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We show that a rigidly rotating, homogeneous ellipsoid of revolution threaded by a uniform, coaxial
magnetic field is a possible figure of equilibrium. While the spheroidal shape is fully preserved, the rotation
rate is modified. Accordingly, we extend the fundamental formula by Maclaurin. In contrast with the
nonmagnetic case, prolate shapes are permitted, but there are critical states in the form of maximum
elongations, depending on ionization fraction, ion/electron drift, magnetic field, and mass density. As
checked from numerical simulations based on the self-consistent-field method, prolate states survive to gas
compressibility. The relevance to interstellar clouds is outlined.
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I. THE MACLAURIN SPHEROID

Inside a homogeneous ellipsoid of revolution (i.e., a
spheroid) rigidly rotating in the vacuum around its minor
axis, the gravitational force is exceptionally linear in the
cylindrical radius R, which exactly compensates the cen-
trifugal force [1,2]. The relationship between the rotation
rateΩ, the mass density ρ, and the eccentricity ε of the body
has been established by Maclaurin [3]

Ω2

2πGρ
¼ MðεÞ; ð1aÞ

MðεÞ ¼ ð3 − 2ε2Þ ε̄
ε3
arcsin εþ 3 −

3

ε2
; ð1bÞ

where a and b are the semimajor and semiminor axes,
respectively, of the surface ellipse; ε2 ¼ 1 − ε̄2 is the square
of the eccentricity; ε̄ ¼ b=a; and G is the gravitation
constant. This is a fundamental result for stellar, plane-
tary, and even galactic astrophysics. According to the
classical theory, only oblate shapes defined by ε̄ ≤ 1 are
possible, which is corroborated by most observations (self-
gravitating systems are flattened by rotation). For fluids, the
pressure p is found from the Bernoulli invariant [4]

p
ρ
−
1

2
Ω2R2 þΨint ¼ const; ð2Þ

where the constant can be evaluated at any point ðR; ZÞ in
the spheroid and Ψint is the interior gravitational potential.
It takes the form

ΨintðR; ZÞ ¼ −πGρ
�
A0a2 − A1R2 − A3Z2

�
; ð3Þ

where the coefficients Ai are known functions of ε[1,2].
For prolate shapes, ε̄ exceeds unity and ε becomes a pure
imaginary number, and Eq. (3) still holds. The reason
resides in the mathematical continuity of the Ai’s at ε ¼ 0
when crossing over the spherical shape. Actually, for any
complex number z, we have arcsinðzÞ ¼ arcsinhðizÞ=i,
where i is the imaginary unit [5]. As a matter of fact,
MðεÞ remains a real number as can be seen in Fig. 1,
but the function is negative. According to (1a), this leads
to unphysical states since neither Ω2 nor ρ can be
negative.

FIG. 1. The function M defined by Eq. (1b) versus ε2 and its
first-order approximation in ε2.
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II. A HOMOGENEOUS SPHEROID THREADED BY
A COAXIAL, UNIFORM MAGNETIC FIELD

If the homogeneous spheroid is threaded by a magnetic
field B, free charges experience the Lorentz force. The
modification of the dynamics is expected to be weak if B is
small enough or/and if the amount of charges is relatively
small with respect to neutral species. To study this effect,
we assume for simplicity that the medium contains elec-
trons and atoms of a single kind capable of releasing Z ≥ 1
electrons each, and all moving around the minor axis of the
system. We denote nα, mα, and Vα ¼ ΩαReϕ the number
density, mass, and circular velocities of particles, respec-
tively, with α∈ fe; i; ng for electrons, ions, and neutrals.
The local electroneutrality implies ne ¼ Zni, and so the net
current density is

j ¼ neð−eÞVe þ niðþZeÞVi ¼ −eneðΩe −ΩiÞReϕ; ð4Þ

where e > 0 is the elementary charge. A single-fluid
description is complicated and requires some prescriptions
or extra-assumptions, in particular regarding the velocity
drift appearing in Eq. (4) and the link with the kinematics of
neutrals which are pushed through collisions. By adding
the individual Euler equations, we can get rid of momentum
exchanges between particles (e.g., see [6]). For steady
states, we haveX

