
Eccentricity matters: Impact of eccentricity
on inferred binary black hole populations

M. Zeeshan * and R. O’Shaughnessy †

Center for Computational Relativity and Gravitation, Rochester Institute of Technology,
Rochester, New York 14623, USA

(Received 2 May 2024; accepted 12 August 2024; published 5 September 2024)

Gravitational waves (GWs) emanating from binary black holes (BBHs) encode vital information about
their sources, enabling us to infer critical properties of the BBH population across the Universe, including
mass, spin, and eccentricity distribution. While the masses and spins of binary components are already
recognized for their insights into formation, eccentricity stands out as a distinct and quantifiable indicator
of formation and evolution. However, despite its significance, eccentricity is notably absent from most
parameter estimation analyses associated with GW signals. To evaluate the precision with which the
eccentricity distribution can be deduced, we generated two synthetic populations of eccentric binary black
holes (EBBHs) characterized by nonspinning, nonprecessing dynamics, and mass ranges between 10 and
50M⊙. This was achieved using an eccentric power law model, encompassing 100 events with eccentricity
distributions set at σϵ ¼ 0.05 and σϵ ¼ 0.15. This synthetic EBBH ensemble contrasts against a circular
binary black holes collection to discern how parameter inferences would vary without eccentricity.
Employing Markov chain Monte Carlo techniques, we constrained model parameters, including the event
rate (R), minimum mass (mmin), maximum mass (mmax), and σϵ which is uncertainty in eccentricity. Our
analysis demonstrates that eccentric population inference can identify the signatures of even modest
eccentricity distribution. In addition, our study shows that an analysis neglecting eccentricity may draw
biased conclusions of population inference for the larger values of eccentricity distribution.
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I. INTRODUCTION

Black holes exist in different sizes and types [1]. When
two black holes become gravitationally bound, they form a
binary and start coalescing [2]. When they coalesce, they
produce ripples in the fabric of space-time, known as
GW [1]. These waves are the primary way to detect those
mergers in space, starting with LIGO’s [3] first detection
of a BBH merger (GW150914). Afterward, the LIGO-
VIRGO-KAGRA (LVK)network [3–6] continued to regu-
larly detect gravitational waves from various compact
binaries such as BBH, binary neutron stars (BNSs), and
binaries composed of a neutron star and black hole
(NSBH) [7–10]. These waves carry information about
the progenitor, such as component mass, spin, period,
eccentricity, distance, and location. Indirectly, these pro-
perties may provide clues into how binaries are formed.
These binaries are believed to form from isolated and
dynamic formation scenarios [11]. The isolated binaries are
thought to result from the death of binary stars, either by a
supernova or a common envelope [12,13]. On the other
hand, two black holes can also make a binary through

dynamic encounters in dense star clusters [14,15].
Importantly, each formation scenario imprints on binary
parameters such as mass, spin, and eccentricity. For
instance, isolated binaries tend to have circular orbits in
the LVK band due to mass transfer and most probably
the result of gravitational decay over time. On the
contrary [12], the dynamically formed binaries may have
eccentric orbits.
Mass and spin are widely used to understand a binary’s

