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The Event Horizon Telescope (EHT) has captured a series of images of black holes. These images could
provide valuable information about the gravitational environment near the event horizon.
However, accurate detection and parameter estimation for candidate black holes are necessary.
This paper explores the potential for identifying black holes in the ultraviolet band using space
telescopes. We establish a data pipeline for generating simulated observations and present an
ensemble neural network model for black hole detection and parameter estimation. For detection
tasks, the model achieves mean average precision [0.5] values of 0.9176 even when reaching the
imaging full width half maximum (FWHM) (θc) and maintains the detection ability until 0.54θc. For
parameter estimation tasks, the model can accurately recover the inclination, position angle, accretion
disk temperature and black hole mass. These results indicate that our methodology can go beyond the
limits of the traditional Rayleigh diffraction limit and enable superresolution recognition. Moreover,
the model successfully detects the shadow of M87* from background noise and other celestial bodies,
and estimates its inclination and position angle. Our work demonstrates the feasibility of detecting
black holes in the ultraviolet band and provides a new method for black hole detection and further
parameter estimation.
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I. INTRODUCTION

In April 2019, the Event Horizon Telescope (EHT)
Collaboration released the first shadowed image of
M87* [1–5] and in May 2022, they released images of
Sagittarius A* [6–9], the black hole at the center of the
Milky Way. These images provide concrete evidence of the
existence of black holes, which is a key tenet of general
relativity [10].
The event horizon of a Schwarzschild black hole is

defined by rs ¼ GM=c2, where G is the gravitational
constant, c is the speed of light, and M is the mass of
the black hole. Any particle (including photons) that enters
this range will inevitably fall into the black hole’s singu-
larity. However, that does not mean a black hole cannot be
observed using a telescope. We can still observe it through
its accretion disk, which is the ring of gas and dust
surrounding a black hole. Objects falling into the black
hole are subjected to the strong gravitational force of the
black hole and then rotate around it at high speed while
being heated to extremely high temperatures and emitting
electromagnetic waves [11]. The projection of its unstable
photon region on an observer’s sky is called a black hole

shadow [12]. Accretion disks emit light across many
wavelengths. For most black holes in the Universe
(∼10M⊙), the radiation consists mainly of x-rays, but
for larger mass black holes (∼104M⊙), the main electro-
magnetic waves radiated are ultraviolet (UV) to x-rays [13].
For supermassive black holes such as M87* and Sagittarius
A*, the main mode of radiation is synchrotron radiation,
which falls inside the radio band wavelength [14].
The EHT has tested the probability of detecting black

holes using a radio interferometer [15]. With the develop-
ment of interferometers, optical interferometer arrays such
as COAST [16], NPOI [17], and IOTA [18] have achieved
higher resolution in infrared and even visible wavelengths.
However, some smaller black holes might emit higher-
frequency waves [19], which are out of the observable
range of radio and optical interferometers [20]. Therefore,
these black holes are better observed using optical tele-
scopes, which can cover visible and UV light. Among the
candidate wavelengths, the short wavelength of UV light
corresponds to higher imaging resolution. Moreover, com-
pared to x-rays and γ-rays, UV is easier to be focused by
optical instruments, making it possible for humans to detect
black holes in this band. At present, some UV space
telescopes have been successfully launched and operated,
such as the Ultra Violet Imaging Telescope (UVIT) [21],
Far Ultraviolet Spectroscopic Explorer (FUSE) [22],
Hubble Space Telescope [23] and so on.
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The black hole shadow provides valuable information
about the gravitational environment on event horizon
scales, enabling verification or modification of general
relativity [24–27]. High accuracy is crucial for both the
detection and parameter estimation of the black hole
[28–30]. According to Torniamenti et al. [31], black holes
may exist as close as 80 pc from Earth, within the
observational range of optical telescopes. However, they
may be hidden in a large number of images from current
space telescopes. Distinguishing them from other
celestial bodies is challenging due to their far distance
and proximity to other objects. Moreover, the diffraction
limit presents a fundamental constraint on the resolution
of optical telescopes, requiring more accurate detection
and recognition methods. This is where machine learning
(ML) can be useful [32]. Sophisticated ML algorithms
enable astronomers to automatically search for celestial
objects and enhance the resolution of astronomical
images beyond what is possible with conventional optics
alone [33]. Techniques such as superresolution imaging
and image reconstruction algorithms trained on simulated
data enable astronomers to effectively enhance the res-
olution of telescope images, offering a glimpse into
previously unseen details of celestial objects [34]. ML
is a powerful tool for addressing various astronomical
physics issues, and neural networks (NNs) are increas-
ingly being used for this purpose. For instance, they have
been instrumental in improving the resolution of the
M87* image [35] and is used for the identification and
classification of celestial objects such as galaxies, star,
and supernovae [36]. In addition, machine learning
methods are aiding in the identification of infrequent
and hard-to-find astronomical occurrences by analyzing
large datasets to uncover subtle patterns and signals that
may otherwise be overlooked [37].
In recent years, convolutional neural networks (CNNs)

have been considered one of the most effective tools in
the field of image recognition [38], and have an increas-
ingly wide range of applications in the field of astro-
physics, such as the detection of strong gravitational
lenses [39] by deep CNNs, the input of time-domain
spectrograms into CNNs for the detection of gravitational
waves [40], the detection and classification of gravita-
tional waves [41], gravitational wave noise reduction [42]
and so on. CNNs have also been used to identify black
holes in radio telescope observation images and recover
black hole parameters [43] such as accretion rate, incli-
nation, and position angle. In Ref. [44], telescope
observation images are mapped to the UV plane and
then recognized by CNNs.
For black hole simulations, previous studies for radio

band observation often use general relativistic magnetohy-
drodynamics (GRMHD) to simulate the accretion disk and
then generate images of black hole shadows [45]. In the
imaging of Sgr A*, the EHT collaboration constructs the

relationship between theoretical black hole shadows and
the observation of ringlike images using a library of
simulations and then uses the CLEAN algorithm and
Bayesian method to estimate the parameters as well as
the confidence level [46,47].
Unlike the above methods, what we use in this paper is

an ensemble model for both detection and parameter
estimation. We first calculate the trajectory of photons in
relativistically curved spacetime and then render the image
by ray-tracing methods [5,48,49] to establish the data
pipeline for the subsequent model. Then we present an
ensemble NN model with the backend of You Only Look
Once (YOLO) [50] and EfficientNet [51]. For black hole
detection, our detector can accurately distinguish black
holes in observation images from tens to hundreds of other
celestial objects and determine their positions in the image
with a confidence level. For parameter estimations, it can
infer the parameter of black holes from the shadow, where
four parameters are selected, including inclination i, mass
of black hole M, position angle ϕ, and accretion disk
temperature T.
This paper is organized as follows: In Sec. II we

render black hole accretion disks using ray tracing and
then use the simulated telescope to get the observation
images. In Sec. III we introduce the ensemble NN
model for both detection and parameter estimation of
black holes. In Sec. IV we test the validity of our model
using the image of M87* and observation from Hubble
space telescope. Finally, in Sec. V, we summarize the
results and discuss the feasibility of real-time detecting
black holes of candidate black holes and further param-
eter estimation. The flow chart of the whole work is
shown in Fig. 1.

Black hole light simulation Telescope simulation

Optics simulation Noise

Ray tracing

Photon trajectory

Black hole metric

Image rendering

Difraction limit Gaussian noise

Generate conprehensive observation image
containing black hole for following training step

Data preparation and labeling

Black hole detection Black hole recognition

Distinguish black hole from other
object and locate them

Parameter estimation and
classification of black holes

Part II: Black hole detection and recognition ensemble model

Part I: Observation Simulations

Model testing with M87* and Hubble observation

FIG. 1. Data simulation pipeline and ensemble NN model.
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II. OBSERVATION SIMULATION

A. Black hole accretion disk simulation

To render the image of black holes, ray-tracing for the
accretion disk of the Schwarzschild black hole is used,
whose metric has the form,

ds2 ¼ −
�
1 −

rs
r

�
c2dt2 þ

�
1 −

rs
r

�
−1
dr2 þ r2dΩ2; ð1Þ

where rs ¼ GM=c2 and dΩ2 ¼ ðdθ2 þ sin2 θdϕ2Þ. From
this equation, the photon trajectories outside the black hole
can be solved numerically using the fourth-order Runge-
Kutta algorithm with θ ¼ π=2,

d2uðϕÞ
dϕ2

¼ 3

2
uðϕÞ2 − uðϕÞ; ð2Þ

where uðϕÞ ¼ 1=rðϕÞ. The result is shown in Fig. 2. The
innermost stable circular orbit (ISCO) is the smallest
edgewise-stable circular orbit in which particles can be
stabilized to orbit a massive object in the theory of general
relativity. No particle can maintain a stable circular orbit
smaller than rISCO. In that case, it would fall into the event
horizon of the black hole while rotating around it. For a
Schwarzschild black hole, rISCO ¼ 3rs. Typically, this is
where matter can generate an accretion disk [52–54], which
corresponds approximately to the center of the accretion
disk in this work.
The temperature of the accretion disk determines the

wavelength of black body radiation, which in turn deter-
mines whether a black hole can be observed through a
telescope within a certain wavelength range. The temper-
ature of the accretion disk is [13,19]

T ¼ ½6.27 × 107 K�α1
4

�
M

3M⊙

�
−3
4

�
Ṁ

1017 g=s

�1
2

; ð3Þ

whereM⊙ is the solar mass, Ṁ is the accretion rate and α is
the standard alpha viscosity, and 0 < α < 1 is a dimension-
less coefficient, assumed by Shakura and Sunyaev to be a
constant [55]. To reduce dimensions of the parameter
space, we set α ¼ 0.1 and Ṁ ¼ 7.26 × 1016 g sec−1. We
can assume that the accretion disk is radiatively efficient,
i.e. the rate of accretion is small enough so that any heat
generated by viscosity can be immediately converted into
light energy and radiated outward. It is also supposed that
the accretion disk is very thin, resulting in all accreted
material being on the equatorial plane. [19].
To render a more realistic image of the black hole,

gravitational lensing [56] and the Doppler effect should
also be considered [57]. The Doppler color shift is
given by

ð1þ zÞDoppler ¼
1 − β cosðγÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2
p ; ð4Þ

where γ is the angle between the ray direction and the disk’s
local velocity [49]. The redshift from the relative motion of
the black hole to the observer can be ignored since in our
simulations the Earth is typically about several hundred
light-years away from the black hole.
For simplicity, one can consider blackbody radiation

and disregard other radiation, such as synchrotron radi-
ation. According to Planck’s formula for blackbody
radiation [58], it can be calculated that the intensity of
radiation at a certain wavelength is fðλÞ ¼ 1

λ5
1

expðhc=λkBT−1Þ.
Since we assume that the telescope operates at a single
wavelength, the brightness observed by the telescope is
also proportional to fðλÞ, and to simplify the calculations,
we ended up simplifying the telescope photo to a black-
and-white photo and normalizing the radiant intensity
over [0, 255]. The result is shown in the first column of
Fig. 3. Note that the radiation used to simulate the black
body of a black hole is UV light with a narrow spread of
wavelengths. Therefore it can be seen as monochromatic
light, so the image is shown in grayscale. To demonstrate
intuitively, it is mapped to be a colored image in the
second and third column of Fig. 3. We can see that the
light that black holes emit is not symmetrical. That is
because the gravitational force of the black hole bends the
light, which makes the accretion disk twist into the shape
of a “mushroom.”
We can simulate the star through the star mass-lumi-

nosity relation [59]:

L
L⊙

¼
�

M
M⊙

�
a
; 0.43M⊙ < M < 2M⊙; ð5Þ

where M⊙ and L⊙ are the mass and luminosity of the Sun
and 1 < a < 6. We take a ¼ 4 in this simulation, which is
the most probable range for stars in the universe.

