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The effect of dark matter (DM) on f-mode oscillations in DM admixed neutron stars (NSs) is
investigated in a comprehensive analysis with particular attention to the role of the nuclear equation of state.
Hadronic matter is modeled by the relativistic mean-field model and the DM model is based on the neutron
decay anomaly. The nonradial f-mode oscillations for such DM admixed NSs are studied in a full general
relativistic framework. We investigate the impact of DM, DM self-interaction, and DM fraction on the
f-mode characteristics. We derive relations encoding the effect of DM on f-mode parameters. We then
perform a systematic study by varying all the model parameters within their known uncertainty range and
obtain a universal relation for the DM fraction based on the total mass of the star and DM self-interaction
strength. We also perform a correlation study among model parameters, NS observables, and in particular,
f-mode parameters. Finally, we check the f-mode universal relations for the case of DM admixed NSs and
demonstrate the existence of a degeneracy between purely hadronic NSs and DM admixed NSs.
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I. INTRODUCTION

Neutron stars (NSs) are remnants of massive stars that
undergo supernova explosions observable throughout the
electromagnetic spectrum [1,2]. These compact objects are
one the densest forms of matter known and observed in the
Universe. The density inside NSs can reach 2–10 times
the nuclear saturation density (n0). They sustain the most
extreme physical conditions irreproducible in terrestrial
experiments. This, combined with the lack of first
principle calculations from the theory of strong inter-
actions, quantum chromodynamics (QCD), makes the
interior composition of NSs unknown. NS matter is
dense, cold, and highly isospin asymmetric. It is con-
jectured that high densities in the core of NSs can lead to
the appearance of new degrees of freedom like hyperons
or even result in a phase transition from hadrons to
deconfined quarks [3,4].
In recent years, compact objects have been established as

laboratories for studying dark matter (DM) (see Refs. [5,6]
for reviews). DM makes up ∼25% of our Universe and is 5
times more abundant than ordinary visible matter. DM
virializes on Galactic scales and interacts with ordinary

matter (OM) predominantly via gravity. On smaller scales,
DM is known to gravitationally accumulate within con-
densed bodies like stars and planets [7–10], although the
amount of DM accumulated is only a fraction of the total
mass of these objects. A NS, being the most compact object
after black holes (BHs) and hence generating one of the
strongest gravitational fields known, is thus expected to be
the best candidate for such admixture of DM having larger
fractions of DM by mass. A popular mechanism leading to
this is the accretion of DM undergoing inelastic collisions
with OM within NSs, leading to the formation of a DM
core/halo [6]. The effects of a DM core/halo on NS
observables have been studied in great detail in the past
few years for both bosonic and fermionic DM models
[11–43]. Recently, simulations have been conducted to
explore the effect of such DM admixture on the evolution
of NSs in binary systems [44–46]. However, such a
mechanism cannot lead to substantial DM fractions [14].
This is because if DM interacts with other standard model
particles, it interacts very feebly and has not been detected
so far. The results from the DAMA/LIBRA experiment [47]
are the only hint toward a positive detection, but it is still a
matter of debate. Recently, another possibility of neutrons
decaying to DM has caught attention [48–51] as it could
lead to a large DM fraction [51,52] in NSs and as well
resolve a long-standing discrepancy in particle physics
relating to the neutron lifetime [53] called the neutron
decay anomaly, which is explained below.
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The decay time of neutrons via the β-decay channel
(n → pþ e− þ νe) has a discrepancy when measured via
two different methods: (1) bottle experiments where the
number of undecayed neutrons is measured and (2) beam
experiments where the number of protons produced is
measured. The difference in the lifetimes measured in these
two methods implies that the number of decayed neutrons
is more than the number of produced protons. This problem
can be resolved by allowing the decay of neutrons to the
dark sector [53]. This model points to new physics beyond
the standard model and can be linked to the explanations of
the dark and baryonic matter asymmetry in the Universe
[52]. Applying this idea to NS matter can result in a
substantial admixture of DM inside NSs. This makes the
neutron decay anomaly model very interesting for NS
physics and can have a significant effect on NS observables
[52,54]. For this reason, we employ the neutron decay
anomaly model for DM in the following work. For the
hadronic component of NSs, we use the well-studied
phenomenological relativistic mean-field (RMF) model.
The microscopic details of these models are described in
detail in the next section.
NSs are accessible via electromagnetic observations

across the spectrum, right from radio waves to x rays and γ
rays. Electromagnetic radiation, originating primarily
from the exterior of NSs, provides indirect ways to probe
the NS interior. The combination of ground- and space-
based detectors has made numerous measurements
[55,56] of NS properties like mass, radius, cooling curves,
spin frequency, its derivative, and observed phenomena
such as pulsar glitches and mergers, which add several
constraints to theoretical models. The observed maximum
mass of NSs imposes stringent constraints on the stiffness
of the microscopic equation of state (EOS) that describes
NS matter. Radius measurements from x-ray observations
suffer from model uncertainties and are not precise. The
recent NICER mission provides radius estimates to a
precision of 5%–10% using the pulse profile modeling of
x-ray pulses [57–60]. Precise simultaneous measurement
of mass and radius will highly constrain NS EOS to a
high extent.
Detection of gravitational waves (GWs) from the merger

of binary neutron stars (BNSs), GW170817 [61] and
GW190425 [62], and of neutron star–black hole binaries,
GW200105 and GW200115 [63], have opened up a new
multimessenger window to study NSs. GW170817 is the
first confirmed GW event of a BNS merger that was
observed across the electromagnetic spectrum [61,64,65].
The ability to deduce properties of NSs from GWs has
renewed interest across a diverse community in astrophys-
ics, as they can also be used to constrain the equation of
state and the microscopic properties of NS matter. Precise
measurements of NS properties are crucial to determine the
interior composition of NSs and the microscopic properties
of strongly interacting matter.

On the other extreme, GWs generated due to the time-
varying mass quadrupole moment of the entire NS are a
direct probe of the NS interior. Analysis of GW170817
added a limit on the tidal deformability (Λ) of NSs [66]
from the absence of an imprint of the deformation of NSs
on the GW signal during the late inspiral phase of the
merger, when the tidal field is strong, leading to further
constraints on EOS of dense matter [67]. Future observa-
tions of NSs from the next-generation GW detector net-
work are expected to improve the constraints significantly.
In the context of GWs, apart from binary systems, the

quasinormal modes (QNMs) of NSs are particularly inter-
esting since they carry information about the interior
composition and viscous forces that damp these modes.
QNMs in neutron stars are categorized by the restoring
force that brings the perturbed star back to equilibrium
[68–70]. Examples include the fundamental f mode, p
modes, and g modes (driven by pressure and buoyancy,
respectively), as well as r modes (Coriolis force) and pure
space-time w modes. The DM admixed NS model that we
consider here has been recently studied extensively
[48–51]. None of these studies incorporate effects on the
QNMs. The effect of admixture of DM on NSs on r-mode
oscillations was recently studied by some authors in this
paper (S. S., D. C., L. S., and J. S. B) for the first time [51].
It was found that the r-mode instability window can be
significantly modified if the rate of dark decay is fast
enough in dense matter. Several of these modes are
expected to be excited during supernova explosions, in
isolated perturbed NSs, NS glitches, and during the
postmerger phase of a binary NS, with the f mode being
the primary target of interest [71–79]. Among the QNMs of
NS, the nonradial f mode strongly couples with the
GW emission, and the mode frequency also falls under
the detectable frequency range of the current and next-
generation GW detectors and holds great importance in NS
seismology [80–82]. Additionally, there have also been
recent works on f-mode GW searches from the LIGO-
Virgo-KAGRA collaboration [83–85]. Furthermore, differ-
ent works have shown that the g modes are less significant
than f modes for GWemission [86–88], leading us to focus
on the f-mode asteroseismology.
Recently, some authors of this paper (B. K. P. and D. C.)

studied the effect of nuclear parameters and the hyperonic
degrees of freedom on the f-mode oscillation of NSs in
Cowling approximation [89], where the perturbations in the
background space-time metric are neglected. These results
were then improved to include the full general relativistic
(GR) effects [90]. In this work, we extend these studies to
f-mode oscillations of DM admixed NSs. A recent work
[91] carried out a similar study using a Higgs-interaction
model of DM for four select EOS within the Cowling
approximation. They also highlight the requirement of a
full-GR treatment for more accurate results, as it was also
found in [90] that the Cowling approximation can
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overestimate the f-mode frequencies by up to 30%. This
was also confirmed by another work [92] that appeared
recently. They calculate f-mode characteristics in a full-GR
setup. However, they consider the Higgs-interaction model
and only one fixed nuclear EOS. In this study, we use the
DM model based on neutron decay and vary all the model
parameters to systematically investigate the effect of DM
and its parameters on the f-mode oscillations using full-GR
framework. Gleason et al. [93] dynamically evolved DM
admixed NSs to study the radial l ¼ 0 oscillation. However,
radial oscillations are known not to emit any GWs and
cannot be used to study NS matter. In this work, we carry
out a systematic study of nonradial f-mode oscillations of
DM admixed NSs in a full-GR framework.
This paper is structured as follows: After having outlined

the motivation and context of this work in Sec. I, we
describe the microscopic models for OM and DM along
with the formalism to calculate NS observables and f-mode
characteristics in Sec. II. We present the results of our study
in Sec. III and, finally, summarize our findings in Sec. IV.

II. FORMALISM

We describe the microscopic models used for DM
admixed NS matter in Sec. II A and then outline the
calculation of their macroscopic properties Sec. II B.

A. Microscopic models

Here, we describe the particular models we use to
describe the hadronic matter (Sec. II A 1) and dark matter
(Sec. II A 2) for the study of f modes. We then discuss the
choice of model parameters (Sec. II A 3) we make for the
systematic study.

