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Gravitational waves in the postmerger phase of binary neutron star mergers may become detectable with
planned upgrades of existing gravitational-wave detectors or with more sensitive next-generation detectors.
The construction of template banks for the postmerger phase can facilitate signal detection and parameter
estimation. Here, we investigate the performance of an artificial neural network in predicting simulation-
based waveforms in the frequency domain (restricted to the magnitude of the frequency spectrum and to
equal-mass models) that depend on three parameters that can be inferred through observations, neutron star
mass, tidal deformability, and the gradient of radius versus mass. Compared to a baseline study using
multiple linear regression, we find that the artificial neural network can predict waveforms with higher
accuracy and more consistent performance in a cross-validation study. We also demonstrate, through a
recalibration procedure, that future reduction of uncertainties in empirical relations that are used in our
hierarchical scheme will result in more accurate predicted postmerger spectra.
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I. INTRODUCTION

During the previous decade, we witnessed the birth of a
new branch of observational astronomy that does not rely
on the electromagnetic spectrum to derive observations of
the Universe and its components [1]. Instead, it uses the
properties of space-time itself to reveal hidden aspects of
astronomical objects by means of gravitational-wave (GW)
interferometric detectors. These space-time properties are
exerted by violent events occurring in the Universe, such as
the coalescence of binary black hole (BBH) or binary
neutron star (BNS) systems, leading to the generation of
detectable gravitational waves. In the first three observing
runs, 90 events have been reported by the LIGO-Virgo-
KAGRA Collaboration, the majority of them concerning
BBH systems and only two of them concerning BNS
systems [2]. More GW candidate events are accumulating
in the ongoing O4 phase that started in May 2023. As
current detectors are being improved and third-generation
detectors are being designed, a greater number of signals,
and possibly even new types, are expected to be detected in
the near future [3–5].

One of the anticipated discoveries, which so far has
remained undetected [6,7], is the gravitational-wave signal
from the postmerger phase of BNS mergers. However,
these signals may be identified using planned upgrades that
extend beyond the fifth observing run (O5) and become
more probable with third-generation or dedicated high-
frequency detectors [8–17].
The postmerger phase may last up to a few tens of

milliseconds and is characterized by the emission of
significant amounts of gravitational radiation at distinct
frequencies of a few kilohertz. Identifying specific post-
merger frequencies could set strong constraints on the
radius of neutron stars and, consequently, on their equation
of state (EOS), which is a major goal in high-energy
astrophysics; see [18–26], and references therein.
Figure 1 shows an example of the GW strain during the

postmerger phase and the corresponding Fourier spectral
amplitude for a particular EOS (DD2) and component
mass 1.3M⊙ (the same for both stars), extracted from the
CoRe v2 dataset [27]. During merger, linear nonaxisym-
metric oscillation modes, nonlinear combination tones, and
other transient effects are excited in the remnant; see, e.g.,
[28–35]. The main oscillation mode is the l ¼ m ¼ 2 f
mode, commonly1 referred to as fpeak. For comprehensive*Contact author: dipesios@auth.gr
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reviews of the various characteristics of the postmerger
spectrum, see [18,20,22,25,36,37].
The postmerger GW spectrum (typically in the range

between 1.5 and 4 kHz) depends on the masses of the two
binary components and theEOS—see, e.g., [22,29,31,35,38–
43]—and includes information that may allow the inference
of various neutron star properties—see, e.g., [8,38,44–48].
This could be achieved, for instance, using empirical relations
that relate fpeak to radii of nonrotating neutron stars in the
inspiral phase [20,29,31,42,49–53].
A prerequisite for extracting source parameters

from future detections of the postmerger signal is the
availability of a specialized template bank that depends
on the two component masses and the EOS. However,
BNS simulations in numerical relativity are time-
consuming, and, at the moment, only a few hundred
different simulations have been performed. Even in the
case of BBH mergers, where a larger number of numeri-
cal simulations are available, regression methods have
been employed to construct template banks to reach the
number of templates required for accurate detection and
parameter estimation; see [54] and references therein. In
the case of BNS mergers, the problem is more challeng-
ing. Ideally, we would like to construct detailed template
banks that describe and parametrize the full inspiral-
merger-postmerger waveform and encode the impact of
the EOS.

In [55], a matched-filtering approach for detecting the
postmerger signal is described. The template bank consists
of the analytic waveform model proposed in [50].
Additionally, in [56], the impact of transient noise artifacts
with high-frequency components on the sensitivity of the
search for GWs in the postmerger phase was considered.
In [57], a frequency-domain analytical model was explored
using wavelets in combination with empirical relations,
where also a recalibration was applied and its feasibility for
detecting the postmerger phase with third-generation detec-
tors was studied in [16]. In addition, [58] presented another
analytic model in the frequency domain, based on a
parametrized Lorentzian function, for the complete coa-
lescence process. Apart from individual detections, the
possibility of combining information from a number of
weak postmerger signals (too weak to be detectable
individually) has been explored in [53], concluding that
first indications for the presence of postmerger GW
emission could come with the final upgrades of the
second-generation detectors. Lastly, in [59], a morphol-
ogy-independent method was presented to characterize the
fate of the postmerger remnant.
A large number of detections of the inspiral phase of