Event

Horizon

Photon

Ring

ISCO

FIG. 2. Photon trajectories, event horizon (rs), photon ring
(1.5rs), and ISCO, where the initial direction makes 26.5° angle
with horizontal axis. Note: the colors are only for demonstration
and do not indicate the wavelengths.
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B. Telescope simulation

The diffraction limit is the fundamental constraint on
telescope resolution. According to the Rayleigh criterion,
two objects are considered just resolvable if the first
minimum (dark fringe) of the diffraction pattern created
by one object coincides with the central peak of the
pattern created by the other. The imaging FWHM of a
telescope is θc ¼ 1.22λ

D , where λ is the wavelength and
D is the diameter of the telescope. Throughout the
observing range of optical telescopes, UV light has the
highest resolution. Electromagnetic waves with smaller
wavelengths, such as x-rays and γ-rays, are no longer
possible for an optics telescope to observe because of the
difficulty in focusing. To prevent atmosphere absorption of
UV light, a telescope has to be placed on satellites. In our
work, the configuration of the simulated telescope follows
the Hubble Telescope [60], with the imaging FWHM of
10 μas (1000 μas ¼ 100), as shown in Table I.
After generating the simulated image of the black hole

and star, the point spread function (PSF) of the telescope for
different angular sizes of images is calculated. The PSF

describes the response of our telescope to a point source or
point object. It essentially characterizes how a point light
source would appear in the image, taking into account the
diffraction effects, aberrations, and other imperfections of
the optical system. In our situation, only diffraction is
considered. Then, the PSF of the telescope is convolved
with the simulated image to obtain the observed results.
This process is shown in Figs. 6(a)–6(c). The shadows with
different angular sizes are shown in Figs. 6(d)–6(h). We
define the angular size of the input image of the model as θ,

FIG. 3. Simulated image, wherein the first column is the simulated generated image, the second and third column is the recolored
image, and the fourth and fifth columns are the blurred images in the simulated telescope.

TABLE I. Telescope configuration.

Symbol Value Explanation

D 2.4 m Diameter
F 57.6 m Focal length
LCCD 2 μm Size of the pixels on the detector
NCCD 3072 Number of pixels of the CCD
SNR 10 Signal-to-Noise Ratio
θc 0.0100 Angular resolution in arcsecond
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the angular size of the outer edge of the accretion disk as
θAD ¼ arcsin ð2rAD=robsÞ, and the angular size of ISCO as
θISCO ¼ arcsin ð2rISCO=robsÞ, where robs is the distance
between the black hole and the observer. The doughnutlike
shadow and size relations are shown in Fig. 4. There is
almost no light distribution inside the event horizon (rs).
The ISCO (3rs) is approximately the center of the accretion
disk and rAD ≈ 2rISCO.
When θISCO > θc, the shadow is a doughnut-shaped

bright spot with unequal brightness on both sides, which is
easy to distinguish, as shown in Figs. 6(e)–6(g). When
θISCO < θc, the shadow is connected to form a circular
facula, which is difficult to recognize by the naked eye, as
shown in Fig. 6(h).
To match the real observation as closely as possible,

noise should also be considered, which is determined by
the SNR of the telescope with SNR ¼ N=ΔN, where N is
the number of photons released by the source, and ΔN
is the noise. In optics and telescopes, the charge coupled
device (CCD) serves as a sensitive detector capturing
light from celestial objects and converting it into digital
signals for analysis. Suppose the number of photoelec-
trons detected from the object, sky background and dark
current is So, Sb, and Sd respectively, with the time-
independent readout noise R, the CCD SNR equation is
written as [61]

SNR ¼ SoQtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SoQtþ SbQtnp þ Sdtnp þ R2np

q ; ð6Þ

where np is the number of pixels that the object is
spread over, t is the exposure time in seconds and Q is
the quantum efficiency of the CCD, expressed as a
number between 0 and 1. Referring to the parameters
of the Hubble Telescope as well as its historical obser-
vations [60], we use Gaussian noise and make all
simulated observations satisfy SNR < 10.

III. ENSEMBLE MODEL FOR DETECTION
AND RECOGNITION

To ensure clarity and coherence, it is essential to
introduce some concepts relevant to our discussion.
Detection refers to the model’s ability to identify black
holes in observation images. This includes distinguishing
black holes from other celestial objects and locating their
positions. Recognition involves estimating parameters for
both continuous and discrete variables. Regression focuses
on predicting continuous variables, while classification
focuses on discrete variables.

A. Datasets

In this paper, two NN models for black hole detection
and parameter estimation share the same data generation
pipeline but with different configurations. The former
corresponds to datasets where black holes and star are
generated in one image with the size of 1024 × 1024,
while the latter has datasets that fix black holes in the
center, with different sizes of accretion disk, inclinations,
position angles and temperatures, with an image size
of 240 × 240.
For the detection task, multiple data groups are gen-

erated with different θ, each containing 1000 observation
images. Each image has a corresponding text file with
metadata on the bounding circles that define the objects in
the image. The metadata for each object includes its class,
x-y coordinates, and radius of the bounding circle. There
is either zero or one black hole and 3 to 100 star in
one image.
For the parameter estimation task, we also generated

several groups of data according to the different θ. Each
group has 27 018 images. The temperature is determined by
Wien’s displacement law from the observable range of the
telescope, and the mass of a black hole is inferred from its
size of accretion disk by Eq. (3). This process is shown in
Fig. 5. The parameters to be estimated and their range are
shown in Table II.

FIG. 4. Schematic of the size relationship between the black
hole event horizon rs, radius of ISCO rISCO and radius of
accretion disk rAD, where θAD ¼ 14.8θc, i ¼ 32.4°, and ϕ ¼ 0°.

Observation range Wien's displacement law Temperature-mass relation

FIG. 5. Determining the range of T and M for NN model.
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The generated samples were randomly split into training
and validation sets with ratios Ntrain∶Nvalidation∶Ntest ¼
6∶2∶2. To ensure the accuracy of training, the data in
the training set is rounded up to an integer multiple of the
batch size, and the excess is divided into the validation set.

B. Model introduction

In computer vision (CV), object detection is typically
defined as the process of locating and determining whether
specific instances of a real-world object class are present in

FIG. 6. Telescope simulation, where (a) is the image before convolution, (b) is the point spread function (PSF) of the telescope and
(c) is the simulated observation image generated by convolution of (a) and (b). The image is zoomed in to show the details. In (a) and (c),
the left zoomed image is a black hole and the right zoomed image is a star. (d)–(h) is black holes with different angular sizes. (d) No
diffraction. (e) θAD ¼ 10.1θc. (f) θAD ¼ 5.4θc. (g) θAD ¼ 3.1θc. (h) θAD ¼ 1.2θc.
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FIG. 7. The structure of EfficientNet used in this paper, where the gray tensor denotes the changes of the input image, the blue tensor
denotes the convolution kernel, the red arrows denote the convolution process, and the black arrows denote the fully connected layer,
with the depth of each tensor and the size of the convolution kernel not plotted to actual scale.
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an image or video. In recent years, a large range of
sophisticated and varied CNN models and approaches
have been developed. As a result, object detection has
already been widely used in a variety of automatic detection
tasks, such as the autocount of the traffic flow or the
parking lot [62–64], making it the best choice for us to
detect black holes from the images of telescopes. Among
all object detection models, YOLO is considered one of the
most outstanding due to its highly accurate detection,
classification, and superfast computation [50]. The
YOLO family comprises a series of convolution-based
object detection models that have demonstrated strong
detection performance while being incredibly light
[65,66]. This enables real-time detection tasks on devices
with limited computational resources. In particular, we
make use of the Ultralytics package for the YOLO model
[67], which implements these models using the Python

environment and PyTorch framework. Aside from offering
a variety of model architectures with differing pre-trained
parameters and sizes of the model, Ultralytics can also
provide a wealth of functionality for training, testing, and
profiling these models. Various tools are also available for
transforming the trained models into different architectures.
This facilitates the redesign of our model for the detection
of black holes with the YOLO backend.
After obtaining the location of the black hole by the

above BH detection model, it is also important to determine
the parameters of the black hole and its accretion disk (e.g.,
i;ϕ;M; T, etc.), which is also performed by the deep CNN
model in this work. There are lots of famous deep CNNs for
image recognition, such as VGG [68], ResNet [69],
DenseNet [70], and EfficientNet [71]. After trial and error
for almost all the commonly used CNN models,
EfficientNet-b1 turns out to have the highest accuracy
and low computational resource consumption. Similar to
YOLO, EfficientNet is a family of models consisting of 8
models ranging from b0 to b7. Each successive model
number has more parameters associated with it. In addition
to higher accuracy, this model also has a significant
advantage in terms of scalability. It is based on the concept
of compound scaling, which balances the depth, width, and
resolution of the network. This results in a more accurate
and efficient model compared to its predecessors. To attain
the best outcomes, the model can be scaled by modifying
the parameters of EfficientNet to suit the input image’s size.

This is dissimilar to traditional models that necessitate a
uniform input size and may lose information when com-
pressing larger images. However, in astronomical obser-
vations, every piece of information is exceedingly valuable
and scarce. Therefore, the advent of EfficientNet is a
noteworthy advancement. The ideal size of the input image
varies from 224 to 600 pixels, from b0 to b7.