1. Model for hadronic matter

The ordinary hadronic matter is described using the
phenomenological RMF model where the strong interac-
tion between the nucleons (N), i.e., neutrons (n) and
protons (p), is mediated via exchange of scalar (σ), vector
(ω), and isovector (ρ) mesons. The corresponding
Lagrangian is [94]

Lint ¼
X
N

ψ̄N

h
gσσ − gωγμωμ −

gρ
2
γμτ · ρμ

i
ψN

−
1

3
bmðgσσÞ3 −

1

4
cðgσσÞ4

þ Λωðg2ρρμ · ρμÞðg2ωωνωνÞ þ
ζ

4!
ðg2ωωμωμÞ2; ð1Þ

where ψN is the Dirac spinor for the nucleons, m is the
vacuum nucleon mass, fγig are the γ matrices, τ are Pauli
matrices, and gσ , gω, gρ are meson-nucleon coupling
constants. b, c, and ζ are the scalar and vector self-
interactions couplings, respectively, and Λω is the vector-
isovector interaction. ζ is set to zero as it is known to soften

the EOS [95–97]. The energy density for this RMF model
is given by [94]

ϵOM ¼
X
N

1
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where kFN
is the Fermi momentum, EFN

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2FN

þm�2
q

is

the Fermi energy, and m� ¼ m − gσσ is the effective mass.
Within the mean-field approximation, all the mediator
mesonic fields are replaced by the mean values. The
pressure (P) is given by the Gibbs-Duhem relation

P ¼
X
N

μNnN − ϵ; ð3Þ

where μN ¼ EFN
þ gωω̄þ gρ

2
τ3N ρ̄. We further have free

fermionic contributions from the leptons (l), i.e., electrons
(e) and muons (μ). This matter is in weak β equilibrium and
charge neutral, resulting in the following conditions:

μn ¼ μp þ μe; μμ ¼ μe; np ¼ ne þ nμ: ð4Þ

For the crust, we use the EOS from Hempel and
Schaffner-Bielich (2010) [98] and connect it to the core
EOS ensuring causality and thermodynamic consistency.

2. Model for dark matter

For dark matter, we use a model motivated by the
neutron decay anomaly. Fornal and Grinstein (2018) [53]
suggested that the anomaly could be explained if about 1%
of the neutrons decayed to dark matter. Multiple decay
channels were proposed. Some of these are n → χ þ ϕ,
n → χ þ χ þ χ, n → χ þ γ [53,99]. We consider one of
them here, where the neutron decays into a dark fermion
with baryon number one and a light dark boson, for which r
modes have already been studied [51],

n → χ þ ϕ: ð5Þ

We consider the above decay channel in this work, as it is
already well studied and robust constraints on the self-
interaction strength G for this model have been derived in
our previous work [48–51,100]. The decay channel n →
χ þ γ is known to be ruled out [101]. For the channel
n → χ þ χ þ χ, it has been shown that there is no require-
ment of self-interaction among χ particles [99,102]. The
light dark particle ϕwith its massmϕ set to zero escapes the
NS, and chemical equilibrium is established via μN ¼ μχ .
Various stability conditions require the mass of the dark
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matter particle (mχ) to be in a narrow range of 937.993 <
mχ < 938.783 [51]. We set mχ ¼ 938.0 MeV. We further
add self-interactions between DM particles mediated
via vector gauge field Vμ. The energy density of DM is
given by

ϵDM ¼ 1

π2

Z
kFχ

0

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q
dkþ 1

2
Gn2χ ; ð6Þ

where

G ¼
�
gV
mV

�
2

; nχ ¼
k3Fχ

3π2
: ð7Þ

Here, gV is the coupling strength, andmV is the mass of the

vector boson. From this, we obtain μχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Fχ

þm2
χ

q
þ

Gnχ . We add this contribution (ϵDM) to the energy density
of hadronic matter (ϵOM) to get the total energy density
(ϵ ¼ ϵOM þ ϵDM) and calculate the pressure using Eq. (3).
We vary the baryon density (nb ¼ np þ nn þ nχ) and
compute the EOS using the conditions in Eqs. (4)
and μN ¼ μχ .
In our work, we consider neutron dark decay only in the

core. The outer crust is mostly composed of nuclei. For the
assumed range of the DM particle mass, the decay of
neutrons within nuclei is forbidden [103]. Hence, we do not
consider any neutron dark decay in the crust. In the inner
crust, a fraction of neutrons drip out of nuclei; however, the
abundance of free neutrons is much less than that in the
core. Therefore, in this work, we neglect the neutron decay
in the crust.
We discuss various relevant timescales involving

dark decay, chemical equilibrium, and f-mode oscillations.
The resolution of the neutron decay anomaly model
mandates the neutron decay timescale to be 100 times
the β-decay timescale (∼15 min), which amounts to a few
hours (see [104] for a detailed discussion). This is much
smaller compared to the typical age of old
NSs ≈ 106–108 yr. Thus, chemical equilibrium is estab-
lished in NSs. The typical f-mode oscillation frequency for
NSs is in kilohertz, i.e., timescale is in milliseconds. Thus,
DM would fall out of chemical equilibrium while under-
going oscillations. For the DM to also undergo oscillations
we need to check the timescale of kinetic equilibration
between the DM and the ordinary matter via transfer of
energy and momentum. Since these fluids interact via
gravity, this happens over gravitational timescale which for

a typical NS of M¼ 1.4M⊙ and R ¼ 12 km is
∼1=

ffiffiffiffiffiffiffiffiffiffiffi
Gρ̄NS

p ¼ Oð10−5Þ s which is less than the oscillation
timescale. Thus, the system remains in kinetic equilibrium
during the oscillations.
Husain et al. (2022) [50] showed that the decay process

could result in a system having temperature of Oð1Þ MeV
which is much smaller compared to the Fermi momenta of
either components. Hence, we use T ¼ 0 EOS for both
nuclear matter and DM. During the NS evolution, nuclear
matter would cool down to form a degenerate Fermi sea.
Since the DM is coupled with neutrons and establishes
chemical equilibrium with it, the DM too eventually forms
a degenerate Fermi sea within hours, thus establishing
thermal equilibrium well within the NS timescale.

3. Choice of parameters

We have a total of eight coupling parameters in this
model, six from the hadronic model (gσ , gω, gρ, b, c, Λω)
and two (gV , mV) from the DM model. We set the hadronic
couplings using experimental and observational data, as
explained below.
The hadronic model couplings are fixed by fitting

nuclear empirical data at saturation density. Of these, the
isoscalar couplings (gσ, gω, b, c) are set by the nuclear
saturation parameters nsat, Esat, Ksat, and m�=m. The
isovector couplings (gρ and Λω) are fixed using the
symmetry energy parameters J and L. Thus, we fix the
nuclear empirical parameters within known uncertainties to
generate a particular hadronic EOS. We jointly call the set
of nuclear empirical parameters “fnucg.” For the case
where we fix the nucleonic EOS and study the variation of
f modes with G, we fix the nuclear parameters to fixed
values as mentioned in Table I. We call this case “hadronic”
in this work. The choice of nuclear parameters is made so
that the corresponding purely hadronic EOS falls in the
chiral effective field theory (χEFT) band for pure neutron
matter, as in [94], and forms NSs consistent with recent
constraints from observational data of maximum NS mass
and tidal deformability. This is one set of parameters
satisfying these constraints and there is nothing special
about it. We choose this as a representative case as the focus
is on the effect of DM parameters. These constraints are
described at the end of this section.
Next, to study the correlations and universal relations,

we first vary the parameters within the range of uncertain-
ties allowed by nuclear experimental data [1,105,106] as
given in Table I. We call this range of variation
“Ghosh2022” in this work. The PREX II experiment

TABLE I. Range of the variation of the nuclear and DM parameters used in this work.

Model n0 ðfm−3Þ Esat ðMeVÞ Ksat ðMeVÞ J ðMeVÞ L ðMeVÞ m�=m G ðfm2Þ
Hadronic 0.15 −16.0 240 31 50 0.68 � � �
Ghosh2022 [105] [0.14, 0.17] ½−16.2;−15.8� [200, 300] [28, 34] [40, 70] [0.55, 0.75] [0, 300]
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suggests higher values of L [107]. However, we find that
such values are inconsistent with the χEFT predictions. The
same applies to values ofm�=m lower than the given range.
Since the two DM parameters appear as gV=mV in the

EOS, we explicitly vary only the parameterG ¼ ðgV=mVÞ2.
In our previous work [51], we imposed an updated lower
limit on this parameter G, demanding consistency with the
observation of NSs with a mass larger than 2M⊙. This
resulted in a value of G≳ 6 fm2. This parameter can also
be related to the DM self-interaction cross section (σ), for
which we have constraints from astrophysical observations
as 0.1 < σ=m < 10 ½cm2=g� [108–110]. This translates to
limits on G given by 30≲G≲ 300 fm2. In the first case,
we keep G > 11 fm2 to keep NS mass larger than 2M⊙.
For large values of G, the DM fraction is observed to be
very low, and we do not get any effect of DM. The EOS is
asymptotically that of purely hadronic EOS. Thus, in the
other case (Ghosh2022), where we vary all parameters, we
fix the upper limit of the range to 300 fm2. This is also
consistent with σ=m < 10 cm2=g.
To begin, we make some preliminary plots for the

model considered. In Fig. 1, we plot the equations of
state for fixed nuclear parameters and different values of
G. We use hadronic parametrization (see Table I) for the
hadronic matter. The EOS for purely hadronic matter is
shown in black. We then add the DM contribution.
The EOS is soft when G is low. As we increase the value
of G, the EOS asymptotically reaches the pure hadronic
EOS. This is because the DM fraction decreases with
increasingG. We show the equations of state withG ¼ 11,
15, 30, 100, and 300 fm2. Self-interaction increases the
energy density and makes it energetically more expensive

to create DM particles. This is also consistent with the
previous study [51].
We only consider those equations of state consistent

with χEFT at low density (nb=n0 ∼ 0.4–1.2). For any
given nuclear parametrization, we generate pure neutron
matter EOS and check if the binding energy per nucleon
falls in the band predicted by χEFT. If it does, we proceed
to generate EOS for the matter with admixed DM. For
every generated EOS, we consider two astrophysical
constraints in this work: the corresponding star after
solving the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions should have a maximum mass greater than 2M⊙
[111] and the tidal deformability (defined in Sec. II B 1) of
the 1.4M⊙ star should be compatible with the estimate
from the GW170817 event [61], i.e., less than 800 [66,67]
(Λ1.4M⊙

< 800). We call these constraints “Astro” from
hereon.

