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Aix-Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille, UMR 7326, Marseille, France

Thomas Montandon
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For the last decade, several probes have pointed to a cosmological tension between the amplitude of
density fluctuations extrapolated from the cosmic microwave background within the standard cosmological
model and the one encapsulated by the S8 parameter from large scale structures. The origin of this S8
tension has not yet been elucidated and may hint at systematics in the data, unaccounted effects from
baryonic physics, or new physics beyond the standard model of cosmology. Baryonic physics may in
principle provide a nonlinear solution to the tension by suppressing the matter power spectrum more
strongly on nonlinear scales than is traditionally assumed. Such a solution would not worsen the Hubble
tension, contrary to many other proposed solutions to the S8 tension. However, no realistic baryonic
feedback in hydrodynamical simulations provides the needed suppression as a function of redshift. Here,
we point out that a scale dependence of local-type primordial non-Gaussianities (PNG), with significant
PNG at scales of a few Mpc, can provide the needed suppression, since such PNG can suppress the power
spectrum at slightly larger scales than baryons do. We demonstrate this by devising collisionless numerical
simulations of structure formation in boxes of 0.5 Gpc=hwith scale-dependent local-type PNG. Our simple
models show that, as a proof of principle, scale-dependent PNG, with a Gaussian random field for
primordial density fluctuations on large scales and fNL ≃ −300 at ≲10 Mpc scales, together with state-of-
the-art baryonification of the matter power spectrum, can in principle solve the S8 tension. The S8 tension
would then be a smoking-gun of nontrivial inflationary physics.

DOI: 10.1103/PhysRevD.110.063501

I. INTRODUCTION

Within the past few decades, the ΛCDM (Lambda cold-
dark matter) cosmological model has succeeded in explain-
ing the majority of observations of our Universe across
different scales and times, despite a few long-standing
small-scale tensions [e.g., [1–3] ]. Nowadays, on cosmo-
logical scales, this model also presents some tensions
between early and late time cosmological probes: namely,
the tension on the Hubble parameter H0, of the order of 5σ
between the Planck Cosmic Microwave Background
(CMB) determination and direct measurements [4,5], and

that on the growth of structure parameterS8, a combination of
the matter density Ωm and of the amplitude of the power
spectrum σ8 (measured as the standard deviation of the
amplitude of fluctuationswhen sampling theUniversewithin
spheres of 8 Mpc=h): S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
. The latter tension

was measured in the Kilo-Degree Survey (KiDS) [6] which
found a smaller S8 ¼ 0.745� 0.039 than that inferred from
the CMB (S8 ¼ 0.851� 0.024, [7]) at the 2.3σ level. The
exact values have fluctuated in the subsequent reanalyses of
KiDS (e.g., [8]), Dark Energy Survey (DES) (e.g., [9]), and
Planck (e.g., [10]) but without fully alleviating the tension
between weak-lensing analyses and the CMB.
Arguably, tensions and controversies have fueled cos-

mology throughout its whole history [11], and the current*Contact author: clement.stahl@astro.unistra.fr
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tensions may be the hint of a new paradigm shift in our
field. On the other hand, the origin of the current tensions
could also stem from unaccounted systematic biases in
analyses of growing complexity, or be a statistical fluc-
tuation in yet small statistical samples for late-time probes.
They may nevertheless be genuine indications of new
physics beyond the standard ΛCDM model. While stat-
istical fluctuations will be ruled out by the next generation
of cosmological surveys, e.g., Euclid, The Vera Rubin
Observatory, and Roman, systematic biases and possible
modifications to the ΛCDM model are currently under
heavy scrutiny, both observationally and theoretically.
Recently, Ref. [12] proposed that the S8 tension could

arise from an incomplete description of the nonlinear
physics at small scales, in the sense that current CMB
and cosmic shear observations could be reconciled if the
nonlinear matter power spectrum was more suppressed than
classically assumed, introducing the Amod parameter to
quantify this suppression:

Pðk; zÞ ¼ PLðk; zÞ þ Amod½PNLðk; zÞ − PLðk; zÞ�; ð1Þ

where Pðk; zÞ is the matter power spectrum as a function of
wavenumber k (in h=Mpc) and redshift z, while PLðk; zÞ
and PNLðk; zÞ are its linear and nonlinear contributions,
respectively, in the absence of feedback. This Amod sup-
pression then propagates to the shear correlation functions
that can be computed as Hankel transforms of the conver-
gence power spectrumwhich is itself related to an integral of
the matter power spectrum weighted by a combination of
galaxy distances (see, e.g., [13] for a detailed review). The
phenomenological approach of Eq. (1) encourages one to
investigate small scale physical processes that could explain
a dip in the power spectrum on nonlinear scales.
An obvious candidate is baryonic feedback which

produces such a suppression due, e.g., to the ejection
mechanisms by active galactic nuclei (AGN) which dilute
matter on small scales. This hypothesis was tested in
Refs. [12,14] who found that hydrodynamical simulations
that could explain the needed suppression [e.g., C-OWLS
[15] ] require a too large AGN feedback as compared to
observational constraints [16,17]. Interestingly, realistic
baryonic feedback mostly affects scales k around a few
h=Mpc and is therefore unable to account for the nonlinear
suppression on mildly larger scales close to 10−1 h=Mpc
that would be needed to solve the S8 tension. In fact, tuning
the feedback amplitude to accommodate the suppression on
the latter scales would result in unrealistically large
suppression at smaller scales.
A second class of candidates are scale-dependent pri-

mordial non-Gaussianities (PNG), since these mildly larger
scales could actually be affected by PNG in the matter
density field, therefore potentially offering another plau-
sible explanation for the suppression of the power spectrum
on mildly to very nonlinear scales, without requesting

unrealistic baryonic feedback. This solution also presents
the advantage of leaving the H0 tension unchanged, while
currently most studied extensions to ΛCDM can only
reduce the S8 tension at the cost of an increase in the
H0 tension [e.g. [18,19] ]. We therefore explore hereafter
the possibility that the S8 tension may in fact be a hint of
nontrivial physics during inflation, and we thereby propose
a physical interpretation of the parametric nonlinear sol-
ution of Refs. [12,14] that does not require unrealistic
feedback.
Actually, some level of PNG is a generic prediction of

any inflationary model, and this prediction is partially
driving existing and upcoming cosmological surveys. PNG
are often parametrized by the (local) parameter fNL [20]
which represents the amplitude of the quadratic correction
to the Gaussian random field to describe primordial
fluctuations. In the simplest single-field inflation models,
PNG are expected to be of the order of only 10−2 [21], this
small value justifying the Gaussian approximation made in
ΛCDM. However, many possible complex physical phe-
nomena and additional degrees of freedom could be present
in the inflationary era, and generically predict a larger fNL,
that could also depend on scale [22–24]. The non-Gaussian
signals (using the idea of cosmological collider physics
[25,26]) may therefore be the smoking-gun of various
processes potentially taking place during inflation, e.g.,
ultraslow roll [27], features [28] or the presence of an
electric field [29,30], among many others. The precise
measurements obtained from the Planck mission [31] and
from Large Scale Structure (LSS) observations [32] have
tightly constrained the Universe to be Gaussian on large
scales, with bispectrum measurements broadly consistent
with null values of fNL. However, it is important to
remember that these constraints do not hold at smaller
scales in the presence of scale-dependent PNG.
In recent years, we have studied the effect of large local-

type PNG at galactic scales by devising simulations with
small box-size L ¼ 30 Mpc=h [33–35], allowing us to
gauge the impact of such PNG on typical galaxy-sized halo
scales and to explore whether some galactic-scale tensions
could be alleviated as intuited in Ref. [2]. In particular, we
have shown, with hydrodynamical simulations in such a
cosmological context, that a negative fNL at galactic scales
forms simulated galaxies with more disky kinematics than
in the vanilla ΛCDM case [34], thereby potentially alle-
viating some small-scale tensions. Such a negative fNL also
slightly flattens the inner density profile of halos [35]. By
stacking various such small-scale simulations with different
initial random seeds, we also noticed that the nonlinear
matter power spectrum could dwindle by ∼20% at non-
linear scales in the presence of a negative fNL. This
motivated the present study, where we now include the
large linear scales in our simulations with L ¼ 500 Mpc=h
boxes, to study whether such a suppression of the power
spectrum could explain away the S8 tension.
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The paper is organized as follows: in Sec. II, we briefly
review some selected constraints on PNG at different
scales, we present our phenomenological model, and we
describe our implementation of the scale dependence of the
PNG in the software generating initial conditions for
N-body simulations (monofonIC

