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\We report results on the first matched-filtering search for binaries with compact objects having large
tidal deformabilities in the LIGO-Virgo gravitational wave (GW) data. The tidal deformability of a body is
quantified by the “Love number” Λ ∝ ðr=mÞ5, where r=m is the body’s (inverse) compactness. Due to its
strong dependence on compactness, the Λ of larger-sized compact objects can easily be many orders of
magnitude greater than those of black holes and neutron stars, leaving phase shifts which are sufficiently
large for these binaries to be missed by binary black hole (BBH) templated searches. In this paper, we
conduct a search using inspiral-only waveforms with zero spins but finite tides, with the search space
covering chirp masses 3M⊙ < M < 15M⊙ and effective tidal deformabilities 102 ≲ Λ̃≲ 106. We find no
statistically significant GW candidates. This null detection implies an upper limit on the merger rate of such
binaries in the range ½1 − 300� Gpc−3 year−1, depending on M and Λ̃. While our constraints are model
agnostic, we discuss the implications on beyond the Standard Model scenarios that give rise to boson stars
and superradiant clouds. Using inspiral-only waveforms, we recover many of the BBH signals which were
previously identified with full inspiral-merger-ringdown templates. We also empirically constrain the Love
number of the compact objects in these binaries to Λ≲ 103 at the 90% credible level in the best cases,
consistent with the expectation of vanishing Love number for black holes in general relativity. Our work is
the first-ever dedicated template-based search for compact objects that are not black holes or neutron stars.
Additionally, our work demonstrates a novel way of finding new physics in GW data, widening the scope
of potential discovery to previously unexplored parameter space.

DOI: 10.1103/PhysRevD.110.063007

I. INTRODUCTION

All gravitational wave (GW) matched-filtering searches
to date have been performed using template banks
constructed with aligned-spin binary black hole (BBH)
waveforms; see, e.g., Refs. [1–12]. Although matched-
filtering is the optimal linear filter in stationary Gaussian
noise [13,14], it relies on precise phase coherence between
the template and the signal [15,16]. This sensitivity to
phase coherence significantly diminishes our ability to
detect putative new signals that differ from those contained
within the BBH template banks [17], thereby limiting the
scope of potential new discoveries. In this paper, we expand
the space of templates and search for a wider class of
compact objects in the current public LIGO-Virgo data.

The phase of the GWs emitted by a binary system is
extremely sensitive to the physics of the individual compact
objects [18]. This encoded physics is especially interpret-
able in the inspiral regime of the binary coalescence, where
the binary components are well separated, and perturbative
corrections to the orbital dynamics in the form of the
post-Newtonian (PN) expansion can be derived analytically
[19–22]. At leading order, the orbiting bodies can be
modeled as point particles which are uniquely characterized
by their masses and spins. However, as the binary
approaches merger, various effects associated with the
finite size of the bodies can provide important contributions
to the phase evolution of the waveform. For example, for a
spinning body the leading-order finite-size effect is the
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spin-induced quadrupole, which first appears at 2PN order
[23,24]. Though formally the leading finite-size contribu-
tion, the effect of this term on the GW signal is suppressed
if the object’s dimensionless spin is small [17,25]. This is
typically the case for objects with large sizes, since their
spins are bounded by the mass-shedding upper limit [26].
For nonspinning or slowly spinning compact objects, the

tidal deformability of each body provides the dominant
finite-size effect on the inspiral [27–29]. This is a
conservative tidal effect whereby the gravitational pertur-
bation sourced by the binary companion changes the
multipolar structure of the body. The tidal deformability
of a body is quantified by a set of “Love numbers” [27],
with the leading quadrupolar Love number first appearing
in the waveform at 5PN order [28,30]. Depending on the
nature of the body, the quadrupolar Love number could be
large enough to introduce significant changes to the wave-
form [30,31]. For black holes, the Love number is zero1

[32–36] and is therefore ignored when building template
banks for BBH searches. For solar-mass neutron stars,
the Love number is sufficiently close to the black hole
value [37,38] that BBH templates are effective at detecting
binary neutron star (BNS) systems. However, for subsolar-
mass neutron stars (with masses ≲1M⊙) [39,40] and many
beyond the Standard Model (BSM) objects [41–51] pro-
posed in the literature, the Love numbers can easily be
orders of magnitude larger. In these cases, the Love
numbers can be large enough for the binary system to be
missed by BBH searches even if the signals have detectable
signal-to-noise (SNR) ratio in the LIGO-Virgo data; see
Sec. I A and Fig. 1 below.