BNS mergers using third-generation detectors is expected
to lead to tight EOS constraints; see [60] and references
therein. However, using only the inspiral phase, one
cannot probe EOS properties at densities higher than
those encountered in the core of isolated neutron stars
before they merge. In contrast, the detection of GWs in
the postmerger phase will allow us to probe higher
densities and test for the presence of phase transitions
or exotic components [61–67] or deviations from general
relativity [68–77].
Easter et al. [78] introduced a methodology comprising a

hierarchical model of two main steps to predict postmerger
spectra in the frequency domain. Here, we construct a
similar model, but, in contrast to [78], we do not use an
empirical relation for the compactness C ¼ M=R, but,
instead, we use the inverse gradient dR=dM of the
mass-radius relation (where M is the gravitational mass
and R the circumferential radius of a relativistic star).
Furthermore, we extended the training set from 35 spectra
in [78] to a total of 87 spectra. Apart from improved results
with this hierarchical multivariate regression scheme, we
are also interested in exploring the application of artificial
neural networks (ANNs) as a regression scheme for
predicting postmerger spectra. To this end, we train a
feed-forward ANN on the same data and perform extensive
comparisons between the two methods. Although, at the
moment, the training set comprises a limited number of
models, we obtain comparable or slightly better results with
the ANN regression, showing that this is a very promising
method to be applied in future searches, when many more
simulation results will be available. Furthermore, using a
recalibration of the results, we show that if the uncertainties
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FIG. 1. Plus polarization of the postmerger strain, hþ, in the
time domain (top panel) and the frequency domain (bottom
panel) for a 1.3M⊙ equal-mass BNS merger with the DD2 EOS.
The source is assumed to be at 50 Mpc. The spectrum with our
ANN-based method (red curve) agrees well with the original
spectrum (blue curve). The blue dashed vertical line and the red
one indicate the frequencies where each spectrum attains its peak
value correspondingly, whereas the orange one indicates the
predicted frequency of the empirical relation.
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of the employed empirical relations will be reduced in the
future (due to better EOS constraints obtain through GW
observations in the inspiral phase), this will greatly improve
the accuracy of our proposed method.
This work is organized as follows: In Sec. II, we present

the two regression-based techniques used to construct
predictive models, along with some statistical and machine
learning (ML)-based concepts. In Sec. III, we outline the
experiments conducted to assess the performance of the
models, such as comparing the resulting fitting factor
histograms before and after recalibration and a necessary
cross-validation sensitivity analysis. Finally, in Sec. IV, we
make some final remarks and draw conclusions. Some
complementary results are depicted in collective spectra
plots in the Appendix for the two models.
We note that in certain expressions, such asM=R, we use

the standard convention of setting c ¼ G ¼ 1.

II. PREREQUISITES

Here, we introduce the applied machine learning and
statistical techniques used to construct and analyze the
predictive models of our work. Waveform model-based
prediction is useful to construct templates that cover a wide
range of possible system parameters. The statistical aspect
of predictive modeling is primarily concerned with min-
imizing the error of a model in order to make predictions of
future outcomes as accurately as possible.

A. Regression techniques for prediction

We mainly leverage two approaches: a classical multi-
input and multitarget linear regression approach to for-
mulate a multivariate linear model and, second, a more
general function-approximating approach, based on an
artificial neural network model, with various enhance-
ments. Both approaches can fall into the regression-based
description, since they obey the same mathematical equa-
tion [as in Eq. (1) below] connecting input and output;
however, it is implemented differently in the two
approaches.

1. Multivariate linear regression (MLR)

Multivariate linear regression is an extension of multiple
linear regression allowing for more than one output
variables, which may be correlated [79,80]. The multivari-
ate linear model is

Y
ðn×mÞ

¼ X
ðn×lþ1Þ

B
ðlþ1×mÞ

þ E
ðn×mÞ

; ð1Þ

where Y is a matrix of n observations on m response
variables (regressands), X is a model (design) matrix with
columns for lþ 1 regressors, typically including a column
of ones for the regression constant, B is a matrix of
regression coefficients, with one column for each response
variable, and E is a matrix of residuals, where the rows Ei,

i ¼ 1;…; n, have all mean 0 and the same error covariance
matrix, and they are uncorrelated to each other.
Assuming that X0X is nonsingular and the residuals are

Gaussian, it can be shown that the maximum-likelihood
estimate of B in the multivariate linear model is equivalent
to the least squares estimate for the individual responses:

B̂ ¼ ðX0XÞ−1X0Y; ð2Þ

where the hat indicates the estimated regression values
of the coefficients. If the responses are assumed to be
uncorrelated, the multivariate linear regression can be
treated as many independent and stacked multiple linear
regressions.