α

½nαmαð−RΩ2
αeϕ þ ∇ΨintÞ þ ∇pα� − L ¼ 0; ð5Þ

where L≡ j × B is the total Lorentz force. As Eq. (5) is
intended to be recast in the form of Eq. (2), we need a
definition for the “typical” circular velocity V or for the
bulk rotation rate Ω. We could use the standard barycentric
formulation ρV ≡P

α nαmαVα, but it seems preferable to
work with the centrifugal potential, which is represented by
the second term in the left-hand side of Eq. (2). The main
reason is to ensure some continuity with the (nonmagnetic)
Maclaurin case in the limit where B → 0. As Z cannot take
large values in a standard astrophysical context (Z ¼ 1 for a
pure hydrogen gas) and given the ratiome=mn ≪ 1, we can
omit the contribution of electrons in the noninertial term in
Eq. (5). We then define ρΩ2 ≡P

α nαmαΩ2
α, which leads to

Ω2 ≡ xe
xe þ Z

Ω2
i þ

Z
xe þ Z

Ω2
n; ð6Þ

where xe ¼ ne=nn is the ionization fraction and

ρ ¼ nemi
Z þ xe
Zxe

: ð7Þ

It follows that Eq. (5) becomes

−RΩ2eϕ þ ∇Ψint þ
1

ρ
∇p −

L
ρ
¼ 0: ð8Þ

Regarding the magnetic field, we assume that it is
uniform and aligned (parallel or antiparallel) with the
rotation vector, namely B ¼ Bez, and remains unperturbed
by the rotating charges present in the spheroid. From
Eqs. (4) and (7), the Lorentz force per unit mass is

L
ρ
¼ −ωB

Zxe
Z þ xe

ðΩe −ΩiÞReR; ð9Þ

where ωB ¼ eB=mi (the sign of this quantity depends
on the orientation of the magnetic field). The difference
Ωe −Ωi is hard to guess or anticipate without going into the
details of theoretical considerations or numerical simula-
tions (e.g., see [7]). In the present case, it is prescribed as a
fraction of the rotation rate, namely

Ωe −Ωi ≡ δΩ; ð10Þ

where the electron/ion drift parameter δ≷ 0 is assumed to
be constant in the system. This quantity is probably, statis-
tically, smaller than thermal speeds by orders of magni-
tude [8]. If the Lorentz force does not depend on the z
coordinate, then it is the gradient of a magnetic potential Λ,
namely 1

ρL ¼ −∇Λ. This is realized, for instance, if xe and
δ are constant in the body and if the Ωα’s are constant on
cylinders [9,10]. For rigid rotations, we basically have

Λ ¼ 1

2
δΩBΩR2 þ const; ð11Þ

where we have set

ΩB ¼ Zxe
Z þ xe

ωB ð12Þ

for convenience. It follows that Eq. (2) takes the usual
conservative form [11–15]

p
ρ
−
1

2
Ω2R2 þΨint þ Λ ¼ const: ð13Þ

The fact that Λ is quadratic in R, like the centrifugal
potential, implies that Eq. (2) is formally preserved in the
magnetic case if the rotation rate Ω of the Maclaurin
spheroid is replaced by an “effective” rate Ωeff , with

Ω2
eff ¼ Ω2ð1 − ηÞ; ð14Þ

where

η ¼ δ
ΩB

Ω
≷ 0: ð15Þ

It also means that the spheroidal figure of the equilibrium
is fully conserved. This property has been quoted already
[16], but the authors have assumed that the uniform B field
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is created by the star itself. Under the hypothesis made here,
we can state that a rigidly rotating, homogeneous spheroid
threaded by a coaxial, uniform magnetic field is a possible
figure of equilibrium.

III. THE NEW ROTATION RATE

A direct consequence of Eq. (13) is that we can define an
“effective” function Meff from Eq. (1a) by replacing Ω by
Ωeff as given by Eq. (14). We see that Ω2

eff can be positive
or negative depending on the strength of the field, on its
orientation, and on the sign of the electron/ion drift
parameter. It means that both oblate and prolate configu-
rations are allowed (see Fig. 1), and η plays a critical role
(magnitude and sign). When jηj → 0, the impact of the
magnetic field is negligible and one recovers Maclaurin’s
solution. For given δΩB, ρ, and ε, the rotation rate is
calculated from Eq. (14)

Ω2 − δΩBΩ − 2πGρMðεÞ ¼ 0; ð16Þ

which is easily expressed in terms of 1=η by dividing by
δ2Ω2

B. By defining y ¼ δΩBffiffiffiffiffiffiffiffi
2πGρ

p , we find

1

η2
−
1

η
−
MðεÞ
y2

¼ 0: ð17Þ

This second-degree equation is easily solved (see the last
section for the solution). The roots are plotted versus ε2 in
Fig. 2 for three values of the parameter y2.