1). In Sec. III, we present
our simulations of structure formation and our main results:
the ratio of the nonlinear non-Gaussian power spectrum
over the Gaussian one, superimposed with the value of
Amod required by Ref. [14] to solve the S8 tension. We also
gauge the impact of baryons with the baryonification
technique. We conclude in Sec. IV, and also briefly discuss
consequences of such models on the halo mass function
and void statistics.

II. SCALE-DEPENDENT PRIMORDIAL
NON-GAUSSIANITIES

In a universe that is statistically homogeneous and
isotropic on large scales, the small primordial fluctuations
are depicted as a random field for the contrast density
δðxÞ ¼ ðρðxÞ − ρ0Þ=ρ0, where ρ0 represents the back-
ground density. This random field is most effectively
described in Fourier space, hence with the Fourier trans-
form of the contrast density, noted δðkÞ. The variance of
jδðkÞj corresponds to the Fourier transform of the two-
point correlation function, i.e., to the power spectrum
PðkÞ ∝ hjδðkÞj2ijkj¼k. If the random field is Gaussian,
the entirety of the statistical information is encapsulated
within its two-point correlation function and hence in its
power spectrum, while all odd correlation functions are
zero. This same principle extends to the gravitational
potential engendered by the contrast density field, such
that all information on a Gaussian random field ΦG for the
Newtonian gravitational potential is contained within its
two-point correlation function:

hΦGðk1ÞΦGðk2Þi ¼ ð2πÞ3δDðk1 þ k2ÞPðk1Þ; ð2Þ

where δD denotes the Dirac delta function and h� � �i is the
ensemble average often traded for a spatial average owing
to an ergodicity hypothesis. If the random field is non-
Gaussian, however, the three-point correlation function and
its corresponding bispectrum can display nonzero values,
especially if the random field is skewed. It is the small
values measured from Planck [31] and LSS [32] that allow
us to ascertain that the Universe is close to Gaussian on
large scales, but as we shall briefly review below, con-
straints are much less stringent on small scales.
In the standard cosmological model, the primordial

power spectrum for the Newtonian potential adopts the
form PΦ ∝ ASknS−4, where the parameters AS and nS
quantify, respectively, the amplitude of the primordial

perturbations and the deviation from scale invariance
(nS ¼ 1 for scale invariance). Thanks to the translation
invariance of the linearized equation of motion, modes are
decoupled and one can linearly propagate these primordial
perturbations as δðk; tÞ ¼ Tðk; tÞΦðkÞ, where t is the
cosmic time and Tðk; tÞ is the transfer function.
However, when entering the nonlinear regime, one then
needs to follow the evolution of perturbations through
numerical simulations, as we will do in this paper.
PNG can be simply expressed as deviations from

Gaussianity through a sum of the Gaussian ðΦG) and
non-Gaussian (ΦNG) contributions:

ΦðxÞ ¼ ΦGðxÞ þΦNGðxÞ: ð3Þ

Local templates are usually defined as a perturbative
expansion around the Gaussian term:

ΦNGðxÞ ¼ −fNLðΦ2
GðxÞ − hΦ2

GiÞ; ð4Þ

where the fNL parameter quantifies the amplitude of the
quadratic correction. Note that this expansion is done here
around the Gaussian random field for the Newtonian
potential Φ, opposite to the Bardeen potential. The minus
sign in Eq. (3) thus implies that a large positive value of fNL
corresponds to a distribution of the primordial contrast
density skewed towards overdensities, while a large neg-
ative value corresponds to a contrast density field skewed
towards underdensities, exactly as per the standard con-
vention [20]. Most often, motivated by inflationary slow
roll conditions, constraints on this parameter are set by
assuming it to be constant over all scales. This fNL
parameter can also be defined as the ratio of the bispectrum
to the power spectrum, and in more general local models, it
can actually depend on scale [22]. Hereafter, we are
interested in such a running parameter fNLðkÞ that grows
with k, and hence becomes significant only at small scales.