C. Method

1. Black hole detection model

The YOLO v5, v7 and v8 [72–74] were trained and
tested on the simulated datasets, and YOLOv5 has the best
performance in terms of mAP, F1 score and speed. While
the YOLO model is a popular tool for object detection, its
application in astrophysics is limited. For example, it
uses bounding boxes to locate objects, which is incom-
patible with circle-based celestial bodies. To address this
gap, we have made enhancements to the YOLO backend
and developed a specialized model for detecting circle-
shaped celestial bodies for astronomical applications.
The computational resources are conserved and accuracy
is enhanced by reducing the parameter space to three
dimensions (x, y, and radius) compared to the traditional
bounding boxes’ four dimensions (x, y, width and
height). Furthermore, the inherent rotational symmetry
of circles ensures consistent results regardless of
orientation changes, which is a critical aspect of astro-
nomical observations, such as luminosity calculations.
Additionally, the channels of the convolutional kernel
have been reduced to handle monochrome imagery,
alleviating computational stress. The loss function is
changed to circular Intersection over Union (IoU) calcu-
lation instead of rectangular to align with the model’s
focus on circle detection, as explained in the Appendix.
The metrics used in this paper are listed in Table III, and

the details are as follows: Precision is calculated as the ratio
of true positives (TP, instances correctly identified as
positive) to the sum of TP and false positives (FP, instances
incorrectly identified as positive). Recall is calculated as the
ratio of TP to the sum of TP and false negatives (FN,
instances incorrectly identified as negative),

Precision ¼ TP
TPþ FP

; Recall ¼ TP
TPþ FN

: ð7Þ

Accuracy is calculated by dividing the total number of
instances by the ratio of properly predicted instances. It is
the most commonly used metric in classification. However,
it may not be suitable for our situations, because there is
an imbalanced class distribution. stars are far more than
black holes, making accuracy a misleading metric. In
contrast, F1 score is suitable to deal with this situation.
It is the harmonic mean of precision and recall [cf. Eq. (8)].

TABLE II. Parameter range of the black hole.

Parameter Range Explanation

i ½−90°; 90°� Inclination
ϕ ½0°; 360°� Position angle
M ½1 × 104M⊙; 5 × 104M⊙� Mass

T [1.91, 2.06, 2.69, 3.47] (×104K) Temperature
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It provides a more impartial assessment of the model’s
efficacy by taking into account both FP and FN,

F1 ¼
2 × Precision × Recall
Precisionþ Recall

: ð8Þ

Intersection over union (IoU) is a measure of the overlap
between the predicted bounding circle and the ground truth
bounding circle. When the IoU is 0.5 or greater, the
prediction is considered a true positive. For the detailed
formula see Eqs. (A1) and (A2) in the Appendix.
Mean average precision (mAP): There are two versions

of mAP, The first one, mAP½0.5�, is calculated by consid-
ering predictions with an IoU threshold of 0.5 or higher as
correct detections. The mAP½0.5� evaluates how well the
algorithm performs when the bounding circles have at least
a 50% overlap with the ground truth. Another version:
mAP½0.5∶0.95�, considers a range of IoU thresholds, specifi-
cally from 0.5 to 0.95 with some interval (here we use 0.05
intervals). It provides a more detailed evaluation by taking
into account detections at various levels of overlap with the
ground truth. So it gives a more comprehensive view of the
algorithm’s performance across different levels of precision
and recall. Considering mAP½0.5∶0.95� is more accurate and
comprehensive [75], the model is evaluated by 90% of
mAP½0.5∶0.95� and 10% of mAP½0.5�.
The working flows of our model are shown in Fig. 8.

Assume that our model outputs N bounding circles, we will
receive N detected labels (BH or star) as well as their
corresponding coordinates and confidence values.
Assume that the model’s prediction is a black hole

and its confidence value is x. Then we should also

TABLE III. Descriptions and applications of the metrics used in this study.

Metric Description Application in this study

Precision The ratio of true positive detections to the total number of positive detections
(true positivesþ false positives). It measures the accuracy of the positive
predictions.

Detection

Recall The ratio of true positive detections to the total number of actual positive
instances (true positivesþ false negatives). It measures the ability to find all
relevant instances.

Detection

Accuracy The ratio of correctly predicted instances (both positive and negative) to the total
number of instances. It provides an overall measure of the model’s
performance. Applied when dataset is balanced.

Detection and
classification of T

F1 score The harmonic mean of Precision and Recall, providing a balance between the
two metrics. It is useful when both Precision and Recall are important,
especially for unbalanced datasets.

Detection

mAP½0.5� Mean Average Precision at IoU threshold 0.5. It evaluates performance of a
detection model.

Detection

mAP½0.5∶0.95� Mean Average Precision averaged over multiple IoU thresholds from 0.5 to
0.95. More comprehensive than mAP½0.5�

Detection

MAE Mean Absolute Error, which measures the average magnitude of errors between
predicted and true values. It is used for continuous parameter estimation.

Parameter estimation
of i, ϕ, and M

Receive detections from the model

Pass the threshold
 of confidence?

Create a 2*n matrix and calculatethe 

IOU between remaining n detections 

and 2 true labels (BH and star)

Discard the predictions, Not 

discussed in confusion matrix.
False

Pass the threshold 
of IOU?

Incorrectly detect the background 

as BH or star. Stored in the third 

column of the confusion matrix

True

Detected label
is correct?

e.g. Incorrectly detect BH as 

star .Stored in the (star, BH) of the 

confusion matrix.

Correctly detect the object (Stored in 

the diaganol elements of the confusion 

matrix)

All true labels

are discussed?

e.g. BH is not detected. Stored in 

the third row of the confusion 

matrix.

Finished

False

False

True

False

FIG. 8. The flowchart of the black hole detection model. The
normalized confusion matrix for the classification of BH, star and
background is shown in Fig. 9.
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have a confidence level ranging from 0 to 1 to
describe how cautious the prediction is. When x <
confidence, the prediction is not valid and discarded.
When x > confidence, the prediction is a black hole.
Then, we calculate the IoU between the predicted circle
and the ground truth circle. If the IoU is greater than a
threshold (0.5 for example) and the label is correct, the
prediction is considered correct.
Then all the N detections from the model would be used

to calculate the confusion matrix. The normalized

confusion matrix is shown in Fig. 9. There are actually
three classes here: black hole, star, and background.
Therefore, we have two sets of precision, recall, and F1
scores, which are all functions of confidence level and
IoU threshold. When defining black holes as the positive
class, stars and background are considered negative,
yielding one set of precision, recall, and F1 scores.
When defining stars as the positive class, black holes
and background are considered negative, yielding another
set. The final precision, recall, and F1 scores are the
averages of these two sets.
As the confidence level increases, the model predicts

more cautiously, and its predictions have higher credibility.
When we change the confidence level, the model’s
precision, recall and F1 score will change, as shown in
Figs. 10(a), 10(c), and 10(d). precision-recall curve is also
shown in Fig. 10(b), from which the average precision (AP)
is calculated, which is the area under the curve. The mAP is
the average of APs for black hole and star. The mAP½0.5∶0.95�
is the average of APs for all IoU thresholds from 0.5 to
0.95. The mAP½0.5� is the average of APs for IoU threshold
0.5. The mAP½0.5∶0.95� is more comprehensive and accurate
than mAP½0.5�.
Since the effective variable affecting the resolution is the

angular size of the accretion disk θAD, we fix the obser-
vation distance and vary the size of the black hole accretion
disk in practice, with the assumption that the accretion disk
size is proportional to the black hole mass. Four metrics are
selected to measure the accuracy of the model, which are
mAP½0.5� and mAP½0.5∶0.95� for positioning capacity, and
precision and recall for classification capacity. We have
fixed the training period to 100 and the total images to
1000. For detailed configurations and hyperparameters of
the model, see Table IX in the Appendix. The validation
metrics with the change of training epoch are shown in the
Appendix, where the angular size of the accretion disk is
1.78θc. It indicates that our model has a stable training
process and a converged result.

FIG. 9. Normalized confusion matrix for the classification of
BH, star and background, where the x-axis is the ground truth and
the y-axis is the prediction, θAD ¼ 2.09θc and the BH/star ratio is
1=10. For example, the (1, 1) element means that 95% of the stars
are correctly predicted as star, while the (1, 2) element means that
3.5% of the black holes are incorrectly predicted as star. Each
entry is normalized by the sum of the column. Because the model
did not count background predicted as background, only the
background misclassified as black hole and star is shown, so
the (3, 3) element is labeled as 0%, which means that among the
misclassified background, 76% are predicted as black hole and
24% are predicted as star.

FIG. 10. F1 scores-confidence curve, precision-recall curve, precision-confidence curve and recall-confidence curve, where θAD ¼
2.09θc and the BH/star ratio is 1=10. In (b), the average precision (AP) for black holes and stars with the IoU threshold of 0.5 are
calculated by integrating from 0 to 1 and shown in the legend, respectively. And the mean average precision (mAP) is the average of AP
for black holes and stars. (a) F1 score. (b) Precision-recall curve. (c) Precision-confidence curve. (d) Recall-confidence curve.
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2. Parameter estimation model

To reduce computing time and power consumption, we
utilized transfer learning for the convolutional layer in our
model. Specifically, we used pre-trained weights from
EfficientNet trained on ImageNet dataset for the convolu-
tional layer in our regression and classification model. This
approach resulted in improved accuracy values compared
to using raw models with randomly initialized parameters.
We chose the b1 model with 7.8 million parameters, which
is practical for our experimental setup compared to the b5,
b6, and b7 models with 30M, 43M, and 66M parameters,
respectively.
The four fully connected layers are designed by our-

selves, and the final output is the predicted parameter (e.g.,
i;M;ϕ). Considering there are many ways to implement the
model, the specific network architecture is shown in Fig. 7.
The parameters of input and output are shown in Table VIII
in the Appendix, where N is the batch size. Every fully
connected layer follows a ReLU activation function and a
dropout layer with a dropout rate of 0.5.
The loss function for i, M is mean square error (MSE),

L ¼ 1

N

XN
n¼1

ðxn − ynÞ2; ð9Þ

where N is number of objects and x, y is prediction and
ground truth respectively. For ϕ ranging from ½0; 2π�, the
loss function is periodic MSE,

L ¼ 1

N

XN
n¼1

minfðxn − ynÞ2; ð360° − xn þ ynÞ2g; ð10Þ

and the metric for the regression task is mean absolute error
(MAE)1: ln ¼ jxn − ynj and MAE ¼ meanðlnÞ. For the
classification task, the loss function is cross-entropy loss,

L ¼ −
X4
j¼1

yj logpj; ð11Þ

where pj is the predicted probability, yj is a boolean value
indicating whether the class label j is the proper classi-
fication. In our work, there are four distinct temperatures of
the accretion disk. And the metric for classification is
accuracy.
The model is trained using 100 epochs and the 27 018

images. We have used Bayesian optimization to select the
optimal hyperparameters, including learning rate, L2 regu-
larization coefficients, and dropout rate during the training
of the model. All subsequent results are from the models

with optimal hyperparameters. The training system utilized
a Gen Intel (R) i9-13900Kwith 24 vCPU cores and 128 GB
of RAM, along with a single NVIDIA GeForce RTX 4070
with a 12 GB graphical processing unit. The environment
includes Windows 11, Python 3.9.12, Torch 2.2.1, and other relevant
software.