properties, evolution, and formation channel. However,
many of these same formation scenarios can also introduce
eccentricity in BBH orbits, such as stellar scattering,
dynamic interactions in dense environments, or interaction
of a third object with a binary. Furthermore, low energy and
slow-forming binaries usually start with modest eccen-
tricities but at very low frequencies, and over many decades
of frequency evolution, gravitational wave radiation circu-
larizes their orbits [16] before entering the LVK frequency
band. However, binaries formed in more violent, energetic
environments, such as globular clusters, can be formed
closer to the LVK frequency band and thus retain more of
their large natal eccentricities when observationally acces-
sible. Previous studies have demonstrated that identifying
orbital eccentricity could differentiate between formation
channels [17–21].
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Although eccentricity is a signature that can be measured
with GWand is unique to extreme events such as high mass
ratio mergers, all the confirmed detections so far may be
consistent with a nearly circular orbit in the LVK frequency
band [22,23]. However, some investigations suggest that
BBHs like GW190521 may exhibit some indications of
eccentricity [24–28]. On the other hand, we have studies
[29,30] which do not find evidence of eccentricity in
GW190521. So, whether eccentricity is present in the
GW190521 or not is still an exciting event. Unfortunately,
these inferences rely on incompletely surveyed waveforms
produced by direct simulation or (more customarily) by
phenomenological approximations tuned to those simula-
tions. Currently, available phenomenological models
allowing for eccentricity only cover part of the possible
parameters: nonprecessing binaries, for example. While
researchers are actively producing the eccentric waveform
models analytically [31] and numerically [32–36], at present,
parameter inference capabilities are limited.
Despite severe limitations on single-event parameter

inference, a few proof-of-concept studies have investigated
how to identify the presence of an eccentric subpopulation
from observations of many massive binary black holes
[37–39]. The techniques used in these investigations
borrow from extensive studies on reconstructing the pop-
ulation properties of quasicircular binaries over the whole
mass spectrum [40–50]. Because eccentricity is poorly
constrained by short GW observations of massive BH
binaries, these studies find eccentricity can only be resolved
with great difficulty, even with many observations.
By contrast, previous studies have demonstrated that

eccentricities can be particularly well constrained for
low-mass objects [51], owing to their long modulated
inspiral [52], even it improves the accuracy in parameter
inference [53]. We use this parameter inference investiga-
tion as our prototype for the inferences about synthetic GW
sources in our proof-of-concept study.
In this study, we focused on the nonspinning, non-

precessing, lower mass ð10 − 50M⊙Þ. In addition, we will
use mass ratio q ¼ m1=m2 with condition m1 > m2 and
total mass M ¼ m1 þm2 ¼ 100M⊙. We also infer how
well we can recover the event rate, mass, and eccentricity
distribution using the 100 eccentric events. To extend our
analysis, we compared constrained parameters using the
eccentric binary black holes (EBBHs) and circular binary
black holes (CBBHs), which show a considerable differ-
ence in the recovery of true parameter for higher eccentric
(σϵ ¼ 0.15) population and similar recovery for lower
eccentric population (σϵ ¼ 0.05), here σϵ is the uncertainty
in eccentricity.
In Sec. II, we described the Bayesian statistical methods

used to make the population inference. Briefly, we also
described the volume-time estimate to accommodate the
LVK sensitivity. We modified the previously constructed
[54,55] power law model to include eccentricity using a
truncated normal distribution. We used this model to

generate a synthetic population and then made the inference
using the Markov chain Monte Carlo (MCMC) method.
Section III describes how we have created a synthetic
population using the eccentric power law model and then
added an error in each event to make the population closer
to real events detectable by LVK. Second, we explained the
scaling to remove the eccentricity from the synthetic events
to compare the different constraints using EBBH and
CBBH populations. Section IV explains how well we
can constrain the population parameters using EBBH vs
CBBH. Section V discusses the importance of eccentric
binaries, and finally, we conclude our findings in Sec. VI.

II. METHODS

A coalescing BBH can be entirely described by three
intrinsic and seven extrinsic parameters. The intrinsic
parameters, such as the mass of the binary component
ðmiÞ, spin ðχiÞ, and eccentricity (ϵ), determine the orbital
evolution of the binary. The extrinsic parameters determine
the merger’s space-time coordinates and orientation. We
used the following method to infer the population proper-
ties of binary black holes.