A. Constraints on PNG at small scales

The parameter fNL is tightly constrained from large scale
observation of the CMB and LSS, which we illustrate in
Fig. 1. At smaller scales, Oð10Þ Mpc, the constraints get
looser. Using spectral μ-distortions from the CMB photons
and correlating them with temperature fluctuations, fNL <
6800 at 2σ for scales Oð1Þ kpc [36]. Using data from the
Hubble Space Telescope (HST), Ref. [37] finds fNL ¼
71þ426

−237 at 2σ [37] with scale-dependent PNG featuring a
Heaviside function activated at scales smaller than 60 Mpc.
We illustrate this constraint on Fig. 1 too. However, note
that when PNG are only present at scales smaller than
6Mpc, Ref. [37] actually finds a best-fit fNL ≃ −1000, with
a departure from fNL ¼ 0 significant at 1.7σ.1https://bitbucket.org/ohahn/monofonic/.
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B. Phenomenological modeling

For simplicity, we keep a local form for the non-
Gaussian template and assume that fNL depends only on
scale (and not on shape) such that, in Fourier space, the
non-Gaussian part now reads

ΦNGðkÞ ¼ −fNLðkÞ
Z

d3k1d3k2
ð2πÞ3

× δDðk − k1 − k2ÞΦGðk1ÞΦGðk2Þ: ð5Þ

In order to model the scale dependence, we choose a
simple effective three-parameter function:

fNLðkÞ ¼
f0NL
1þ α

�
αþ tanh

�
k − kmin

σ

��
; ð6Þ

where f0NL is the amplitude of the non-Gaussian signal on
small scales (large k). Here, we choose α ¼ 1 for simplicity.
This choice leaves some amount of non-Gaussianity on
large scales, at the limit of current constraints, but it would
of course also be possible to choose αðkmin; σÞ such as to
cancel fNL completely for small k. The parameter σ
controls the sharpness of the transition (σ → 0 recovers
the Heaviside case [37]). kmin is the typical scale of the
transition between small and large PNG. Several possible
non-trivial inflation mechanisms do lead to a strong scale
dependence in fNL: a time-dependent speed of sound [38],
a sharp transition between a massive and a massless
spectator scalar field [39], changing the initial state of

the inflaton [40], anisotropic inflation [41], curvatons self-
interactions [42], tachyonic instabilities [43], Dirac-Born-
Infeld terms [44] arising from brane inflation, where in that
case the scale dependence of the PNG gives information
about the geometry of the extra dimensions [24]. We leave
for future work the exploration of the links between the
phenomenological parameters ðf0NL; σ; kmin; αÞ and param-
eters related to the microphysics of inflation.
In Fig. 1, we display the main constraints discussed

previously along with the shapes of fNLðkÞ simulated in
this work. They correspond to negative f0NL ∈ ½−600; 0�. The
three other parameters are fixed: σ ¼ 0.1 h=Mpc, α ¼ 1 and
kmin ¼ 0.15 h=Mpc. As the constraints from the different
probes span a wide range of scales, we argue that those
models are not a priori ruled out in the sense that each k-bin
used to put the constraints carries different signal to noise,
and fNL usually comes from the larger k-bins. Remember
that Ref. [37] actually found fNL ≃ −1000 when PNG are
only present at the smallest scales. A detailed analysis of the
models template fitted with CMB, LSS and HST data is
beyond the scope of this article, which presents the quali-
tative picture. A full exploration of the parameter space of
scale-dependent non-Gaussian templates fitted to observa-
tions will be the topic of future explorations.

