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We analyze the implications of information about local derivatives from the mass-radius diagram in
neutron star matter. It is expected that the next generation of gravitational wave and electromagnetic
detectors will allow the determination of the neutron star radius and mass with a small uncertainty.
Observations of neutron stars clustered around a given neutron star mass allow the estimation of local
derivatives in the MðRÞ diagram, which can be used to constrain neutron star properties. From a model-
independent description of the neutron star equation of state, it is shown that aMðRÞ curve with a negative
slope at 1.4M⊙ predicts a 2M⊙ neutron star radius below 12 km. Furthermore, a maximum mass below
2.3M⊙ is obtained if theMðRÞ slope is negative in the whole range of masses above 1M⊙, and a maximum
mass above 2.4M⊙ requires the MðRÞ slope to be positive in some range of masses. Constraints on the
mass-radius curve of neutron stars will place strong constraints on microscopic models.

DOI: 10.1103/PhysRevD.110.063018

I. INTRODUCTION

Many studies have been carried out to determine the
high-density equation of state (EOS) from the knowledge
of the mass-radius curve of the neutron star (NS) [1–6]. The
determination of the mass and radius of an NS with
sufficient precision will allow the high-density baryon
EOS to be constrained. The Neutron Star Interior
Composition Explorer (NICER) is expected to measure
the mass and radius of an NS with an uncertainty of 5% [7].
Future detectors, such as the Enhanced X-ray Timing and
Polarimetry mission (eXTP) [8,9] and the STROBE-X [10]
will improve this precision to ∼2%. Constraints on NS
mass and radius are also expected from the detection
of gravitational waves emitted by binary NS mergers, such
as GW170817 [11], reported by the LIGO/Virgo
Collaboration. The third generation of gravitational wave
detectors is expected to allow the determination of the NS
radius with an uncertainty as small as 100 m [12]. The
Square Kilometer Array [13] telescope will also play an
important role in constraining the possible scenarios for the
EOS of matter within the NS.
Several microscopic phenomenological models have

been used to determine the mass-radius curve that links
the astrophysical observations of the NS to the EOS of
baryon matter. One of the features that characterize these
curves is the slope of theMðRÞ curve with respect to radius.
For masses above 1M⊙, the slope is always negative for
some models such as SLy4 and SLy9 [14], SFHo [15], and
FSU or FSU2 [16] (see Refs. [17–19]), other models such

as DD2 [20], DDME2 [21], NL3ωρ [22,23], FSU2H [24],
or BigApple [25] show a backbending and part of the curve
above 1M⊙ has a positive slope (see Ref. [18]), or models
like NL3 [26] or IUFSU [27] have an almost infinite slope
for much of the MðRÞ curve. The mass-radius curves
corresponding to all these models are shown in Fig. 1. For
the models with a positive or infinite slope, the curve will
pass through a negative slope for sufficiently large masses
before the maximum-mass star is reached.
The different behavior of these models can be traced

back to the properties of the underlying nuclear interaction.
For example, NL3 and NL3ωρ have exactly the same
symmetric nuclear matter properties, differing only in
symmetry energy, with NL3ωρ having both a smaller
symmetry energy and a smaller slope at saturation. As a
consequence, low- and medium-mass NL3ωρ stars have
smaller radii than NL3 stars, leading to a backbending of

FIG. 1. MðRÞ sequences for nuclear models discussed in the
Introduction.
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the MðRÞ curve. A similar situation occurs when compar-
ing FSU2 and FSU2H, although they do not have the same
symmetric nuclear matter, they are similar. The BigApple
model, like FSU2H, has a rather small symmetry energy
and respective slope at saturation, but its EOS is particu-
larly stiff at high densities, allowing the model to describe a
2.6M⊙ star, thus predicting small radii for low- and middle-
mass stars and large radii for the massive stars. Both FSU
and FSU2 have a soft isoscalar behavior at all densities, and
this is the main reason for a negative derivative for all
masses above 1M⊙. The SFHo EOS was built to produce
small-radius stars, which is possible with a soft EOS at
large densities and a soft symmetry energy. SLy4 and SLy9
have the same behavior as SFHo. EOSs that predict MðRÞ
curves with an approximately infinite slope for most stars
have properties in between the other two sets: NL3 has a
hard symmetry energy and a hard nuclear matter EOS,
while IUFSU was obtained from FSU, making the EOS
stiffer at high densities. The behavior of the MðRÞ curve
reflects the properties of the hadronic interaction, with the
backbending being generally associated with a stiffening of
the EoS.
For the models with a positive or infinite slope, the curve