A. Why is a new search necessary?

In order to understand why astrophysical bodies (other
than black holes) naturally have large Love numbers, it is
instructive to consider the leading tidal effect, which is the
induced quadrupolar deformation [29],

δQij ¼ −Λm5Eij; Λ ¼ 2

3
k

�
r
m

�
5

: ð1:1Þ

Here, δQij is the inducedmass quadrupole,Eij is the external
tidal field,Λ is the dimensionless quadrupolar Love number,
m is the object mass, r is the stellar radius, and k is a
dimensionless constant (often called the second Love
number) whose value depends on the internal structure of
the body. For black holes, k ¼ 0 [32–36]; see Footnote 1. For
neutron stars, depending on the nuclear equation of state, k
ranges between 0.1 and 1 [35,36,39,52]. For compact

objects that exist in many BSM scenarios, such as super-
radiant clouds formed around rotating black holes and
boson stars, k can be as large as ∼103 [41–47].2 In addition
to the dependence on k, Λ depends sensitively on the
body’s stellar radius and scales as Λ ∝ ðr=mÞ5, which can
be deduced straightforwardly through dimensional analy-
sis. The ratio r=m is often called the (inverse) compactness
of the body and can span multiple orders of magnitude
depending on the system under consideration. For example,
r=m ¼ 2 for Schwarzschild black holes; r=m is approx-
imately 2.25–10 for solar-mass neutron stars and ∼10–102
for subsolar-mass neutron stars [35,36,39,52]; no such
compactness bound exists for BSM compact objects since
there are often free parameters associated to the new
physics which can accommodate objects with large radii.
Due to the sensitive Λ ∝ ðr=mÞ5 scaling, Λ can be easily
enhanced by several orders of magnitude, counterbalancing
the suppressive effect of the v10 factor in this 5PN phase
term [28,30]. Indeed, for sufficiently large values of Λ, the
phase evolution of such binary systems would be signifi-
cantly different from those of BBH waveforms, potentially
resulting in them being missed by BBH searches.

FIG. 1. The ability of a standard BBH template bank to recover
signals with large tidal Love numbers. In particular, we show the
effectualness of a BBH template bank for the inspiral-only signal
from binaries with large Love numbers as a function of binary
total mass M and effective tidal parameter Λ̃; see (2.2). We find
that the effectualness drops significantly for Λ̃≳ 103, meaning
that searches conducted with BBH template banks are much less
sensitive to putative signals in this region of the parameter space.
In this paper, we therefore perform a search using a template
bank which includes the effect of Λ̃. Note that we allow for spins
in the BBH template model—this means that the observed
reduction in effectualness due to Λ̃ cannot be recouped by
allowing for spins.

1In fact, the Love numbers of black holes not only vanish for
the leading quadrupolar perturbation but also to all orders in the
multipole expansion of the external tidal field, for all values of
black hole spin, and for both the electric- and magnetic-type
perturbations in General Relativity (GR) [32–36].

2The coefficients k for many exotic compact objects
with smoothly-varying density distributions, such as self-gravi-
tating scalar field configurations, are generally not well deter-
mined because their radii.
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We first assess the ability of a BBH search to recover
signals with large tidal Love numbers by computing the
effectualness [53,54], ε, of a BBH waveform model to such
signals. The effectualness is defined as

εðhtidalÞ≡ max
tc;ϕc;pbbh

½htidaljhðpbbhÞ�; ð1:2Þ

where the square bracket denotes the normalized inner
product, htidal is the inspiral-only tidal waveform consid-
ered in this paper, hðpbbhÞ is the full inspiral-merger-
ringdown (IMR) BBH waveform IMRPhenomD [55], tc
and ϕc are the phase and time of coalescence respectively,
and pbbh represents the BBH masses and aligned spins. The
effectualness (1.2) can therefore be interpreted as the
fraction of SNR of the tidal waveform retained by using
the best-matched BBH template. The effectualness is a
particularly important measure of sensitivity as the result-
ing fractional sensitive volume achieved relative to the
optimal sensitivity scales as ε3. To compute (1.2), we
follow the same procedure as in Ref. [25], whereby we use
the differential evolution algorithm to maximize over the
intrinsic parameters pbbh and Fourier transforms to maxi-
mize over tc and ϕc.
In Fig. 1, we demonstrate the loss in effectualness

of a BBH waveform model to signals with large
Love numbers as a function of the binary total mass, M,
and the mass-weighted tidal parameter, Λ̃, which depends
on the individual component Love numbers; see (2.2)
below. We compute the effectualness for total masses
7M⊙ < M < 40M⊙, as this reflects the range that we
consider in our search. We find that for signals with
Λ̃≲ 103, a high effectualness of ε > 0.97 is achieved (this
is equivalent to retaining ε3 > 0.9 of sensitive volume,
which is the typical standard used in template bank
construction). Since the Λ̃ ≲ 103 range encompasses both
BBHs and solar-mass BNS systems, which have Λ ¼ 0

[32–36] and Λ≲ 103 [37,38], respectively, BBH templates
are effective at detecting both of these types of binary
systems. Note that there is a mild but noticeable loss in
effectualness for M ≳ 25M⊙, which is attributed to the
additional nonlinear effects near merger that are captured in
IMRPhenomD but not in htidal. Nevertheless, throughout
the mass range considered, signals with Λ̃ ≳ 103 would
likely be missed by BBH template banks. Since objects
which are less compact than black holes and neutron stars
naturally fall within the Λ̃≳ 103 parameter space,
Fig. 1 raises the intriguing possibility that we might have
missed a wider class of new signals in the LIGO-Virgo data
simply because we have not been using the right wave-
forms to detect them. Although model-independent burst
search pipelines exist [56–58], they are ineffective at
detecting long-duration signals which contain many orbits
in band.