C. Numerical configuration

Our implementation in monofonIC [45,46] roughly follows
the procedure described in Ref. [33], where instead of
Eq. (4), we now use Eqs. (5) and (6). Note that we have also
implemented power laws: fNLðkÞ ¼ f0NL × knfNL in a
branch of monofonIC but its application to the S8 tension
was less straightforward. The results were indeed not
converged when varying the box size. This was due to

FIG. 1. The values of fNLðkÞ for the main models studied in this
work. The white region is completely safe from all constraints
while the gray zone is above the 1σ deviation from the constraints
from Planck [31], LSS [32], and HST [37]. The solid lines
represent 6 different values of f0NL ∈ ½−600;−100� for a rather
smooth transition with σ ¼ 0.1 h=Mpc at kmin ¼ 0.15 h=Mpc in
Eq. (6) with α ¼ 1. Each model asymptotes to the value f0NL at
large k. The solid vertical lines represent the range of k simulated
in this work and the dotted vertical line represents the transition
kmin ¼ 0.15 h=Mpc.

FIG. 2. At z ¼ 0, power suppression due to baryonic feedback
in different hydrodynamical simulations and the emulator
BCemu, along with the suppressions in the scale-dependent
PNG simulation with f0NL ¼ −300 studied in this work: Dark
Matter Only (DMO) and with emulated baryonic physics. The
dashed vertical line corresponds to kmin ¼ 0.15 h=Mpc.
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nonperturbative matter fluctuations at small scales. This
problem is nicely solved when using templates featuring a
plateau at small scales such as Eq. (6). Another alternative
to the plateau would be to set back fNLðkÞ to zero at small
scales (very large k) in order to have a bumplike feature that
could possibly connect more easily to inflationary physics.
If doing so at very small scales, it would not change our
present results.
We compute the displacement field using Lagrangian

perturbation theory at second order (2LPT) at redshift z ¼ 32

on a 5123 grid. For all our simulations, we use the following
cosmological parameters compatible with Planck cosmol-
ogy: Ωm ¼ 0.31, ΩΛ ¼ 0.69, H0 ¼ 67.7 km s−1Mpc−1,
AS ¼ 2.11 × 10−9 and nS ¼ 0.967. The parameters describ-
ing the PNG are f0NL ∈ ½−600; 0�, σ ¼ 0.1 h=Mpc, α ¼ 1

and kmin ¼ 0.15 h=Mpc. At z ¼ 32, the typical suppression
of the power spectrum at large k is always less than 2%.

Our box length is L ¼ 500 Mpc=h, though we have
checked that our main result (in Fig. 3) does not depend on
the box size by resimulating, with the same number of
particles and the same random seed, boxes of length 100,
200 and 1000 Mpc=h. We have also checked that the
choice of random seed and the fixing/pairing [47] pro-
cedure impact our main result (in Fig. 3) by less than 1%.
We have finally verified that our choice of initial redshift,
even in the case of large small-scale PNG, does not lead to
significant transients at the level of the matter power
spectrum at z ¼ 0. We have run extra simulations starting
at z ¼ 200, 100, 50 and 20: in the non-Gaussian case, we
find that at redshifts 200 and 100, large transients lead to
numerical inaccuracy; in particular, the large scale behavior
of the matter power spectrum is off by up to 5%, while the
small scales are less affected. On the other hand, for initial
redshifts 50 and 20, the z ¼ 0 power spectra agree below
the percent level at all scales.

FIG. 3. Power suppression in the scale-dependent PNG simulations (thin colored lines) compared to the suppression inferred from
KiDS and DES to solve the S8 tension (thick black line). No baryonification has been considered, i.e., with a (non)effect of baryons
comparable to, e.g., Horizon-AGN. The maximal value of k represents the Nyquist wave number, and the dashed vertical line
corresponds to kmin ¼ 0.15 h=Mpc. Depending on the weight of the redshift-bins in the data, solving the S8 tension may require
f0NL ∼ −600 or −500.
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III. RESULTS

We evolve our initial perturbations using the Tree-PM
code Gadget 4 [48] with a gravitational softening length of
ϵ ¼ 50 h−1 kpc. We then compute the nonlinear matter
power spectrum at z ¼ 0.25 and z ¼ 0. At the smallest
scales we are considering in this work, baryons are however
known to impact the formation of structures, with the
dominant physical process being the ejection of gas from
the AGN. In Refs. [12,14], the authors explored whether
the physical process driving the suppression of the matter
power spectrum could be the baryonic effects. They
concluded that the effect of baryons, when calibrated on
observed quantities, is generically too weak to account for
such a drop in the matter power spectrum. Even if larger
feedback became allowed by observations, matching feed-
back on the scale of interest for PNG would dramatically
oversurpress the smallest scales power spectrum.