A. Hierarchical Bayesian modeling

We use hierarchical Bayesian modeling (HBM) to con-
strain a population model with gravitational wave data. In
HBM, we have N number of discrete detections. Those
detections provide merger data denoted as d1; d2; d3;…; dN ,
where each di shows a BBH merger. Each stretch of data di
can be used to infer the properties of theBBHassociatedwith
that data segment. These properties, often called parameters,
are denoted by λ1; λ2; λ3;…; λi. Each parameter has its
uncertainty, and we express it by the probability of the data
given the parameter value.We also refer to it as the likelihood
function LðλÞ ¼ pðdjλÞ of a source. When calculated in full
with data and a waveformmodel, the full likelihood function
expresses the probability of a specific waveform model with
parameters lambda in the data d. Once we have a likelihood
function,wemayuse a uniformprior or any informative prior
to find a posterior probability using the Bayes theorem as
given in Eq. (1),

pðλjdÞ ∝ pðdjλÞpðλÞ: ð1Þ

This posterior probability will constrain the properties of
each binary, such as mass, spin, and eccentricity. We may
infer those parameters using rapid parameter inference on
gravitational wave sources via iterative fitting (RIFT): an
open source code for parameter estimation (PE) of the
binary sources [56]. The above discussion describes the
exact likelihood. However, as discussed in Sec. III A,
following previous work [57], we will employ a synthetic
likelihood model instead of performing an end-to-end
parameter inference calculation.
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B. Bayesian inference

Now, with the PE of individual sources, we follow the
Bayesian framework for population inference. The like-
lihood of a population parameter Λ is equivalent to the
probability of the individual sources given the population
parameter Λ is written as follows:

LðΛÞ≡ pðd1; d2; d3;…; dN jΛÞ: ð2Þ
Then, using the likelihood in Eq. (2), one can find the

posterior probability of Λ as follows:

pðΛjd1; d2;…; dNÞ ¼
pðΛÞpðd1; d2;…; dN jΛÞ

pðd1; d2;…; dNÞ
; ð3Þ

where pðΛjd1; d2; d3;…; dNÞ is posterior, pðΛÞ is prior,
and pðd1; d2; d3;…; dNÞ is normalization constant, also
known as evidence.
Considering the generic Bayesian framework above, we

conduct our mass and eccentricity distribution analysis. We
will use the inhomogeneous Poisson process [58,59] scaled
by rate R ¼ dN

dtdVc
and parametrize by Λ to find the

likelihood LðR;ΛÞ≡ pðDjR;ΛÞ of an astrophysical pop-
ulation given the merger rate and parameter Λ:

LðR;ΛÞ ∝ e−μðR;ΛÞ YN
n¼1

Z
dλlnðλÞRpðλjΛÞ; ð4Þ

where μðR;ΛÞ given in Eq. (7) is the expected number of
detections under the given population parametrization Λ
with the overall rate R. lnðλÞ ¼ pðdnjλÞ is the likelihood
of the data dn given binary parameter. Finally, we will get
our posterior as follows:

pðR;ΛjDÞ ∝ pðR;ΛÞLðR;ΛÞ ð5Þ
by choosing an appropriate prior pðR;ΛÞ.
These calculations are analytically intractable andmust be

performed numerically. Specifically, we will use Goodman
and Weare’s affine invariant Markov chain Monte Carlo
(MCMC) [60] to find the posterior distribution of population
parameters. This method draws samples from the targeted
distribution forΛ, in our case, its eccentric power law model
given in Eq. (8), then compares it with the given data
(collection of individual events) and stores the best-fit
sample. We may iterate this as we need and store multiple
sample values until they converge. Our specific implemen-
tation is a Python package called EMCEE [61]. We use a low-
dimensional model; chains converge to a common region
after a few hundred steps. Therefore, we performed our
analysis with 100walkers up to 5000 samples and burned the
initial 2500 steps at the plotting stage.