A. Spherical configurations

As Eq. (14) shows, the equilibrium configuration is a
sphere in two cases. First, this occurs for η ¼ 1 meaning
that the body rotates. This exceptional tuning requires
δB > 0; i.e., B is aligned with Ω for a positive drift
parameter δ. If jδj ≪ 1, then Ω ≪ ΩB. The second case
is more standard and corresponds to the absence of rotation
Ω → 0 (relative to δΩB), although jηj can be very large.

B. Oblate configurations

Oblate shapes occur with two different orientations of B,
parallel or antiparallel to Ω, as long as η < 1. There is a
solution for any real eccentricity in the range [0, 1]. In the
limit where ε → 1, the body tends to an infinitely flat,
finite-radius disk, when Ω → 0 (and finite Ω → 0), or
when Ω ¼ δΩB.

C. Prolate configurations

For prolate states, the term inside the parentheses in
Eq. (14) must be negative, i.e., η > 1. This situation is new.
It is met when the ionization fraction or δB > 0 is high
enough, or both. The equilibria are located in the left-hand
side of the graph in Fig. 2. In contrast with the oblate case,
not all values of jε2j are allowed in the range ½0;∞½. The
fact that η in Eq. (17) is necessarily a real number sets a
limit in terms of iε or, equivalently, in terms of the axis ratio
b=a≡ ε̄. The limit is reached when η is a double root
(namely η ¼ 2), which corresponds to

4MðεÞ ¼ −δ2Ω2
B=2πGρ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
y2

≤ 0: ð18Þ

Physically, this is a critical rotation. The value of ϵ2 in
Eq. (18) is denoted ε2cr. In other words, there is no magnetic
state for spheroids with b

a > ε̄cr. For slow rotations where
ε2 → 0−, we have MðεÞ → 4

15
ε2, and the critical axis ratio

is given by

ε̄2cr ≈ 1þ 15

16
y2 ≥ 1: ð19Þ

When ε2 → −∞, the body becomes a filament, and we
have MðεÞ ∼ 3 − lnð−4ε2Þ.

IV. BEYOND THE INCOMPRESSIBLE CASE

The expansions above concern the rigidly rotating,
homogenous spheroid. The compressibility of matter
affects the stratification and shape of the body, which
slightly deviates from a spheroid (e.g., see [17]). As a
matter of fact, Ω2

eff has nothing to do with the equation of
state of matter, which is just incorporated in the first term in
Eq. (13). The statements made above are therefore expected
to qualitatively hold for a rigidly rotating, compressible gas

FIG. 2. The roots of Eq. (17) versus the square of the
eccentricity of the spheroid ε2 for y2 ∈ f0.1; 0.5; 1.5g.
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as long as the ionization fraction and the δ parameter are
uniform inside the structure. We show in Fig. 3 three
equilibrium configurations computed with the DROP code
that solves the full two-dimensional (2D) problem from the
self-consistent-field method [18]. In all examples, the gas
obeys a polytropic equation of state (i.e., the pressure is of
the form p ∝ ργ), and the exponent is γ ¼ 4

3
typical of a

fully convective gas. The importance of the magnetic force
with respect to the centrifugal force is also shown. The
main outputs are listed in Table I. Selected values for b=a

are deliberately very different from unity, in order to
make the deformations visible. In the first example (top
panels), the axis ratio is b=a ¼ 0.75 and η < 0. The
magnetic field is antiparallel to the rotation vector Ω.
The Lorentz force reinforces the centrifugal effect, and
rotation is lower than in the nonmagnetic case. Self-gravity
alone produces the confinement. In the second case (middle
panels), we impose Ω2

eff ¼ 0 (i.e., η ≈ 1) and ε ¼ 0. With
δB ·Ω > 0, the Lorentz force goes against centrifugation,
and the magnetic contribution to the energy density is now
negative. The third example is a marked prolate case
obtained for η > 1 and b=a ¼ 1.25, which corresponds
to ε2 ¼ −0.5625. Here, rotation is weak, and the magnetic
field contributes efficiently in the elongation.

