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We have upgraded the MSNRnet framework to MSNRnet-2 by refining the training strategy, drawing
inspiration from generative adversarial networks for data generation. The astrophysical discrimination
network enforces constraints on the denoising output, ensuring that the “signalþ noise” case conforms to
an astrophysical-origin shape, while limiting the denoised output of the “noise” case to a nonastrophysical
origin shape. This improvement has led to enhanced denoising and astrophysical discrimination
performance in most scenarios. For the analysis of confident events, we observed a 1.3% increase in
the detection rate. Remarkably, no false triggers were generated during the analysis of the data jointly
processed by the Hanford and Livingston interferometers in O3b (about five months of data). These
findings suggest that the denoising-discrimination-matched filtering framework holds promising potential
for gravitational wave searches in the future.
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I. INTRODUCTION

From 2015 to 2020, the advanced LIGO and Virgo
interferometers have successfully identified more than 90
confident gravitational wave (GW) events originating from
compact binary coalescences (CBCs) through the first,
second, and third observing runs [1–4]. In 2023, four teams
of pulsar timing array (PTA) groups announced the evidence
for vastly-low-frequency (nanohertz) gravitational waves
[5–8]. Thanks to these initial detections, numerous note-
worthy achievements have already been attained in both
astrophysics and fundamental physics. Recently, the Laser
Interferometer Space Antenna (LISA) [9] that focuses on
low-frequency GW searches was successfully adopted by
European Space Agency (ESA). In the future, third-gen-
eration (3G) ground-based detectors, such as ET [10] and
CE [11], will offer remarkable advancements in sensitivity
[12], increasing it by an order of magnitude, and signifi-
cantly broadening the bandwidth, extending both towards
lower and higher frequencies. These detectors hold excep-
tional potential for groundbreaking discoveries in astro-
physics, cosmology, and fundamental physics.
LIGO–Virgo–KAGRA (LVK) Collaboration employs

matched filtering (MF) method [13–16] for the search of
GW signals. Under the assumption of stationary Gaussian

background noise, the MF-based method is optimal in the
Neyman–Pearson senses. In the 3G era, when higher-order
modes and orbit eccentricity become significant, the MF
algorithm relying on a template bank will encounter
computational limits. To solve the problem of computa-
tional efficiency, recently, many works have investigated
the deep learning (DL) based methods for GW search
[17,18]. Research has shown that convolutional neural
network (CNN) [19–26], dilated CNN [27,28], the ensem-
ble of multiple deep networks [29–31], recurrent neural
network (RNN) [32], and other deep learning model
structures can be applied to GW search. Different data
preprocessing methods were also investigated in the pre-
vious works [33,34], such as adding a matching perception
layer and removing high-frequency components after
wavelet transform. Apart from the compact binary coa-
lescence, some works investigate the search of the GW
emitted by core-collapse supernova [35,36], stochastic
backgrounds [37], and rotating compact objects [38–40].
In addition to the GW search, DL has also been studied at
multiple aspects of gravitational wave data processing,
including glitch classification [41–44], denoising [45–47],
source localization [48–51], and parameter estimation [52–
56]. Besides the data processing of second-generation
ground-based GW detectors, many works investigate the
utilization of DL to other forms of GW detectors such
as 3G ground-based detectors [57,58], space-based*Contact author: zjcao@amt.ac.cn
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detectors [59,60], pulsar timing array [61,62], and decihertz
GW signal processing [63].
Most DL-based GW searches rely on end-to-end clas-

sification methods, which are prone to saturation and pose
challenges in distinguishing low signal-to-noise ratio
(SNR) events. The MF-based GW search method produces
an output that represents the fluctuation of the matched
signal-to-noise ratio with respect to time, which offers
valuable insights for subsequent endeavors such as source
localization [64]. Meanwhile, end-to-end classification
methods suffer from the problem of physical interpret-
ability. To solve these problems, in the previous work we
propose a different framework MSNRnet [65] for GW
search, and we use denoising output as a substitute for the
template bank of the MF-based method. The denoised
output cannot be immediately employed for subsequent
matched filtering. Only after verifying that it possesses the
GW shape we can proceed to match it with the original
strain. Within the MSNRnet framework, we initially utilize
the envelope extraction network [34] to predict the sig-
nificant time that needs to be analyzed. Subsequently, we
employ ten denoising networks to generate preliminary
templates. Following this, we engage the astrophysical
origin discrimination networks to select the templates.
Ultimately, the selected templates are used in matched
filtering. The framework’s output provides an explanation
regarding the matched filtering signal-to-noise ratio.
In a previous work [65], we optimize GW denoising

networks and astrophysical origin discrimination networks
separately. We call such a model as MSNRnet. The
performance of the networks rely on the training set.
Three kinds of astrophysical origin discrimination net-
works are found using different datasets. In this work, we
introduce a novel training approach which trains the
denoising model and the astrophysical discrimination
model simultaneously.
We find that the denoising model of the original

MSNRnet tends to ‘create’ short timescale GW signal
from the pure noise. This fact leads to the judgment of
noise as gravitational waves. Drawing inspiration from
the generative adversarial network (GAN) [66–68], we
refine MSNRnet to avoid this kind of creation. In the
original MSNRnet, the denoising networks were opti-
mized solely based on the mean square error, and only the
signalþ noise scenario was used for training.
Additionally, the denoising networks and astrophysical
origin discrimination networks were optimized independ-
ently from each other.
Similar to the GAN framework, in the current work, we

simultaneously optimize both the GW denoising networks
and the astrophysical origin discrimination networks. To
optimize the denoising models, we adopt two objectives.
First, we aim to denoise the signalþ noise case to signal
and the noise case to zero. Second, we aim to denoise the
signalþ noise case to astrophysical origin shape and the

noise case to nonastrophysical origin shape. The second
objective is inspired by GANs, where the discriminator
aims to determine whether the data belongs to the training
set or not and the generator aims to generate data that
triggers the discriminator.
Inspired by transfer learning and reinforcement

learning with human feedback, after using a GAN-like
method to train the denoising and astrophysical
discrimination networks, we then fine-tune the 0.25 s
timescale. This timescale corresponds to the parameter
space M1 ∈ ð40M⊙; 80M⊙Þ and M2 ∈ ð40M⊙; 80M⊙Þ.
Correspondingly, the astrophysical discrimination model
uses manually annotated data used in Method I of the
original MSNRnet.
We explain our upgraded MSNRnet model in the next

section. Then in Sec. III we compare the performance of the
updated version and the original version of MSNRnet on
the confident events and all the strain data of O3b
(approximately five months of data). Remarkably, the
updated framework did not generate any false alarms while
scanning through all the noise present in the O3b dataset.
At last we conclude the paper in Sec. IV with some
discussions.