C. Volume time (VT) estimation

To make our study realistic, we include the sensitivity of
the LVK instruments. This sensitivity is defined by time

volume to which a census of gravitational wave events is
sensitive, inferring the product VT. In this expression, V is
the characteristic volume with units Gpc3, which refers to
the possible detection region in the sky for the LVK [62],
and T is the time duration of making observations at this
sensitivity. In practice, VT reflects a suitable time-averaged
or cumulative sensitivity, as the true network and sensitivity
vary over time.
Existing LVK instruments’ sensitivity depends primarily

on the mass and, to a lesser extent, on binary spin and
(if present) modest eccentricity. Since we neglect spin in
this work, we assume the network will have the same VT
versus mass as was previously estimated [40] for non-
spinning, noneccentric, and nonprecessing binaries. Hence,
we briefly explain the calculations; see [40] for details.
Equation (6) calculates the orientation averaged sensitive
volume [63,64]

VðλÞ ¼
Z

Pðð< DðzÞÞ=DhðλÞÞ
dVc

dz
dz

1þ z
; ð6Þ

where DðzÞ is the luminosity distance for redshift z, Dh is
the horizon distance to which source can be seen, and Vc is
the comoving volume (for details see [40]). Finally, to
compute the average number of detections, we used Eq. (7):

μðR;ΛÞ ¼
Z

ðVTÞλRpðλjΛÞdλ; ð7Þ

where pðλjΛÞ is the probability density function for a
random binary in the Universe to have parameter λ. Keep in
mind that λ is equal to all intrinsic and extrinsic parameters.

D. Eccentric power law

Because of gravitational radiation, binary orbital eccen-
tricity decays over time [2]. To unambiguously specify the
interpretation of eccentricity, for simplicity, we assume the
eccentricity is specified at a reference gravitational wave
frequency f0 ¼ 10 Hz, consistent with prior work [52].
There are various weak and pure phenomenological popu-

lation models proposed in previous studies [55,65,66]. We
need a more well-understood theory encompassing all
possible formation channels to choose any specific model.
Therefore, our analysis used the pure truncated power law
defined in [65,66] and modified it to include one-sided
Gaussian eccentricity. This model computes the intrinsic
probability of m1, m2, and ϵ. For simplicity, to focus on
binaries with some degree of premerger signal, not neces-
sarily to encompass all astrophysical population models
or even rare extreme detections, we kept total mass
Mmax ¼ m1 þm2 ¼ 100M⊙. We also assume that nonzero
probability density only exists formmin ≤ m2 ≤ m1 ≤ mmax.
The generalized form of the truncated power-lawmodel with
parameters Λ≡ ðα;R; km;mmin; mmax; σϵ;MmaxÞ and ran-
dom variablem1,m2, and ϵ has the functional form in Eq. (8)
within the provided mass limit,
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pðm1; m2; ϵÞ ¼ Cðα; km;mmin; mmax;Mmax; ϵÞ

×

ffiffiffi
2

π

r
ðm2=m1Þkmm−α

1 e−ðϵ=
ffiffi
2

p
σϵÞ2

ðm1 −mminÞσϵ
; ð8Þ

where α is the power law index,R is the merger rate, mmin,
mmax are the minimum and maximum masses of the binary
components in the population, and σϵ is the orbital eccen-
tricity distribution. Equation (8) represents a truncated power
law for primary mass m1 with index −α and conditional
power law distribution pðm2jm1Þ for secondary mass m2

using power law, and one-sided Gaussian distribution for
orbital eccentricity ϵ. For our analysis, we defined a constant
of integration equal to

R
V dm1dm2dϵpðm1; m2; ϵÞ ¼ 1. Our

detectors are sensitive to high-mass BBHs. Therefore, we
will use km ¼ 0 throughout the studies. As a result, we have
our reduced form of the truncated power law in Eq. (9):

pðm1; m2; ϵÞ ¼
ffiffiffi
2

π

r
m−α

1 e−ðϵ=
ffiffi
2

p
σϵÞ2

ðm1 −mminÞσϵ
: ð9Þ

III. SYNTHETIC POPULATION

We have generated two synthetic populations with
conservative case σϵ ¼ 0.05 and optimistic case σϵ ¼
0.15 by choosing the power law parameters α ¼ −1,
mmin ¼ 10, and mmax ¼ 50. Starting with 10000 synthetic
sources for each population, we find the probability for
each event to be detected by computing the VT of each
source. Finally, we weighed based on these VTs and
randomly picked N ¼ 100 sources from each population
to perform our analysis. To be concrete, to eliminate the
impact of Poisson counting statistics on our event rate
inference, and guarantee that both synthetic populations
should favor the same event rate, we have specifically
adopted a known event count for each population (i.e.,