V. SUMMARY, VALIDITY, AND DISCUSSION

Inside a homogeneous spheroid threaded by a coaxial,
uniform magnetic field, the total force acting on rigidly
rotating azimuthal currents is linear in the cylindrical
coordinate, making the configuration a possible figure of
equilibrium (e.g., see [16]). We note that, as any isobar in
the body is a spheroid similar to the surface spheroid, this
result holds in the presence of a uniform, ambient pressure
pamb > 0. In terms of shape, the magnetic states reported in
this analysis are indistinguishable from a Maclaurin sphe-
roid. According to Eq. (14), the Ω2ðρ; εÞ diagram takes a
new form

Ω2

2πGρ
¼ N

�
ε;

δΩBffiffiffiffiffiffiffiffiffiffiffi
2πGρ

p
�
; ð20aÞ

N ðε; yÞ ¼ y2

4

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4MðεÞ

y2

s #2

; ð20bÞ
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FIG. 3. Normalized pressure and mass density in log. scale (left
panels) computed with the DROP code for a polytropic exponent
γ ¼ 4=3 (the computational grid has 257 × 257 nodes). Simu-
lations differ by the eccentricity and η parameter (see also
Table II). The magnetic potential (red lines) and the gravitational
potential (dotted lines) are superimposed. The arrows give the
orientation of Ω (black) and B (red). Also shown is the magnetic
energy density relative to the kinetic contribution (right panels).

TABLE I. Data associated with the three equilibria displayed
in Fig. 3. The solution without magnetic field is in row 2.
The kinetic-to-gravitational energy ratio is denoted T=jWj, the
kinetic-to-magnetic energy ratio is T=ΓB, and VP is the virial
parameter.

Axis ratio ε̄ ▸ 0.75 1 1.25

• Maclaurin (B ¼ 0)
Ω2=2πGρ þ0.036068 −3 × 10−7 No solution

• With magnetic field
y≡ δΩB=

ffiffiffiffiffiffiffiffiffiffiffi
2πGρ

p
−0.05 þ0.10 þ0.60

η −0.300202 þ1.000035 þ6.607532
Ω2

eff=2πGρ þ0.036068 −3 × 10−7 −0.046237
Ω2=2πGρ þ0.027740 þ0.999929 þ0.008245
M=ρca3 þ0.430265 þ0.699205 þ0.476558
T=jWj þ0.027414 þ0.010724 þ0.007706
T=ΓB þ1.665540 −0.499982 −0.075671
VP ð×10−5Þ −1.55 −1.26 −1.13
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where y2 ≥ −4MðεÞ. Unsurprisingly, the ionization frac-
tion of matter, the amplitude of the magnetic field, and the
drift parameter are major ingredients. The function N is
therefore an extension of Maclaurin’s formula. It is dis-
played versus ε2 in Fig. 4. We recover N ðε; 0Þ≡MðεÞ in
the absence of any magnetic field or when there is no
charge drift (and no net current). As M, N peaks at
ε2 ≈ 0.865, and there are in between 0 and 3 states for a
given value of Ω2=2πGρ. When δ ≠ 0, there are two main
families of solutions. For jMðεÞ=y2j ≪ 1, we have

N ðε; yÞ ≈ y2 þ 2MðεÞ ≈ y2 þ 8

15
ε2 > 0; ð21Þ

which approximation is valid whatever the sign of ε2. This
is the upper branch in Fig. 4, where we have a quasilinear
behavior in ε2 and relatively high rotation rates. The second
branch is also twofold as it concerns both oblate and prolate
states. It corresponds to

N ðε; yÞ ≈
�
−
MðεÞ
y

	
2

≈
16

225

ε4

y2
> 0; ð22Þ

which is the lower branch in the figure (low rotation rates).
When δB ·Ω < 0, only oblate shapes are possible. As
Fig. 2 shows, two cases lead to quasispherical structures:

(i) η ≈ 1, which means Ω ≈ δΩB. This case is obtained
for various magnitudes of the parameters B, δ, and
xe, but it requires a specific tuning. This includes
states with slow rotation and weak magnetic field, or

with fast rotation and strong magnetic field, but this
requires δB ·Ω > 0.