B. Macroscopic properties

In this section, we provide the details of the formalism
used to calculate macroscopic NS properties includ-
ing observables like mass, radius, tidal deformability,
DM fraction (Sec. II B 1), and f-mode characteristics
(Sec. II B 2).

1. Calculation of NS observables

After varying the parameters and generating EOS, we
use this EOS to compute for macroscopic properties of NS
like mass (M), radius (R), and tidal deformability (Λ). We
consider a spherically symmetric nonrotating NS for which
the line element is given by

ds2 ¼ −e−2ΦðrÞdt2 þ e2νðrÞdr2 þ r2dΩ2:

The macroscopic properties are obtained by solving the
TOV equations

dm
dr

¼ 4πr2ϵðrÞ;
dp
dr

¼ −ðpðrÞ þ ϵðrÞÞ dΦ
dr

;

dΦ
dr

¼ mðrÞ þ 4πr3pðrÞ
rðr − 2mðrÞÞ ; ð8Þ

along with the metric functions [112,113]. In this model,
since DM particles are in chemical equilibrium with
neutrons, the DM density profiles follow that of hadronic
matter, and we get a single fluidlike system. For this reason,
we use the single fluid TOV formalism.
The TOV equations can be solved when supplemented

with the EOS p ¼ pðϵÞ. The boundary conditions used
while solving TOVequations aremðr¼0Þ¼0,Pðr¼RÞ¼0,
andΦðr ¼ RÞ ¼ 1

2
logð1 − 2M

RÞ. The metric function νðrÞ is
givenby e2νðrÞ ¼ r

r−2mðrÞ. Thus, by varying the central baryon

FIG. 1. The equations of state for DM admixed hadronic matter
with variation of G parameter. Hadronic parametrization (see
Table I) is used for the hadronic matter. The black curve denotes
the purely hadronic case.
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density, we get different solutions/configurations. R then
defines the radius of the stars andmðr ¼ RÞ ¼ M is the total
mass of the star.We do not need tomention a separate central
density or DM fraction for DM, as the chemical equilibrium
with the dark sector fixes the DM density. We calculate the
dimensionless tidal deformability Λ ¼ 2

3
k2
C5 by solving for

the tidal Love number k2 simultaneously with TOV equa-
tions as done in [114–117]. Here, C is the dimensionless
compactness C ¼ M=R.
The DM fraction is defined as the ratio of the mass of

DM in the star to the total mass of the star fDM ¼ Mχ=Mtot.
This quantity is fixed for a given configuration and can be
computed as

fDM ¼
R
R
0 ϵDMdVR

R
0 ϵdV

: ð9Þ

For the equations of state shown in Fig. 1, the corre-
sponding mass-radius curves is plotted in Fig. 2 after
solving the TOVequations (8). The black curve denotes the
purely hadronic NS and has a maximum mass of 2.41M⊙
and R1.4M⊙

¼ 12.92 km. It can be seen that lower values of
G lead to configurations with low masses and radii, and the
curve approaches the pure hadronic one upon increasingG.
We show curves for G > 11 fm2 as they are consistent
with the 2-solar-mass constraint. These also agree with the

mass-radius constraint from the GW170817 event [67]
(gray patch) as well as NICER measurements [57,58]
(green ellipses). We show the bands for the heaviest known
pulsars [111,118] in the figure for reference. These results
are also consistent with our previous study [51].

2. Calculation of f modes

As indicated by Thorne and Campolattaro [70], among
the various quasinormal modes of NSs, the nonradial
fundamental mode (f modes) serves as a primary
source of GW emission. Extensive efforts have been
dedicated to developing methodologies for determining
mode characteristics, including the resonance matching
method [119], direct integration method [120,121],
method of continued fraction [122,123], and the
Wentzel-Kramers-Brillouin approximation [124]. While
the relativistic Cowling approximation has been widely
used in some studies to find mode frequency by neglecting
metric perturbation, several important works [90,125,126]
underscore the importance of incorporating a linearized
general relativistic treatment. These studies conclude that
the Cowling approximation overestimates the f-mode
frequency by approximately 30% compared to the fre-
quency obtained within the framework of a general
relativistic treatment.
In this study, we determine the mode parameters by

solving perturbations within the framework of linearized
general relativistic treatment. We work in the single fluid
formalism and employ the direct integration method, as
outlined in previous works [90,121,123], to solve the f-
mode frequency of NSs. Essentially, the coupled perturba-
tion equations for perturbed metric and fluid variables are
integrated throughout the NS interior, adhering to appro-
priate boundary conditions [123]. Subsequently, outside the
star, the fluid variables are set to zero, and Zerilli’s wave
equation [127] is integrated to far away from the star. A
search is then conducted for the complex f-mode frequency
(ω ¼ 2πf þ i

τ) corresponding to the outgoing wave solu-
tion of Zerilli’s equation at infinity. The real part of ω
signifies the f-mode angular frequency, while the imagi-
nary part denotes the damping time. Numerical methods
developed in our previous work [90] are employed for
extracting the mode characteristics. We refer to
Appendix A for more details of the calculation.

III. RESULTS

First, we check the effect of the inclusion of DM on f
modes. We then study the effect of DM self-interaction on
the f-mode frequencies and damping timescales, keeping
the nuclear parameters fixed. We then vary all the param-
eters (fnucg þ G) and check the validity of f-mode
universal relations for DM admixed NSs. Finally, we
perform a correlation study to look for any physical
correlations.

FIG. 2. The M–R curves corresponding to equations of state in
Fig. 1. Hadronic parametrization (see Table I) is used for the
hadronic matter. The black curves denote the purely hadronic
case. The 1σ joint M–R contour for the two components (“M1”
and “M2”) of the GW170817 binary are shown by the gray patch
[67]. “Millerþ” and “Rileyþ” are 1σ contours derived from the
NICER data of pulsar PSR J0030þ 0451 by two independent
analyses [57,58], respectively. The green and yellow bands
correspond to mass measurements of the heaviest pulsars known,
M ¼ 2.072þ0.067

−0.066 of PSR J0740þ 6620 [111] and M ¼ 2.01þ0.04
−0.04

of PSR J0348þ 0432 [118], respectively.
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A. Effect of dark matter I: Variation of
DM self-interaction

This section focuses solely on the DM self-interaction
parameter G. To study the impact of the admixture of DM
on the f modes, we plot the f-mode (l ¼ 2) frequencies as
a function of mass (M), compactness (C), and dimensional
tidal deformability (Λ) of DM admixed NSs in Fig. 3. We
use the same equations of state shown in Fig. 1. The bands
for the heaviest known pulsars [111,118] have been shown
in the figure for reference. The black curves represent the
purely hadronic case. The maximum f-mode frequency
corresponding to the maximum mass configuration for the
hadronic case is 2.18 kHz and that for a canonical
configuration of 1.4M⊙ is 1.66 kHz. The frequencies
increase with mass. We show the f-mode frequency
profiles for DM admixed NS for selected values of G
(G ¼ 11, 15, 30, 100, and 300 fm2). The inclusion of DM
increases the f-mode oscillation frequency for a fixed mass
configuration. This was also observed in Ref. [91].
The oscillation frequency is higher for denser objects as
it scales linearly with the square root of average density (see
Sec. III D). For configurations of fixed total mass, we see
that the DM admixed NS has a lower radius and, hence,
higher average density, leading to higher f-mode fre-
quency. We see that, as we increase G, the frequency
reduces. We also observe that the increase in frequency is
higher for higher mass configurations.
We see a similar trend when we plot the frequencies

against compactness. The frequencies increase with C.
Compactness is more easily measurable, as the gravita-
tional redshift that the observed thermal x-ray spectrum
undergoes depends on the compactness [128]. For fixed C,
we observe that NSs with DM have higher f-mode
frequencies, which become smaller as we increase G.
Furthermore, we plot the f modes as a function of Λ.
The frequencies decrease with an increase in Λ. For a fixed

Λ, the frequency with DM is higher, which decreases with
an increase in G. Since it is known that the DM fraction
(fDM) reduces with an increase in G, we can conclude that
f-mode frequency increases with an increase in fDM. We
will explore this in more detail later in this section.
Parallelly, we also calculate the damping times of these

l ¼ 2 fundamental QNMs for each case. We plot the
damping time τ against M, C, and Λ in Fig. 4. The black
curves denote the purely hadronic case. The τ correspond-
ing to the maximum mass and canonical 1.4M⊙ configu-
rations are 0.15 and 0.26 s, respectively. We see an opposite
trend as compared to the frequency. This is expected as τ is
the inverse of the imaginary part of the complex eigenfre-
quency. The damping time τ decreases with increasing M,
C and increases with increasing Λ. The damping time τ for
a DM admixed NS is lower than that of a purely hadronic
NS. For a configuration of fixedM, C, and Λ, the damping
time increases with an increase in G. We can conclude that
the f-mode damping time reduces with an increase in fDM.
f-mode frequencies are expected to be detected with good
accuracy with the improved sensitivity of GW detectors.
However, this is not the case with damping time [71]. We
explore f-mode universal relations in Sec. III D, which can
help measure damping time as well.
We now investigate the effect of DM self-interaction (G)

in more detail. We keep the nuclear parameters fixed to
hadronic (see Table I) and now vary G continuously. To
check the effect ofG on f-mode characteristics, we plot the
f-mode frequencies f1.2M⊙

, f1.4M⊙
, f1.6M⊙

, f1.8M⊙
, and

f2.0M⊙
for the 1.2M⊙ (blue), 1.4M⊙ (orange), 1.6M⊙

(green), 1.8M⊙ (red), and 2.0M⊙ (violet) configurations
of DM admixed NSs as well as their corresponding
damping times τ1.2M⊙

, τ1.4M⊙
, τ1.6M⊙

, τ1.8M⊙
, and τ2.0M⊙

as a function of G in Fig. 5. The dotted lines indicate the
value for the corresponding purely hadronic case for each
mass configuration. The vertical dash-dotted line represents

FIG. 3. The f-mode frequency (f) as a function of (a) NS mass (M), (b) compactness (C), and (c) tidal deformability (Λ) for the
equations of state from Fig. 1 compatible with astrophysical constraints as described in Sec. II A 3. Hadronic parametrization (see
Table I) is used for the hadronic matter. The black curves denote the purely hadronic case. The green and yellow bands correspond to
mass measurements of the heaviest pulsars known, M ¼ 2.072þ0.067