II. UPGRADED MSNRNET MODEL

A. Model structure of MSNRnet

In our framework, we focus on the data from Livingston
and Hanford detectors, while excluding Virgo from the
analysis. The reason for this selection is that our framework
encounters difficulties in predicting the template of events
with very low SNR. Considering that Virgo’s sensitivity is
relatively inferior to Hanford’s and Livingston’s, most
confident events detected by Virgo exhibit an SNR of less
than 6. Regrettably, our framework cannot accurately
forecast the template at such a low SNR. Therefore, we
opted to exclude Virgo data from our primary analysis.
However, we believe that the data collected by Virgo could
still be valuable for subsequent tasks, such as source
localization.
The MSNRnet is a multistep processing framework as

shown in Fig. 1. The entire framework comprises four
critical stages: significant time prediction (STP), prelimi-
nary templates prediction (PTP), template selection (TS),
and matched filtering. First, we put the whitened strain to
envelope extraction network which is proposed in [34], and
we get the envelope output that has coalescence time
information. Second, if the coalescence times of Hanford
and/or Livingston interferometers are successfully pre-
dicted, we will put the whitened strain for each interfer-
ometer to N denoising models and get 2N denoised
outputs. Third, the 2N denoised outputs may have GW
shape or not, and N astrophysical origin discrimination
networks (DiscriminationModel) are used to distinguish
whether the denoised outputs have astrophysical origin or
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not. Fourth, if the DiscriminationModeli verifies that the
outputs from both the Hanford and Livingston interferom-
eters of the DenoisingModeli exhibit waveforms of astro-
physical origin, we will proceed with matched filtering
using the outputs from the DenoisingModeli and the
original strain.
In the case of the original MSNRnet, we optimized the

GW denoising networks and astrophysical origin discrimi-
nation networks independently. However, this approach
made the performance of both networks reliant on the
specific training dataset. Additionally, the astrophysical
origin discrimination networks were trained using datasets
that required manual annotation, introducing a level of
human subjectivity. To address this, we present a new
training method and denote the new model as MSNRnet-2
in this work which removes the dependency on manually
annotated data.
Within the parameter range where M1 and M2 both fall

between 5M⊙ and 10M⊙, the original MSNRnet [65]
exhibits a commendably low false alarm probability.
Given this performance, we do not utilize the updated
method for this specific parameter space. Instead, we utilize
Method II from the original MSNRnet for this specified
range of parameters.

B. The MSNRnet-2

Drawing inspiration from GAN, we introduce
MSNRnet-2. GAN stands as one of the most widely used
generative algorithms. This algorithm finds extensive
application in generating novel data points, accommodat-
ing various datasets such as images and sound signals.
GAN has achieved remarkable success in tasks like
generating realistic human faces [69], converting gray
scale images to colored ones [70], translating text descrip-
tions into realistic images [71], and numerous other
applications. In terms of gravitational wave data analysis,
some works investigate the utilization of GANs to glitch

classification [43] and glitch and/or gravitational wave
generation [72–74].
The GAN architecture is depicted in the top panel of

Fig. 2. In the training phase, two types of models are
employed: the generator and the discriminator. Let us
assume that the generator and discriminator can be viewed
as parametrized systems. Specifically, the generator can be
denoted as Gðz;WGÞ and the discriminator as Dðx;WDÞ,
where z and x represent their respective inputs, andWG and
WD mean the trainable variables for the generator and
discriminator, respectively. The generator learns the dis-
tribution of samples within the training dataset, while the
objective of the discriminator is to differentiate between the
samples from the training dataset and the ones generated by
the generator. Loss function of discriminator LD and
generator LG can be written as:

LD ¼ −Ex∼pxðxÞ½logDðxÞ�
− Ez∼pzðzÞ½log ð1 −DðGðzÞÞÞ�; ð1Þ

LG ¼ −Ez∼pzðzÞ log ðDðGðzÞÞÞ: ð2Þ

Here the notation Ex∼pðxÞ½fðxÞ� represents the expected
value of fðxÞ when x is drawn from the distribution pðxÞ.
Returning to the MSNRnet framework, we can draw

parallels between its components and those of the GAN
framework: the denoising network is analogous to the
generator in GAN, and the astrophysical origin discrimi-
nation network (DiscriminationModel) corresponds to
the discriminator in GAN. The proposed framework for
training the two models is shown in the bottom panel of
Fig. 2. Equation (1) and Eq. (2) cannot be used to optimize
the two models, because the two models have no adversa-
rial relationship. The objective of the DenoisingModel
is to produce signal-like patterns for signalþ noise
instances, and generate non-signal-like patterns for cases
that consist of noise alone. Meanwhile, the goal of the

FIG. 1. The diagram of the MSNRnet. The circles in the diagram represent the switch operation of data flow.
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DiscriminationModel is to differentiate between signal-like
and non-signal-like patterns. Suppose the DenoisingModel
is denoted as GDðs;WGDÞ and the DiscriminationModel is
denoted as DDðx;WDDÞ, where s denotes the signalþ
noise or noise, and WGD and WDD are all trainable
variables. Based on the above analysis, we obtain the loss
function of the two networks:

LTWO ¼ −αEs∼pðnþhÞ½log ðDDðGDðsÞÞÞ�
− Es∼pðnÞ½log ð1 −DDðGDðsÞÞÞ�; ð3Þ

where α can be adjusted to control the relative importance
of distinguishing the denoising output, weighing the
significance of signalþ noise against noise. In addition,
another object of the denoising network is to restore the
buried signals waveform and suppress the amplitude of
noise. Like the original MSNRnet and other works about
GW denoising, we also use the mean square error (MSE)
loss of the denoising output:

LMSE ¼ −Es∼pðnþhÞ½kGDðsÞ − hk2�
þ Es∼pðnÞ½kGDðsÞk2�: ð4Þ

The strain s in the first term on the right side of Eq. (4) can
be written as s ¼ nþ h, where n denotes the noise and h
denotes the signal. Combine Eq. (3) and Eq. (4) we get the
loss function of the overall DenoisingModel and
DiscriminationModel,

LALL ¼ LTWO þ LMSE: ð5Þ

C. Training strategy of MSNRnet-2

Compared to the original MSNRnet, we augment the
noise samples in the training dataset. In the data processing
pipeline, the denoising step is conducted after successful
envelope extraction. In the previous work the results show
that if the envelope of the noise sample is successfully
extracted, the denoising output will have high probability
of having GW shape. To alleviate this problem, in the
revised version of MSNRnet we augment the noise samples
in the training dataset with noise that passed the envelope
extraction network successfully. All the noise samples of
the Hanford interferometer in August 2017 that triggered
the envelope extraction model (18,558 samples) are used to
augment the “noise” sample in training dataset. All the

FIG. 2. The training diagram of the generator and discriminator in GAN framework (top panel) and DenoisingModel and
DiscriminationModel in the proposed framework (bottom panel).
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“noise” and “signal” samples for training previous
MSNRnet are also used in this work.
Direct optimization of Eq. (5) poses significant chal-

lenges. We employ a three-step approach to progressively
optimize the equation. First, we train the denoising model
using MSE loss only:

WGD ¼ argmin
WGD

Es∼pðnþhÞ½kGDðsÞ − hk2�

þ Es∼pðnÞ½kGDðsÞk2�: ð6Þ

Second, we set the weight of the denoising model non-
trainable and train the DiscriminationModel only:

WDD ¼ argmin
WDD

− αEs∼pðnþhÞ½log ðDDðGDðsÞÞÞ�

− Es∼pðnÞ½log ð1 −DDðGDðsÞÞÞ�: ð7Þ

The parameter α > 0 can control the relative importance of
signal and noise cases. If α < 1, then the model is inclined
to reduce the false alarm probability. If α > 1, then the
model’s output is inclined to have a signal shape. In the
original MSNRnet, we find that the denoising model tends
to denoise the noise into the GW shape, and we also find
that different parameter spaces perform differently. So, in
this paper, the α is chosen according to the parameter space
via experience results. Through extensive experimental
validation, we chose the α according to the parameter
space which is shown in Table I. After the second step,
preliminary DenoisingModels and DiscriminationModels
are found. Third, for each parameter space, optimize both
DenoisingModel and DiscriminationModel together:

WGD;WDD ¼ argmin
WGD;WDD

LALL: ð8Þ

In the first two steps, we utilize the Adam method for
optimization. The batch size was set to 64 and the learning
rate was set to 1 × 10−5. We train 35 epochs and introduce a
differentiated learning rate strategy similar to GAN during
the third training step. We set the learning rate to 1 × 10−5

for optimizing WGD and 1 × 10−6 for optimizing WDD.
This can ensure the stability of training. For this stage, we
apply the Adam algorithm to train for five epochs.

III. PERFORMANCE OF THE UPGRADED
MSNRNET AGAINST THE REAL DATA

Given the impressively low false alarm rate for the mass
range ð5M⊙; 10M⊙Þ exhibited by the original MSNRnet,
for this parameter space, we use the models trained
in the previous work [65]. For other mass ranges, we
train both denoising networks and astrophysical discrimi-
nation networks using the aforementioned methodology.
Subsequently, we rigorously evaluate both types of net-
works using a test dataset, confident events, and approx-
imately five months of O3b data. The GPS time of the
background noise of the test dataset is sampled from
1238904832 to 1239023616, which is different from the
training dataset (from 1238163456 to 1238806528). We
believe that maintaining distinct GPS times for the training
and testing datasets serves to guarantee that the background
noises in both sets are different. This variation in noise
allows for a more impartial assessment of the model’s
performance. For each black hole mass range parameter
space, 10,000 samples are generated to test the performance
of the models.

A. Performance of the denoising networks

We evaluate each denoising network using a signalþ
noise case. Specifically, we feed samples from the corre-
sponding test dataset into the denoising network and obtain
the output. Then, we analyze the overlap between the
denoised output and the original buried signal, which can
be calculated by

oðh; ĥÞ ¼ hh; ĥiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hh; hihĥ; ĥi

q ; ð9Þ

where h denotes the buried signal and ĥ represents the
denoising output. The overlap distributions for all denois-
ing networks on their respective test datasets are presented
in Fig. 3, including a comparison with the denoising output
generated by the original MSNRnet. For most cases, there
is a slight improvement of the denoising networks perfor-
mance in MSNRnet-2. As observed in Fig. 3(c), for the case
where M1 ∈ ð5M⊙; 10M⊙Þ and M2 ∈ ð40M⊙; 80M⊙Þ,
there is a notable increase in the percentage of overlap
within the range of (0.9, 1.0), rising from 72% to 78%.
However, MSNRnet-2’s performance slightly diminishes in
the parameter case of M1 ∈ ð10M⊙; 20M⊙Þ and M2 ∈
ð10M⊙; 20M⊙Þ. Additionally, Fig. 3(i) reveals that the
denoising networks of both MSNRnet and MSNRnet-2
exhibit identical performance for the parameter case of
M1 ∈ ð40M⊙; 80M⊙Þ and M2 ∈ ð40M⊙; 80M⊙Þ. The

TABLE I. The binary black hole (BBH) parameter regions and
the corresponding α values. The unit of the black holes’ mass is
M⊙. Since M1 ≥ M2 only half of the table makes sense. For the
mass range M1;2 ∈ ð5; 10� Method II of the original MSNRnet is
used, so there is no α parameter involved.