will always pass through a negative slope for sufficiently
large masses before the maximum-mass star is reached.
This transition to a negative slope is due to a competition
between the strong force and the gravitational force. The
onset of new degrees of freedom such as hyperons or quark
deconfinement may favor this transition at smaller masses
—see Fig. 4 of [28] and Fig. 4 of [29]. Stiffening of the
EOS at high densities has also been predicted by the onset
of a quarkyonic phase [30,31]. The onset of this phase,
contrary to the effect of the onset of a quark phase or
hyperonic degrees of freedom, creates a backbending in the
MðRÞ curve—see Fig. 4 of Ref. [30].
Recently, the authors of [32] selected six EOSs that

maximize the variance of four NS properties from their
dataset of model-independent EOSs constructed using
Gaussian processes. Of the six EOSs, five predict MðRÞ
curves with a positive derivative between 1.0M⊙ and
M ≳ 1.7M⊙, and the sixth has a negative slope for all
stars with masses above 1.0M⊙, a behavior similar to that
of SLy4 and SFHo. Since the behavior of theMðRÞ curve is
inextricably linked to the density dependence of the EOS, it
makes sense to ask whether the constraints imposed to
build the datasets require the MðRÞ curves to have a
positive slope in some range of NS masses, in which mass
range, and what is the reason for this behavior. Knowledge
of this behavior from observations would place strong
constraints on the acceptable microscopic models.
In the present work, using a model-independent, agnos-

tic description of NS matter, we aim to answer the
following question: Is it possible to identify NS properties
that distinguish between the two sets of models that do or
do not have a negative slope in the whole mass range above

1M⊙? Note that if sufficient precision is achieved in the
determination of the NS radius, backbending will be easily
confirmed if a low-mass star has a smaller radius than a
medium- to high-mass star. Knowing the behavior of the
slope of MðRÞ would place strong constraints on the
microscopic model and would provide information on
the high-density behavior of the QCD EOS.
The paper is organized as follows: The parametrization

we use to describe neutron star matter is presented in
Sec. II. The results are shown and discussed in Sec. III, and
some conclusions are drawn in Sec. IV.

II. DATASET

To describe the equation of state (EOS) of neutron star
matter, we use the piecewise polytropic parametrization
pðρÞ ¼ KρΓ, where ρ ¼ mn is the rest mass density, n is the
baryon number density, m is the mass of a baryon, K is the
polytropic pressure coefficient, and Γ is the adiabatic index
[33,34]. The present parametrization uses five connected
polytropic segments. The first segment is defined within the
density range ½ncrust; 1.1n0�, where n0 ¼ 0.16 fm−3

denotes the nuclear saturation density and ncrust ≡ n0=2,
with the polytropic index Γ0 randomly chosen from the
range 1.0 < Γ0 < 4.5. This Γ0 interval ensures that the
polytrope lies within the band described by the chiral
effective field theory [34]. We assume the SLy4 EOS [35]
for densities n < ncrust. To obtain a flexible and robust
representation of neutron star EOSs, the remaining
four polytropic segments start at random densities, such
that n1 < n2 < n3 < n4, with randomly chosen poly-
tropic indices fΓ1;Γ2;Γ3;Γ4g. The parameter space�
Γ0;Γ1; n1;Γ2; n2;Γ3; n3;Γ4; n4