2. Artificial neural networks as universal approximators

Artificial neural networks, in contrast, are more general
problem-solving models. For the multivariate regression
problem, ANNs estimate any function f∶ Rk → Rm, hav-
ing as input a vector of k regressors and as output a vector
of m responses. The formulation of a regression solution
using an ANN bears a mathematical expression, which is
complicated, with the complication increasing with the
number of layers. In this expression, crucial nonlinearity is
introduced by means of specialized activation functions
applied to the outputs of individual neurons or layers within
the network.
Although an ANN may consist of more than three layers

of neurons, it has been mathematically shown that any
functional relationship can, in practice, be implemented
with a three-layer ANN [81–83]. Theoretically, according
to the universal approximation theorem, a network with
just one hidden layer and nonlinear activation functions
should be sufficient to model any function mapping, but, in
practice, additional layers are included. In our implemen-
tation of ANN, we use four layers and make further
enhancements to improve network performance.
The first enhancement we used was a learning rate (LR)

scheduling scheme [84–86], involving a nonmanual tuning
of the LR value. Typically, we want the LR value not to be
too low, since the neural network would learn slowly, but
also not too high, since this would result in divergence
issues. The strategy we followed suggests starting with a
low LR (warm-up), which gradually increases (LR
annealing), followed by a slow LR decrease for a certain
number of steps when the loss function reaches a plateau,
to achieve the best possible loss value (local minima).
Moreover, introducing a warm-up period in the LR can
reduce the initial variance of the training procedure and
further stabilize it.
Another enhancement, which is common in statistics, is

standardization (that is, subtracting the mean and dividing
with the standard deviation) of the input values fed into
the neural network (and the same for the output values
during training) and the reverse procedure of bringing the
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predicted output values back into the original domain. For
each variable, the mean and standard deviation are com-
puted from the input or output training samples and divided
by the respective standard deviation. The same mean and
standard deviation are then used in the reverse procedure on
the output values.
Lastly, one can use early stopping while training the

ANN, a technique that stops the training procedure when a
low plateau is reached in the corresponding validation loss,
calculated using a separate set other than the training one.
In this way, the prediction accuracy and the training time
can improve. Furthermore, to ensure that the ANN is able to
generalize and mitigate overfitting effects in deployment,
other techniques can be employed, such as noise addition in
the output of constituting layers [87] and random dropout
of nodes [88,89].

B. Statistical design of experiments

In this subsection, we briefly describe some statistical
concepts used in our work to efficiently design statistical
experiments, such as hierarchical or multilevel regression
models and unbalanced designs. Reference [90] provides a
thorough and general discussion on the subject.

1. Hierarchical or multilevel models

Some data settings require a hierarchy of regressions, the
so-called hierarchical linear models (also known as multi-
level models), for instance, by regressing X on Y and Y on
Z (a two-level approach).
These kinds of designs are called hierarchical for two

reasons [91]: first, due to the structure of the data and,
second, because of the model itself, which may demon-
strate its own hierarchy with within-group regression
parameters controlled by hyperparameters of some
upper-level model. Depending on whether these parameters
are considered as random variables or not, we distinguish
between random-effect and fixed-effect models.

2. Balanced versus unbalanced design

During the design of a regression solution, data usually
form groups based on a common characteristic, as fre-
quency series belonging to the same EOS as far as this work
is concerned.
When there is an equal number of observations in each

group, we can infer that the design matrix of the regression
will be homogeneous and its values (in our case columns)
evenly distributed, namely, balanced. Conversely, when
there is not an equal number of observations in each group,
the design will be inhomogeneous, something that will lead
to an unbalanced design matrix.
Balanced designs are often preferred over unbalanced

ones, due to their higher statistical power and reliable test
statistic. However, in many practical problems, this is not a

strong constraint on the applicability of a solution, such as
linear regression.

C. The fitting factor

To compare the predicted waveform, denoted h1ðtÞ, with
the corresponding spectra of the original waveform h2ðtÞ
using our methodology, we use a noise-weighted index
called the fitting factor (FF), which denotes their overlap,
defined as

FFðh1; h2Þ≡ hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p ; ð3Þ

where the (approximate) inner product is (as introduced
in [78])

hh1jh2i≡ 4

Z
∞

0

df
jh̃1ðfÞjjh̃2ðfÞj

ShðfÞ
ð4Þ

and h̃ðfÞ is the Fourier transform of a waveform hðtÞ. In
Eq. (4), ShðfÞ is the noise power spectral density (PSD),
averaged over a sufficiently long time segment. We will
assume that the PSD is a stationary, colored Gaussian noise
model. A good match (or overlap) between the two spectra
is indicated with values of FF close to 1.
We note that this definition of FF was introduced in [78],

since we are dealing with only the amplitudes (and not the
phases) of the Fourier transform, and differs from the full
definition introduced in [92].

D. Cross-validation

Cross-validation (CV), or out-of-sample testing, is one of
the most popular approaches for model evaluation [93].
Usually, the k-fold CV is partitioning the dataset into k
roughly equal parts, training the model with k − 1 of them
and testing it using the one excluded. This procedure is
repeated k times, covering, in this way, the entire dataset.
A subcase of k-fold CV is the so-called leave-one-out

CV (LOO-CV), when k equals the cardinality of the
dataset. This approach is employed in [78]. However,
various trade-offs emerge using a k-fold CV, and many
of them are still under debate [94–96] with one of the most
famous being the bias-variance trade-off with respect to k
value. Thus, in this work, we will conduct a detailed k-fold
cross-validation study, varying k from 2 to 87.