M1

M2 (5, 10] (10, 20] (20, 40] (40, 80]

(5, 10] � � � 0.1 1.0 0.3
(10, 20] 0.4 0.2 0.4
(20, 40] 0.5 0.1
(40, 80] 0.8
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denoising result of signalþ noise case illustrates the
denoising network’s proficiency in noise reduction.
We also evaluate the performance of the SNR prediction

within the revised framework. Specifically, we process the
strains from the test dataset through the corresponding
denoising network and obtained the outputs. Subsequently,
we compute the matched filtering between the denoised
outputs and the respective strains. Following this, we
determine the relative error of the predicted SNR. The
relative error can be calculated by

SNRerror ¼
SNRpredict − SNRtrue

SNRtrue
; ð10Þ

where SNRpredict represents the SNR predicted by our
framework, and SNRtrue denotes the SNR calculated using
the matched filter applied to the original strain and buried
signal. For comparison, we also calculate the relative error
for the original MSNRnet. The distributions of relative
errors for SNR prediction in both frameworks are presented
in Fig. 4. The updated framework has significantly
enhanced the accuracy of SNR prediction. For the case
(a) M1 ∈ ð5M⊙; 10M⊙Þ and M2 ∈ ð10M⊙; 20M⊙Þ the per-
centage of relative error in range ð−0.1; 0.1Þ is improved

from 65% to 90%. In previous work, there was a noticeable
right deviation phenomenon observed in the SNR predic-
tion results, where in most cases, the predicted values were
higher than the actual ones. In the updated version, this
problem has been largely resolved. This serves as further
evidence that the new work has successfully enhanced the
precision of SNR estimations. In Sec. III C, we will
showcase the improved accuracy of the revised framework
for SNR prediction on confident events.

B. Performance of the astrophysical
discrimination networks

The astrophysical discrimination networks aim to cat-
egorize the denoising output of “signalþ noise” as belong-
ing to the positive class, while classifying the denoising
output of pure “noise” as the negative class. In this section,
we conduct experiments to investigate these two aspects.

1. The performance of astrophysical discrimination
networks to denoising output of the signal+noise case

We feed the denoising outputs from each denoising
model for the “signalþ noise” instances from the

FIG. 3. The overlap of the denoised output and the buried signal
in test dataset. (a)M1 ∈ ð5M⊙; 10M⊙Þ andM2 ∈ ð10M⊙; 20M⊙Þ,
(b) M1 ∈ ð5M⊙; 10M⊙Þ and M2 ∈ ð20M⊙; 40M⊙Þ, (c) M1 ∈
ð5M⊙; 10M⊙Þ and M2 ∈ ð40M⊙; 80M⊙Þ, (d) M1 ∈ ð10M⊙;
20M⊙Þ and M2 ∈ ð10M⊙; 20M⊙Þ, (e) M1 ∈ ð10M⊙; 20M⊙Þ
and M2 ∈ ð20M⊙; 40M⊙Þ, (f) M1 ∈ ð10M⊙; 20M⊙Þ and
M2 ∈ ð40M⊙; 80M⊙Þ, (g) M1 ∈ ð20M⊙; 40M⊙Þ and M2 ∈
ð20M⊙; 40M⊙Þ, (h) M1 ∈ ð20M⊙; 40M⊙Þ and M2 ∈ ð40M⊙;
80M⊙Þ, (i) M1 ∈ ð40M⊙; 80M⊙Þ and M2 ∈ ð40M⊙; 80M⊙Þ.

FIG. 4. The statistic results of relative error of predicted SNR
for different parameter spaces. The relative error is calculated

by SNRpredict−SNRtrue

SNRtrue
. (a) M1 ∈ ð5M⊙; 10M⊙Þ and M2 ∈ ð10M⊙;

20M⊙Þ, (b) M1 ∈ ð5M⊙; 10M⊙Þ and M2 ∈ ð20M⊙; 40M⊙Þ,
(c) M1 ∈ ð5M⊙; 10M⊙Þ and M2 ∈ ð40M⊙; 80M⊙Þ, (d) M1 ∈
ð10M⊙; 20M⊙Þ and M2 ∈ ð10M⊙; 20M⊙Þ, (e) M1 ∈ ð10M⊙;
20M⊙Þ and M2 ∈ ð20M⊙; 40M⊙Þ, (f) M1 ∈ ð10M⊙; 20M⊙Þ and
M2 ∈ ð40M⊙; 80M⊙Þ, (g) M1 ∈ ð20M⊙; 40M⊙Þ and M2 ∈
ð20M⊙; 40M⊙Þ, (h) M1 ∈ ð20M⊙; 40M⊙Þ and M2 ∈ ð40M⊙;
80M⊙Þ, (i) M1∈ð40M⊙;80M⊙Þ and M2 ∈ ð40M⊙; 80M⊙Þ.
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corresponding test dataset into their respective astrophysi-
cal origin discrimination networks to obtain the classifi-
cation results. Ten thousand samples are used for each
parameter space. Figure 5 depicts the variation in the
proportion of correct classifications with respect to the
SNR interval of buried signals. We can see that both
the MSNRnet and MSNRnet-2 can work effectively for
“signalþ noise.” The results indicate that for the case
SNR > 8, most of the denoising results have a signal
shape. For the low SNR case, such as SNR∈ ð5; 6Þ, most of
the denoising output have a noise shape. This indicates that
further refinement is necessary for the denoising model,
particularly in handling low SNR strain data.

2. The performance of astrophysical discrimination
networks to denoising output of the noise-only case

In the preceding subsection, we examine the perfor-
mance of astrophysical discrimination networks for the
“signalþ noise” scenario. This subsection focuses on
exploring the reaction of these networks to denoised
outputs from pure “noise” cases. Since both denoising
and discrimination processes occur after successfully
extracting envelope information, our investigation here
solely concentrates on noise that activates the envelope

extraction network. We acquire 10,000 noise samples from
the O3b Hanford interferometer that triggered the envelope
extraction network. Subsequently, we process these sam-
ples through denoising networks and forward the denoised
outputs to their corresponding astrophysical discrimination
networks. We analyze the number of false triggers, which
are detailed in Table II. Our new method significantly
decreases the frequency of false triggers. As an example,
within the subparameter space ofM1 ∈ ð20M⊙; 40M⊙Þ and

FIG. 5. The percentage of correctly classified results by the astrophysical discrimination network for the denoised results of
“signalþ noise” input.

TABLE II. The number of false triggers of the astrophysical
discrimination networks on the noise that trigger the envelope
extraction network in O3b.