�
was covered by randomly

sampling from uniform distributions consistent with
fn1; n2; n3; n4g being within n0 and 8n0, 1.0 < Γ0 < 4.5,
and 0.05 < Γi < 8 for i ¼ 1;…; 4.
It has been discussed that uncertainties are introduced in

the calculation of the radius of low- or medium-mass stars if
a unified inner crust is not considered, while the outer crust
has a negligible influence on the determination of the radius
[18,23]. In [23], it was shown that the uncertainty intro-
duced in the determination of the radius R is small when the
inner crust used has been calculated within a model with a
similar symmetry energy slope—in particular, for masses
of the order of 1.4M⊙, ΔR≲ 1% [23]. Imposing the
constraints from χEFT strongly limits the symmetry
energy, and the slope L takes values in the range
35≲ L≲ 65 MeV [36]. The symmetry energy of SLy4
at saturation is 46MeV, so it is expected that the uncertainty
introduced in the present calculation of the radius is not
large. In [37], with a slightly different treatment of the crust
but also imposing the χEFT conditions, the radius of a
1.4M⊙ star obtained with a unified EOS did not differ by
more than 1.5% (corresponding to ∼200 m), and in most
cases only differs by half this amount. Taking this uncer-
tainty into account, the limits given in the following
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sections should be considered as indicative. Note that it has
recently been shown that it is also possible to constrain the
crust-core transition and the symmetry energy using
asteroseismic constraints [38,39].
To study NS properties, we solve the Tolmann-

Oppenheimer-Volkoff (TOV) equations [40,41], which
describe spherically symmetric stars in hydrostatic equi-
librium. Furthermore, the differential equations that deter-
mine the tidal deformability of the stars have also been
solved [42]. A valid EOS must be consistent with the
observation of a M > 2M⊙ NS and have a speed of sound
that remains less than the speed of light. We have generated
a dataset containing 40435 valid EOSs.
Depending on the value of the slope dM=dR calculated

along the TOV MðRÞ sequence between 1.0M⊙ and Mmax,
we divide the dataset into two subsets: (a) 3076 EOSs
whose MðRÞ sequences satisfy dM=dR < 0 in the whole
mass range above 1M⊙, and (b) 37359 EOSs that do not
fulfil dM=dR < 0.
We considered the following astrophysical constraints

(95% CIs): (i) 10.71 km<Rð2.07M⊙Þ<15.02 km [43] and
11.14 km < Rð2.06M⊙Þ < 20.20 km [44] for PSR J0740þ
6620; and (ii) 10.94 km < Rð1.44M⊙Þ < 15.50 km [45]
and 10.57 km < Rð1.34M⊙Þ < 14.86 km [46] for PSR
J0030þ 0451. The PSR J0740þ 6620 observations were
implemented by imposing Rð2.0M⊙Þ > 10.71 km. This is
less restrictive than Rð2.07M⊙Þ > 10.71 km but takes into
account also the uncertainty associatedwith thedetermination
of the PSR J0740þ 6620 mass. Furthermore, the effective
tidal deformability of Λ̃ < 720 (low spin-prior), where
Λ̃¼ ð16=13Þðð12qþ 1ÞΛ1 þ ð12þ qÞq4Λ2Þ=ð1þ qÞ5Þ, is
estimated from the GW170817 event [47], with a binary
mass ratio of 0.73 ≤ q ¼ M2=M1 ≤ 1 and a chirp mass of
1.186M⊙, whereMchirp ¼ ðM1M2Þ3=5=ðM1 þM2Þ1=5. For a
review of theoretical, experimental, and observational con-
straints for the equation of state of densematter, see the recent
review [48]. After applying the above constraints, we ended
up with a total of 21736 EOSs: 2493 with dM=dR < 0, and
19243withdM=dR≮0. As the astrophysical constraintswere
applied via hard cutoffs, thepresent study should be seen as an
approximation, while a more rigorous procedure would
require a full likelihood analysis.

III. RESULTS

Several studies have been carried out to identify the
mass-radius region allowed by current astrophysical obser-
vations considering model-independent EOSs, including
different parametrizations of the EOS such as piecewise
polytropic, speed-of-sound or spectral interpolations, or
nonparametric approaches [49–54]. Similar studies were
performed considering nuclear metamodels (such as [55])
or microscopic phenomenological nuclear models (see
Refs. [56–58], among others). In the present study, we
consider the piecewise polytropic interpolation [49].