III. EXPERIMENTS

In this section, we describe the experiments conducted
to assess the robustness and efficiency of our proposed
extended methodology. First, the dataset is described.
Then, implementation-specific details about the MLR
and ANN regression models are given, and, finally, the
two models are compared.
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A. Dataset description

For both regression-based models, we have to provide
data for both the regressors (input) and the regressands
(output). The columns of the design matrix are populated
with data pertaining to three regressors [k ¼ 3 in Eq. (1)],
which are the component massM in an equal-mass (q ¼ 1)
binary system, the tidal coupling constant κτ2 (expressing
tidal deformability), and the derivative dR=dM, which
corresponds to the inverse gradients of the MðRÞ relation
of nonrotating equilibrium models for a given EOS. In the
case of the MLR model, the design matrix includes a first
row consisting of unit values. The response matrix Y is
formed by the amplitudes of the postmerger waveforms in
the Fourier domain.
In Table I, we list a detailed description of the 87

different waveforms used in our study. Most of the wave-
forms are from the CoRe v2 database [27] (47 waveforms)
and the Rezzolla and Takami catalog [45] (32 waveforms),
while eight waveforms are from Soultanis et al. [97]. All
waveforms were scaled to a common distance of 50 Mpc
truncated at their maximum amplitude to separate the
inspiral and postmerger phases. The postmerger part was
then transformed to the Fourier domain, and the resulting
spectra were partially aligned using the empirical relation
of Eq. (5).
Lastly, we confined the frequency range of the resulting

spectra to the astrophysically relevant domain of 1–4 kHz,
leaving some tolerance due to the shift-unshift procedures

(depending on the maximum displacement of the spec-
trum). The total number of frequency bins is m ¼ 370.

B. Alignment of postmerger spectra

A common feature of all postmerger spectra (irrespective
of the source parameters) is that they are dominated by the
fpeak frequency. In [32], this feature was used to align the
spectra to a common reference frequency, which was useful
for applying a principal component analysis. Similarly, the
hierarchical method of [78] includes an alignment step,
which needs to be reversed after the regression is per-
formed. Here, we also align the spectra to a common
reference frequency, which we take to be the average value
of fpeak in our dataset. For given values of the tidal coupling
constant κτ2 and component mass M for an equal-mass
system, we predict fpeak by the empirical relation

fpeakðκτ2;MÞ ¼ 4
β1
M

ln
�
β0
8κτ2

�
: ð5Þ

Equation (5) is based on the empirical relation Eq. (41)
in [52] but is written here differently and using the known
relation between mass-weighted tidal deformability Λ̃ and
κτ2, as well as the relation between chirp mass Mchirp and
component mass M for equal-mass systems. The fitting
values for β0 and β1 were recalculated, since a single
composite variable was used in [52].

TABLE I. Description of the training dataset of 87 waveforms. The first column lists the EOS name, the second column lists the
number of different models for each EOS, the third column gives the main reference for each case, and the last column lists the
component masses of the individual equal-mass models for each EOS. For the APR4, H4, and SLy, the Core v2 database was used above
1.325M⊙.

EOS Waveforms References Component masses (in M⊙)

ALF2 10 Rezzolla and Takami [45]
and CoRe v2 [27]

1.2, 1.225, 1.25, 1.275, 1.3, 1.325, 1.35, 1.3505, 1.375, 1.3755

APR4 7 Rezzolla and Takami [45] 1.2, 1.225, 1.25, 1.275, 1.3, 1.325, 1.35
BHBlp 4 CoRe v2 [27] 1.25, 1.3, 1.35, 1.4
BLh 4 CoRe v2 [27] 1.3, 1.3325, 1.364, 1.4
DD2 7 CoRe v2 [27] 1.2, 1.25, 1.3, 1.35, 1.364, 1.4, 1.5
ENG 1 CoRe v2 [27] 1.3495
GNH3 7 Rezzolla and Takami [45] 1.2, 1.225, 1.25, 1.275, 1.3, 1.325, 1.35

H4 13 Rezzolla and Takami [45]
and CoRe v2 [27]

1.2, 1.225, 1.25, 1.275, 1.3, 1.325, 1.3495 1.35, 1.3505, 1.3715,
1.3725, 1.3735, 1.3795

LS220 4 CoRe v2 [27] 1.2, 1.35, 1.364, 1.4
MPA1 8 Soultanis et al. [97] 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55
MS1 2 CoRe v2 [27] 1.3495, 1.351
MS1b 8 CoRe v2 [27] 1.35, 1.3505, 1.375, 1.3805, 1.381, 1.5, 1.6, 1.7
SFHo 2 CoRe v2 [27] 1.35, 1.364
SLy 10 Rezzolla and Takami [45]

and CoRe v2 [27]
1.2, 1.225, 1.25, 1.275, 1.3, 1.325, 1.35, 1.351, 1.3575, 1.364
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The left panel in Fig. 2 shows a collective plot of the 87
different postmerger spectra we use in our study. The value
of fpeak can be as low as ∼1.5 kHz or as high as ∼3.5 kHz.
The middle panel in Fig. 2 shows the same spectra but
aligned using the empirical relation in Eq. (5). Because of
the uncertainties of the empirical relation, the alignment is
only partial; i.e., the spectra are not perfectly aligned
according to their actual peak values. However, the
empirical relation allows the alignment to be reversed after
the regression is performed.
The alignment shifts the minimum and maximum

frequency of each available spectrum. To be able to use
the data as input training data, we truncate the spectra to a
common minimum and maximum frequency. However, our
sampling rate is sufficient so that this truncation does not
affect the main part of the spectrum, where the main
postmerger frequency is found.
The partially aligned spectra, in the middle panel in

Fig. 2, serve as training data for both the MLR and ANN
regression models presented in Sec. III C. The right panel
in Fig. 2 shows the corresponding predicted spectra (with
the alignment reversed), using the ANN-based method
and after applying the recalibration procedure discussed
in Sec. III D.