In Fig. 2, we illustrate this by showing the suppression of
the power spectrumat z ¼ 0 thatweget fromPNGalonewith
f0NL ¼ −300 (without taking into account any additional
effect of the baryons) with respect to the Gaussian case,
which we compare to the suppression related to feedback in
two state-of-the-art simulations reproducing most small-
scale observations [16,49]. It is immediately clear that our
PNG template can suppress the power spectrum on slightly
larger scales than baryonic feedback. Note that for simu-
lations with scale-independent fNL, such a drop of the power
spectrum was already witnessed [50,51], but the large scale
behavior of such templates is tightly constrained.
To add the baryonic effects on top of the PNG, we use an

emulator. Various such emulators have been developed
[52–55]. Baryonification [56] is a technique that mimics
the effect of the baryons in dark-matter-only simulation by
slightly displacing the dark matter particles. In order to
have a flavor of the impact of the baryonic effects on our

FIG. 4. Same as Fig. 3, but this time with the baryonification model of Ref. [58]. Depending on the weight of the redshift-bins in the
data, the preferred value to solve the S8 tension would now be f0NL ∼ −300 or −400.
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PNG models, we use the emulator BCemu2 [57,58]. We use
the 7 vanilla values of the parameters governing the
baryonic physics: five parameters related to the gas:
Mc ¼ 1013.3, μ ¼ 0.93, θej ¼ 4.2, γ ¼ 2.25, δ ¼ 6.4, and
two parameters related to the stars: η ¼ 0.15 and ηδ ¼ 0.14,
see Table 1 of Ref. [57] for more details. A generic feature
of the baryonic effects on the power spectrum is that they
nicely decouple from the cosmology except from the value
of the cosmological baryon fraction. While these results
would need to be confirmed with hydrodynamical simu-
lations [see [34] ] in large boxes including scale-dependent
PNG, we will assume that the two effects add linearly for
the present work, and leave to further investigations a
confirmation with hydrodynamical simulations.3 In Fig. 2,
it is then clear that the PNGþ baryon suppression with
f0NL ¼ −300 is more important and kicks in at larger scales
(smaller k) than with realistic baryonic feedback alone.
In Fig. 3, we now display the impact of our non-Gaussian

models on the nonlinear matter power spectrum compared
to the needed suppression to explain away the S8 tension.
Using CLASS [60] and HaloFit for the linear and nonlinear
power spectra, we reproduce Eq. (6) of Ref. [14] with
Amod ¼ 0.82� 0.04. This value of Amod is valid for a
redshift around z ∼ 0.25where most of the statistical power
of DES weak lensing data is present [14]. In this figure,
no baryonification is applied to the simulations (or,
equivalently, the baryon impact is negligible as in the
Horizon-AGN simulation [49], see also Ref. [61]), in this
case, f0NL ∼ −600 or −500 can produce the necessary drop
in amplitude for the power spectrum at nonlinear scales,
while leaving the linear power spectrum untouched.
In Fig. 4, we then display the impact of our non-Gaussian

models on the nonlinear matter power spectrum along with
the emulated baryonic effects from BCemu. In this case,
depending on the weight of the redshift-bins in the data, the
preferred value to solve the S8 tension would be f0NL ∼
−300 or −400.
To explore how much our conclusions depend on the

specific models considered, we then varied the value of kmin
and found (logically) that it is proportional to the value at
which the nonlinear suppression of the matter power
spectrum occurs. We have also varied the value of σ. In
Appendix A, we provide a figure to illustrate the impact of
the parameters.