The MðRÞ and MðΛÞ sequences are shown in Fig. 2 for
subsets both with (dark colors) and without (light colors)
astrophysical constraints. Some comments are in order:
(i) EOSs which satisfy dM=dR < 0 predict smaller maxi-
mum masses and smaller upper bounds for the NS radii.
Medium-mass stars with a radius above 13 km or a
maximum mass above 2.3M⊙ would exclude this set of
EOSs. Astrophysical constraints filter MðRÞ curves with a
small radius. (ii) The set of EOSs that show a portion with
positive slope allows for stars as massive as 3M⊙, with radii
above 14 km, if the astrophysical conditions are not
imposed. These values are reduced, respectively, to maxi-
mum masses ∼2.6M⊙ and radii below ∼13.5 km.
Astrophysical constraints also cut the low-radii MðRÞ
curves.

A. Neutron star equation of state

The constraint that a negative slope along the entire
MðRÞ sequence (no backbending) has on the pressure of
neutron star matter is shown in Fig. 3, where we compare
the pðnÞ curves for both sets. The dark colors represent the
90% credible interval (CI), while the light colors define the
full data set—i.e., the extremes. The pressure has a much
smoother behavior for the dM=dR < 0 set, being

FIG. 2. Sequences MðRÞ (left) and MðΛÞ (right) for the set
of EOSs satisfying dM=dR < 0 (top) and dM=dR≮0 (bottom)
with (dark) and without (light) astrophysical constraints (see text
for details). Maximum masses vary between 2.01≲Mmax=M⊙ ≲
2.20 at a 90% CI for dM=dR < 0 even if astrophysical
constraints are imposed, and 2.01≲Mmax=M⊙ ≲ 2.43
(2.01≲Mmax=M⊙ ≲ 2.60) for dM=dR≮0, imposing (not impos-
ing) astrophysical constraints. The boundaries of the different
regions specify the extremes (minimum/maximum).
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constrained to much lower values (softening) at
n ≈ 0.4–0.6 fm−3; the 90% CI of the dM=dR < 0 is below
the 90% CI of the red set. However, note that at high
density, this set is on average stiffer than the set with
backbending. This is due to the condition that the maxi-
mum mass must be at least 2M⊙. The kink seen in the
statistics of the red set at about n ¼ 0.55 fm−3, which has
been interpreted as a possible indication of a phase
transition, is not present in the blue set. The imposition
of the astrophysical constraints reduces the range covered,
but the main features described above are still present.
Figure 4 shows the speed of sound squared for both sets.

We also show the 65% vertical bands representing the
central densities of Mmax for both sets. The blue set
[dM=dR < 0, no backbending on the MðRÞ diagram]
has a v2sðnÞ that increases almost monotonically up to
∼0.8 fm−3, the median (solid lines) has a bend at this
density, before decreasing up to the density nmax, but does
not reach the conformal limit v2s=c2 ¼ 1=3. On the other
hand, the red set has a median value close to v2s=c2 ¼ 1=3 at
the central densities. The astrophysical constraints originate
the peak around 3n0 as identified in other works [51,54].
These astrophysical conditions remove from the dataset the
hardest EOS at the lowest densities. There is a clear
distinction that can be made from the assessment of
possible backbending in the MðRÞ plot. The dM=dR < 0

set has larger central densities, because, as the EOS is
softer, v2sðdM=dR < 0Þ remains below v2sðdM=dR≮0Þ for
n≲ 3n0, matter is compressed more efficiently by gravity.
Note also that the position of the central densities in the
case of dM=dR≮0 (dM=dR < 0) shifts to larger (smaller)
densities because some of the hardest (softest) EOSs have
been removed from the set.
In [59], the authors consider the renormalized trace

anomaly Δ ¼ 1=3 − p=e, where p is the pressure and e
is the energy density, to study conformality restoration
within NS. Since perturbative QCD predicts a small
positive trace in the very high-density limit, it was con-
jectured that the renormalized trace anomaly should be
positive in the whole density range from low to high
density. The anomaly of the normalized matter trace is
shown in Fig. 5 for both sets. For the dM=dR < 0 set, the
50% CI crosses the zero axis and remains below zero.
However, the other set of EOS has a positive Δ above the

FIG. 3. Pressure as a function of baryon density for the set
dM=dR < 0 (blue) and dM=dR≮0 (red) with (bottom) and
without (top) astrophysical constraints. The darker bands re-
present 90% credible intervals (CI), while the lighter bands show
the extremes (minimum/maximum).