C. Regression models

In this subsection, we describe in detail the implemen-
tation of the two different regression-based models on the
dataset of 87 waveforms.

1. MLR-based model

The implementation of this model is quite straightfor-
ward, since the model produced is determined solely by
the regression coefficient matrix B̂. Taking into account the
fact that multivariate linear regression is equivalent with
separate and independent multiple linear regressions
(multi-input, single output), provided that responses are
not correlated, one can multiply B̂ with any chosen column

vector of four elements (that is, ½1; dR=dM;M; κτ2�) to
obtain an output vector that will represent the strain.
For the training, we consider the spectral amplitude in

linear scale (in the various figures, we show the base-10
logarithm of the spectra). For the regressors, that is, the
columns of the design matrix X, we performed a stand-
ardization of the values along each row of X.

2. ANN-based model

We used a four-layer (three hidden plus output), feed-
forward ANN, with sigmoid transfer functions (activa-
tions) in the hidden layers (comprising between 200 and
400 nodes each) and linear in its input and output ones.
Additionally, an Adam optimizer with a batch size of six
samples was used and training was completed in at most
100 epochs, due to early stopping. The optimizer itself
introduces a small stochasticity in the final FF values
between different trainings. We implemented the algo-
rithm using the TensorFlow framework [98]. The ANN
architecture is summarized in Table II. To ensure the
generalization of the proposed architecture, we also

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22

1 1.5 2 2.5 3 3.5 4
−24
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FIG. 2. Left panel: collective plot of the 87 different postmerger spectra used in both the MLR regression and the ANN method.
Middle panel: the same spectra, but partially aligned to a common fpeak frequency, using the empirical relation of Eq. (5) (departures
from a perfect alignment are due to uncertainties in the empirical relation). Right panel: corresponding predicted spectra, using the
ANN-based method, after recalibration (see the text for details).

TABLE II. Artificial neural network architecture, invoking the
summary function of the TensorFlow library [98].

Layer Type Shape Activation Params

1 Gaussian noise (0.1) (None, 3) � � � 0
2 Dense (None, 200) Linear 800
3 Gaussian noise (0.05) (None, 200) � � � 0
4 Dropout (0.15) (None, 200) � � � 0
5 Dense (None, 400) Sigmoid 80400
6 Gaussian noise (0.1) (None, 400) � � � 0
7 Dropout (0.15) (None, 400) � � � 0
8 Dense (None, 400) Sigmoid 160400
9 Gaussian noise (0.1) (None, 400) � � � 0
10 Dropout (0.05) (None, 400) � � � 0
11 Dense (None, 370) Linear 148370
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integrated layers adding Gaussian noise, as well as dropout
layers (which also introduce small stochasticity). The
respective settings for these additional layers are also
depicted in Table II. Similarly, Gaussian noise was added
to the validation set.
During training, we used a learning rate scheduler, which

starts with a low LR (for warm-up) and increases the LR
linearly in each step of the training process. The warm-up
period lasted approximately four epochs. Finally, we scaled
the input of the network using an established standardiza-
tion technique and inverted the result of the output
(unscale). This standard scaling was also used for both
the regressors and the regressands of the training set and of
the validation set as well.
To train the network, we gave pairs of individual

columns of the design matrix X (regressors) in combination
with the respective columns of the regressands matrix Y,
which represented a specific spectrum. To be more precise,
we feed the network with X’s column vectors omitting
the first entry (with constant value of 1), since the bias is
already included in the ANN architecture. The hyper-
parameters were optimized heuristically.

Furthermore, to avoid any bottleneck in the architecture
of the ANN, the consecutive layers have an increasing
number of nodes, except the last one having the number of
nodes equal to the frequency bins of the spectra.
In Fig. 3, we depict exemplary learning curves for this

ANN model to diagnose its behavior. The validation loss
curve follows the training loss curve and lies mostly below
it, implying that the dataset is representative [81,99],
allowing for a good fit, from an ML perspective. We can
also observe in these curves that the loss value does not
exhibit a significant percentage decrease, because it hap-
pens to be in the same range of initialized network weights
(we used the default initialization in TensorFlow) since we
did not use any initialization function. Lastly, the training
procedure is stopped when the validation loss curve
diverges for seven epochs consecutively.
Before feeding the spectra into the ANN for the training

procedure, we performed the same partial alignment
(shift) procedure as for MLR. This renders structure in
the training dataset (with respect to the regressands), not
captured by the three variables we chose in the design
matrix. This may not have been necessary, if we had a
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FIG. 3. Training and validation loss as a function of the number of epochs, shown for four different shufflings of the training set. The
training was stopped when the validation loss rose above the training loss for seven consecutive epochs.
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larger training set and additional variables in the design
matrix (e.g., including the maximum mass and the radius
at the maximum mass). For example, in the time-domain
model of [97], a larger number of parameters was used to
achieve high fitting factors.
As a final remark, the ANN produces a predicted

spectrum, by nonlinearly entangling information from all
frequency bins, which is not the case for the MLR model,
where at each frequency bin, a linear regression, indepen-
dent of other frequency bins, is performed. The fact that
both methods yield comparable results in many examples
shows that secondary peaks can be captured well and that
the loss function of the ANN method is not entirely
dominated by the peak frequency.