(ii) jηj ≫ 1, which leads to Ω ≈ − 8π
15
ε2 Gρ

δΩB
. This corre-

sponds to very slow rotation or to large B fields.
As quoted, the novelty is the existence of prolate

configurations, which necessarily occur when the magnetic
field has the same orientation as the rotation vector, for a
positive drift parameter. In contrast to oblate configurations
(there are solutions for any ε∈ ½0; 1�), prolate states are not
always permitted. This is materialized by the existence
of critical rotations: iε, which is a real number, cannot
reach infinite values; see Eq. (18). The analog of the flat
disk for oblate states, namely the line segment, is not
accessible. This phenomenon has already been reported
in [19], where the authors have studied an isothermal gas
in the context of ideal magnetohydrodynamics and have
accounted for a background magnetic field. We notice,
however, that the occurrence of critical states does not
require any ambient pressure pamb here, while a link
ε̄crðpambÞ is clearly established in [19]. It would therefore
be interesting to understand the role of compressibility on
this phenomenon.
Substantial deformations (oblate or prolate) caused by an

external magnetic field are expected as soon as Ωeff and Ω
differ significantly from each other; i.e., jηj exceeds a few
percent typically. By taking jηj > 0.1 in Eq. (14), a natural
upper limit for the rotation rate (otherwise centrifugal
forces dominates) is

Ω
rad=s

< 9.6 × 104 ×
1

jηj
jδjxe
1þ xe

� jBj
1 G

�
; ð23Þ

where we have set Z ¼ 1 andmi ¼ mp (proton’s mass), and
B is in Gauss. As we are dealing with rigid rotations,
another constraint is basically imposed by the size of the
system, namely Ωa < c, where c is the speed of light.
The validity of the present analysis also rests upon the

fact the B is unperturbed by the flow and must overpass the
magnetic field Bself produced by the rotating charges,
which must be checked even if the ionization fraction is
low. We have therefore calculated the potential vector Aself
associated with the azimuthal current j defined by Eqs. (4)
and (10), from the technique reported in [21]. The magnetic
potential Λself ¼ RAself · eϕ and the corresponding poloidal
field Bself ¼ ∇ × Aself are shown in Fig. 5 in units of δΩ in
the spherical limit. It is worth noting that, in contrast with
the assumption retained in [16], the induced field is far from
purely vertical everywhere in the system. At the center, the
field is relatively large and estimated to − 1

3
μ0neeδΩa2.

Taking this value as the typical magnitude for Bself:, the
condition of self-consistency jBself:j ≪ jBj reads

1

η
≪

8

π2

�
4πε0Gm2

i

e2

��
Z þ xe
δZxe

�
2
�

c
aΩff

�
2

; ð24Þ

FIG. 4. Equilibrium diagram Ω2=2πGρ with magnetic field in
log scale versus ε2 for y2 ∈ f0.1; 0.5; 1.5g. The Maclaurin
function is plotted (red), as well as the two approximations
(21) and (22). Points where jηj ¼ 10 are indicated (crosses).
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where
ffiffiffiffiffiffi
Gρ

p
has been written in terms of the free-fall time

1=Ωff . Still for a hydrogen gas (Z ¼ 1 and mi ¼ mp), this
inequality reads

η ≫ 1.5 × 1036
�
β

xe
1þ xe

δ

�
2 ≡ η0; ð25Þ

where β ¼ Ωffa=c ≪ 1 is the relativity factor at the
equator. We can see from Fig. 4 that highly elongated/
prolate shapes are accessible for very large η’s, which
requires, for instance, very low rotation rates. We notice
that the threshold η0 can be considerably decreased if
simultaneously β2 ≪ 1, x2e ≪ 1, and δ2 ≪ 1. It follows that
the solutions discussed here make sense preferentially in
nonrelativistic and weakly ionized rotating systems, and for
small electron/ion relative drifts.
Which systems are potentially concerned? The structure