IV. TESTS

A. Unbalanced datasets

In real observations, one of the challenges is that the
datasets are unbalanced, where most of the objects are star
and few are black holes. In these unbalanced datasets,
conventional accuracy may be a misleading indicator,
making our model evaluation a major challenge. Our
solution is to make the black hole a positive class and
set the proper confidence level to have a larger F1 score.
The F1 scores of black holes, star and overall with the
change of confidence are shown in Fig. 10. The F1 score
reaches the maximum of 0.97 when the confidence level is
0.625, which is close to the desired neutral 0.5. The F1
score between 0.2 and 0.8 is flat, which indicates our model
is insensitive to the change of confidence. These prove the
good performance of our model in unbalanced datasets. So
we simply choose the confidence level as 0.5 in the
subsequent discussion.
To test the ability of our model to handle unbalanced

datasets, we generate three groups of datasets, with the BH/
star ratio of 1=3, 1=10, and 1=100 respectively, and
θAD ¼ 1.6279θc. All other configurations are identical to
the training process in Sec. III C 1. The results are shown in
Table IV. When the ratio decreases, mAP also decreases
because the unbalanced datasets cause unbalanced training.
Since the final precision and recall are averages of those

for black holes and stars, their values are influenced by both
classes. When black holes are positive and the number of
stars increases, FP rise, decreasing precision. Conversely,
when stars are positive and their number increases, FN rise,
decreasing recall.
The table shows that the final metrics primarily reflect

the characteristics when stars are positive, indicated by
increased precision and decreased recall. This is likely
because the small number of black holes means changes in
star numbers have little impact on precision and recall for
black holes, but significantly affect those for stars.

TABLE IV. Four metrics with the change of BH/star ratios,
where θAD ¼ 1.6279θc.

BH=star mAP½0.5� mAP½0.5∶0.95� Precision Recall

1=3 0.97036 0.74807 0.91688 0.92440
1=10 0.95035 0.69731 0.95712 0.88908
1=100 0.90464 0.70239 0.95275 0.85548

1We have also tested training with MAE as the loss function,
but both the training speed and validation accuracy are not as
good as MSE.
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To sum up, even if the dataset is unbalanced, the result
remains satisfactory, indicating that our model is robust to
unbalanced datasets.

B. Angular size metrics

It is important to analyze the influence of the resolution
on the performance of the model. As a result, the model is
trained under different θ. We define the following regions:
ISCO range denotes min θISCO < θc < max θISCO, and AD
range denotes min θAD < θc < max θAD. They are all
ranges rather than points because the masses of black
holes in images are different. Transition range refers to the
region in between. Normal resolution (Super resolution)
denotes that the black hole is larger (smaller) than θc. Since
rISCO ¡rAD, it is clear that a larger angular size is needed to
see a smaller object clearly. So the θISCO range is larger than
θAD range.
Considering the model has different metrics for different

output parameters, we should have a unified metric defined
in the range [0, 1]. For the detection model, the perfor-
mance is defined as the mAP½0.5�. For the regression
model, the performance is calculated in a normalized way:
1 −MAE=MAEmax, where MAEmax is MAE of the mean
response. When the model has no informative training data,
it defaults to predicting the mean of the target distribution,

which can minimizes the mean absolute error (MAE),
compared to predict other value instead. Mean response is
the worst result we can get. For instance, for the inclination
i∈ ½−90°; 90°� with a uniform distribution. If the image has
no information, the trained model would just guess i ¼ 0,
the MAE is the maximum error, namely 45°. Essentially,
this is the maximum error we can get.
For the classification of temperature, the performance

is defined as the normalized accuracy: ðAcc−AccminÞ=
ðAccmax−AccminÞ, where Accmin and Accmax are the mini-
mum and maximum accuracy, respectively. Accuracy is
used here because our dataset is relatively balanced and the
error are evenly distributed on both sides of the diagonal
[cf. Fig. 13]. If the model’s performance is lower than the
midpoint (mean of the max and the min), it is deemed to
have lost its screening capability.
To describe the requirement for the resolutions, we

also define the midpoint angle as θhalf where the model
has half of the performance, which is also the minimum
resolvable angle. For example, θhalf for mAP is where
mAP ¼ ðmAPmax þmAPminÞ=2. The results are shown in
Table V. The first row is the model, the second column is
the value at θhalf . and the third column is the correspond-
ing θhalf .
Each metric with the change of θ for detection and

recognition is shown in Figs. 11 and 12, respectively. For
the detection model and classification model, the perfor-
mance would retain a lot even when θAD ¼ θc. For the BH
detection, the model does not lose its ability until θAD ¼
0.54θc in terms of mAP½0.5�. For the classification of
temperature, the model still has the accuracy of 89%
when θAD ¼ θc and retains its functionality until
θAD ¼ 0.69θc. The result shows that even if the shadow
is indistinguishable in the context of the classical
Rayleigh criterion, it can still be identified by our NN
model, suggesting the properties of superresolution detec-
tion of NNs [76], which also indicates that our model has
an exciting ability to extract every little information from

TABLE V. Models’ half performances (in the range [0,1]) and
corresponding minimum resolvable angle θhalf .

Model
Model’s half
performance Corresponding θhalf

Detectiona 0.596 0.54θc
Regressionb 0.445 1.48θc
Classificationc 0.515 0.69θc

aCalculated by mAP½0.5�.bCalculated by the normalized MAE of inclination.
cCalculated by the model’s accuracy of temperature.

FIG. 11. mAP½0.5�, mAP½0.5∶0.95�, precision and recall for different θ, where each color range denotes a region of iconic angular size,
which is explained in Sec. IV B. ISCO range: ½min θISCO;max θISCO�. AD range: [min θAD;max θAD�. They are all ranges rather than
points because the masses of black holes in images are different. Transition range is in between. Normal resolution (Super resolution):
black hole is larger (smaller) than θc. Note that, the x-axis is reversed to show the superresolution region on the right.
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the superblurred image. However, for the estimation of i
and M, the model has not reached the edge of super-
resolution. The model has half of its functionality when
θAD ≈ 1.5θc (or θISCO ≈ θc). And it almost loses all of its
ability when θAD reaches θc. And for the estimation of ϕ,
the performance of our model is not that satisfactory.
Although the model still has half of the functionality until
θAD ≈ 0.7θc, its overall performance is almost below 0.6.
The probable reasons are as follows: The detection and
estimation for ϕ and T of black holes are mainly based on
the outline shape and color scale of the image, so even if
θAD < θc, some part of the information will still be
retained. For the regression of i and M, the ability of
our model starts to decline after the diffraction limit of the
ISCO is reached (θISCO < θc). When θISCO < θc, the
shadow will be connected to a facula and thus difficult
to distinguish the inclination i. As for the estimation of M
(infer from the size of the shadow), when θAD > θc, the
size of PSF is much larger than that of the shadow, so
the size of the shadow in the image no longer depends on
the size of the shadow itself but on the size of the PSF,
which makes it difficult to estimate.
We have visualized the degree of conformity between

prediction and ground truth for i,M, and T, see Fig. 13. The
first row is the scatter plot for i. The “X” shaped plots
indicate that the MAE of i goes up as jij increases. The

second row is the violin plot for M (inferred by the size of
its shadow), which shows the distribution of prediction
on the y-axis for each ground truth on the x-axis. The
predictions gradually go diffuse and inaccurate as θ
increases. The third row shows the confusion matrices
for the classification of T. The data is distributed on the
diagonal and spread out when θ increases. The error is
shown as skymaps in Fig. 14, where latitude and longitudes
denote i and ϕ respectively. These plots show that errors are
mainly distributed in the part with a larger inclination
angle. The data of the skymap is obtained by piecewise
linear interpolator for interpolation and nearest neighbor
interpolator for extrapolation in SciPy. The former is a
method of triangulation of the input data using Qhull’s
method [77], followed by the linear center of gravity
interpolation on each triangle.
To sum up, our model achieves the high performance of

black hole detection and parameter estimation by the
maturity of a pre-trained YOLO, EfficientNet model and
our proper modification. According to the results above,
minimum resolvable angular size and maximum obser-
vation distances obtained by different discriminants or
models are shown in Table VI, and observed distances
correspond to a fixed black hole mass of 4 × 104M⊙.
Black holes that were ejected from the Hyades in the last
150 Myr display a median distance ∼80 pc (260.8 ly)

FIG. 12. Performance of recognition model for different angular sizes of images, where each color range denotes a region of iconic
angular size, which is explained in Sec. IV B. ISCO range: ½min θISCO;max θISCO�. AD range: [min θAD;max θAD�. They are all ranges
rather than points because the masses of black holes in images are different. Transition range is in between. Normal resolution
(superresolution): Black hole is larger (smaller) than θc. The first row displays the model’s normalized MAE for inclination and position
angle. The second row displays the normalized MAE and accuracy for mass and temperature, respectively. Note that, the x-axis is
reversed to show the superresolution region on the right.
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FIG. 13. The ability of our model for parameter estimations. The first row shows the scatter plot of i, where the x-axis is the prediction
and the y-axis is the ground truth. Green, blue-green and blue indicate errors belong to [0, 0.2MAE], [0.2MAE, 0.5MAE], > 0.5MAE,
respectively. The second row is a group of violin plots. The x-axis is the ground truth of size (px), which are integers ranging from 64 to
75. Each “violin” shows the distribution of prediction for each ground truth, and the yellow dots are the baselines. The third row shows
the confusion matrix of the classification for T.

FIG. 14. Skymap of absolute error of inclination and position angle, denoted by latitude and longitudes respectively. The color
indicates the sum of absolute error for inclination and position angle (deg).
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from the Sun [31]. Therefore, the methodology presented
in this work might detect black holes in this range,
according to Table VI.