IV. DISCUSSION AND CONCLUSIONS

Since no realistic baryonic feedback in hydrodynamical
simulations provides a suppression of the matter power
spectrum at large enough scales to solve the S8 tension, we
explored whether a scale dependence of local-type PNG,
with negative fNL of the order of a few −102 at ≲10 Mpc

scales, can provide the needed suppression. For this, we
devised collisionless numerical simulations of structure
formation in boxes of 0.5 h−1 Gpc with a simple effective
template for the scale dependence of fNLðkÞ. We thereby
showed that such scale-dependent PNG can indeed provide
the needed suppression. With a negligible effect of baryons
on thematter power spectrum, thevalue offNL at small scales
should be ∼ −600 or −500. With state-of-the-art baryonifi-
cation, a value ∼ −300 or −400 would be preferred.
The simple effective templates studied in this work

provide a qualitative proof-of-concept, but of course it will
need to be followed by amore complete exploration of scale-
dependent non-Gaussian templates directly fitted to obser-
vations at different scales. For this, it would be convenient to
devise an emulator of the effect of the scale-dependent PNG,
coupled with an emulator of baryonic physics. This pro-
cedure will need to be backed by large hydrodynamical
simulations [see [34] for such hydrodynamical simulations
on small scales], along the lines of Ref. [59]. This would then
allow one to infer directly from weak lensing data the
preferred values of the cosmological parameters along with
the value of f0NL and possibly kmin and α.
In this work, we have mainly concentrated on the S8

tension as deduced from weak-lensing analyses, which are
less dependent on biases—such as the infamous hydrostatic
bias—in cluster count analyses. However, the tail of the
Halo Mass Function (HMF) is in principle also altered by
the models studied in this work. This is also supported by
early weak-lensing peak statistics analyses who found a
high sensitivity of the high-mass peaks to fNL [62,63]. In
Appendix B, we present, along with the Gaussian HMF, the
HMF for f0NL ¼ −300 that shows a drop at high masses
which could also impact the S8 tension as studied from
cluster counts [64–66]. We also checked for the abundance
of voids, since our PNG template initially favors under-
densities, and find that the largest (∼20 Mpc=h in our
∼500 Mpc=h box) voids in the f0NL ¼ −300 simulation are
more numerous at redshift zero than in the Gaussian
simulation. In addition, we have also checked that f0NL ∼
−300 leads to a drop of the power spectrum at z ¼ 3

approximately compatible with the recent values for (Δ2
lin,

nlin) found from Lyman-alpha data [67]. Finally, it should be
noted thatmeasurements of gravitational lensing of the CMB
with Atacama Cosmology Telescope (ACT) [68] and SPT-
3G [69] have yielded a higher S8 than weak-lensing analyses
fromLSS.These studies are however not sensible to the same
redshifts. Moreover, while the ACT baseline analysis does
incorporate the modeling of nonlinear scales, their con-
straints that use only linear theory yield consistent results
[68], thereby showing that such analyses are, in fact, mainly
sensitive to linear scales where our PNG templates would
also give a S8 parameter consistent with vanilla ΛCDM.
Local PNG impact the clustering of cosmological

tracers, implying a scale-dependent bias [50]. It leads to
tight constraints on PNG, e.g., [70]. While our models

2https://github.com/sambit-giri/BCemu.
3Reference [59] recently discussed this issue in the context of

decaying dark matter and massive neutrinos.

SCALE-DEPENDENT LOCAL PRIMORDIAL NON-GAUSSIANITY … PHYS. REV. D 110, 063501 (2024)

063501-7

https://github.com/sambit-giri/BCemu
https://github.com/sambit-giri/BCemu


screen the large scale so that the CMB constraints lose
support, a measure of the scale-dependent bias could also
constrain the models studied in this work. It has been
beyond the scope of the present paper to provide a complete
analysis of the scale-dependent bias, which would need a
larger effective volume to study the effect [71–75], while on
the largest scales, the relativistic effects may also alter the
measured signal [76]. It will however be particularly
interesting to test this in the future.
We conclude that the S8 tension might, in fact, be a

smoking-gun of nontrivial inflationary physics leading to
scale-dependent PNG. This proposed solution to the S8
tension is attractive because extensions toΛCDM involving
modified gravity rather typically lead to a boost and not to a
drop of the matter power spectrum [77–79]. As the present
solution to the S8 tension leaves the largest scales mostly
untouched, it is easier to combine it with other solutions to
cosmic tensions such as early dark energy solutions to the
H0 tension [80], which should be investigated in the future.
Such a combination has never been tried and might prove
particularly promising [18].
The analysis was partially made using YT [81], as well as

IPython [82], Matplotlib [83], NumPy [84]. All power spectra
presented in this article are measured with Pylians [85].
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Carbon footprint: Based on the methodology of
Ref. [86] to convert (including the global utilization of
the cluster and the pollution due to the electrical source, the
conversion factor is 4.7 gCO2e/(h.core)) the CPU hours
used for the simulations presented in this work, we estimate
that we have emitted 0.5 TCO2eq.