−0.066 of PSR J0740þ 6620 [111] and M ¼ 2.01þ0.04
−0.04 of PSR J0348þ

0432 [118], respectively.
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the valueG ¼ 11 fm2. Only forG greater than this value do
we get configurations that satisfy the 2-solar-mass con-
straint. The vertical dashed line represents G ¼ 29.8 fm2

which corresponds to the lower bound on the DM self-
interaction cross section σ=m > 0.1 cm2 coming from
astrophysical observations [51]. We observe that we get
high (low) frequencies (damping times) for small values
of G. The strongest influence of G is in the region
G≲ 10 fm2. The frequency (damping time) falls
(rises) up to about G ∼ 50 fm2 and saturates beyond it.
These numbers are not unique, as it depends on the
hadronic EOS being used. The values here correspond to
the hadronic model and are linked to the interaction
strength between nucleons via mesons (nucleon-meson

coupling). The reason for the sharp (decrease) of f-mode
frequency (damping time) for G≲ 10 fm2 is because of
the sharp increase in the DM particle fraction in this
region. This can be seen from Fig. 7 of [51]. The DM
fraction saturates to zero beyond G≳ 50 fm2 which also
explains why the f-mode parameters saturate beyond
this point.
To see the effect of G on both f and τ simultaneously for

different mass configurations, we make a scatter plot (see
Fig. 6) in the f–τ plane. We show the result for 1.2M⊙,
1.4M⊙, 1.6M⊙, 1.8M⊙, and 2M⊙ configurations. The
colors indicate log10 ðG=fm2Þ as the variation is resolved
better on a log scale. The points for each configuration lie
on a curve marked by solid red lines. This is also seen in the

FIG. 4. The f-mode damping time (τ) as a function of (a) NS mass (M), (b) compactness (C), and (c) tidal deformability (Λ) for the
equations of state from Fig. 1 compatible with astrophysical constraints as described in Sec. II A 3. Hadronic parametrization (see
Table I) is used for the hadronic matter. The black curves denote the purely hadronic case. The green and yellow bands correspond to
mass measurements of the heaviest pulsars known, M ¼ 2.072þ0.067

−0.066 of PSR J0740þ 6620 [111] and M ¼ 2.01þ0.04
−0.04 of PSR J0348þ

0432 [118], respectively.

FIG. 5. (a) f-mode frequency (f) and (b) damping time (τ) of 1.2M⊙, 1.4M⊙, 1.6M⊙, 1.8M⊙, and 2.0M⊙ DM admixed NS as a
function of the self-interaction strength (G). The nuclear EOS parameters are as given by the hadronic set in Table I. The horizontal
dotted lines for each configuration represent the values of the purely hadronic NS. The 2M⊙ maximum mass condition for NSs is
satisfied by values of G to the right of the vertical dash-dotted line. The vertical dashed line represents the lower limit of G coming from
the astrophysical constraint σ=m > 0.1 cm2=g [51].
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case of purely hadronic NSs when the underlying hadronic
EOS is varied.
In our earlier work [90], a fitting function was obtained

for the mass-scaled f-mode frequency and τ, given as

Mωi ¼
X
j

γjðMωrÞj; ð10Þ

where ωr ¼ 2πf is the real part of the eigenfrequency and
ωi ¼ 1=τ is the imaginary part. Universal relations will be
explored in more detail in Sec. III D. The red curves are
plotted using this relation with the fitting coefficients (γj)
from [90], where they were fit for nucleonic and hyperonic
matter. We see that the (f, τ) relations obtained when G is
varied lie perfectly on the universal relations introducing a
degeneracy with nuclear parameters. Thus, simultaneous
observation of f and τ can constrain G only if the
underlying nuclear saturation parameters are known to a
good precision.
In Fig. 7, we plot f and τ as a function of DM fraction

(fDM). The configurations shown in this figure correspond
to the same curves as in Fig. 5. The stars shown indicate the
purely hadronic case (corresponds to fDM ¼ 0) for each
mass configuration. The vertical dashed line corresponds to
fDM ¼ 13.7%. This is an upper limit of the DM fraction as
obtained in our previous work [51] considering astrophysi-
cal constraint σ=m > 0.1 cm2=g for DM self-interactions.
f(τ) is seen to increase (decrease) with fDM. This is
expected as fDM is known to decrease with increasing

G. However, in contrast to G, we see a linear variation of
the f-mode parameters with fDM.
The lines appear parallel except for a slight deviation for

the 2M⊙ case for large fDM. This can be explained as large
fDM corresponds to low value of G and soft equations of
state. Since we add a filter of 2M⊙, these equations of state
have maximum mass near 2M⊙. From Fig. 3, it is clear that
the variation of f-mode characteristics differ near the
maximal mass configuration, as mass becomes constant,
while f increases. Thus, we expect deviation in trend near
2M⊙. The shifts in the lines can be attributed to the
difference in f-mode frequencies (and damping time) for
different mass configurations of the purely hadronic NS.
Thus, we define a quantityΔf as the difference between the
frequency f of a DM admixed NS and that of the purely
hadronic NS with the same nuclear parameters given as

ΔfðM; fDMÞ ¼ fðM; fDMÞ − fðM; 0Þ; ð11Þ

ΔτðM; fDMÞ ¼ τðM; fDMÞ − τðM; 0Þ: ð12Þ

The dependence of f and τ on the underlying microscopic
parameters (fnucg) and G is implicit in these equations.
The dependence on G is only through fDM. fDM also
depends on M. We will explore these relations in detail
later. Also, at this stage, we cannot say whether Δf and Δτ
depend on the nuclear saturation parameters.

FIG. 6. f-mode frequency-damping time scatter plot for
1.2M⊙, 1.4M⊙, 1.6M⊙, 1.8M⊙, and 2.0M⊙ configurations of
DM admixed NS. The color indicates the self-interaction strength
(G) on a log scale. The EOS parameters are as given by the
hadronic set in Table I. The red curves are obtained from the
universal relation between f and τ [see Eq. (10)]. The black curve
represents the f–τ curve for purely hadronic EOS (no DM). The
black stars on it mark the points corresponding to the mass
configurations considered in this plot.

FIG. 7. f-mode frequency (f) and the corresponding damping
time (τ) as a function of DM fraction for 1.2M⊙, 1.4M⊙, 1.6M⊙,
1.8M⊙, and 2.0M⊙ configurations of DM admixed NS. The EOS
parameters are as given by the hadronic set in Table I. The stars
represent the value for the purely hadronic case (fDM ¼ 0). The
vertical dashed line represents upper limit on DM fraction
(fDM < 13.7%) obtained from σ=m > 0.1 cm2=g [51].
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When we plot Δf and Δτ as a function of fDM (not
shown here), we obtained straight lines with different
slopes for different mass configurations. Analyzing the
effect of mass, we find that the slope is proportional to

ffiffiffiffiffi
M

p
for Δf and M−2 for Δτ. Thus, we expect Δf=

ffiffiffiffiffi
M

p
and

M2Δτ to fall on a straight line. To test this, we take about 50
equations of state corresponding to different values of G
uniformly spaced between 11 and 300 fm2. All these EOS
are consistent with the constraints considered in this work.
As we discussed, there is a deviation of trend near 2M⊙, so
we restrict to the mass range of [1,1.9] M⊙ while studying
these relations. We take 500 mass values (Mi) within this
range and compute ΔfðMiÞ=

ffiffiffiffiffiffi
Mi

p
and M2

iΔτðMiÞ as a
function of fDMðGÞ. We plot these in Figs. 8 and 9,
respectively.
Figure 8 shows that we get a tight relation between

Δf=
ffiffiffiffiffi
M

p
and fDM. We perform linear and quadratic fits to

it, given by

ΔfðM; fDMÞ ¼
ffiffiffiffiffi
M

p
ðCf1fDM½%�Þ�; ð13Þ

ΔfðM; fDMÞ ¼
ffiffiffiffiffi
M

p
ðCf2fDM½%� þ Cf3ðfDM½%�Þ2Þ: ð14Þ

Cfi are the fitting parameters. M is in units of M⊙, and
fDM½%� is the percentage of DM fraction. We impose the
condition that for ΔfðM; fDM ¼ 0Þ ¼ 0, i.e., fDM should
correspond to purely hadronic NS. This fixes the zeroth

order term, independent of fDM, to zero, which then has not
been considered in the fit. The fit coefficients are reported
in Table II along with the coefficient of determination (R2).
The bottom panel shows the absolute percent error (defined
as 100 × jΔq=qj for any quantity q). We see the linear
curve fits to an accuracy of 15%. This relation can be used
to estimate the increase in f-mode frequency of a DM
admixed NS for any given mass configuration and DM
fraction. Using the fitting coefficient, we can approximate
ΔfðM; fDMÞ ≈ 1.3

ffiffiffiffiffi
M

p
fDM. We improve the fit by con-

sidering a quadratic function and get a tighter relation with
an accuracy within 5% and an improved R2.
Figure 9 shows that we also get a tight relation between

andM2
iΔτðMiÞ and fDM. τ for DM admixed NS is less than

that in the hadronic case. Hence, Δτ is negative and
decreases further with more DM fraction. We observe it
is roughly a linear fit and fit the following function:

ΔτðM;fDMÞ ¼ M−2ðCτfDM½%�Þ: ð15Þ

FIG. 8. Top: ΔfðMiÞ=
ffiffiffiffiffiffi
Mi

p
as a function of fDM obtained by

varying G and fixing the nuclear parameters to Hadronic (refer
Table I). The gray and blue lines are linear and quadratic fits given
by Eqs. (13) and (14). The fit coefficients are reported in Table II.
Bottom: percent error for the two fits.

FIG. 9. Top: M2ΔτðMÞ as a function of fDM obtained by
varying G and fixing the nuclear parameters to hadronic (refer
Table I). The blue line is a linear fit given by Eq. (15). The fit
coefficients are reported in Table II. Bottom: the percent error for
the linear fit.