FIG. 4. Speed of sound squared as a function of baryon density
for the set dM=dR < 0 (blue) and dM=dR≮0 (red) with (bottom)
and without (top) astrophysical constraints. The lighter bands
represent the 90% CI, the darker bands the 50% CI, and the solid
lines the median. The vertical bands specify the 65% CI for the
central densities (nmax) at the Mmax.
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median throughout the density range. The conjecture
proposed in [59] seams to be lightly favored by a
MðRÞ curve with backbending by comparing the median
values.
A clearer analysis is obtained from the probability

distribution functions for both Δ and v2s at the central
densities of Mmax shown in Fig. 6. The speed-of-sound-
squared probability distributions of the two sets at the
center of the maximum-mass star are quite different: the
dM=dR < 0 set has a rather flat profile which is cut off by
causality at v2s=c2 ¼ 1; the dM=dR≮0 set, on the other
hand, presents a distribution with a well-defined peak
around v2s=c2 ¼ 0.1, which decreases monotonically to
v2s=c2 ¼ 1, and the causality condition has a very small
effect. The renormalized trace anomaly probability distri-
bution functions calculated at the center of the maximum
mass star also show different behavior: for the dM=dR≮0
set, most of the EOSs have a positive value, while the
dM=dR < 0 set shows negative values for a very reduced
number of EOSs. As expected from Fig. 5, the 50% CI for
the dM=dR < 0 set is always positive; see the caption
of Fig. 6.
To complete this study, we have identified all the EOSs

from both sets that have a positive trace anomaly up to

1.2 fm−3, and we have plotted them on top of the MðRÞ
plot; see Fig. 7. As discussed in [59], the maximum
masses reached by these EOSs are lower and have a larger
radius for a given mass, regardless of the behavior of the
slope. For the same maximum mass, the difference
between the radius of the star with a positive and the
one with a negative trace anomaly can be as large as 1 km

FIG. 5. The normalized matter trace anomaly as a function of
baryon density for the set dM=dR < 0 (blue) and dM=dR≮0
(red) with (bottom) and without (top) astrophysical constraints.
The lighter bands represent the 90% CI, the darker bands the 50%
CI, and the solid lines the median. The vertical bands specify the
65% CI for the central densities (nmax) at the Mmax.

FIG. 6. The probability distribution functions for the normal-
ized matter trace anomaly (top) and speed of sound squared
(bottom) at the central densities of Mmax. We display the sets
dM=dR < 0 (blue) and dM=dR≮0 (red) with (dark) and without
(light) astrophysical constraints. The 50% CIs for ΔðnmaxÞ are
−0.070−0.051þ0.053 (dM=dR < 0, without restrictions), −0.057−0.052þ0.049

(dM=dR < 0, with restrictions), 0.032−0.081þ0.073 (dM=dR≮0, without
restrictions), and 0.008−0.073þ0.066 (dM=dR≮0, with restrictions).

FIG. 7. Same plots as in Fig. 2, but showing explicitly theMðRÞ
sequences for the EOS with positive ΔðnÞ for 0 < n < 1.2 fm−3.
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for the non-negative slope set or even larger for the
negative slope set.
Tables I and II show several properties of NS with

different masses. In Table I, the median and 90% CI limits

are given for the analysis with and without additional
astrophysical constraints. In Table II, some extreme proper-
ties are also given.