APPENDIX A: IMPACT OF THE
PHENOMENOLOGICAL MODELING

In our fiducial models, we fixed the phenomenological
parameters of Eq. (6) to σ ¼ 0.1 h=Mpc and kmin ¼
0.15 h=Mpc. Here, we study the impact of varying those
two parameters by performing more simulations as illus-
trative examples, still keepingα ¼ 1 and fixingf0NL ¼ −500.
Our results are displayed in Fig. 5. For a sharp transition
(σ ¼ 0.02 h=Mpc, close to Heaviside), we obtain the sup-
pression in the power spectrum for k > kmin but also a small
(5%) bump in the power spectrum around k ∼ 0.1 h=Mpc.
We interpret it as a numerical artefact due to the k-binning in
monofonIC and for this reason we use in our fiducial models a
rather smooth transition such as σ ¼ 0.1h/Mpc. The scale

FIG. 5. Ratio of power spectra at z ¼ 0, illustrating the impact of varying σ and kmin in Eq. (6) to these ratios. On the right panel, we
see that kmin imposes the scales at which the power spectrum is suppressed; therefore, varying it can be an important aspect in alleviating
the S8 tension.
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kmin controls the scale at which the suppression due to PNG
occurs and it is also a relevant parameter for building a robust
candidate to solve the S8 tension.

APPENDIX B: HALO MASS FUNCTION AND
VOID SIZE FUNCTION

For a traditional scale-independent global value of fNL,
local-type PNG with negative fNL are known to induce a
drop of the HMF at large mass [50,87]. Here, to check how
such large masses are affected in our scale-dependent case,
we present the HMF for f0NL ¼ 0 and −300 in Fig. 6.
It appears that the drop of the HMF would go in the right

direction to solve the S8 tension at the cluster count level.
To show this a bit quantitatively, we check how the
individual mass M in the Gaussian case should vary to
reproduce the non-Gaussian case, with the following
parametrization [65]:

Mcorr ¼ M ·ϒ ·

�
M
M�

�
α

·

�
1þ z
1þ z�

�
β

; ðB1Þ

where M� ¼ 2 × 1014M⊙, z� ¼ 0.25 and (α, β, ϒ) are
allowed to vary. We have found that fixing them to
α ¼ −0.027, β ¼ 0.05 and ϒ ¼ 0.92 roughly matches
the Gaussian HMF to the non-Gaussian one, as can be
observed in Fig. 6. Our results are not mutually exclusive

FIG. 6. Halo mass function at z ¼ 0 (left) and z ¼ 0.25 (right) for the Gaussian and the f0NL ¼ −300 model considered in this work.
The bottom panel is the ratio of the HMF with respect to the Gaussian case. Correcting the Gaussian model following Eq. (B1) leads to
an effect similar to the non-Gaussian effect, as shown on the bottom panels.

FIG. 7. Ratio of the void size functions (VSF) for the Gaussian
and non-Gaussian models considered in this work. The non-
Gaussian simulations lead to a larger number of large voids.
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with hydrostatic bias, but could reduce the need for a high
bias to reconcile cluster counts with the Planck value of S8.
In the same vein, we also studied in our simulations the

abundance of underdense regions identified with the void
finder of Pylians using an underdensity threshold of
δt ¼ −0.7. The abundance of voids in our simulations,
plotted in Fig. 7, shows that the largest (∼20 Mpc=h)
voids in the f0NL ¼ −300 simulation are twice as

numerous at redshift zero than in the Gaussian simulation.
This higher proportion of voids may have interesting
consequences in the context of the H0 tension [88–90],
although the voids that are considered as potentially
significant in such a context are an order of magnitude
larger, and would certainly need additional modifications
to structure formation beyond PNG to explain away the
Hubble tension.
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