C. Model tests with M87*

Although the model performs well in simulated training,
validation, and test sets, its real-world performance in
detecting black hole shadows is what truly matters. To
test the model’s ability to detect real black holes, we scaled
down an image of M87* observed by the EHT and added it
to the generation pipeline along with other objects and
background noise. The results are presented in Fig. 15.
In this task, we first convert the M87* [1] black hole

captured by the EHT into a grayscale image and compress it
to 40 × 40, which is then fed into the data pipeline of the
telescope simulation. We make the black hole’s angular size
20 μas and rotate it clockwise by 88° (the angle is randomly
generated), accompanied by 10 star and random noise to
ensure the SNR < 10. The final image is input into the
model which has been trained in the corresponding

resolution in Sec. III, to get the output of the classification,
location and confidence level. The result is shown in
Fig. 15, indicating that the model can successfully classify
correctly all of a black hole and ten star, and accurately
locate their positions. The confidence level of the black
holes is 0.639, and for all the star is above 0.80, according
to the output of the BH detection model.
The parameter estimationmodel is also tested. According

to the EHT collaboration [5], the position angle of
M87* is 288° and the inclination angle is 17°. In our
coordinate system, take the transform i → ð90° − iÞ and
ϕ → 90° − ð360° − ϕÞ,2 and they should be itrue¼73°,
ϕtrue¼18°. The model outputs ipred¼55.9°, ϕpred ¼ 31.9°.
The posterior distribution of estimated parameters is shown
in Fig. 16. The posterior distribution is obtained by the
distribution of ground truth from the test dataset that satisfies
ipred ≊ 55.9° and ϕpred ≊ 31.9°, where≊ denotes the differ-
ence is less than 10°. Our model performs better in terms
of position angle but has a larger error for the estimation of
the inclination.
In this test, although the input data is not a fully real

image, the model can still detect the black hole and estimate
its parameters accurately, indicating that the model has a
strong generalization ability and can be applied to real-
world tasks.

D. Model tests with real observation

To further validate our model, we selected observational
data from the Hubble Space Telescope near the coordinates

FIG. 15. Model validation results, where the number after the
label denotes the confidence of the prediction (between [0, 1]),
namely the probability that the object is a BH (star).

FIG. 16. Parameter estimation result of M87*. The estimated
value of ϕ is misleading because of the periodicity. The output of
our model for ϕ is 31.9°.

TABLE VI. Min of θAD and max observable distance.

Criterion
Resolution

(μas)
Max

distance (ly)

Rayleigh criterion 10.48 83.08
Black hole detection 5.659 153.9
Inclination estimation 15.51 56.14
Mass estimation 15.93 54.66
Position angle estimation 7.126 122.2
Temperature classification 7.231 120.4

2The spin axis of the accretion disk in this work is vertical
while in Ref. [5] is horizontal. The positive rotation direction for
ϕ in this work is counterclockwise while in Ref. [5] is clockwise.
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23h44m56.761sþ 10d48m57.335s, with a field of view of
8.12 × 4.61 arcminutes, obtained from the SIMBAD data-
base [78]. After converting these images to grayscale, we
applied our model for detection. Since there are no black
holes in the image, all the model’s predictions were
classified as stars. At a 50% confidence level, almost all
luminous objects were labeled by the model, resulting in a
cluttered image. Therefore, we chose an 85% confidence
level for display purposes, as shown in Fig. 17.
The figure demonstrates that the output labels of our

model. However, only a few of the celestial bodies in the
this observational image have been confirmed to be of
specific types (stars, galaxies, quasars, etc.) according to
previous works [79–83]. The majority have not been
verified. This makes it challenging to determine the
accuracy of the predictions for the unverified objects.
However, for verified stars, the model performed excep-
tionally well. It detects all the verified stars with relatively
high confidence levels, most of which are above 90%. The
model’s performance is consistent with the results of the
test dataset, indicating that the model has a strong gener-
alization ability and can accurately identify stars in obser-
vational data.
There are some discrepancies between simulated images

and observational data, leading to certain prediction errors.
For instance, some brighter stars exhibit diffraction spikes
in observations, which the model can identify, but these
affect the confidence level. In this image, the brightest star,

TYC 1173-1099-1, has a predicted confidence level of
86%, whereas some smaller stars have confidence levels up
to 93%. Additionally, the background noise in simulated
images differs from real noise, which may also impact the
model’s performance. Despite these discrepancies, the
model’s performance is still satisfactory, indicating that
our simulated images are realistic enough to applied to real-
world tasks.
However, this result might indicates that the difference

between our simulated data and realistic scenarios is small
enough that the model can still perform well in real-world
situations. Another reason is that the model has a strong
generalization ability and can be applied to real-
world tasks.
To sum up, the data for testing does have something

difference from the simulated data. The M87* image from
EHT are taken from the radio band, and the image from
Hubble also has more complex optical effect such as
diffraction spike and different noise, but our model still
performs well.

V. DISCUSSIONS AND CONCLUSIONS

Our model is based on medium-sized, nonrotating black
holes in the UV band while images of M87* taken by EHT
[5] are based on the supermassive, rotating black hole in the
radio band. However, the difference in terms of spin and
observation wavelength might not perform a significant
role in the detection and parameter estimation task. Our NN
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PM*, Mag: 16.2
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Mag: 11.73

GPM 356.451098+10.767566

Star, Mag: 13.7
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Star, Mag: 13.8
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Star, Mag: 12.9

GPM 356.203048+10.917600

Star, Mag: 14.2

2MASS J23450307+1057174

Star, Mag: 15.5

GPM 356.409365+10.905100

Star, Mag: 14.4
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FIG. 17. Star objects in the test dataset, where all the objects are labeled as stars by the model. The confidence value is shown in the
blue box. All the verified stars is labeled with a orange box. PM* means high proper motion star, which is a star that exhibits a significant
change in its position on the sky over time due to its own motion through space relative to the Sun. For presentation purposes, the
original colored image was used, but the images input into the model are in grayscale.
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model recognizes a black hole by its doughnutlike shape,
which is nearly identical in the ratio band (see Fig. 1 in
[84]) and UV band (see Fig. 4). Additionally, according to
the GRMHD simulation, the spin of the black hole mainly
affects the size of its shadow rather than its shape at high
temperatures (cf. the first row of Fig. 2 in [5]). That is the
reason why our model can still get a decent result despite
the huge difference between the model’s training data and
the real black hole. This indicates that the model has a
certain degree of robustness and generalization ability.
Our model is underestimated by the calculations in

Sec. III. Compressing a 3072 × 3072 image to 1024 ×
1024 during image processing results in some loss of
information in image quality for our model’s input data.
There is also a loss of color information when only
considering the luminosity. Additionally, it is important
to note that the actual black hole is a Kerr black hole, and
the accretion disk of a Kerr black hole may be larger than
that of a Schwarzschild black hole depending on the
direction of rotation and other factors [13]. The size and
temperature of a black hole’s accretion disk are determined
by various parameters, such as the accretion rate, which can
vary depending on the environment surrounding the black
hole [19]. This variability allows for the existence of larger
black holes with larger accretion disks, which are easier to
observe. The advancement of telescope manufacturing has
led to the launch of larger and more advanced telescopes
into space, such as the James Webb Space Telescope
(JWST) [85] with a 6.5 m aperture. This development
demonstrates that humans can launch larger optical tele-
scopes with smaller imaging FWMH into space, expanding
the observation range of the model. Additionally, the
ensemble NN model is highly versatile. It can be used
to detect black holes, as demonstrated in this paper, and can
also be applied to other tasks, such as identifying other
celestial objects or galaxies. One way to achieve this is by
replacing the training data with simulation images of the
objects. The model is applicable to other telescopes,
including radio and optical interferometers operating in
the ratio, infrared and visible wavelength bands. However,
the telescope simulations presented in this paper should be
replaced with simulation programs for the corresponding
telescopes.
To sum up, this work presents an ensemble NN model

with YOLO and EfficientNet as the backend. The model
can detect and recognize black holes in both the simulated
images and the real-world task, which has demonstrated
that it can accurately work in real-world situations for
detecting black holes and estimating parameters for poten-
tial candidates.
First, we have constructed a data pipeline consisting of

accretion disk ray-tracing and telescope simulation.
Realistically shaped black holes are obtained through
reverse ray tracing. Telescopic simulations were then
conducted, revealing that black holes are indistinguishable

when their angular sizes of ISCO are smaller than the
imaging FWHM. These simulated observations were ulti-
mately used to train the ensemble NN model.
Using the dataset above, the model structure and loss

function are altered based on the YOLO and EfficientNet as
the backend, followed by training until convergence. For
black hole detection, the model has a high detection
performance, which achieves mAP½0.5� values of 0.9176
even when θAD reaching the imaging FWHM (θc), and does
not lose its detection ability until 0.54θc, indicating that our
detection model can go somewhat beyond the limits of the
traditional Rayleigh diffraction limit. This is also the case
for the estimation of T and ϕ, with the requirement of
θAD ≳ 0.7θc. In other words, superresolution recognition
beyond the traditional optical diffraction criterion is real-
ized. On the other hand, recognition for i and M requires a
significantly higher resolution than detection, with a mini-
mum requirement of θAD ≳ 1.5θc, which is natural, since
estimating the parameters of black holes is more sophis-
ticated than simply detection them and thus requires a
higher resolution.
Our model was tested on observational data from both

the Hubble Space Telescope and the Event Horizon
Telescope (EHT). For the Hubble data near coordinates
23h44m56.761s þ10d48m57.335s, the model successfully
identified all stars with confidence levels mostly above
90%. Additionally, when tested on the image of M87* from
the EHT, the model accurately distinguished the black
hole with a confidence level of 0.639 and identified all
stars with confidence levels above 0.8. These results
demonstrate the model’s strong generalization ability
and its applicability across different observational data
sets. However, there are some discrepancies between
simulated images and observational data, which may
affect the model’s performance. For example, some
brighter stars exhibit diffraction spikes in observations,
which can impact the confidence level of the model’s
predictions. The background noise in simulated images
also differs from real noise, which may affect the model’s
performance. For the test with M87*, the data is from
radio band, which is different from our model.
Despite these discrepancies, the model’s performance is

still satisfactory, indicating that the difference between our
simulated data and realistic scenarios is small enough that
the model can still perform well in real-world situations.
In this paper, we do not consider other luminous objects

such as galaxies and quasars, but they may interfere with
the identification of black holes. For example, some
galaxies might also show the shape of black holes, and
larger galaxies may affect the imaging quality of the
observation picture. To solve this issue, we can increase
the complexity of the celestial body in the training
data. Additionally, interstellar dust may block high-energy
ultraviolet rays, which can affect the accuracy of our
observations.
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In future work, it may be possible to obtain more realistic
and accurate images of black holes by rendering Kerr black
holes. The training data should include other celestial
bodies such as galaxies and quasars to better simulate
real-world observations. To reduce discrepancies between
simulated images and observational data, we can use a
portion of real observation data to the training data. The
calculation of PSF should be refined to better model the
diffraction effects, aberrations, and other imperfections of
the telescope. The effect of stardust should also be
considered. Additionally, Bayesian statistics can be used
to compute the posterior distribution of the parameters in
parameter estimation, instead of only computing the
parameter values.
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APPENDIX