of an “isolated” star cannot be regulated, even partially, by
an external magnetic field. The impact of magnetic fields
on the structure of normal and compact stars is studied for a
long time and widely documented (e.g., see [12,22–28]).
These fields are linked to the toroidal and poloidal
circulations of the stellar plasma, which is a complicated
problem (e.g., see [29,30]). Galactic field strengths are
typically 6 to 9 orders of magnitudes below what con-
ducting plasmas in stars can generate [31]. White dwarfs
and neutron stars have huge surface magnetic fields,
from 107 to 1015 G typically and therefore represent very
powerful dipoles capable of influencing their environment.
In double systems, the structure and spin of the secondary
component (a giant star or a planet), in particular the upper
layers, can probably be impacted, depending on the orbital
separation and conductivity of matter [32–34]. This would
merit further investigations.
In dense interstellar clouds and prestellar cores, the mag-

netic field plays a critical role and regulates star forma-
tion [35]. Line-of-sight estimates give 10 μG typically [36],
and the kinematics in some clouds seem compatible with

rigid rotation [37]. The ionization fraction is known to be
very low [38,39]. Values for xe depend on the mass density,
chemical content, dust grains, and ionization rate by cosmic
rays (e.g., see [40–42]), and are typically in the range
10−4 − 10−9. With the prescription for xeðρÞ established
in [20], Eq. (23) reads1

Ω
rad=s

≲ 2.7 × 10−9jδj
�

nH
104 cm−3

�
−1
2

� jBj
1 μG

�
; ð26Þ

where nH is the total number density of H atoms. The
normalizations adopted here seem to be lower limits, both
in terms of number density and magnetic fields, and can be
both 1000 times larger typically [43–45]. Equation (26)
seems fully pertinent to prestellar cores, which are believed
to have a low rotational support. The key point is the δ
parameter, which should be very small in the interstellar
medium. With the same scalings as above and for a typical
size a ¼ 0.1 pc, we get from Maxwell Ampere’s law
Ve − Vi ∼ B

μ0eanH
≈ 0.16 cm=s, while the isothermal speed

at 10 K is the order of 3 × 104 cm=s. If this value is
confunded with the bulk velocity (the sonic limit), then we
find δ ≈ 5 × 10−6, but we are confident that this estimate is
poorly reliable.
We show in Fig. 6 the mass-density profile computed

with the DROP code for a typical interstellar core scaled to
about 0.1 pc. This example corresponds to a heterogenous
gas, assuming a “soft” polytropic equation of state. It
includes ambient pressure, and we take δ ¼ 10−8. The input
and output data are listed in Table II. This state is close to
a critical prolate equilibrium. This simulation compares
very well with the results obtained in [19] with similar

FIG. 5. Normalized magnetic potential Λself in color code (left)
and Bself field (right) in units of δΩ, for a homogeneous spheroid
with ε ¼ 0 (nonrotating limit).

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

al
tit

ud
e 

Z
/a

cylindrical radius, R/a

-1 -0.8 -0.6 -0.4 -0.2  0

FIG. 6. Mass-density profile ρðR; ZÞ for a typical core obtained
with the DROP code for input parameters listed in Table II. The
gravitational potential is also shown (dotted lines).

1This formula, based on Eq. (23), takes into account molecular
hydrogen H2 as the dominant species and helium in cosmic
proportions, and we have ρ ≈ 2.33 nemi=xe and nn ¼ 0.6nH.
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parameters. The authors have observed a limit in the
diameter of structures, which property is also found here,
not only in the homogeneous limit but also in the case of a
compressible gas.
This study opens onto interesting problems. This is, for

instance, the determination of equilibrium sequences in
compressible cases, by varying, for instance, the eccentricity
ε for fixed values of η and ΩB, and the systematic deter-
mination of the critical prolate states [19]. Equations and
limits derived in this article are actually specific to the homo-
geneous case. Because of the magnetic support, we expect
that the endings of compressible oblate sequences of equili-
brium are changed [17] in terms ofΩ, again depending onB.
It would be necessary to analyze the stability of these con-
figurations, possibly leading to constraints on the external
magnetic field, ionization fraction, and drift parameter.
Another interesting point concerns the determination of con-
figurations if B and Ω are misaligned (e.g., see [45–47]),
which requires a three-dimensional, numerical treatment.
Finally, a key question concerns the link between the
kinematics of charged particles and neutrals, which is
certainly more complex than considered here, and which
might invalidate the present approach. It is clear that the drift
parameter, which is plausibly much lower than the sound
speed by orders of magnitude, is hard to guess and remains a
“big” unknown here, as quoted above.
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