M1ðM⊙Þ M2ðM⊙Þ MSNRnet MSNRnet-2

[5, 10] [10, 20] 131 87
[5, 10] [20, 40] 301 89
[5, 10] [40, 80] 290 79
[10, 20] [10, 20] 279 38
[10, 20] [20, 40] 632 91
[10, 20] [40, 80] 2398 58
[20, 40] [20, 40] 1094 355
[20, 40] [40, 80] 2310 157
[40, 80] [40, 80] 1057 1622
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M2 ∈ ð40M⊙; 80M⊙Þ, the number of false triggers has
dropped significantly from 2310 to 157. However, a
remaining challenge lies in the black hole’s mass parameter
space of M1 ∈ ð40M⊙; 80M⊙Þ and M2 ∈ ð40M⊙; 80M⊙Þ,
where both MSNRnet and MSNRnet-2 still produce a high
number of false triggers. It is plausible that background
noise is more apt to imitate short-duration GW waveforms.
In the lower mass ranges, where the signal duration is
longer, false triggers are significantly reduced. Conversely,
in the higher mass ranges where the signal duration is
shorter, the reduction in false triggers is less pronounced.

C. Performance of the GW search framework on
confident events

In the preceding subsection, we discover that numerous
false triggers are generated from the Hanford interferometer
specifically within the parameter space defined by
M1 ∈ ð40M⊙; 80M⊙Þ and M2 ∈ ð40M⊙; 80M⊙Þ. Upon
inspection of the denoising output, we observe that certain
false triggers lack a distinct gravitational wave shape.
Consequently, we refine the astrophysical discrimination
network for this specific parameter space using manually
labeled data curated from previous research. It is important
to clarify that we focus our fine-tuning efforts solely on this
one parameter space.

The GW search performance of the overall framework
has been investigated against the confident events listed in
the GWTC-1, GWTC-2, GWTC-2.1, and GWTC-3 cata-
logs, focusing on those where the Hanford and Livingston
interferometers are operating simultaneously. For each
confident event, we whiten the data encompassing it and
extract a 16-second segment for a more indepth analysis.
We then employ an envelope extraction model to scan
each of these segments using a two-second sliding time
step, identifying key timestamps. Once these timestamps
are determined, we proceed with denoising and astro-
physical discrimination processes. If the waveform acti-
vates the astrophysical discrimination network, we
perform matched filtering to compute SNR. We further
verify the event by ensuring that the time variation of peak
SNR between Hanford and Livingston interferometers is
less than 15 milliseconds. It is important to note that these
findings are derived from a blind search, without prior
knowledge of the parameter space or signal length.
Table III showcases the network SNR for confident
events as predicted by MSNRnet-2. For comparison,
we have also provided the offline analysis results from
four MF-based pipelines: GstLAL, MBTA, PyCBC, and
PyCBC_BBH, alongside the original MSNRnet’s outcomes.
We have also calculated the detection rates for all

TABLE III. SNRs of GWevents reported by LVK during O1, O2, and O3 observing runs are listed, focusing on events that performed
well with both Hanford and Livingston interferometers. The table presents SNR results obtained from GstLAL, MBTA, PyCBC,
PyCBC_BBH, and the previous MSNRnet, which utilized APOD_MODEL_II as the astrophysical origin discrimination model. Herein,
we compare the SNRs predicted by the MSNRnet-2 framework against these previously reported results. The SNR information detected
by MBTA and PyCBC_BBH during the first observing run has not been made public; therefore, we represent these cases with blanks in the
table. In the table, we denote events that were not detected by the corresponding pipeline with three dots. For some events, the FAR (false
alarm rate) fails to meet the criteria of being less than two per year. In such instances, we highlight the SNR value in bold. The last line
displays the detection rate for each pipeline. For the four MF-based pipelines, the detection rate determined by the FAR criteria is
exhibited in black, while the detection rate determined by the pastro criteria is showcased in bold. The detection rate means the ratio of
successfully detected events and the total events number listed in the table.

Name GstLAL MBTA PyCBC PyCBC_BBH MSNRnet MSNRnet-2
Time differences
of MSNRnet-2(s)

GW150914 24.4 23.6 24.5 24.3 0.00439
GW151012 10.0 9.5 10.6 11.6 0.00317
GW151226 13.1 13.1 13.7 11.9 0.00293
GW170104 13.0 13.0 14.4 13.5 0.00562
GW170608 14.9 15.4 16.9 15.8 0.00024
GW170729 10.8 9.8 11.6 10.7 0.00586
GW170809 12.4 12.2 13.4 13 0.01196
GW170814 15.9 16.3 17.1 16.4 0.0105
GW170818 11.3 � � � � � � � � � � � �
GW170823 11.5 11.1 12.7 11.5 0.00513
GW190403-051519 � � � � � � 16.3 8.0 � � � � � � � � �
GW190408-181802 14.7 14.4 13.1 13.7 15.6 14.8 0.00049

(Table continued)
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TABLE III. (Continued)

Name GstLAL MBTA PyCBC PyCBC_BBH MSNRnet MSNRnet-2
Time differences
of MSNRnet-2(s)