TABLE II. Fitting coefficients for Eqs. (13)–(15). Cfi have the
unit kHz=

ffiffiffiffiffiffiffiffi
M⊙

p
. Cτ has the units ofM2

⊙ s. R2 is the coefficient of
determination, measuring the goodness of each fit.

Model Cf1 ð10−2Þ Cf2 ð10−2Þ Cf3 ð10−4Þ Cτ ð10−3Þ
Hadronic 1.26� 0.05 1.10� 0.14 1.78� 1.42 −7.88� 0.49
R2 0.9942 0.9994 0.9991
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Cτ is the fitting coefficient.M is in units ofM⊙. Again, we
impose (ΔτðM; fDM ¼ 0Þ ¼ 0) and drop the leading zeroth
order term. The fitting coefficient is reported in Table II.
We can approximate the relation as ΔτðM;fDMÞ≈
−0.8M−2fDM. The bottom panel shows that the errors
are within 5% for fDM ≳ 0.01 and go beyond 20% for
lower DM fractions. Any dependence of the relations
(13)–(15) on fnucg, if any, is via the fitting parameters.
We explore this dependence in Appendix B, where we
conclude that Eqs. (13)–(15) hold for any hadronic EOS,
but the fitting coefficients depend on fnucg.

B. Effect of dark matter II: Variation of all parameters

So far, we kept the nuclear parameters fixed and varied
only G. We now vary all the parameters (fnucg þ G)
simultaneously and uniformly within their uncertainty
ranges. These ranges are given by Ghosh2022 of Table I.
We solve for the complex eigenfrequencies for ∼6500
equations of state satisfying χEFT and Astro constraints.
We plot the f-mode frequency and the damping times for

this posterior ensemble as a function of mass in Fig. 10. We
get a band in the f–M and τ–M planes. We checked that this
overlaps with the band obtained by varying the nuclear
parameters without the inclusion of DM. This demonstrates
that a degeneracy exists between nuclear parameters and
DM. The reason for this is that the effect of DM is to soften
the EOS, andwe impose a 2M⊙ cutoff which filters out these

soft equations of state. The second reason is that, in this
model, we establish a chemical equilibrium between the
neutron and DM particle. Thus, the overall effect is just that
of adding an extra degree of freedom throughout the NS. So
the band overlaps with one with zero DM. This degeneracy
must be considered while constraining the microphysics
from future detections of fmodes from compact objects and
implies that the presence of DM in NSs cannot be ruled out.
For this posterior set, we find that f lies within the range

[1.55, 2.0] and [1.67, 2.55] kHz for the 1.4M⊙ and 2M⊙
configurations, respectively. The corresponding ranges for
τ are [0.18, 0.30] and [0.13, 0.20] s, respectively. We expect
similar ranges for purely hadronic NSs given the degen-
eracy mentioned above. For completeness, we consider
∼3000 nuclear equations of state with zero DM and vary all
the nuclear parameters to check the ranges without DM.
For this case, f lies within the range [1.56, 2.0] and
[1.68, 2.56] kHz for the 1.4M⊙ and 2M⊙ configurations,
respectively. The corresponding ranges for τ are [0.18,
0.29] and [0.13, 0.19] s, respectively. The ranges are similar
to those with DM as expected.
In the previous section, we noticed the dependence ofΔf

and Δτ on fDM. The DM fraction depends on G as well as
on the mass of the star. We consider the same posterior
sample as generated above. We take 500 mass values in the
range [1,2] M⊙ and calculate fDM for each mass configu-
ration Mi for all the equations of state. We find a linear
dependence of fDM on 1=G for each mass value Mi, with
larger slopes for largerMi. Analyzing the data, we find that

FIG. 10. Posteriors of f-mode frequency (f) and damping time
(τ) as a function of NS mass after passing through the χEFT and
Astro constraints as outlined in Sec. II A 3. The curves are
generated by varying all the microscopic parameters as per the
range Ghosh2022 from Table I. Note that all the curves are
plotted with the same steel blue color. The opaqueness varies with
the number of overlapping curves.

FIG. 11. Top: the DM fraction (fDM) as a function of M=G
obtained by varying all the parameters in the range Ghosh2022
(refer Table I). The gray and blue lines are linear and cubic fits
given by Eqs. (16) and (17), respectively. The fit coefficients are
reported in Table III. Bottom: the percent error for the two fits.

EFFECTS OF DARK MATTER ON f-MODE OSCILLATIONS … PHYS. REV. D 110, 063025 (2024)

063025-11



the slope increases roughly linearly with mass. Hence, we
make a plot of fDM as a function of M=G (see Fig. 11) and
get a fairly good relation.
We perform linear and cubic fits of the form

fDM ¼ C1

�
M
G

�
; ð16Þ

fDM ¼ C2

�
M
G

�
þ C3

�
M
G

�
2

þ C4

�
M
G

�
3

: ð17Þ

Ci are the fitting coefficients. M and G are in units of M⊙
and fm2, respectively. Note that we have varied all the
microscopic parameters here, making the relation obtained
for fDMðM;GÞ universal. Given a DM self-interaction
strength value, the DM fraction in a DM admixed NS of
a given mass configuration is independent of the hadronic
EOS. We recover purely hadronic NS as asymptotically
large values of G, i.e., limG→∞ fDM ¼ 0. This fixes the
leading zeroth order term to be zero.
The fit coefficients are reported in Table III. The linear

relation fits to an accuracy of 30%. For M=G≳
0.04M2

⊙=fm2 the fit is within 20%. The cubic relation
stays within an error of 20%. Since we vary all the
parameters, we encounter higher DM fractions (up to
30%). This is in line with the upper limit on fDM of 37.9%
found in our previous study [51]. These are the EOS with
stiff hadronic EOS with low G, i.e., with a high amount of
DM. The cases with larger fDM are filtered out as they lead
to very soft EOS violating the 2M⊙ pulsar mass constraint.
This filter results in fewer points on the right side of this
plot. The coefficient of the linear fit is close to 1. Adopting
the linear relation, we get an approximate relation as

fDM ≈
�

M
M⊙

��
fm2

G

�
; ð18Þ

which can used as a quick estimator of the dark matter
fraction. We can also use this in Eqs. (13)–(15) to
determine the change in f-mode frequency and damping
time in terms of mass configuration and self-interaction
strength.

C. Correlation studies

Having studied the effect of DM, we now perform a
correlation study to check the effect of microscopic

parameters on NS observables, particularly the f-mode
parameters. We consider the nuclear parameters fnucg and
DM interaction strength G for the microscopic parameters.
For NS observables, we consider the maximum mass
(Mmax), the radius, and the tidal deformability of a
1.4M⊙ star (R1.4M⊙

; Λ1.4M⊙
) and 2M⊙ star (R2M⊙

;
Λ2M⊙

). Also, for the f-mode observables, we consider
the frequency and damping time of a 1.4M⊙ star (f1.4M⊙

;
τ1.4M⊙

) and 2M⊙ star (f2M⊙
; τ2M⊙

). We also consider the
corresponding DM fractions (fDM;1.4M⊙

; fDM;2M⊙
). The

correlation between any two parameters (x, y) is calculated
using Pearson’s coefficient for linear correlation (rðx; yÞ)
given by

rðx; yÞ ¼ covðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covðx; xÞcovðy; yÞp ; ð19Þ

where covðx; yÞ ¼ 1

N

XN
i¼1

ðxi − x̄Þðyi − ȳÞ: ð20Þ

We study the correlations by varying all the nuclear
parameters in the range Ghosh2022. We also check
how correlations change if the effective mass m�=m is
precisely known, as it is the most dominant parameter.
For each case, we apply all the χEFT, 2M⊙ pulsar
mass, and the tidal deformability constraint from
GW170817.

1. Variation of all parameters

The variation range of the nuclear and DM parameters
are given in Table I labeled by Ghosh2022. The correlation
matrix among the fnucg, G, and NS properties resulting
after consideration of χEFT, 2M⊙ pulsar mass, and
GW170817 constraints is displayed in Fig. 12. We make
the following observations:

(i) We find a strong correlation between J and L (0.69).
This is expected due to χEFT constraints and is
consistent with previous studies.

(ii) The effective mass m�=m shows a strong correlation
with the NS properties and f-mode characteristics
for both 1.4M⊙ and 2M⊙ stars. The correlation of
m�=m with the NS properties is consistent with
previous studies [4,105,106]. F-mode characteristics
in turn depend on these macroscopic properties (see
Sec. III D), which explains the strong correlation of
m�=m with f-mode parameters. The saturation
density n0 shows a moderate correlation with
1.4M⊙ properties.

(iii) All NS observables are strongly correlated with each
other as well as with f-mode observables.

(iv) The DM fraction for both 1.4M⊙ and 2M⊙ stars
strongly correlates with the DM self-interaction
parameter G (0.71 and 0.69, respectively). This is
consistent with our previous finding of Eq. (18) that

TABLE III. Values of fitting coefficients for Eqs. (16) and (17).
R2 is the coefficient of determination, measuring the goodness of
each fit.

Model C1 ðfm2

M⊙
Þ C2 ðfm2

M⊙
Þ C3 ðfm4

M2
⊙
Þ C4 ðfm6

M3
⊙
Þ

Ghosh22 [105] 1.03 1.20 −3 6
�0.02 �0.05 �1 �4

R2 0.9876 0.9972
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fDM ∼ 1=G. Further, fDM;1.4M⊙
and fDM;2M⊙

are
perfectly correlated, which also follows from
Eq. (18) (fDM;2M⊙

¼ 2fDM;1.4M⊙
=1.4) since G is

fixed for a given EOS.
(v) G, fDM;1.4M⊙

, fDM;2M⊙
do not show correlations with

any other parameters.
The posterior distribution of the dominant parameters is

discussed in Appendix C. We find that 90% quantiles for
fDM;1.4M⊙

and fDM;2M⊙
are 3.97% and 5.79%, respectively.

Thus, the model prefers only low DM fractions. In
Appendix C, we also discuss how the posteriors are
affected when a filter of higher pulsar mass of M ¼
2.3M⊙ is used. This is motivated by the recent observation
of a heavy black widow pulsar PSR J0952-0607 [129]. We
find that the existence of a NS with mass as high as 2.3M⊙
restricts the DM fraction to even lower values. The 90%
quantiles for fDM;1.4M⊙

and fDM;2M⊙
reduce to 3.03% and

4.29%, respectively. Thus, heavy NSs disfavor the presence
of DM in NSs. This is because the presence of DM softens
the EOS, and the higher masses filter out soft equations
of state.