D. Recalibration of predicted spectra

Since we are using an empirical relation for the
partial alignment of the spectra, the inverse procedure
induces an error in the predicted spectrum that depends
on the accuracy of the empirical relation. To test the
impact of this error, we performed a “recalibration,” as
in [57]. In this way, one can reverse, to some extent, the
horizontal or vertical misalignment of a predicted spec-
trum with respect to the original one. This is useful, as it
shows the real potential of our method for predicting
postmerger spectra in the future, when more training
samples will be available and, in addition, the empirical
relation will become more accurate, due to tightening
EOS constraints derived from astrophysical observations
(see, e.g., [100]).
In [57], several parameters were used for recalibration.

Here, we use only the known peak frequency of the
postmerger spectra in the training set. We, therefore, define
as Δfpeak the difference between the peak frequency of
the original spectrum and the peak frequency of the
predicted spectrum after calibration. Then, we define the
likelihood function

LðΔfpeakÞ ¼
Xfmax

fmin

½hoðfÞ − hpðf − ΔfpeakÞ�2; ð6Þ

where ho is the original strain spectrum and hp the predicted
strain spectrum, while fmin and fmax define the frequency
range for recalibration. This likelihood is basically a mean-
squared-error function that is minimized close to the value
of Δfpeak, through the maximum-likelihood estimation
technique. This is equivalent to Bayesian inference using
uninformed priors. In practice, we use 60 frequency values
in the range 1–4 kHz. An indicative example of recalibra-
tion is shown in Fig. 4.
In the Appendix, we display collective plots of predicted

versus original spectra, produced using a k-fold CV with
k ¼ 4 (each plot shows a hold-out case, not included in the
corresponding training sample)2; see Figs. 7–9. In all
figures, the calibrated cases are shown. The predicted
spectra are, in most cases, close to the predicted ones,
even in the low- and high-frequency tails in this part of the
postmerger spectrum. There is good alignment of the main
frequency peaks, and in most cases the shape of one or
more secondary peaks is also predicted with satisfactory
accuracy. In some cases, the main peak in the original
spectra is quite narrow, which is due to a long-lived f2
oscillation. This feature cannot yet be captured by our
three-parameter model, and the predicted spectra show a
somewhat wider peak, with smaller maximum amplitude.
This could be remedied in future improved models, by
including more parameters.

E. Distribution of fitting factors

In the left column in Fig. 5, the calculated histograms of
the fitting factors FF are depicted in the uncalibrated case
for the MLR and ANN models, respectively. We set the
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FIG. 4. Recalibration of the predicted postmerger spectrum for a 1.364M⊙ equal-mass BNS merger with EOS LS220. The left panel
shows the ANN-based prediction before calibration, where the main postmerger peak is misaligned with respect to the original
spectrum. The right panel shows the calibrated spectrum, which has a much better alignment, leading to a significantly higher fitting
factor of 0.953.

2The choice of k ¼ 4 is common in such investigations.
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number of bins to 40 in each case and the number k of CV
folds equal to 4.
In the uncalibrated case, we observe that the fitting

factor distributions of the two models have a similar
shape, but the histogram is more concentrated to higher
values for the ANN model. Specifically, for the MLR
model, there are 18 fitting factor values below 0.8,
whereas for the ANN model, this reduces to only 11.
Moreover, the mode of the ANN histogram is closer to 1,
and there are fewer outliers.
On the other hand, after recalibration both histograms

greatly improve, as shown in the right column in
Fig. 5. The mode increases, the histogram becomes
narrower with values closer to one, and there are even
fewer outliers, compared to the uncalibrated case.
Comparing the MLR-calibrated histogram of fitting
factors with the ANN-calibrated one, we observe that

the latter is more concentrated closer to one, except for
two outliers.
In addition to the comparison of the fitting factor

histograms, we also investigate the behavior of the models
with respect to changing the value of k in the CV k-fold.
In Fig. 6, the histograms of the fitting factors are displayed
as separate violin plots. We observe that, irrespective of
individual cases of k, the overall behavior of the ANN
models is slightly better than that of the MLR, since the
mean FF value across all k’s is higher and less dispersed.
Regarding the dispersion of the FF values in the MLR case,
we observe that the interquartile range decreases slightly as
the number of folds k increases and becomes minimum
when using leave-one-out cross-validation, leading to
concentration of values in higher histogram bins (bias-
variance trade-off). The ANNmodel is more stable in terms
of dispersion of FF values and exhibits similar behavior
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FIG. 5. Histograms of fitting factors for predicted postmerger spectra when using the MLR (top row) and the ANN model (bottom
row), for k ¼ 4 cross-validation. The left column corresponds to the cases without recalibration, while in the right column recalibration
was applied (see the text for details). The distribution of the fitting factors obtained with the ANN models is more concentrated toward
one than for the MLR model.
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when varying k. The MLR model is significantly more
susceptible to outliers than the ANN model. We note that,
to make the comparisons, we first performed a stable
shuffling in the training dataset for both the regressors
and the regressands.