N ¼ 100). As a result, the implied observing time
(T ¼ 248d) guarantees the expected event count will be
exactly μ ¼ 100 for the true population parameters for
each synthetic population. Our analysis assumed the fixed
rate density per comoving volume and no evolution. Our
injected populations with σϵ ¼ 0.05 and σϵ ¼ 0.15 are
shown in Fig. 1.

A. Eccentric synthetic population

To make our study more realistic, we must add the
measurement error in each source. Rather than generate
synthetic gravitational wave sources and perform full
Bayesian inference, following previous work [57] we gen-
erate mock measurement errors motivated by real parameter
inference investigations. Hence, chirp mass and symmetric
mass ratio are well constrained compared to the primary and
secondary masses of BBH.We compute them for each event
in a population by using the following relation:

MT
ecc ¼

ðm1m2Þ3=5
ðm1 þm2Þ1=5

; ð10Þ

ηTecc ¼
ðm1m2Þ

ðm1 þm2Þ2
; ð11Þ

where MT
ecc, ηTecc, m1, and m2 are the true chirp mass,

symmetric mass ratio, primary mass, and secondary mass of
an eccentric binary, respectively. Furthermore, using the
following relations, we add the measurement errors in the
MT

ecc and ηTecc:

Mecc ¼ MT
ecc

�
1þ βðr0 þ rÞ 12

ρ

�
; ð12Þ

ηecc ¼ ηTecc

�
1þ 0.03ðr00 þ r0Þ 12

ρ

�
: ð13Þ

FIG. 1. Synthetic population of EBBH: the lhs shows with σϵ ¼ 0.05, the rhs shows with σϵ ¼ 0.15.
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Here r0 and r00 are the random numbers drawn from the
standard normal distribution, which will shift the mean
of the Mecc and ηecc distribution with respect to MT

ecc and
ηTecc. The r and r0 are the independent and identically
distributed arrays of those randomly generated numbers to
spread the distribution. The measurement uncertainty is
inversely proportional to signal-to-noise ratio ρ, drawn from
the distribution pðρÞ ∝ ρ−4, which holds for isotropically
distributed sources in a static Universe, subject to the
threshold ρ ≥ 8 for detection. Following Sec. III D of
[67], we estimate β ≃ 0.5ðv=0.2Þ7=w, where v is an esti-
mated post-Newtonian orbital velocity at a reference fre-
quency of 20Hz,w ¼ ρ=12, and ρ is drawn from aEuclidean
SNR distribution Pð> ρÞ ∝ 1=ρ3.
Finally, after adding the measurement errors in the MT

ecc
and ηecc, we will convert them back to m1 and m2 to
perform our analysis. We used the following relation for
conversion, and it will provide the masses based on the
condition m1 ≥ m2:

m1 ¼
1

2
Meccη

−3=5
ecc ð1þ ffiffiffiffiffi

ηv
p Þ; ð14Þ

m2 ¼
1

2
Meccη

−3=5
ecc ð1 − ffiffiffiffiffi

ηv
p Þ; ð15Þ

where ηv ¼ 1–4ηecc, we kept the samples with non-neg-
ative values and ignored the negative samples to avoid the
square root issues.
We also added the absolute error in the eccentricity

distribution using the truncated normal distribution (to keep
ϵ positive) scaling at 0.06 and 0.2 for modest and optimistic
eccentricity cases, respectively. For our study, we have the
flexibility to make arbitrary choices in the distribution
parameters, a feature that underscores the adaptability of
our methodology.
To summarize, following previous work, our semianalytic

per-event likelihood model is a simple (truncated) Gaussian
approximation in suitable coordinates, with shape and struc-
ture motivated by the leading-order phase and likelihood

expected from inspiral-dominated sources. While this
approximation’s scale and correlations will not mimic real-
istic posteriors for the most massive sources, whose gravi-
tational-wave signal is merger dominated, this estimate
nonetheless has qualitatively correct behavior at the highest
masses (i.e., broadposteriors) and, consistentwithpriorwork,
is sufficient for our proof-of-concept study.