We also check the effect of fixing Esat and J to −16 and
31 MeV, respectively (not shown). This is checked as these
parameters are well constrained from experiments. This
leads to a moderate correlation of L with NS observables
andm�=m. The effective massm�=m remains the dominant
parameter dictating the NS macroscopic properties. We
infer from this study that the NS and f-mode observables
are affected mainly by the nuclear parameter m�=m. Given
the uncertainty of the nuclear parameters, we do not find
strong correlations of any observables with the DM
interaction strength G.

2. Fixing m�=m

It is observed that m�=m has the strongest correlations
with the NS observables. We check the effect on correlation
in case future experiments measure the nuclear equation of
state at high densities, i.e., the effective mass parameter in
our approach, precisely. This could help constrain the DM
self-interaction parameter G better. We consider three
different values for the effective mass: 0.6, 0.65, and
0.7, capturing the stiff, intermediate, and soft cases of

FIG. 12. Correlation matrix showing the correlations among the nuclear parameters, DM interaction parameter, NS observables and
the f-mode characteristics. Correlations are obtained after applying the χEFT, GW170817, and 2M⊙ pulsar mass constraints. The
parameter range is given in Table I.
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EOS, respectively. Here, we focus on how the overall
correlation of G is affected when m�=m is fixed to different
values. For this, we take the average of the correlation of G
with all the observables mentioned above. The detailed
correlations for these cases are displayed in Appendix D.
We define “average correlation” as the arithmetic mean of
correlation of G with all the observables namely, R, Λ, f, τ
of 1.4M⊙ and 2M⊙ configurations and Mmax. We plot this
average correlation as a function of m�=m in Fig. 13. Note,
these numbers are only to see the dominance of G in
dictating the NS observables when m�=m is fixed.
We find that, when m�=m is fixed to 0.60, the average

correlation ofG is 0.58. The correlation reduces to 0.42 and
0.37 as m�=m is increased to 0.65 and 0.70, respectively.
Thus, the correlation decreases with an increased fixed
value of m�=m. Lower m�=m corresponds to stiffer EOS.
This leads to a hadronic EOS with a large maximum mass.
This makes it possible for DM to soften the EOS, making it
an important parameter to dictate the maximum mass and
other observables. So we get more distinguishing power for
stiffer equations of state compared to the softer ones.
However, when m�=m is high, the hadronic NS has a
lower maximum mass to begin with. As DM is known to
reduce the maximum mass, we can have only a restricted
amount of allowed DM (corresponding to a restricted range
of G), keeping the total mass above 2M⊙. It is because of
this restriction in range imposed by the maximum mass
condition that the relative importance of the G reduces with
increasing m�=m. The detailed comparison of each corre-
lation of G and the other nuclear parameters when m�=m is
fixed can be found in Appendix D.

D. Universal relations

We check some universal relations involving f-mode
frequency and damping time. It was shown by Andersson
and Kokkotas [130,131] that the f-mode frequency is a
function of the average density. The relation between the f-
mode frequency and density is of the form

fðkHzÞ ¼ aþ b

ffiffiffiffiffiffi
M
R3

r
; ð21Þ

whereM is the total mass of the star, and R is its radius. The
parameters a and b give the best-fit coefficients. Such fits
were obtained by [90,132] for f modes calculated in full-
GR setup. We plot f as a function of the square root of the
average density in Fig. 14. We get a linear relation as
expected. We plot the previously obtained best-fit line [90]
with a ¼ 0.535 kHz and b ¼ 36.20 kHz-km. This relation
between f andM=R3 is rather model dependent, and we do
not get a tight relation. We perform our own fit as our model
includes DM. The fitting coefficients obtained are a ¼
0.630 kHz and b ¼ 333.544 kHz-km. These coefficients
are tabulated in Table IV. We also include results from other
previous work in the table that derived the fitting coef-
ficients for f modes calculated in full-GR setup. The fit in
this work corresponds to the case of DM admixed NS f

FIG. 13. The average correlation of G with NS observables is
plotted when the effective mass (m�=m) is fixed to different
values. We consider the values 0.60, 0.65, and 0.70 for the
effective mass, corresponding to a stiff, intermediate, and soft
EOS, respectively.

FIG. 14. f-mode frequency as a function of average density.

TABLE IV. Values of fitting coefficients for Eq. (21) from
different works.

Work a ðkHzÞ b ðkHz kmÞ
Andersson and Kokkotas [131] 0.22 47.51
Benhar et al. [133] 0.79 33
Pradhan et al. 2022 [90] 0.535 36.2
This work 0.630 33.54
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modes in a full-GR setup. A previous work [91] also
performed this kind of fit for DM admixed NS but for a
different DM model within the Cowling approximation.
There are other relations that are model independent

that we call universal relations. It was shown in Ref. [131]
that both components of the complex eigenfrequency
(ω ¼ ωr þ iωi) when scaled with mass (M) show a tight
correlation with compactness. Here, ωr ¼ 2πf is the f-
mode angular frequency, and ωi ¼ 1=τ is the inverse of
damping time. These universal relations are of the form

Mωr ¼ a0 þ a1Cþ a2C2;

Mωi ¼ b0C4 þ b1C5 þ b2C6: ð22Þ

Here C ¼ M=R is the dimensionless compactness. The
parameters ai and bi are obtained by performing a best-fit
analysis. Reference [90] obtained such a fit using a large set
of nuclear EOS and hyperonic EOS. We plotMωr andMωi
as a function of compactness in Fig. 15. We also plot the
best-fit relation as obtained in [90] and find the DM
admixed NSs agree with the universal relation.
Another universal relation exists between the mass-

scaled complex f-mode frequency and the dimensionless
tidal deformability [134–136]. This is given by

Mω ¼
X
i

αiðlnΛÞi: ð23Þ

We plotMωr andMωr as a function of lnΛ in Fig. 16. The
DM admixed NSs considered here are found to follow these
relations. The fitting coefficients obtained in [90] are only
for lnΛ≲ 8. Here, we plot it for higher values, where the fit

appears to diverge from the universal relation. We note that
this relation is the most tight universal relation among all
cases studied.
There also exists a universal relation between the mass-

scaled frequency and mass-scaled damping time [Eq. (10)]
which was already explored in Sec. III A. The red curves in
Fig. 6 are obtained using this relation for 1.2M⊙, 1.4M⊙,
1.6M⊙, 1.8M⊙, and 2.0M⊙ configurations where the fit
coefficients used are provided in Table VI of [90]. From
this, we infer that the NS admixed DM f-mode character-
istics also obey this universal relation.
We conclude that, for the DM model considered here,

DM admixed NSs follow the existing universal relations of
f modes. It is, therefore, evident that, in f-mode detections,
DM admixed NSs can masquerade as purely hadronic
neutron stars, and one needs to look beyond GR effects to
lift the degeneracy.

IV. DISCUSSIONS

In this work, we perform a systematic investigation of
the nonradial quadrupolar fundamental modes of oscilla-
tions of DM admixed NSs within the full general relativistic
framework. For the hadronic matter EOS, we use the
phenomenological relativistic mean-field model with
nucleons strongly interacting via the exchange of mesons.
We consider the model based on neutron decay anomaly for
DM, which allows for a large DM fraction within NSs.
Assuming a chemical equilibrium between the neutron and
the DM particle, we solve for the structure equations,
f-mode oscillation frequency, and damping time for DM
admixed NSs in a single fluid formalism. We only consider

FIG. 16. Mass-scaled complex f-mode frequency as a function
of tidal deformability. The upper panel shows the real part (Mωr)
representing the mass-scaled frequency and the lower panel
shows the imaginary part (Mωi) denoting the mass-scaled
damping time (Mωi ¼ M=τ).

FIG. 15. Mass-scaled complex f-mode frequency as a function
of compactness. The upper panel shows the real part (Mωr)
representing the mass-scaled frequency and the lower panel
shows the imaginary part (Mωi) denoting the damping time
(Mωi ¼ M=τ).
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those hadronic microscopic parameters that are consistent
with the chiral effective field theory calculations at low
densities and follow the astrophysical constraints from the
present electromagnetic and gravitational wave data.
We first studied the effect of the inclusion of DM on

f-mode oscillation of NSs. We fixed the hadronic EOS and
found that the f-mode frequency for a given mass con-
figuration increases when we include DM within the NS.
The effect is similar when we consider configurations of
fixed compactness and tidal deformability. The change in
the f-mode characteristic is higher for high mass, high
compactness, and low tidal deformability configurations.
The effect is similar to that of a softer EOS since we know
that the inclusion of DM softens the EOS. The opposite
effect is seen for the damping time (τ), where τ reduces
upon the inclusion of DM. Similar to frequency, the change
in damping time is higher for high mass, compactness, and
low tidal deformability configurations.
We then checked the effect of DM self-interaction

strength (G) and DM fraction (fDM) on f-mode character-
istics. As G is varied, we found that f(τ) decreases
(increases) with an increase in G. The opposite effect is
seen when considering fDM. This is expected, as we know
fDM to be less for larger G, which results in a stiffer EOS.
Larger G increases the energy cost to create DM particles,
resulting in less DM fraction and stiffer EOS, which is
closer to the purely hadronic case. WhenG is varied and the
resulting characteristics are plotted on the f–τ plane, it is
seen to follow the universal mass-scaled f–τ relation. We
found that, in contrast to G, f and τ vary linearly with fDM.
We explore this dependence in detail. We defined a

quantity Δf and Δτ where we subtract out the effect from
the purely hadronic part (fDM ¼ 0). Analyzing these
quantities, we derived a relation for them in terms of the
DM fraction fDM and the mass configuration. We found
that Δf ∼

ffiffiffiffiffi
M

p ðafDM þ bf2DMÞ, and Δτ ∼ −fDM=M2.
These are new relations and directly tell the effect on
the change in the f-mode frequency and damping time for
any mass configuration and DM fraction. These relations
hold for any hadronic EOS; only the coefficients change.
We then systematically varied all the nuclear and DM

parameters simultaneously. Correspondingly, we got
a band in the f–M and τ–M plane. This band is the same
as that we get just from the variation of nuclear parameters
without DM, demonstrating the degeneracy between NS
and DM admixed NS, which needs to be considered while
constraining models from f-mode observations. The range
of f1.4M⊙

and f2M⊙
is [1.55,2.0] and [1.67,2.55] kHz,

respectively, and that for τ1.4M⊙
and τ2M⊙

is [0.18, 0.30] and
[0.13, 0.20] s respectively. We further found a relation
between the DM fraction (fDM), the star’s gravitational
mass (M), and the self-interaction parameter (G) as
fDM ¼ 1.03ðM=M⊙Þ ðfm2=GÞ. This relation is universal
and predicts the DM fraction of a DM admixed NS of mass
M with DM self-interacting with strength G.