Each output image in Sec. II is of size 3072 × 3072,
exactly the pixel number of CCD. It is subsequently
compressed to size 1024 × 1024. The reason for not using
the 1024 × 1024 image directly is that due to the short UV
wavelength, the continuum spectrum of the PSF will show
a very sharp peak, and if the input image is small, the
sampling interval will be too large during sampling,
resulting in sampling distortion. After testing, the size
of 3072 × 3072 is just enough to meet the requirements,
see Fig. 6(b).
The example of labels for the detection model is shown

in Table VII, where the first line of the table indicates that
there is a bounding circle for the black hole in the
coordinate (0.43, 0.83) and radius 0.016, each value
relative to the whole image. (“1” accounts for black holes
and “0” accounts for star.)
Since we have changed the original bounding boxes of

the YOLO model to bounding circles, recalculation of IoU
is needed. First, find the distance between the centers of
two circles d. Check for three conditions: If d > r1 þ r2,

the circles do not intersect. If d ≤ jr1 − r2j, one circle is
completely inside the other. Otherwise, the circles intersect,
and you need to calculate the area of intersection. The area
of intersection ðAintersectionÞ:

Aintersection ¼ r21 arccos

�
d2 þ r21 − r22

2dr1

�

þ r22 arccos

�
d2 þ r22 − r21

2dr2

�

−
1

2
ðð−dþ r1 þ r2Þðdþ r1 − r2Þ

× ðd − r1 þ r2Þðdþ r1 þ r2ÞÞ1=2; ðA1Þ

The area of the union ðAunionÞ is Aunion ¼ πr21þ
πr22 − Aintersection. Finally, calculate the loU:

IoU ¼ Aintersection

Aunion
ðA2Þ

TABLE VII. Example of a labeled file.

Class x coordination y coordination Radius

1 0.431429 0.8350 0.015714
0 0.240357 0.5335 0.016429
0 0.761071 0.6615 0.016429
0 0.037500 0.5605 0.010714
0 0.325000 0.5580 0.010000
0 0.594643 0.0225 0.009286

TABLE VIII. Model structure of recognition model.

Name Type Output size

Initial Input image ðN; 240; 240; 3Þ
EfficientNet top Pre-trained model ðN; 8; 8; 1280Þ
Average pool Global average pool ðN; 1280Þ
Dropout Dropout layer ðN; 1280Þ
FC1 Linear þ ReLU ðN; 256Þ
Dropout Dropout layer ðN; 256Þ
FC2 Linear þ ReLU ðN; 32Þ
Dropout Dropout layer ðN; 32Þ
FC3 Linear þ ReLU ðN; 1Þ

TABLE IX. Parametrization of the BH detector model.

Hyper-para Value Hyper-para Value

Learning rate 0.01 Epochs 100
Momentum 0.937 Image size 1024
Weight decay 0.0005 Augmentation True
Batch size 16 Pre-trained True
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The BH detector model is obtained after tuning hyper-
parameters. The training is started with the pretrained
weights using the ImageNet Train dataset [94] provided

by the Ultralytics YOLOv5 project. The optimizer is set to
the stochastic gradient descent (SGD) and the optimal
parameters are shown in Table IX:

[1] K. Akiyama, A. Alberdi, W. Alef et al. (The Event Horizon
Telescope Collaboration), First M87 Event Horizon Tele-
scope results. I. The shadow of the supermassive black hole,
Astrophys. J. Lett. 875, L1 (2019).

[2] K. Akiyama, A. Alberdi, W. Alef et al. (The Event Horizon
Telescope Collaboration), First M87 Event Horizon Tele-
scope results. II. Array and instrumentation, Astrophys. J.
Lett. 875, L2 (2019).

[3] K. Akiyama, A. Alberdi, W. Alef et al. (The Event Horizon
Telescope Collaboration), First M87 Event Horizon Tele-
scope results. III. Data processing and calibration, As-
trophys. J. Lett. 875, L3 (2019).

[4] K. Akiyama, A. Alberdi, W. Alef et al. (The Event Horizon
Telescope Collaboration), First M87 Event Horizon Tele-
scope results. IV. Imaging the central supermassive black
hole, Astrophys. J. Lett. 875, L4 (2019).

[5] K. Akiyama, A. Alberdi, W. Alef et al. (The Event Horizon
Telescope Collaboration), First M87 Event Horizon Tele-
scope results. V. Physical origin of the asymmetric ring,
Astrophys. J. Lett. 875, L5 (2019).

[6] K. Akiyama, A. Alberdi, W. Alef, J. C. Algaba, R. Anantua,
K. Asada, R. Azulay, U. Bach, A.-K. Baczko, and D. Ball,
First Sagittarius A* Event Horizon Telescope results. I. The
shadow of the supermassive black hole in the center of the
Milky Way, Astrophys. J. Lett. 930, L12 (2022).

[7] K. Akiyama, A. Alberdi, W. Alef, J. C. Algaba et al. (The
Event Horizon Telescope Collaboration), First Sagittarius
A* Event Horizon Telescope results. II. EHT and multi-
wavelength observations, data processing, and calibration,
Astrophys. J. Lett. 930, L13 (2022).

[8] K. Akiyama, A. Alberdi, W. Alef et al. (The Event Horizon
Telescope Collaboration), First Sagittarius A* Event Hori-
zon Telescope results. III. Imaging of the galactic center
supermassive black hole, Astrophys. J. Lett. 930, L14
(2022).

[9] The Event Horizon Telescope Collaboration, First Sagit-
tarius A* Event Horizon Telescope results. VI. Testing the
black hole metric, Astrophys. J. Lett. 930, L17 (2022).

[10] K. Schwarzschild, On the gravitational field of a mass point
according to Einstein’s theory, Sitzungsber. Preuss. Akad.
Wiss. Berlin (Math. Phys.) 1916, 189 (1916), https://ui
.adsabs.harvard.edu/abs/1999physics...5030S.

[11] J. Nättilä and A.M. Beloborodov, Heating of magnetically
dominated plasma by Alfvén-wave turbulence, Phys. Rev.
Lett. 128, 075101 (2022).

[12] V. Perlick and O. Y. Tsupko, Calculating black hole shad-
ows: Review of analytical studies, Phys. Rep. 947, 1 (2022).

[13] R. F. Penna, A. Sadowski, and J. C. McKinney, Thin-disc
theory with a non-zero-torque boundary condition and

comparisons with simulations, Mon. Not. R. Astron. Soc.
420, 684 (2012).

[14] X. Yang, S. Yao, J. Yang, L. C. Ho, T. An, R. Wang, W. A.
Baan, M. Gu, X. Liu, and X. Yang, Radio activity of
supermassive black holes with extremely high accretion
rates, Astrophys. J. 904, 200 (2020).

[15] D. Psaltis, Testing general relativity with the Event Horizon
Telescope, Gen. Relativ. Gravit. 51, 137 (2019).

[16] J. Baldwin, M. Beckett, R. Boysen, D. Burns, D. Buscher,
G. Cox, C. Haniff, C. Mackay, N. Nightingale, and J.
Rogers, The first images from an optical aperture synthesis
array: Mapping of capella with coast at two epochs, Astron.
Astrophys. 306, L13 (1996), https://ui.adsabs.harvard.edu/
abs/1996A%26A...306L..13B/abstract.

[17] J. Armstrong, D. Hutter, E. Baines, J. Benson, R.
Bevilacqua, T. Buschmann, J. Clark III, A. Ghasempour,
J. Hall, and R. Hindsley, The navy precision optical
interferometer (NPOI): An update, J. Astron. Instrum. 2,
1340002 (2013).

[18] N. P. Carleton, W. A. Traub, M. G. Lacasse, P. Nisenson,
M. R. Pearlman, R. D. Reasenberg, X. Xu, C. M. Coldwell,
A. Panasyuk, and J. A. Benson, Current status of the IOTA
interferometer, in Amplitude and Intensity Spatial Interfer-
ometry II (SPIE, Kona, United States, 1994), Vol. 2200,
pp. 152–165.

[19] M. A. Abramowicz and P. C. Fragile, Foundations of black
hole accretion disk theory, Living Rev. Relativity 16, 1
(2013).

[20] A. Quirrenbach, Optical interferometry, Annu. Rev. Astron.
Astrophys. 39, 353 (2001).

[21] S. N. Tandon et al., In-orbit performance of UVIT and first
results, J. Astrophys. Astron. 38, 14 (2017).

[22] H. Moos, W. Cash, L. L. Cowie, A. Davidsen, A. Dupree, P.
Feldman, S. Friedman, J. Green, R. Green, and C. Gry,
Overview of the far ultraviolet spectroscopic explorer
mission, Astrophys. J. 538, L1 (2000).

[23] N. Scoville, R. Abraham, H. Aussel, J. Barnes, A. Benson,
A. Blain, D. Calzetti, A. Comastri, P. Capak, and C. Carilli,
Cosmos: Hubble Space Telescope observations, Astrophys.
J. Suppl. Ser. 172, 38 (2007).

[24] A. He, J. Tao, P. Wang, Y. Xue, and L. Zhang, Effects of
Born–Infeld electrodynamics on black hole shadows, Eur.
Phys. J. C 82, 683 (2022).

[25] S. Wen, W. Hong, and J. Tao, Observational appearances of
magnetically charged black holes in Born–Infeld electro-
dynamics, Eur. Phys. J. C 83, 277 (2023).

[26] W. Hong, J. Tao, and T. Zhang, Method of distinguishing
between black holes and wormholes, Phys. Rev. D 104,
124063 (2021).

