼ m2

πℏ

Z
r

r1

dr
pðrÞ : ðA8Þ

Using this expression together with the WKB approxima-
tion for RnlðrÞ in Eqs. (A3) and (A5), a nice cancellation of
terms occurs, leaving us with

ρðrÞ ¼ m2
B

4π2ℏ

Z
dϵdlð2lþ 1Þjãnlj2

1

r2pðrÞ : ðA9Þ
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For a given ϵ and r, l ranges from 0 to lmax such that
ϵ − lðlþ 1Þℏ2=ð2m2

Br
2Þ − V ¼ 0. If we assume that jãnlj2

depends only on ϵ ¼ Enl=mB (in agreement with the
corresponding assumption that f ¼ fðϵÞ in the classical
description) the integral over l can be easily performed with
the change of variables x ¼ lðlþ 1Þ yielding

ρðrÞ ¼ m3
B

2π2ℏ3

Z
dϵjãnlj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðϵ − VÞ

p
: ðA10Þ

Comparing Eqs. (A2) and (A10) the following relation is
obtained [16]:

fðϵÞ ¼ m3
B

ð2πℏÞ3 jãnlj
2: ðA11Þ

This equality is approximate in the sense that it is valid in
the WKB limit. It is expected to hold only for eigenmodes
with a high enough energy ϵ, i.e., for eigenmodes that
describe the envelope of the DM halo. The soliton has to be
treated independently as being the ground state of the
SP equations. The interface between the soliton and the
halo (with intermediate energies) may not be accurately
described by the WKB approximation.
In conclusion, for a spherically symmetric halo with a

particle distribution function fðϵÞ, the density profile is
given by Eq. (A2) and the wave is given by Eq. (10) with
jãnlj2 given by Eq. (A11) in the WKB limit, i.e., for large
energies. Using this kind of construction [15] have shown
that the time-average envelope of FDM halos obtained in
numerical simulations is well-fitted by the fermionic King
model [54] giving further support to the claim made in [56]
that the (fermionic) King model may be a good model of
the envelope of DM halos.

3. WKB for functionals

Using the WKB approximation for RnlðrÞ [see Eqs. (A3)
and (A5)], and proceeding as above, we find that the energy
functional defined by Eq. (17) reduces to

E ¼ 2m3
B

πℏ3

Z
dϵjãnlj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðϵ − VÞ

p
ϵr2dr: ðA12Þ

Using the identity from Eq. (A11) it can be rewritten as

E ¼ 16π2
Z

dϵfðϵÞϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðϵ − VÞ

p
r2dr ðA13Þ

or as

E ¼
Z

fðϵÞϵdrdv: ðA14Þ

Recalling that ϵ ¼ v2=2þ V we obtain

E ¼
Z

f
v2

2
drdv þ 2W: ðA15Þ

Finally, recalling the identity E ¼ K þ 2W established in
Sec. II A and using Eq. (A15), we find that the quantum
kinetic energy coincides, in the high energy limit, with the
classical kinetic energy

K ¼
Z

f
v2

2
drdv: ðA16Þ

This agreement is expected, but not trivial, since K in
Eq. (12) is expressed in terms of the wave function
ψðr; tÞ—a function of position only—while K in
Eq. (A16) is expressed in terms of the DF fðr; v; tÞ—a
function of position and velocity (reducing to a function of
the energy ϵ for spherically symmetric systems).
Finally, we emphasize that the total energy (the one

which is conserved) is Etot ¼ K þW. It differs from the
energy E (related to the eigenenergies) which is given by
E ¼ K þ 2W. The factor 2 arises because the system is
self-gravitating (instead of being subjected to an external
potential).
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