GW190412 19.0 18.2 17.4 17.9 20.0 18.7 0.00586
GW190413-052954 � � � � � � � � � 8.5 9.1 � � � � � �
GW190413-134308 � � � 10.3 � � � 8.9 9.9 9.9 0.00903
GW190421-213856 10.5 9.7 10.1 10.1 11.2 10.2 0.00146
GW190426-190642 � � � � � � � � � 9.6 � � � � � � � � �
GW190503-185404 12.0 12.8 12.2 12.2 14.9 11.8 0.0061
GW190512-180714 12.2 11.7 12.4 12.4 � � � 12.1 0.00732
GW190513-205428 12.3 13.0 � � � 11.8 14.1 12.9 0.00098
GW190514-065416 � � � � � � � � � 8.4 � � � � � � � � �
GW190517-055101 10.8 11.3 10.4 10.3 11.1 10.6 0.00366
GW190519-153544 12.4 13.7 13.2 13.2 15.1 14.7 0.00732
GW190521 13.3 13.0 13.7 13.6 � � � � � � � � �
GW190521-074359 24.4 22.2 24.0 24.0 24.4 24.3 0.00122
GW190527-092055 8.7 � � � � � � � � � � � � � � � � � �
GW190602-175927 12.3 12.6 11.9 11.9 12.8 11.9 0.01294
GW190701-203306 11.7 11.3 11.9 11.7 10.7 10.2 0.01392
GW190706-222641 12.5 11.9 11.7 12.6 13.6 12.7 0.00537
GW190707-093326 13.2 12.6 13.0 13.0 14.2 12.9 0.00732
GW190719-215514 � � � � � � � � � 8.0 10.1 8.7 0.00269
GW190720-000836 11.5 11.6 10.6 11.4 � � � � � � � � �
GW190725-174728 � � � 9.8 9.1 8.8 � � � � � � � � �
GW190727-060333 12.1 12 11.4 11.1 12.6 12.1 0.00537
GW190728-064510 13.4 13.1 13.0 13 14.9 13.9 0.00195
GW190731-140936 8.5 9.1 � � � 7.8 8.6 8.5 0.0105
GW190803-022701 9.1 9.0 � � � 8.7 9.6 9.1 0.00195
GW190805-211137 � � � � � � � � � 8.3 � � � � � � � � �
GW190814 22.2 20.4 19.5 � � � 23.4 23.9 0.00928
GW190828-063405 16.3 15.2 13.9 15.9 17.3 16.5 0.00317
GW190828-065509 11.1 10.8 10.5 10.5 11.3 � � � � � �
GW190915-235702 13.0 12.7 13.0 13.1 13.6 13.2 0.00977
GW190916-200658 � � � 8.2 � � � 7.9 9.2 � � � � � �
GW190917-114630 9.5 � � � � � � � � � � � � � � � � � �
GW190924-021846 13.0 11.9 12.4 12.5 � � � � � � � � �
GW190926-050336 9.0 � � � � � � � � � 9.0 8.5 0.00342
GW190929-012149 10.1 10.3 � � � � � � � � � � � � � � �
GW190930-133541 10.1 10.0 9.8 10 � � � � � � � � �
GW191103-012549 � � � � � � 9.3 9.3 � � � � � � � � �
GW191105-143521 � � � 10.7 9.8 9.8 � � � 10.3 0.00488
GW191109-010717 15.8 15.2 13.2 14.4 15.8 15.8 0.00293
GW191113-071753 � � � 9.2 � � � � � � � � � � � � � � �
GW191126-115259 � � � � � � � � � 8.5 � � � � � � � � �
GW191127-050227 10.3 9.8 � � � 8.7 9.5 8.9 0.00659
GW191129-134029 13.3 12.7 12.9 12.9 � � � � � � � � �
GW191204-110529 � � � � � � � � � 8.9 10.5 � � � � � �
GW191204-171526 15.6 17.1 16.9 16.9 17.3 16.7 0.00171
GW191215-223052 10.9 10.8 10.3 10.2 11.3 10.7 0

(Table continued)
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pipelines, which are clearly outlined in the last row
of Table III. With a detection rate of 61.3%, MSNRnet-
2 marginally outperforms the original MSNRnet,
which had a detection rate of 60%. Furthermore, our
findings indicate that MSNRnet, MSNRnet-2, and other
MF-based pipelines exhibit comparable detection rates.
GW search pipelines, such as PyCBC, GstLAL, and MBTA,
which are based on matched filtering, operate in two
distinct modes: “online” and “offline”. The
low-latency or “online” mode facilitates the swift detec-
tion of gravitational wave events, thereby enabling
prompt communication to the external scientific commu-
nity for electromagnetic follow-up observations.
Conversely, the “offline” analysis takes place over
extended timescales compared to the low-latency distri-
bution of strain data. The confident events in GWTC-1,
GWTC-2, GWTC-2.1, and GWTC-3 catalogs are
obtained by the “offline” mode of these GW search
pipelines. These results shown in Table III do not
demonstrate MSNRnet-2’s capability to perform either
online or offline gravitational wave search tasks. They
also necessitate long-term noise analysis outcomes. In

Sec. III C of this section, we will utilize the proposed
MSNRnet-2 to scan all data in O3b collected by the
Hanford and Livingston interferometers.
We also conduct a comparison between the SNRs

predicted by our proposed framework and those generated
by traditional MF-based pipelines, as illustrated in Fig. 6.
The SNRs from the traditional MF-based pipelines are
derived by averaging multiple pipeline predictions.
Figure 6 reveals that the majority of SNRs predicted by
MSNRnet are marginally higher than the average predic-
tions from traditional MF-based pipelines. Interestingly, the
SNRs forecasted by MSNRnet-2 are scattered on both sides
of the average value obtained from traditional MF-based
pipelines.
To delve deeper into the disparities between our pro-

posed approach and traditional matched filtering, we
scrutinize the relative errors between the two methods.
The results are exhibited in Fig. 7. This figure demonstrates
that the proportion of SNRs with a relative error in range
ð−0.1; 0.1Þ has escalated from 60% to 90%. This signifi-
cant increase underscores the enhanced performance of
MSNRnet-2 compared to MSNRnet.

TABLE III. (Continued)

Name GstLAL MBTA PyCBC PyCBC_BBH MSNRnet MSNRnet-2
Time differences
of MSNRnet-2(s)

GW191219-163120 � � � � � � 8.9 � � � � � � � � � � � �
GW191222-033537 12.0 10.8 11.5 11.5 11.8 11.9 0.00366
GW191230-180458 10.3 � � � � � � 9.9 10.5 9.9 0.00171
GW200115-042309 11.5 11.2 10.8 � � � � � � � � � � � �
GW200128-022011 10.1 9.4 9.8 9.9 10.1 9.8 0.00317
GW200129-065458 26.5 � � � 16.3 16.2 26.9 26.1 0.00854
GW200202-154313 11.3 � � � � � � 10.8 � � � � � � � � �
GW200208-130117 10.7 10.4 9.6 10.8 � � � 9.3 0.00122
GW200208-222617 � � � � � � � � � 7.9 � � � � � � � � �
GW200209-085452 10.0 9.7 � � � 9.2 � � � 9.3 0.00049
GW200210-092254 9.5 � � � 8.9 8.9 � � � � � � � � �
GW200216-220804 9.4 � � � � � � 8.7 8.8 8.7 0.01221
GW200219-094415 10.7 10.6 9.9 10 11.6 10.4 0.00684
GW200220-061928 � � � � � � � � � 7.5 � � � � � � � � �
GW200220-124850 � � � 8.2 � � � � � � � � � 7.8 0.00342
GW200224-222234 18.9 19.0 19.2 18.6 19.6 18.0 0.00659
GW200225-060421 12.9 12.5 12.3 12.3 14.5 13.3 0.00684
GW200306-093714 � � � 8.5 � � � � � � � � � � � � � � �
GW200308-173609 � � � � � � � � � 8 � � � � � � � � �
GW200311-115853 17.7 16.5 17 17.4 16.7 16.1 0.00977
GW200316-215756 10.1 � � � 9.3 9.3 � � � � � � � � �
GW200322-091133 � � � 9.0 � � � 9.6 � � � � � � � � �
Detection rate (%) 73.8(73.8) 51.4(68.6) 57.5(63.8) 65.7(85.7) 60.0 61.3
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D. Performance of the GW search
framework on O3b data