B. Constraining R and Λ from dM=dR

Assuming that future observations will allow the esti-
mation of dM=dR around specific neutron star masses,Mi,
we analyze below what constraints can be extracted on the
radius and tidal deformability of NSs from the value of
dM=dRjM¼Mi

. These derivatives were obtained by inter-
polating the function ðdM=dR;MÞ at a specific NS mass
Mi, where finite differences were used to estimate dM=dR.
Note that the onset of an exotic degree of freedom, such as
hyperons or deconfined quark matter, can cause the
transition from dM=dR > 0 to dM=dR < 0. It is often
predicted that the opening of new degrees of freedom
occurs above twice the saturation density, inside stars of
mass ≳1.4M⊙. We will therefore compare some properties
of the EOSs that can be affected by the slope at 1.4M⊙—in
particular, the radius of a 2M⊙ star and the radius and mass
of maximum-mass stars.
Figure 8 displays the relation between the value of

dM=dR at M ¼ 1.4M⊙ and R2.0M⊙
(top), and the PDF for

R2.0M⊙
(bottom), with (dark colors) and without (light

colors) astrophysical constraints, considering the three
possibilities for dM=dRjM¼1.4M⊙

: negative (blue), positive
but finite (red), and∞ (black). The black set represents the
EOSs for which the R remains almost constant with
increasingM. Figures 9 and 10 show the same information,
but for the maximum mass, Mmax, and the tidal

FIG. 8. Scatter plot of dM=dRjM¼1.4M⊙
vs Rð2.0M⊙Þ (top) and

the respective Rð2.0M⊙Þ PDF (bottom). The colors indicate the
dM=dRjM¼1.4M⊙

value: negative (blue), positive but finite (red),
and ∞ (black), both with (dark colors) and without (light colors)
astrophysical constraints.

FIG. 9. Scatter plot of dM=dRjM¼1.4M⊙
vs fMmax; Rmaxg (top panels) and the respective fMmax; Rmaxg PDFs (bottom panels). The

colors indicate the dM=dRjM¼1.4M⊙
value: negative (blue), positive but finite (red), and ∞ (black), both with (dark colors) and without

(light colors) astrophysical constraints.
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deformability of a 1.4M⊙ NS, respectively. Considering no
astrophysical constraints (light colors in Figs. 8 to 10), we
have 32035 EOSs in the red set, 7328 in the blue set, and
1072 in the black set, while considering astrophysical
constraints (dark colors in the same figures), the numbers
decrease to 14395 EOSs in the red set, 6239 in the blue set,
and 980 in the black set. Note that the number of EOSs with
dM=dR < 0 at 1.4M⊙ is larger than the number of EOSs
with dM=dR < 0 over the whole range of masses as
expected (if no constraints are imposed, we have 7328
in the first set and 3106 in the second). A change of slope
close to 1.4M⊙ may just indicate some softening of the
nuclear force at large densities (in a RMF description, this
could be played by the ω4 term) or the onset of new degrees
of freedom such as hyperons or quarks.
From Fig. 8, we conclude that dM=dR < 0 at 1.4M⊙

implies a 2M⊙ radius below 13 km. A radius above 13 km
requires a positive slope at 1.4M⊙, or at least an infinite
slope. However, a radius below 13 km does not distinguish
the values of dM=dR at M ¼ 1.4M⊙. From the PDF
(bottom panel), we see that a radius of 11 km or below
will indicate dM=dR < 0 or an infinite slope, with a very
high probability. An analysis of Fig. 9, which relates the
slope of theMðRÞ curve at 1.4M⊙ with the maximummass,
shows that a positive slope at 1.4M⊙ is necessary for the
condition Mmax ≳ 2.4M⊙ to be satisfied. Concerning the

FIG. 10. Scatter plot of dM=dRjM¼1.4M⊙
vs Λð1.4M⊙Þ (top)

and the respective Λð1.4M⊙Þ PDF (bottom). The colors indicate
the dM=dRjM¼1.4M⊙

value: negative (blue), positive but finite
(red), and ∞ (black), both with (dark colors) and without (light
colors) astrophysical constraints.