For this set of equations of state, we also checked for
physical correlations. Keeping only those equations of state
consistent with the χEFT calculations at low densities and
also satisfying the astrophysical constraints of 2M⊙ and the
tidal deformability from GW170817, we looked for any
physical correlations between microscopic nuclear and DM
parameters and NS macroscopic observables. Among the
DM parameters, we found a strong correlation only
between fDM and G. This is consistent with our previous
analysis, where we obtained fDM ∼ 1=G. From the pos-
terior distribution, we obtain the 90% quantiles for
fDM;1.4M⊙

and fDM;2M⊙
are 3.97% and 5.79%, respectively.

Thus, only low DM fractions are favored. Our analysis
shows that observations of heavy NSs disfavor the presence
of DM for the considered DM model and may rule out the
presence of DM. The effective mass is the most dominant
parameter to dictate the macroscopic properties. For this
reason, we checked the correlations in case m�=m, i.e., the
nuclear equation of state, is precisely measured in future
experiments. Upon fixing m�=m to 0.6, we found an
emergence of a strong correlation for n0 and G. As we
increase the value of m�=m to 0.65 and 0.7 (stiff to soft
EOS), the correlation ofGweakens and that of n0 and other
nuclear parameters, K, and L strengthens. In such a case, G
becomes the next dominant parameter to dictate the
maximum mass.
Finally, we used this set of EOS to check the universal

relations of f modes. We fitted a linear relation between f
and the square root of average density (M=R3) and reported
the fitting coefficients for the DM admixed NSs. We then
checked the universal relations of the f-mode character-
istics with compactness and tidal deformability. These are
found to follow the previously known relations for neutron
stars without DM and reiterate the degeneracy between NS
models and DM admixed NS models.
This work explores the f-mode characteristics of DM

admixed NSs in a full-GR setup for the DM model
considered. A parallel study [92] calculating f modes
for DM admixed NSs appeared recently. They adopt a
different model where the DM interactions are mediated
via the Higgs boson. The effect of DM on f-mode
frequency and damping time is consistent with what
we observe, i.e., f(τ) increases (decreases) with an
increase in the amount of DM. One previous work [91]
that studied these f modes adopted the Cowling approxi-
mation and used select equations of state. They also
employ a different DM model. Another work [93] that
studied oscillations of DM admixed NS in full relativistic
setup simulates the evolution dynamically and focuses
only on the radial pulsations. In summary, the results
presented in our investigation are important in light of
future BNS merger events expected from upcoming GW
observations, which will enable tighter constraints on f-
mode frequencies and their role in delineating the con-
straints on DM models.
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APPENDIX A: DIFFERENTIAL EQUATIONS FOR
SOLVING THE NONRADIAL QUASINORMAL

MODES OF COMPACT STARS

Here, we present the basic equations that need to be
solved for finding the complex QNM frequencies.

1. Perturbations inside the star

The perturbed metric (ds2p) can be written as [70]

ds2p ¼ ds2 þ hμνdxμdxν: ðA1Þ

Following the arguments given in Thorne and
Campolattaro [70], we focus on the even-parity (polar)
perturbations for which the GW and matter perturbations
are coupled. Then hμν can be expressed as [70,123]

hμν¼

0
BBBBB@

rlHe2Φ iωrlþ1H1 0 0

iωrlþ1H1 rlHe2λ 0 0

0 0 rlþ2K 0

0 0 0 rlþ2K sin2θ

1
CCCCCA
Yl
meiωt;

ðA2Þ

where Yl
m are spherical harmonics. H;H1; K are perturbed

metric functions and vary with r [i.e., H ¼ HðrÞ;
H1 ¼ H1ðrÞ; K ¼ KðrÞ]. The Lagrangian displacement
vector ζ ¼ ðζr; ζθ; ζϕÞ associated with the polar perturba-
tions of the fluid can be characterized as

ζr ¼ rl

r
e−λWðrÞYl

meiωt;

ζθ ¼ −rl

r2
VðrÞ ∂Y

l
m

∂θ
eiωt;

ζϕ ¼ −rl

r2 sin2 θ
VðrÞ ∂Y

l
m

∂ϕ
eiωt; ðA3Þ

whereW, V are amplitudes of the radial and transverse fluid
perturbations. The equations governing these perturbation
functions and the metric perturbations inside the star are
given by [123]

dH1

dr
¼ −1

r

�
lþ 1þ 2m

r
e2λ þ 4πr2e2λðp − ϵÞ

�
H1

þ 1

r
e2λ½H þ K þ 16πðpþ ϵÞV�; ðA4Þ

dK
dr

¼ lðlþ 1Þ
2r

H1 þ
1

r
H −

�
lþ 1

r
−
dΦ
dr

�
K

þ 8π

r
ðpþ ϵÞeλW; ðA5Þ

dW
dr

¼ reλ
�
1

γp
e−ΦX −

lðlþ 1Þ
r2

V −
1

2
H − K

�
−
lþ 1

r
W;

ðA6Þ

dX
dr

¼ −l
r
X þ ðpþ ϵÞeΦ

�
1

2

�
dΦ
dr

−
1

r

�
H

−
1

2

�
ω2re−2Φ þ lðlþ 1Þ

2r

�
H1 þ

�
1

2r
−
3

2

dΦ
dr

�
K

−
1

r

�
ω2

eλ

e2Φ
þ 4πðpþ ϵÞeλ − r2

d
dr

�
e−λ

r2
dΦ
dr

��
W

−
lðlþ 1Þ

r2
dΦ
dr

V

�
; ðA7Þ

�
1−

3m
r
−
lðlþ1Þ

2
−4πr2p

�
H−8πr2e−ΦX

−
�
1þω2r2e−2Φ−

lðlþ1Þ
2

− ðr−3m−4πr3pÞdΦ
dr

�
K

þ r2e−2λ
�
ω2e−2Φ−

lðlþ1Þ
2r

dΦ
dr

�
H1 ¼ 0; ðA8Þ

e2Φ
�
e−ϕX þ e−λ

r
dp
dr

W þ ðpþ ϵÞ
2

H

�
− ω2ðpþ ϵÞV ¼ 0;

ðA9Þ

where X is introduced as [120,123]

X ¼ ω2ðpþ ϵÞe−ΦV −
WeΦ−λ

r
dp
dr

−
1

2
ðpþ ϵÞeΦH;

ðA10Þ

m ¼ mðrÞ is the enclosed mass of the star, and γ is the
adiabatic index defined as

γ ¼ ðpþ ϵÞ
p

�
∂p
∂ϵ

�����
ad
: ðA11Þ

While solving the differential equations (A4)–(A7) along
with the algebraic equations (A8) and (A9), we have to
impose proper boundary conditions, i.e., the perturbation
functions are finite throughout the interior of the star
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(particularly at the center, i.e., at r ¼ 0) and the perturbed
pressure (Δp) vanishes at the surface. Function values at
the center of the star can be found using the Taylor series
expansion method described in Appendix B of [120] (see
also Appendix A of [123]). The vanishing perturbed
pressure at the stellar surface is equivalent to the condition
XðRÞ ¼ 0 (as Δp ¼ −rle−ΦX). We followed the procedure
described in [120] to find the unique solution for a given
value of l and ω satisfying all the boundary conditions
inside the star.

2. Perturbations outside the star and complex
eigenfrequencies

The perturbations outside the star are described by the
Zerilli equation [127],

d2Z
dr2�

þ ω2Z ¼ VZZ; ðA12Þ

where r� ¼ rþ 2m logð r
2m − 1Þ is the tortoise coordinate

and VZ is defined as [127]

VZ ¼ 2ðr − 2mÞ
r4ðnrþ 3mÞ2 ½n

2ðnþ 1Þr3

þ 3n2mr3 þ 9nm2rþ 9m3�; ðA13Þ

where n ¼ 1
2
ðlþ 2Þðl − 1Þ. Asymptotically the wave sol-

ution to (A12) can be expressed as (A14),

Z¼AðωÞZinþBðωÞZout;

Zout¼ e−iωr
� Xj¼∞

j¼0

αjr−j; Zin ¼ eiωr
� Xj¼∞

j¼0

ᾱjr−j: ðA14Þ

Keeping terms up to j ¼ 2, one finds

α1 ¼ −
i
ω
ðnþ 1Þα0; ðA15Þ

α2 ¼
−1
2ω2

�
nðnþ 1Þ − i3Mω

�
1þ 2

n

��
α0: ðA16Þ

For initial boundary values of Zerilli functions, we
use the method described in [121,123,137]. Setting
m ¼ M and perturbed fluid variables to 0 (i.e., W ¼ V ¼
0) outside the star, connection between the metric
functions (A2) with Zerilli function [Z in Eq. (A12)] can
be written as

�
rlK

rlþ1H1

�
¼ Q

� Z
dZ
dr�

�
; ðA17Þ

Q ¼

0
B@

nðnþ1Þr2þ3nMrþ6M2

r2ðnrþ3MÞ 1

nr2−3nMr−3M2

ðr−2MÞðnrþ3MÞ
r2

r−2M

1
CA:

The initial boundary values of Zerilli functions are
fixed using (A17). Then, the Zerilli equation (A12) is
integrated numerically to infinity, and the complex coef-
ficients AðωÞ, BðωÞ are obtained matching the analytic
expressions for Z and dZ

dr�
with the numerically obtained

value of Z and dZ
dr�
. The natural frequencies of an oscillating

neutron star, which are not driven by incoming gravita-
tional radiation, represent the quasinormal mode frequen-
cies. Mathematically, we have to find the complex roots of
AðωÞ ¼ 0, representing the complex eigenfrequencies
of QNMs.