YEQI FANG, WEI HONG, and JUN TAO PHYS. REV. D 110, 063011 (2024)

063011-18

https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.3847/2041-8213/ac6674
https://doi.org/10.3847/2041-8213/ac6675
https://doi.org/10.3847/2041-8213/ac6429
https://doi.org/10.3847/2041-8213/ac6429
https://doi.org/10.3847/2041-8213/ac6756
https://ui.adsabs.harvard.edu/abs/1999physics...5030S
https://ui.adsabs.harvard.edu/abs/1999physics...5030S
https://ui.adsabs.harvard.edu/abs/1999physics...5030S
https://ui.adsabs.harvard.edu/abs/1999physics...5030S
https://ui.adsabs.harvard.edu/abs/1999physics...5030S
https://ui.adsabs.harvard.edu/abs/1999physics...5030S
https://ui.adsabs.harvard.edu/abs/1999physics...5030S
https://doi.org/10.1103/PhysRevLett.128.075101
https://doi.org/10.1103/PhysRevLett.128.075101
https://doi.org/10.1016/j.physrep.2021.10.004
https://doi.org/10.1111/j.1365-2966.2011.20084.x
https://doi.org/10.1111/j.1365-2966.2011.20084.x
https://doi.org/10.3847/1538-4357/abb775
https://doi.org/10.1007/s10714-019-2611-5
https://ui.adsabs.harvard.edu/abs/1996A%26A...306L..13B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...306L..13B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...306L..13B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...306L..13B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...306L..13B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...306L..13B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...306L..13B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...306L..13B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...306L..13B/abstract
https://ui.adsabs.harvard.edu/abs/1996A%26A...306L..13B/abstract
https://doi.org/10.1142/S2251171713400023
https://doi.org/10.1142/S2251171713400023
https://doi.org/10.12942/lrr-2013-1
https://doi.org/10.12942/lrr-2013-1
https://doi.org/10.1146/annurev.astro.39.1.353
https://doi.org/10.1146/annurev.astro.39.1.353
https://doi.org/10.1007/s12036-017-9432-2
https://doi.org/10.1086/312795
https://doi.org/10.1086/516580
https://doi.org/10.1086/516580
https://doi.org/10.1140/epjc/s10052-022-10637-x
https://doi.org/10.1140/epjc/s10052-022-10637-x
https://doi.org/10.1140/epjc/s10052-023-11431-z
https://doi.org/10.1103/PhysRevD.104.124063
https://doi.org/10.1103/PhysRevD.104.124063


[27] X. Meng and P. Wang, Modified Friedmann equations in
r−1 -modified gravity, Classical Quantum Gravity 20, 4949
(2003).

[28] S. S. Doeleman et al., Event-horizon-scale structure in the
supermassive black hole candidate at the galactic centre,
Nature (London) 455, 78 (2008).

[29] A. E. Broderick, T. Johannsen, A. Loeb, and D. Psaltis,
Testing the no-hair theorem with Event Horizon Telescope
observations of Sagittarius A*, Astrophys. J. 784, 7 (2014).

[30] T. Johannsen, Testing the no-hair theorem with observations
of black holes in the electromagnetic spectrum, Classical
Quantum Gravity 33, 124001 (2016).

[31] S. Torniamenti, M. Gieles, Z. Penoyre, T. Jerabkova, L.
Wang, and F. Anders, Stellar-mass black holes in the Hyades
star cluster?, Mon. Not. R. Astron. Soc. 524, 1965
(2023).

[32] D. Baron, Machine learning in astronomy: A practical
overview, arXiv:1904.07248.

[33] C. Chen, Y. Wang, N. Zhang, Y. Zhang, and Z. Zhao, A
review of hyperspectral image super-resolution based on
deep learning, Remote Sens. 15, 2853 (2023).

[34] J. Y. H. Soo, I. Y. K. A. Shuaili, and I. M. Pathi, Machine
learning applications in astrophysics: Photometric redshift
estimation, AIP Conf. Proc. 2756, 040001 (2023).

[35] L. Medeiros, D. Psaltis, T. R. Lauer, and F. Özel, The image
of the M87 black hole reconstructed with primo, Astrophys.
J. Lett. 947, L7 (2023).

[36] K. Wang, P. Guo, F. Yu, L. Duan, Y. Wang, and H. Du,
Computational intelligence in astronomy: A survey, Int. J.
Comput. Intell. Syst. 11, 575 (2018).

[37] M. Carrasco Kind and R. J. Brunner, TPZ: Photometric
redshift PDFs and ancillary information by using prediction
trees and random forests, Mon. Not. R. Astron. Soc. 432,
1483 (2013).

[38] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T.
Liu, X. Wang, G. Wang, and J. Cai, Recent advances in
convolutional neural networks, Pattern Recognit. 77, 354
(2018).

[39] C. Schaefer, M. Geiger, T. Kuntzer, and J.-P. Kneib, Deep
convolutional neural networks as strong gravitational lens
detectors, Astron. Astrophys. 611, A2 (2018).

[40] C. Chatterjee, L. Wen, F. Diakogiannis, and K. Vinsen,
Extraction of binary black hole gravitational wave signals
from detector data using deep learning, Phys. Rev. D 104,
064046 (2021).

[41] R. Qiu, P. G. Krastev, K. Gill, and E. Berger, Deep learning
detection and classification of gravitational waves from
neutron star-black hole mergers, Phys. Lett. B 840, 137850
(2023).

[42] C. Murali and D. Lumley, Detecting and denoising gravi-
tational wave signals from binary black holes using deep
learning, Phys. Rev. D 108, 043024 (2023).

[43] J. van der Gucht, J. Davelaar, L. Hendriks, O. Porth, H.
Olivares, Y. Mizuno, C. M. Fromm, and H. Falcke, Deep
horizon: A machine learning network that recovers accreting
black hole parameters, Astron. Astrophys. 636, A94 (2020).

[44] A. Popov, V. Strokov, and A. Surdyaev, A proof-of-concept
neural network for inferring parameters of a black hole from
partial interferometric images of its shadow, Astron. Com-
put. 36, 100467 (2021).

[45] C. F. Gammie, J. C. McKinney, and G. Tóth, Harm: A
numerical scheme for general relativistic magnetohydrody-
namics, Astrophys. J. 589, 444 (2003).

[46] M. Mościbrodzka, H. Falcke, and H. Shiokawa, General
relativistic magnetohydrodynamical simulations of the jet in
M87, Astron. Astrophys. 586, A38 (2016).

[47] J. Davelaar, M. Mościbrodzka, T. Bronzwaer, and H. Falcke,
General relativistic magnetohydrodynamical κ-jet models
for Sagittarius A, Astron. Astrophys. 612, A34 (2018).

[48] J.-P. Luminet, Image of a spherical black hole with thin
accretion disk, Astron. Astrophys. 75, 228 (1979), https://ui
.adsabs.harvard.edu/abs/1979A%26A....75..228L/abstract.

[49] E. Bruneton, Real-time high-quality rendering of non-
rotating black holes, arXiv:2010.08735.

[50] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You
only look once: Unified, real-time object detection,
arXiv:1506.02640.

[51] M. Tan and Q. V. Le, EfficientNet: Rethinking model
scaling for convolutional neural networks, arXiv:1905
.11946.

[52] T. Kawashima, M. Kino, and K. Akiyama, Black hole spin
signature in the black hole shadow of M87 in the flaring
state, Astrophys. J. 878, 27 (2019).

[53] V. I. Dokuchaev and N. O. Nazarova, The brightest point in
accretion disk and black hole spin: Implication to the image
of black hole M87*, Universe 5, 183 (2019).

[54] J. H. Krolik and J. F. Hawley, Where is the inner edge of an
accretion disk around a black hole?, Astrophys. J. 573, 754
(2002).

[55] N. I. Shakura and R. A. Sunyaev, Black holes in binary
systems. Observational appearance, Astron. Astrophys. 24,
337 (1973), https://ui.adsabs.harvard.edu/abs/1973A%26A.
...24..337S/abstract.

[56] P. V. Cunha and C. A. Herdeiro, Shadows and strong
gravitational lensing: A brief review, Gen. Relativ. Gravit.
50, 1 (2018).

[57] O. James, E. von Tunzelmann, P. Franklin, and K. S.
Thorne, Gravitational lensing by spinning black holes in
astrophysics, and in the movie interstellar, Classical Quan-
tum Gravity 32, 065001 (2015).

[58] M. A. Bramson, Blackbody radiation laws, in Infrared
Radiation: A Handbook for Applications (Springer US,
Boston, MA, 1968), pp. 41–72.

[59] M. Salaris and S. Cassisi, Evolution of Stars and Stellar
Populations (Wiley, Hoboken, USA, 2006), ISBN 978-0-
470-09219-4.

[60] Hubble Telescope, Official website of the Hubble Telescope
(2024), https://hubblesite.org/home [Online; accessed Feb-
ruary 24, 2024].

[61] T. J. Fellers and M.W. Davidson, National High Magnetic
Field Laboratory, the Florida State University 2010), https://
hamamatsu.magnet.fsu.edu/articles/ccdsnr.html [Online; ac-
cessed February 24, 2024].

[62] F. Sultana, A. Sufian, and P. Dutta, A review of object
detection models based on convolutional neural network,
Intell. Instrum. Comput. 1157, 1 (2020).

[63] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M.
Asghar, and B. Lee, A survey of modern deep learning
based object detection models, Digit. Signal Process. 126,
103514 (2022).

IDENTIFYING BLACK HOLES THROUGH SPACE TELESCOPES … PHYS. REV. D 110, 063011 (2024)