In this subsection, we aim to assess the efficacy of our
proposed framework by applying it to real strain data
containing only noise. To this end, we utilize our framework
to scan the entirety of the noisy strain data associated with
O3b. This dataset specifically encompasses recordings
obtained between 1 November 2019 at 15∶00 Universal
TimeCoordicated (UTC) and 27March 2020 at 17∶00UTC.

Note that we only analyze the time when both Hanford and
Livingston interferometers were normally working.
We utilize a moving time strategy to scan the data, with a

time step of two seconds within the envelope extraction
model’s four-second operation window. Every segment that
activates the envelope extraction model undergoes further
analysis via denoising and astrophysical discrimination
models. A false trigger is only generated if both the
Hanford and Livingston interferometers are simultaneously
triggered. Our proposed framework outputs a time series of
SNRs, allowing for further verification through the peak
SNR time difference between the two interferometers and
the peak network SNR value. We have set the time
difference threshold to 15 milliseconds and the network
SNR threshold to eight. Table IV lists the number of false
triggers for MSNRnet and MSNRnet-2 using various
judgment strategies. Notably, in the “Hþ Lþ Tþ S”
scenario, MSNRnet generates 16 false triggers, whereas
MSNRnet-2 produces no false triggers. This remarkable
result demonstrates the effectiveness of our proposed
framework in processing noisy data over extended periods
without generating false triggers.
Since the analysis of O3b background data does not yield

any false triggers, a direct calculation of the FAR is not
feasible. In our revised paper, we have adopted a time-shift
approach to determine the FAR. Specifically, we shift in
time the triggers obtained from one detector (after they
have passed through the astrophysical discrimination
model) relative to those from the second detector. Given
that Hanford and Livingston cowork at O3b for roughly
three months, each time shift generates an additional three
months of triggers. Utilizing this method, we have gen-
erated approximately ten years of background data and
corresponding triggers. Subsequently, we employ a coinci-
dent test to identify confident events, which in this context
are false alarm events. This test is based on three criteria,
which align with the standards for true alarms: Firstly, the
time difference between the peak SNR at Hanford and
Livingston must be less than 15 ms. Secondly, the predicted
templates for Hanford and Livingston must share the same
parameter range. Thirdly, the network SNR must exceed
eight. Employing this method, we have generated seven
false triggers from a ten-year data span. Based on this, we
deduce that the FAR is approximately 0.7 per year.

E. Comparison with the end-to-end classification
framework for GW search

Recently, the AResGW [75] code emerged victorious in
the first Machine-Learning Gravitational-Wave Mock Data
Challenge (MLGWSC-1) [26] specifically for the real O3a
noise scenario. AResGW stands as an end-to-end classi-
fication framework tailored for gravitational wave searches.
Its architecture boasts deep adaptive input normalization for
input preprocessing, coupled with a 54-layer deep residual
network for feature extraction. Both the AResGWs code

FIG. 6. The relationship between the SNR of the confident
events predicted by traditional MF-based pipelines and the
proposed framework. The results of MSNRnet and MSNRnet-
2 are all shown. The real SNR is set to the average SNR value of
the MF-base pipelines.

FIG. 7. The relative error of predicted SNR for the confident
events.
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and its trained weights are accessible through the public
via [76].
Nonetheless, until now, no comprehensive evaluation

has been conducted on all confident events using
AResGW. In this subsection, we undertake a comparative
analysis between AResGW and MSNRnet-2. Since the
sampling frequency of the test dataset in MLGWSC-1 is
2048 Hz, whereas MSNRnet-2 requires an input sampling
frequency of 4096 Hz, it is not possible to evaluate
MSNRnet-2 using the MLGWSC-1 test dataset. We
employ actual data encompassing confident events along
with genuine noise (O3b) to conduct a comparative
analysis of the two methods.
For the confident events analysis, we initially down-

sample the strain data of confident events, recorded when
both Hanford and Livingston interferometers were opera-
tional, to 2048 Hz using the downsample program provided
in the MLGWSC-1 code package. Subsequently, we
process the 2048 Hz strain data of confident events through
the improved_d4_model of AResGW to obtain the pscore
output. To evaluate its performance, we compare the
number of false triggers generated at the same detection
rate (61.3%) during the O3b observing run.
By scanning the pscore output of confident events, we

determine a threshold that matched the detection rate of
MSNRnet-2 (61.3%). This threshold is found to be a pscore
of 0.9967. We then employ AResGW to analyze the entire
O3b noise dataset, generating a false trigger whenever the
pscore exceeded 0.9967. To our analysis, false triggers
occurring within 0.3 seconds of each other were considered
as a single event.
Remarkably, our results reveal that 1177 false triggers

are generated by AResGW, significantly exceeding the 16
and zero false triggers produced by MSNRnet and
MSNRnet-2, respectively. These findings underscore the
superiority of the denoising-discrimination-matched filter-
ing framework compared to the end-to-end classification
framework.