APPENDIX B: RELATIONS FOR Δf AND Δτ

In Sec. III A, we found fit relations for Δf and Δτ as a
function of mass of NS admixed DM and percentage of
DM [see Eqs. (14) and (15)]. We found thatΔf ∝

ffiffiffiffiffi
M

p
and

Δτ ∝ M−2 with a quadratic and linear dependence on
fDM½%�, respectively. We reported the fit coefficients in
Table II. However, here the hadronic EOS was fixed.
We need to verify (i) whether the relations [see Eqs. (14)
and (15)] hold when the hadronic EOS is changed and,
if it does, (ii) whether the fitting coefficients (Cfi and Cτ)
change.
We had used the hadronic parametrization before (see

Table I) with m�=m ¼ 0.68. To change the hadronic EOS,
we choose two additional values of m�=m (0.63 and 0.65)
and check the relations, sincem�=m is known to control the
stiffness of the EOS and is the most dominant nuclear
empirical parameter. This is the only reason why we
consider different values of m�=m and there is nothing
special about the chosen values. We only consider the
quadratic fit for Δf as it was seen to be a better fit, having
an accuracy under 5%.
We plot Δf=M and M2Δτ as a function of fDM½%� in

Figs. 17 and 18, respectively. Blue color represents
m�=m ¼ 0.62, green color represents m�=m ¼ 0.65, and
orange color represents m�=m ¼ 0.68, which is the same
case as discussed in Sec. III A. Lower m�=m values lead to
stiffer EOS, allowing for larger DM fractions, as can be
seen in the figure. We find that the relations (14) and (15)
hold for these as well. All these fits agree within ∼5%
accuracy. The fit coefficients, however, change and are
tabulated in Table V. For the caseΔf, the slope is higher for
softer EOS, i.e., the change in f-mode frequency f for a
fixed value fDM is higher in the case of softer EOS. The
opposite effect is seen in case of damping time τ. The
decrease in f-mode damping time is less in the case of soft
EOS for a given fraction of DM in NS.
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We conclude that the relation of Eqs. (14) and (15) holds
for different hadronic equations of state. We also conclude
that (i) Δf grows as

ffiffiffiffiffi
M

p
and quadratically with fDM as

ðafDM þ bf2DMÞ, and (ii) Δτ is proportional to M−2 and
decreases linearly with fDM. The fitting coefficients depend
on the hadronic EOS; hence, the fit is not a universal
relation.

APPENDIX C: POSTERIOR DISTRIBUTIONS

In order to understand the correlations better, we plot the
posterior distribution of the effective mass (m�=m) DM
self-interaction parameter (G), NS observables (R1.4M⊙

,
Λ1.4M⊙

, R2.0M⊙
, Λ2.0M⊙

), DM fraction (fDM;1.4M⊙
,

fDM;2;M⊙
), and f-mode characteristics (f1.4M⊙

, τ1.4M⊙
,

f2M⊙
, τ2M⊙

) obtained after applying all the filters (χEFT,
2M⊙, and GW170817) in Fig. 19. The vertical lines in the
1D distribution denote the middle 68% range. We make the
following observations:

(i) m�=m shows correlation with all the parameters
shown except with DM parameters: G and DM
fractions (fDM;1.4M⊙

and fDM;2;M⊙
).

(ii) G is not seen to be constrained after applying all the
filters and remains uncorrelated except in the case
with DM fraction. We observe an inverse relation of
fDM with G, which is explored in more detail in
Sec. III B.

(iii) R, Λ, f, and τ exhibit tight relations among
themselves. Λ is known to depend on R though
the equation Λ ¼ 2

3
k2
C5. We showed that the mass-

scaled f-mode characteristics follow a tight relation
with Λ as given by Eq. (23). Combining these
relations, we expect the f-mode characteristics to
be related to the radius.

(iv) The DM fraction of both 1.4M⊙ and 2M⊙ DM
admixed NSs are restricted to lower values resulting
in positively skewed distribution peaking at
fDM ¼ 0. The 90% quantile for fDM;1.4M⊙

and
fDM;2M⊙

is 3.97% and 5.79%, respectively. This
suggests that the current constraints favor a lower
DM fraction. A tight relation is seen between

FIG. 17. Top: ΔfðMÞ= ffiffiffiffiffi
M

p
as a function of fDM obtained by

varying G. Three scatter plots correspond to three values of
m�=m. The other nuclear parameters are fixed to hadronic (refer
Table I). Curves of the same color are the best-fit curves to the
corresponding scatter plot given by Eq. (14). The fit coefficients
are reported in Table V. Bottom: percent error for the fits.

FIG. 18. Top: M2ΔτðMÞ as a function of fDM obtained by
varying G. Three scatter plots correspond to three values of
m�=m. The other nuclear parameters are fixed to hadronic (refer
Table I). Curves of the same color are the best-fit curves to the
corresponding scatter plot given by Eq. (15). The fit coefficients
are reported in Table V. Bottom: percent error for the fits.

TABLE V. Fitting coefficients for Eqs. (14) and (15). Cfi are
given in units of kHz=

ffiffiffiffiffiffiffiffi
M⊙

p
, Cτ in units ofM2

⊙ s. m�=m is varied
and the rest of the nuclear parameters used are from the hadronic
setup (see Table I).

m�=m Cf2 ð×10−2Þ Cf3 ð×10−4Þ Cτ ð×10−3Þ
0.62 1.01� 0.11 1.22� 0.87 −8.80� 0.39
0.65 1.05� 0.12 1.44� 1.03 −8.33� 0.42
0.68 1.10� 0.14 1.78� 1.42 −7.88� 0.49
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fDM;1.4M⊙
and fDM;2M⊙

. This is in accordance with
the relation (16) explored in detail earlier in
this work.

We also check the effect of imposing a larger maximum
mass constraint. A recent analysis of the black widow
pulsar, PSR J0952-0607 [129], resulted in a high pulsar
mass ofM ¼ 2.35� 0.17M⊙. However, this system is very

rapidly rotating with a period of P ¼ 1.41 ms, which
means that the lower limit imposed by this on the maximum
mass of nonrotating stars would be lower than 2.35M⊙
[138]. To check the effect of a higher Mmax constraint, we
checked the effect on posteriors if the maximum mass limit
of NSs was 2.3M⊙. The plot is not shown here. We see the
following differences:

FIG. 19. Corner plot showing posterior of select parameters, namely: effective mass (m�=m), DM self-interaction (G), NS observables
(R1.4M⊙

, Λ1.4M⊙
, R2.0M⊙

, Λ2.0M⊙
), DM fraction (fDM;1.4M⊙

, fDM;2;M⊙
), and f-mode characteristics (f1.4M⊙

, τ1.4M⊙
, f2M⊙

, τ2M⊙
). Posteriors

are obtained after applying the χEFT, GW170817, and 2M⊙ constraints. The vertical lines and values denote the median and the middle
68% range of the distribution. The parameter range is given in Table I.
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(i) The posteriors show the same qualitative features,
only the ranges change.

(ii) Higher values of m�=m and lower values of G are
unfavored. This is expected as these result in soft-
ening of EOS and a higher mass limit filters
these out.

(iii) G remains unconstrained.
(iv) Low values of R, Λ, τ and high values of f get

filtered out as expected.
(v) The DM fraction remains positively skewed with

peak at 0%. The 90% quantile for fDM;1.4M⊙
and

fDM;2M⊙
reduces to 3.03% and 4.29%, respectively.

This is because, now that a higher maximum mass is
required, higher DM fractions are unfavored as they
soften the EOS. So observation of heavier NSs is a
way to rule out the presence of DM.

APPENDIX D: FIXED m�=m

We check the correlations here, keeping the effective
mass fixed to three values: 0.6, 0.65, and 0.7. We plot the
correlations for these cases in Figs. 20–22 respectively. We
draw the following conclusions from these plots:

(i) We find an emergence of correlations of NS ob-
servables with n0 and G. These are the next
dominant parameters after the effective mass. The
correlation of G with Mmax is higher than the other
observables.

(ii) Form�=m ¼ 0.6,G is moderately correlated with all
the NS observables and strongest with Mmax (0.84).
The maximum mass is dictated by G alone. The

correlation with 2M⊙ properties is larger than that of
1.4M⊙. This shows that G has a greater effect at
high densities. All other nuclear parameters are
uncorrelated.

(iii) Correlation of G reduces with increasing m�=m and
that of n0 increases. This is because lower effective

FIG. 22. Correlation matrix showing the correlations among the
nuclear parameters, DM interaction parameter, NS observables
and the f-mode characteristics. Correlations are obtained after
applying the χEFT, GW170817, and 2M⊙ constraints. m�=m is
fixed to 0.7. The range of the rest of the parameters is given in
Table I.

FIG. 21. Correlation matrix showing the correlations among the
nuclear parameters, DM interaction parameter, NS observables and
thef-mode characteristics.Correlations are obtained after applying
the χEFT, GW170817, and 2M⊙ constraints. m�=m is fixed to
0.65. The range of the rest of the parameters is given in Table I.

FIG. 20. Correlation matrix showing the correlations among the
nuclear parameters, DM interaction parameter, NS observables and
thef-mode characteristics.Correlations are obtained after applying
the χEFT, GW170817 and 2M⊙ constraints. m�=m is fixed to
0.6. The range of the rest of the parameters is given in Table I.
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mass leads to stiffer EOS, and G is known to soften
it. Since we add a cut of 2M⊙, the already soft EOS
(higher m�=m) gets filtered out upon adding DM.
Hence, we get a higher correlation for lower effec-
tive mass.

(iv) Nuclear parameters show moderate correlation with
NS observables as we increase m�=m. Esat stays
completely uncorrelated (≈0) in all the cases.

(v) All NS observables remain strongly correlated with
each other.

The effect of G is only to soften the EOS. Hence,
for larger values of effective mass, when the maximum
mass of the purely hadronic NS is already low, G cannot
have much impact since we add a 2M⊙ cutoff. This
explains the reduction in correlations of G as m�=m is
increased.
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