FIG. 11. The PDFs of the radius of 2.0M⊙ (left) and the tidal deformability of a 1.4M⊙ (right), with (bottom) and without (top)
astrophysical constraints applied for dM=dRjM¼1.2M⊙

(dark colors) and dM=dRjM¼1.8M⊙
(light colors) values: negative (blue), positive

but finite (red), and ∞ (black).
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tidal deformabilityΛ1.4, a value below 800 does not exclude
any set, but if in the future it is possible to restrict this
property to values below 500, there is a high probability
that the MðRÞ curve at 1.4M⊙ does not show a back-
bending. Note that astrophysical constraints limit the star
maximum mass to values below ∼2.6M⊙ and the radius of
2.0M⊙ andMmax stars to values below 13.5 km, or≲12 km
if dM=dR < 0 at M ¼ 1.4M⊙ (for the maximum mass
below 11.5 km at the 90% CI with 12.12 km being the
extreme and for 2.0M⊙ below 11.9 km at the 90% CI). This
is very interesting information to constrain the microscopic
modeling of the EOSs.
Figure 11 displays how local information regarding the

sign of the slope of the MðRÞ sequence at 1.2M⊙ and
1.8M⊙ translates into constraints on R2.0M⊙

and Λ1.4M⊙
.

The most constraining conditions, both for the R2.0M⊙
and

the Λ1.4M⊙
, come from an early onset of a negative slope or

infinite slope, favoring in the first case radii below 12.5 km
and a tidal deformability below 600, and in the second
values of the radii below 13 km and of the tidal deform-
ability below 700. The possible restrictions that could be
extracted from observationally estimating dM=dR at both
M=M⊙ ¼ 1.2 and 1.8 are indicated by the PDFs’ overlap
regions. Considering dM=dR < 0 at both masses (or
dM=dR → ∞ at 1.2M⊙ and dM=dR < 0 at 1.8M⊙) result
in 10.5≲ R2.0M⊙

=km≲ 12.5 (or 10.5≲ R2.0M⊙
=km≲ 13).

The more exotic scenario where dM=dR → ∞ at both
masses—i.e., the radius is constant in a wide range of
masses—a stronger constraint of 11≲ R2.0M⊙

=km≲ 12.7
is obtained. We also conclude that the astrophysical
constraints impose Λ1.4M⊙

≳ 200, in accordance with [60].

IV. CONCLUSIONS

Considering a model-independent set of EOSs con-
structed from five segments of polytropes, we have
analyzed the information that can be extracted from the
slope of the MðRÞ curve. The set of EOSs was constrained
by the neutron matter EOS obtained from a chiral effective
field at low densities, the description of a 2M⊙ star,
and several observational constraints—in particular, the
effective tidal deformability obtained from the GW170817

detection and the lower-radius limits estimated by NICER
for pulsars PSR J0740þ 6620 and PSR J0030þ 0451.
We have concluded that an EOS characterized by a

negative slope throughout the mass range is quite restric-
tive: the maximum mass predicted is 2.20M⊙ with a radius
greater than 10.3 km at 90% CI. If this constraint is relaxed,
the maximum mass increases to 2.43M⊙ at 90% CI and can
reach ∼2.69M⊙ and a maximum radius ≲13.4 km. Note
that this maximum mass has also been obtained in [61]
using a different description for the EOS. A negative slope
also predicts a different behavior of the speed of sound,
showing a peak at 4–5n0 instead of 3n0 as is often obtained
in different studies [51,54]. The conjecture proposed in [59]
concerning the renormalized trace anomaly, which has a
positive value at all densities, favors the EOS with back-
bending, and as discussed in that work, the maximum
masses obtained are smaller and, for a given maximum
mass, the maximum star has a larger radius.
A rough estimate of the slope of MðRÞ at two points,

which allows the sign to be extracted, is already infor-
mative about neutron star observables such as radius and
tidal deformability. We have analyzed the consequences
of the value the slope takes at 1.4M⊙ and concluded
that a negative slope indicates Rð2M⊙Þ ≲ 11.9 km and
RðMmaxÞ≲ 11.5 km at the 90% CI. The simultaneous
determination of the slope at two different masses can
also provide additional constraints: for an EOS with a
negative slope at 1.2 and 1.8M⊙, a star of 2M⊙ mass is
expected to have a radius in the range 10.5≲ R2.0M⊙

≲
12.5 km. We conclude by pointing out that knowing the
slope of the MðRÞ curve at a given mass, or at more than
one mass, will provide important information for con-
straining the microscopic EOSs of hadronic matter at high
densities.
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