063011-19

https://doi.org/10.1088/0264-9381/20/22/018
https://doi.org/10.1088/0264-9381/20/22/018
https://doi.org/10.1038/nature07245
https://doi.org/10.1088/0004-637X/784/1/7
https://doi.org/10.1088/0264-9381/33/12/124001
https://doi.org/10.1088/0264-9381/33/12/124001
https://doi.org/10.1093/mnras/stad1925
https://doi.org/10.1093/mnras/stad1925
https://arXiv.org/abs/1904.07248
https://doi.org/10.3390/rs15112853
https://doi.org/10.1063/5.0140152
https://doi.org/10.3847/2041-8213/acc32d
https://doi.org/10.3847/2041-8213/acc32d
https://doi.org/10.2991/ijcis.11.1.43
https://doi.org/10.2991/ijcis.11.1.43
https://doi.org/10.1093/mnras/stt574
https://doi.org/10.1093/mnras/stt574
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1051/0004-6361/201731201
https://doi.org/10.1103/PhysRevD.104.064046
https://doi.org/10.1103/PhysRevD.104.064046
https://doi.org/10.1016/j.physletb.2023.137850
https://doi.org/10.1016/j.physletb.2023.137850
https://doi.org/10.1103/PhysRevD.108.043024
https://doi.org/10.1051/0004-6361/201937014
https://doi.org/10.1016/j.ascom.2021.100467
https://doi.org/10.1016/j.ascom.2021.100467
https://doi.org/10.1086/374594
https://doi.org/10.1051/0004-6361/201526630
https://doi.org/10.1051/0004-6361/201732025
https://ui.adsabs.harvard.edu/abs/1979A%26A....75..228L/abstract
https://ui.adsabs.harvard.edu/abs/1979A%26A....75..228L/abstract
https://ui.adsabs.harvard.edu/abs/1979A%26A....75..228L/abstract
https://ui.adsabs.harvard.edu/abs/1979A%26A....75..228L/abstract
https://ui.adsabs.harvard.edu/abs/1979A%26A....75..228L/abstract
https://ui.adsabs.harvard.edu/abs/1979A%26A....75..228L/abstract
https://ui.adsabs.harvard.edu/abs/1979A%26A....75..228L/abstract
https://ui.adsabs.harvard.edu/abs/1979A%26A....75..228L/abstract
https://ui.adsabs.harvard.edu/abs/1979A%26A....75..228L/abstract
https://ui.adsabs.harvard.edu/abs/1979A%26A....75..228L/abstract
https://arXiv.org/abs/2010.08735
https://arXiv.org/abs/1506.02640
https://arXiv.org/abs/1905.11946
https://arXiv.org/abs/1905.11946
https://doi.org/10.3847/1538-4357/ab19c0
https://doi.org/10.3390/universe5080183
https://doi.org/10.1086/340760
https://doi.org/10.1086/340760
https://ui.adsabs.harvard.edu/abs/1973A%26A....24..337S/abstract
https://ui.adsabs.harvard.edu/abs/1973A%26A....24..337S/abstract
https://ui.adsabs.harvard.edu/abs/1973A%26A....24..337S/abstract
https://ui.adsabs.harvard.edu/abs/1973A%26A....24..337S/abstract
https://ui.adsabs.harvard.edu/abs/1973A%26A....24..337S/abstract
https://ui.adsabs.harvard.edu/abs/1973A%26A....24..337S/abstract
https://ui.adsabs.harvard.edu/abs/1973A%26A....24..337S/abstract
https://ui.adsabs.harvard.edu/abs/1973A%26A....24..337S/abstract
https://ui.adsabs.harvard.edu/abs/1973A%26A....24..337S/abstract
https://ui.adsabs.harvard.edu/abs/1973A%26A....24..337S/abstract
https://doi.org/10.1007/s10714-017-2322-8
https://doi.org/10.1007/s10714-017-2322-8
https://doi.org/10.1088/0264-9381/32/6/065001
https://doi.org/10.1088/0264-9381/32/6/065001
https://hubblesite.org/home
https://hubblesite.org/home
https://hamamatsu.magnet.fsu.edu/articles/ccdsnr.html
https://hamamatsu.magnet.fsu.edu/articles/ccdsnr.html
https://hamamatsu.magnet.fsu.edu/articles/ccdsnr.html
https://hamamatsu.magnet.fsu.edu/articles/ccdsnr.html
https://hamamatsu.magnet.fsu.edu/articles/ccdsnr.html
https://hamamatsu.magnet.fsu.edu/articles/ccdsnr.html
https://doi.org/10.1007/978-981-15-4288-6_1
https://doi.org/10.1016/j.dsp.2022.103514
https://doi.org/10.1016/j.dsp.2022.103514


[64] A. Dhillon and G. K. Verma, Convolutional neural network:
A review of models, methodologies and applications to
object detection, Prog. Artif. Intell. 9, 85 (2020).

[65] Y. Amit, P. Felzenszwalb, and R. Girshick, Object detection,
in Computer Vision: A Reference Guide (Springer,
New York, 2021), pp. 875–883.

[66] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, A review of
YOLO algorithm developments, Proc. Comput. Sci. 199,
1066 (2022).

[67] G. Jocher, A. Chaurasia, and J. Qiu, Ultralytics YOLO
(2023), https://github.com/ultralytics/ultralytics.

[68] K. Simonyan and A. Zisserman, Very deep convolutional
networks for large-scale image recognition, arXiv:1409
.1556.

[69] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning
for image recognition, in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR)
(IEEE, Las Vegas, NV, USA, 2016), pp. 770–778,
10.1109/CVPR.2016.90.

[70] G. Huang, Z. Liu, L. van derMaaten, and K. Q.Weinberger,
Densely connected convolutional networks, arXiv:1608
.06993.

[71] M. Tan and Q. V. Le, EfficientNet: Rethinking model
scaling for convolutional neural networks, arXiv:1905
.11946.

[72] S. Tang, S. Zhang, and Y. Fang, HIC-YOLOv5: Improved
YOLOv5 for small object detection, arXiv:2309.16393.

[73] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for real-
time object detectors, arXiv:2207.02696.

[74] D. Reis, J. Kupec, J. Hong, and A. Daoudi, Real-time flying
object detection with YOLOv8, arXiv:2305.09972.

[75] R. Padilla, S. L. Netto, and E. A. B. da Silva, A survey on
performance metrics for object-detection algorithms, in 2020
International Conference on Systems, Signals and Image
Processing (IWSSIP) (IEEE, Niteroi, Brazil, 2020), p. 237.

[76] M. Honma, K. Akiyama, M. Uemura, and S. Ikeda, Super-
resolution imaging with radio interferometry using sparse
modeling, Publ. Astron. Soc. Jpn. 66, 95 (2014).

[77] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, The quick-
hull algorithm for convex hulls, ACM Trans. Math. Softw.
22, 469 (1996).

[78] M. Wenger et al., The SIMBAD astronomical database. The
CDS reference database for astronomical objects, Astron.
Astrophys. Suppl. Ser. 143, 9 (2000).

[79] N. Yu, L. C. Ho, J. Wang, and H. Li, Statistical analysis of
HI profile asymmetry and shape for nearby galaxies, As-
trophys. J. Suppl. Ser. 261, 21 (2022).

[80] V. A. Mager, C. J. Conselice, M. Seibert, C. Gusbar, A. P.
Katona, J. M. Villari, B. F. Madore, and R. A. Windhorst,
Galaxy structure in the ultraviolet: The dependence of
morphological parameters on rest-frame wavelength, As-
trophys. J. 864, 123 (2018).

[81] M. F. Skrutskie et al., The two micron all sky survey
(2mass), Astron. J. 131, 1163 (2006).

[82] Gaia Collaboration, VizieR online data catalog: Gaia EDR3
(Gaia Collaboration, 2020), 10.26093/cds/vizier.1350
(2020).

[83] J. K. Adelman-McCarthy, VizieR online data catalog: The
SDSS photometric catalog, release 8 (Adelman-McCarthy+,
2011) (2011), https://ui.adsabs.harvard.edu/abs/2011yCat
.2306....0A.

[84] Krzysztof Nalewajko, Marek Sikora, and Agata Różańska,
Orientation of the crescent image of M87*, Astron. As-
trophys. 634, A38 (2020).

[85] J. P. Gardner et al., The James Webb Space Telescope,
Space Sci. Rev. 123, 485 (2006).

[86] https://github.com/ebruneton/black_hole_shader.git.
[87] G. Van Rossum and F. L. Drake, Python 3 Reference Manual

(CreateSpace, Scotts Valley, CA, 2009).
[88] Itseez, Open source computer vision library, https://github

.com/itseez/opencv (2015).
[89] P. Virtanen et al. (SciPy 1.0 Contributors), SciPy 1.0:

Fundamental algorithms for scientific computing in Python,
Nat. Methods 17, 261 (2020).

[90] A. Paszke et al., PyTorch: An imperative style, high-perfor-
mance deep learning library, in Advances in Neural In-
formation Processing Systems 32 (Curran Associates, Inc.,
Vancouver, Canada, 2019), pp. 8024–8035.

[91] J. D. Hunter, Matplotlib: A 2d graphics environment, Comput.
Sci. Eng. 9, 90 (2007).

[92] M. L.Waskom, Seaborn: Statistical data visualization, J. Open
Source Software 6, 3021 (2021).

[93] D. Foreman-Mackey, Corner.py: Scatterplot matrices in
Python, J. Open Source Software 1, 24 (2016).

[94] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L.
Fei-Fei, Imagenet: A large-scale hierarchical image
database, in 2009 IEEE Conference on Computer Vision
and Pattern Recognition (IEEE, Miami, USA, 2009),
pp. 248–255.

YEQI FANG, WEI HONG, and JUN TAO PHYS. REV. D 110, 063011 (2024)

063011-20

https://doi.org/10.1007/s13748-019-00203-0
https://doi.org/10.1016/j.procs.2022.01.135
https://doi.org/10.1016/j.procs.2022.01.135
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://arXiv.org/abs/1409.1556
https://arXiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2016.90
https://arXiv.org/abs/1608.06993
https://arXiv.org/abs/1608.06993
https://arXiv.org/abs/1905.11946
https://arXiv.org/abs/1905.11946
https://arXiv.org/abs/2309.16393
https://arXiv.org/abs/2207.02696
https://arXiv.org/abs/2305.09972
https://doi.org/10.1093/pasj/psu070
https://doi.org/10.1145/235815.235821
https://doi.org/10.1145/235815.235821
https://doi.org/10.1051/aas:2000332
https://doi.org/10.1051/aas:2000332
https://doi.org/10.3847/1538-4365/ac626b
https://doi.org/10.3847/1538-4365/ac626b
https://doi.org/10.3847/1538-4357/aad59e
https://doi.org/10.3847/1538-4357/aad59e
https://doi.org/10.1086/498708
https://doi.org/10.26093/cds/vizier.1350
https://doi.org/10.26093/cds/vizier.1350
https://ui.adsabs.harvard.edu/abs/2011yCat.2306....0A
https://ui.adsabs.harvard.edu/abs/2011yCat.2306....0A
https://ui.adsabs.harvard.edu/abs/2011yCat.2306....0A
https://ui.adsabs.harvard.edu/abs/2011yCat.2306....0A
https://ui.adsabs.harvard.edu/abs/2011yCat.2306....0A
https://ui.adsabs.harvard.edu/abs/2011yCat.2306....0A
https://ui.adsabs.harvard.edu/abs/2011yCat.2306....0A
https://ui.adsabs.harvard.edu/abs/2011yCat.2306....0A
https://ui.adsabs.harvard.edu/abs/2011yCat.2306....0A
https://doi.org/10.1051/0004-6361/201936586
https://doi.org/10.1051/0004-6361/201936586
https://doi.org/10.1007/s11214-006-8315-7
https://github.com/ebruneton/black_hole_shader.git
https://github.com/ebruneton/black_hole_shader.git
https://github.com/ebruneton/black_hole_shader.git
https://github.com/itseez/opencv
https://github.com/itseez/opencv
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.00024