B. Circular synthetic population

To compare the synthetic EBBH population with the
CBBH, we estimate how our sources would be charac-
terized by parameter inference that omitted the effects of
eccentricity:

Mecc ¼
Mcir�

1 − 157
24

ϵ2
�
3=5 : ð16Þ

Our ansatz for source identification and characterization is
that the best-fitting parameters and posteriors are directly
related to the true posteriors, except that the recovered chirp
mass is given by Eq. (16). Therefore, we take the posterior of
each event of eccentric synthetic populations generated in
Sec. III A and applied the scaling using Eq. (16) on primary
and secondary masses to remove the eccentricity [52]. As a
result, we have the CBBH population with the same number
of events and same posterior size as the EBBH population.
The significant effect of scaling is the mass shift, which

can be observed in Fig. 2. In that figure, the left-hand side
shows the mass shift of the first population generated with a
lower σϵ ¼ 0.05, which leads to a lesser mass shift.
However, the right hand side of Fig. 2 shows the significant
mass shift after removing the eccentric component due to
the optimistic case of eccentricity distribution.

IV. POPULATION INFERENCE
OF EBBH AND CBBH

We have generated two populations using conservative
σϵ ¼ 0.05 and optimistic σϵ ¼ 0.15 to show the effect of

FIG. 2. Mass shift after removing eccentricity: the lhs shows with σϵ ¼ 0.05, the rhs shows with σϵ ¼ 0.15.
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eccentricity on the masses. We made the inference on both
populations using Bayesian inference with uniform priors
given in Table I, and we used a likelihood given in Eq. (2).
We estimated posterior distribution by collecting ample

samples using the MCMCmethod. The contour plots of the
posterior distribution for recovered parameters are given
in Figs. 3 and 4, which show the results of population
inference under the most conservative and optimistic case.

TABLE I. Injected parameters to generate synthetic population and priors used for Bayesian inference.

Quantity log10
�

R
Gpc−3 yr−1

�
α mmin½M⊙� mmax½M⊙� σϵ

Synthetic population 2 −1 10 50 {0.05, 0.15}
Prior range ½−5; 5� ½−5; 5� [1–20] [30–100] [0–0.5]
Prior distribution Log uniform Uniform Uniform Uniform Uniform

FIG. 3. Corner plots of EBBH (orange) and CBBH (black) for σϵ ¼ 0.05.
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In those figures, the black color shows the results of CBBH,
the orange color shows the results of EBBH, and the red
color shows the true injected values.
Figure 3 shows that in the limit of extremely small

eccentricity, the impact of eccentricity is minimal on
population constraints. This result depends, of course, on
our assumption that all binaries are equally likely to have
eccentricity and that our measurement uncertainty in
eccentricity is both independent of mass and reasonably
small, both optimistic assumptions. Most notable is the
impact of neglecting eccentricity for higher eccentric
binaries. If the eccentricity is neglected, then the population

inference is biased away from true values: the black
contours in Fig. 4 do not include the true values for the
injected population. This bias is expected, as the eccen-
tricity is a significant parameter in the population model,
particularly at the higher eccentricities.
In addition, we also performed our analysis to check the

minimum number of eccentric events to recover the
injected σϵ ¼ 0.05, each with a measurement error of
0.06. Our results show that we can recover the distribution
of σϵ even with five eccentric events. The increment in the
number of events leads towards narrower posterior distri-
bution of eccentricity distribution. So, the more eccentric

FIG. 4. Corner plots of EBBH (orange) and CBBH (black) for σϵ ¼ 0.15.
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events, the better the recovered value of σϵ. As we can
recover the mass and eccentricity distribution with a small
number of events, it is equally essential to have a large
number of events to get a more accurate recovery of rate
and model parameter α. The pattern of recovered eccen-
tricity distribution from broader to narrow is evident in
Fig. 5 with different numbers of events.