F. Sensitive distance of the GW search framework

Existing studies exploring machine learning based GW
detection algorithms favor traditional machine learning
measures like receiver operator characteristic (ROC) curves
as an evaluation metric [20,29,77]. This approach poses
challenges in direct comparisons, as these metrics are
inherently reliant on the parameter distributions of the
tested events. In recent years, numerous studies have
adopted the variation of sensitive distance with respect
to the FAR as a key metric for evaluating the efficacy of
GW search methodologies [25,26,78,79]. In this subsec-
tion, we compute the sensitive distance under the condition
of zero false triggers for O3b data, which corresponds to a
FAR of 0.7 per year.
The variation of sensitive volume with respect to the

FAR can be determined by:

VðF Þ ¼
Z

dxdΛϵðF ; x;ΛÞϕðx;ΛÞ; ð11Þ

where x represents the source location, Λ stands for the
source parameters, ϵðF ; x;ΛÞ signifies the search effi-
ciency at a given FAR F , and ϕðx;ΛÞ denotes the
distribution of x and Λ.
When injections are conducted uniformly across a

volume up to a predefined maximum distance ðdmaxÞ,
Eq. (11) can be approximated as follows:

VðF Þ ≈ VðdminÞ þ ½VðdmaxÞ − VðdminÞ�
NI;F

NI
; ð12Þ

where VðdmaxÞ ¼ 4
3
πd3max is the volume of a sphere, NI;F

represents the number of injections that have been success-
fully detected at a given FAR of F , and NI is the total
number of injections.
Here, we provide a detailed description of the method-

ology for generating samples in order to calculate the

TABLE IV. Number of false triggers generated while scanning noise in O3b data: “Hþ L” indicates triggers activated by both
Hanford and Livingston. “Hþ Lþ T” signifies triggers from “Hþ L” that are further validated based on trigger time differences.
“Hþ Lþ Tþ S” represents triggers from “Hþ Lþ T” that undergo additional verification through the network SNR threshold.

MSNRnet MSNRnet-2

Mass1(M⊙) Mass2(M⊙) Hþ L Hþ Lþ T Hþ Lþ Tþ S Hþ L Hþ Lþ T Hþ Lþ Tþ S

[5, 10] [5, 10] 0 0 0 0 0 0
[5, 10] [10, 20] 2 1 1 1 0 0
[5, 10] [20, 40] 8 1 0 0 0 0
[5, 10] [40, 80] 3 0 0 4 1 0
[10, 20] [10, 20] 6 0 0 1 0 0
[10, 20] [20, 40] 9 1 1 2 0 0
[10, 20] [40, 80] 49 9 7 0 0 0
[20, 40] [20, 40] 20 3 2 14 0 0
[20, 40] [40, 80] 50 11 3 0 0 0
[40, 80] [40, 80] 17 7 2 11 4 0
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sensitive volume. We use IMRPhenomD as the approxi-
mate model for the hþ and h× calculation.
Assuming the center of the earth is situated at the

origin of the Cartesian coordinate system, its coordinates
are designated as (0, 0, 0). Initially, we generate the
location of the gravitational wave source, denoted as
(x, y, z), by uniformly sampling within a cubic space
defined by the range x∈ ð−dmax; dmaxÞ, y∈ ð−dmax; dmaxÞ,
and z∈ ð−dmax; dmaxÞ. If the sampled location falls within
the specified distance range, where the Euclidean distanceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
lies between ½dmin; dmax�, we proceed to

accept this position and subsequently convert it to spheri-
cal coordinates for further simulation of the corresponding
waveform. By implementing these steps, we ensure that
the distance and direction parameters are sampled uni-
formly across a volumetric range, spanning from dmin to
dmax, thereby guaranteeing a consistent distribution within
the specified distance interval. In this subsection we set
dmin ¼ 530 Mpc and dmax ¼ 6834 Mpc. Regarding other
parameters, such as the BBH masses and spins, their
distributions are identical to those generated in the train-
ing data.
For both the Hanford and Livingston interferometers,

we extracted noise strain data spanning 1,600,000 seconds
from the O3b stage. Afterwards, within each mass
parameter space, we generated 100,000 sample signals
and introduced them into the Hanford and Livingston
interferometers. It is noteworthy that each signal, corre-
sponding to a specific parameter range, is injected only
one time, resulting in a cumulative total of 100,000
injections for each parameter range, so that approximately

every 16 seconds, an injection is performed. The maxi-
mum detectable signal length in the parameter space is
approximately two seconds, therefore injecting every
16 seconds guarantees that two consecutive signals do
not interfere with each other.
The sensitive distance for the full parameter

space where M1;M2 ∈ ð5M⊙; 80M⊙Þ is 2253.301 Mpc.
In addition we have already calculated the sensitive
distance for each parameter ranges. The results are
displayed in Table V.

IV. CONCLUSION AND DISCUSSION

In this study, we upgrade the framework MSNRnet to
MSNRnet-2. We comprehensively evaluate the perfor-
mance of our proposed method in comparison to traditional
MF-based pipelines and our previous model, MSNRnet.
The results obtained through rigorous experimentation
provide compelling evidence of the superiority of our
new approach.
Initially, we compare the overlap distribution and pre-

dicted SNRs for “signalþ noise” case generated by
MSNRnet-2, MSNRnet, and the traditional MF-based
pipelines. The results demonstrate the superiority of the
denoising step in MSNRnet-2. The confident event
analysis shows that the proportion of SNRs with a relative
error in range ð−0.1; 0.1Þ has increased significantly,
jumping from 60% (MSNRnet) to 90% (MSNRnet-2).
This substantial improvement indicates the enhanced
precision of MSNRnet-2 compared to its predecessor,
MSNRnet. We use the MSNRnet-2 to analyze five months
of data (all the data of O3b that Hanford and Livingston
interferometers cowork), and surprisingly in this case zero
false triggers are generated. The denoising discrimination
and matched filtering framework holds promising poten-
tial for both online and offline gravitational wave searches
in the future.
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TABLE V. The parameter ranges and the corresponding sensi-
tive distance at FAR ≈ 0.7 per year.

M1ðM⊙Þ M2ðM⊙Þ Sensitive distance(Mpc)

[5, 10] [10, 20] 555.300
[5, 10] [20, 40] 731.598
[5, 10] [40, 80] 857.753
[10, 20] [10, 20] 602.886
[10,20] [20, 40] 1156.696
[10, 20] [40, 80] 1511.607
[20, 40] [20, 40] 1821.274
[20, 40] [40, 80] 2405.055
[40, 80] [40, 80] 2764.233
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