IV. CONCLUSIONS

In this work, we presented two robust methods for
predicting the GW postmerger spectrum for binary neutron
star mergers. One method uses multivariate least-squares
regression, whereas the second method uses artificial neural
networks.
Concerning the multivariate least-squares regression, our

work improves on the previous work by Easter et al. [78] in
the following points: (a) In the design matrix, we use the
inverse gradient dR=dM of specific points in the MðRÞ
plots instead of the compactness C ¼ M=R. (b) We use a
refined empirical relation for the postmerger peak fre-
quency in terms of other characteristics of neutron stars,
presented in Vretinaris et al. [52], instead of a different
relation used in [78]. (c) We use an extended dataset of 87
different spectra, compared to 35 in [78]. These changes

lead to higher fitting factors of the predicted spectra. Our
approach is robust, taking into consideration that we used
an unbalanced design matrix.
In addition, we demonstrate that a trained ANN can

predict the postmerger spectra with higher mean fitting
factors compared to the MLR model. Specifically, we used
a four-layer feed-forward ANN (with the Adam optimizer),
comprising between 200 and 400 nodes in each layer and
with additional Gaussian noise layers and dropout ones
(which introduce a small stochasticity).
We evaluated the accuracy of the two methods in

predicting postmerger spectra using the standard fitting
factor and performed several k-fold cross-validations. For
both the k ¼ 4 case (which corresponds approximately to a
75%–25% train/test split) as well as the k ¼ 87 case (which
corresponds to the leave-one-out method), we find that the
histogram of fitting factors is comparable between the two
methods, when calibration is performed. However, we note
a slightly higher mean fitting factor (across all k-folds)
when using the ANN-based approach.
The distribution of fitting factors when using the

recalibrated spectra is significantly improved with respect
to the uncalibrated predictions. Essentially, the recalibrated
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FIG. 6. Violin plot representations of the distribution of fitting factors for the MLRmodel (top row) and the ANN one (bottom row) for
different number of folds k in k-fold cross-validation. The left column corresponds to the cases without recalibration, while in the right
column recalibration was applied (see the text for details). The mean fitting factor among all the number of folds is shown as a dashed
black horizontal line, and the two dashed blue horizontal lines represent one standard deviation. The highest mean fitting factor (0.908)
is obtained with the ANN-calibrated model.
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results remove, to some degree, the uncertainties intro-
duced by the use of the empirical relation in aligning the
spectra during training. We note that postmerger spectra
are realistically expected to be observed with third-
generation detectors, which will also significantly con-
strain the EOS using information from the inspiral phase;
see, e.g., the anticipated constraints in [60], when
assuming 500 BNS observations with third-generation
detectors. In parallel, the available collections of post-
merger BNS spectra produced by numerical-relativity
simulations is expected to be significantly enlarged in the
time it will take for third-generation detectors to become
operational. These two improvements will allow us to
significantly reduce the uncertainty of the empirical
relation, and, thus, our calibrated results point toward
the anticipated accuracy of our method at the time when
actual observations will be obtained.
Possible future improvements include the extension of

the design matrix by adding, e.g., quadratic terms or
additional physical characteristics. Furthermore, the design
matrix could take into account specific EOS information,
leading to categorical regression.
The methods presented here can be used to create

template banks of postmerger spectra, which will be
useful for detecting this phase after a BNS event. On
the other hand, the methods could be inverted, allowing
the estimation of the parameters included in the design
matrix, given a potential observation (see also [78]). We
are planning to investigate this application in forthcom-
ing work.
In the future, a significantly larger number of available

simulations will allow us to also investigate in detail
the level of systematic errors introduced by, e.g., the
choice of space-time formulation (full general relativity
or conformal flatness approximation), the EOS formu-
lation (tabulated finite-temperature or hybrid), and the
resolution of the simulation.
In this initial investigation, we have examined a basic

configuration for the BNS simulations, focusing solely on
hydrodynamics while disregarding the influence of mag-
netic fields, neutrino transport, and other forms of dis-
sipative effects or effective viscosities [101–112]. It will
be important to conduct comprehensive analyses that
incorporate all relevant physical factors to have a faithful
representation of the postmerger spectra. In addition, more
work is needed to produce a large number of training
spectra with unequal masses. Finally, future studies will
need to include the potential impact of departures from

general relativity on the postmerger spectra produced
during BNS mergers.
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APPENDIX: COLLECTIVE PLOTS OF MODELS
PREDICTIONS

In Figs. 7–9, individual predictions of the ANN-based
model are depicted for each EOS and mass using four-
fold CV.
In particular, in Fig. 7, we present the predictions for the