V. DISCUSSION

The sensitivity of LVK detectors is increasing with time,
leading to more detection in each observing run. We will
have hundreds of events in future runs, and with the
ongoing O4 run, detections could occur as frequently as
every other day [68,69]. Interestingly, the new detections
lead us to reasonable disagreement on the masses, spin,
event rate, and formation scenarios [70,71], which pushes
researchers to develop new models [72,73], to provide
more information about the observable GW [74–76].
Therefore, identifying and understanding the populations
of EBBH with a growing number of detections will give us
more insightful information about the formation and
evolution of massive stars from birth to death over cosmic
time.
Until now, all of the confirmed detections are consistent

with nearly circular orbits, and there can be various reasons
for this bias. The first potential reason for getting circular
orbits is that eccentric effects are more evident in low-mass

events, and current searches are more efficient for higher-
mass mergers. Second, it may result from selection biases
in the waveforms because LVK detectors only use circular
waveforms for parameter estimation (PE), which better
present binaries evolved in an isolated environment than the
dynamically evolved ones.
Studies show that we must consider the multiple for-

mation channels to understand the population better
because a single channel may not contribute more than
70% of the observation sample of BBH [77]. In addition,
we may have stellar mass higher eccentric mergers at the
lower frequency searches [78,79], which can be measurable
by detectors like Laser Interferometer Space Antenna
(LISA) [80]. These observations would allow for long-
term tracking of BBH orbital properties, which can be used
to infer the formation mechanism better [81]. So, it is
critical for astrophysical implications to assess eccentricity
distribution to infer their formation better.

VI. CONCLUSION

In this work, we demonstrate how one can recover the
effects of eccentricity in a binary black hole population
using a parametric model. Specifically, we extended a
simple power law model to include a one-sided Gaussian
eccentricity distribution for BBH. We verified that our
approach can recover the properties of two specific injected
populations, generating a large synthetic population with
known values log10ðRÞ ¼ 2, α ¼ −1, mmin ¼ 10M⊙,
mmax ¼ 50M⊙, and σϵ ¼ 0.05; 0.15.
We then demonstrated that analyses using fewer events

could identify the signatures of eccentricity. However,
longer signals may be needed to distinguish the eccentricity
from the spin precession [82]. We expect ∼1% to ∼17%
mass shift for the modest ðσϵ ¼ 0.05Þ to the optimistic
ðσϵ ¼ 0.15Þ case, respectively, based on Eq. (16). We
observed a 12.5% difference in our population parameters
recovery between EBBH and CBBH. Finally, we demon-
strated that the neglect of eccentricity can bias the recov-
ered population parameters if the eccentricity in the
population is frequently large, evident in Table II.
For this analysis, we restricted our inference only to

BBH, but in the future, we aim to include eccentricity in
other binary models, such as BNS and NSBH models. We
also plan to modify the high-dimensional population
models [40] to add eccentricity, spin, and precessing BBH.

FIG. 5. Histogram for eccentricity distribution with different
numbers of events.

TABLE II. Parameter constraints: EBBH vs CBBH for σϵ ¼ 0.15.

Inference log10
�

R
Gpc−3 yr−1

�
α mmin½M⊙� mmax½M⊙� σϵ

EBBH 2.02þ0.07
−0.07 −0.26þ0.41

−0.45 9.03þ1.13
−2.06 52.93þ1.93

−1.78 0.16þ0.01
−0.01

CBBH 2.24þ0.10
−0.08 −0.02þ0.41

−0.47 6.56þ1.54
−2.32 43.79þ1.50

−1.34 � � �
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