Easter et al. dataset [78] of numerical simulations, except
for the last row, that is, H4 and SLy EOS for the component
mass 1.35M⊙, where we used simulations from the CoRe
dataset [27]. Similarly, Figs. 8 and 9 collectively represent
predictions for spectra that were taken from the CoRe
dataset [27] and Soultanis et al. [97], respectively. In these
plots, the blue and red dashed vertical lines correspond to
the peak value of the original and the predicted spectra,
respectively, whereas the orange dashed vertical line
represents the prediction of the empirical relation Eq. (5).
Finally, Figs. 10–12 show the corresponding spectra

when using the MLR-based approach.
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FIG. 7. Original gravitational-wave spectra of BNS mergers (blue curves) depicted along with their ANN-based model predicted ones
(red curves) for the Rezzolla et al. dataset of numerical simulations [78], except for the H4 and SLy cases with component mass of
1.35M⊙, which were chosen from the CoRe database [27]. The blue and red dashed vertical lines correspond to the peak value of the
original and the predicted spectra, correspondingly. The orange dashed vertical line represents the prediction of the empirical relation
Eq. (5).
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FIG. 8. The same as Fig. 7, but for models included in the CoRe [27] dataset.
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FIG. 9. The same as Fig. 7, but for models from Soultanis et al. [97].

DIMITRIOS PESIOS et al. PHYS. REV. D 110, 063008 (2024)

063008-14



1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

ALF2, M12000, FF: 0.97

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

APR4, M12000, FF: 0.827

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

GNH3, M12000, FF: 0.847

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

H4, M12000, FF: 0.9

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

SLy, M12000, FF: 0.926

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

22

ALF2, M12250, FF: 0.976

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

APR4, M12250, FF: 0.926

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

GNH3, M12250, FF: 0.766

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

H4, M12250, FF: 0.937

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

SLy, M12250, FF: 0.925

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

ALF2, M12500, FF: 0.955

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

APR4, M12500, FF: 0.93

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

GNH3, M12500, FF: 0.834

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

H4, M12500, FF: 0.948

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

SLy, M12500, FF: 0.942

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

ALF2, M12750, FF: 0.827

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

APR4, M12750, FF: 0.983

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

GNH3, M12750, FF: 0.774

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

H4, M12750, FF: 0.929

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

SLy, M12750, FF: 0.969

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

ALF2, M13000, FF: 0.835

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

APR4, M13000, FF: 0.956

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

GNH3, M13000, FF: 0.862

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

H4, M13000, FF: 0.871

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

SLy, M13000, FF: 0.871

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

ALF2, M13250, FF: 0.838

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

APR4, M13250, FF: 0.941

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

GNH3, M13250, FF: 0.879

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

H4, M13250, FF: 0.858

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

SLy, M13250, FF: 0.9

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

ALF2, M13500, FF: 0.964

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

APR4, M13500, FF: 0.952

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

GNH3, M13500, FF: 0.944

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

H4, M13500, FF: 0.884

1 1.5 2 2.5 3 3.5 4

−24

−23.5

−23

−22.5

−22

SLy, M13500, FF: 0.793

FIG. 10. The same as Fig. 7, but using the MLR-based model.

PREDICTING BINARY NEUTRON STAR POSTMERGER SPECTRA … PHYS. REV. D 110, 063008 (2024)

063008-15



1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
ALF2, M13505, FF: 0.93

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
ALF2, M13750, FF: 0.85

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
ALF2, M13755, FF: 0.894

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
BHBlp, M12500, FF: 0.964

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
BHBlp, M13000, FF: 0.922

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
BHBlp, M13500, FF: 0.92

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
BHBlp, M14000, FF: 0.964

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
BLh, M13000, FF: 0.931

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
BLh, M13325, FF: 0.885

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
BLh, M13640, FF: 0.908

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
BLh, M14000, FF: 0.876

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
DD2, M12000, FF: 0.861

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
DD2, M12500, FF: 0.906

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
DD2, M13000, FF: 0.955

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
DD2, M13500, FF: 0.973

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
DD2, M13640, FF: 0.889

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
DD2, M14000, FF: 0.964

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
DD2, M15000, FF: 0.889

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
ENG, M13495, FF: 0.848

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
H4, M13505, FF: 0.954

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
H4, M13715, FF: 0.938

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
H4, M13725, FF: 0.93

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
H4, M13735, FF: 0.947

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
H4, M13750, FF: 0.892

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
H4, M15000, FF: 0.813

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
LS220, M12000, FF: 0.91

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
LS220, M13500, FF: 0.929

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
LS220, M13640, FF: 0.786

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
LS220, M14000, FF: 0.859

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
MS1, M13495, FF: 0.793

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
MS1, M13510, FF: 0.986

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
MS1b, M13500, FF: 0.95

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
MS1b, M13505, FF: 0.809

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
MS1b, M13750, FF: 0.875

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
MS1b, M13805, FF: 0.802

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
MS1b, M13810, FF: 0.897

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
MS1b, M15000, FF: 0.849

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
MS1b, M16000, FF: 0.828

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
MS1b, M17000, FF: 0.926

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
SFHo, M13500, FF: 0.933

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
SFHo, M13640, FF: 0.727

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
SLy, M13510, FF: 0.877

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
SLy, M13575, FF: 0.83

1 1.5 2 2.5 3 3.5 4
−24

−23.5

−23

−22.5

−22
SLy4, M13640, FF: 0.719

FIG. 11. The same as Fig. 8, but using the MLR-based model.
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FIG. 12. The same as Fig. 9, but using the MLR-based model.
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