It is tempting to suspect, given our discussion above, that
one can probe objects with arbitrarily large values ofΛwith
the LIGO and Virgo observatories. However, astrophysical
bodies with r=m ≫ 102 would merge at frequencies well
below those measured by ground-based detectors, limiting
the range of Λ that LIGO and Virgo could probe.
Using Kepler’s law, one can obtain an approximate upper
bound on Λ by comparing (i) the GW frequency emitted
when the binary constituents touch and (ii) the lower bound
on the detector’s sensitive band, flow. Assuming the object
has k ∼Oð1Þ and its binary counterpart is a black hole
with the same mass, the LIGO and Virgo detectors can
probe

r
m
≲ 270

�
20 Hz
flow

�
2=3

�
M⊙

m

�
2=3

; ð1:3Þ

Λ≲ 1012
�
20 Hz
flow

�
10=3

�
M⊙

m

�
10=3

; ð1:4Þ

where the bound onΛ is obtained using (1.1). This estimate
implies that ground-based detectors are capable of probing
objects with Λ≲ 1012, which is still many orders of
magnitude larger than that of black holes and neutron stars.

B. Overview and summary

Motivated by Fig. 1, in this paper, we expand the set of
template waveforms to the Λ̃≳ 103 region and search for
signals from sources in this unexplored parameter space.
Our waveform model only includes the inspiral portion of
the binary coalescence because this is the only regime
where the Love number imprint is analytic. Such analytic
control allows us to perform a source-agnostic search
without specifying the type of compact object we are
looking for.
We conducted the search over all LIGO Hanford and

Livingston data that were collected in the first, second, and
third observing runs (O1–O3). We found no statistically
significant binary events with large Love numbers. In
particular, our loudest event is triggered in O2 and has
an inverse false alarm rate (IFAR) that falls within the ∼2σ
range of Poisson noise. This null detection places a
constraint on the merger rates of such binary systems.
Although we take a source-agnostic approach to the search,
we map these constraints to several models of BSM
compact objects proposed in the literature.
Despite using inspiral-only template waveforms, we are

able to recover many of the known BBH signals that were
reported in the searches using full IMR waveforms [1–12].
This is also despite the fact that our templates have zero
spins. In addition, we use the tidal waveform to perform
parameter estimation on these BBH events to explore any
potential biases and degeneracies in the inferred intrinsic
parameters. Using these results we are able to constrain the
Love number of black holes.
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This work is the first-ever dedicated GW matched-
filtering search for compact objects that are not only black
holes or neutron stars. Our results demonstrate that analytic
inspiral waveform models are well suited for these kinds of
new physics searches. While we focus on the tidal
deformability as a probe of new physics, accounting for
different finite size effects [23,24,29] and other physical
effects in future searches will probe even more of this
previously unexplored parameter space. Future searches
[25,59] can therefore build on this work and extend the
search space in order to realize more of GW astronomy’s
vast potential for discovery.
This paper is organized as follows: in Sec. II, we describe

some technical aspects of the methods used in this work.
In Sec. III, we present the results of the matched-filtering
search and discuss several observations on the parameter
estimation conducted with the tidal waveform model. In
Sec. IV, we describe some consequences of our work for
black holes and neutron stars. In Sec. V, we explore the
implication of our null detection on BSM physics. Here, we
not only discuss model-independent constraints but also
examine several models of BSM compact objects to which
our constraints apply. Finally, our conclusions and outlook
are presented in Sec. VI.
For the notations and conventions, we refer to

hypothetical objects with large Love numbers as exotic
compact objects or BSM compact objects interchangably.
The mass and Love number of each binary component are
denoted by mi and Λi, where i ¼ 1, 2 is the component
label. We use the convention m1 ≥ m2. The total mass is
M ¼ m1 þm2, and η ¼ ðm1m2Þ=ðm1 þm2Þ2 is the sym-
metric mass ratio. We differentiate source-frame from
detector-frame quantities with the superscript src. For
example, the source-frame and detector-frame chirp masses
are denoted by Msrc and M, respectively. We work in
natural units, G ¼ c ¼ ℏ ¼ 1.

II. LOVE NUMBER SEARCH

In this section, we present some of the technical aspects
of this work. We use a modified version of the IAS
matched-filter pipeline developed in Refs. [5,7,60–63]
(for full details, the reader should refer to the original
work). In this section, we instead focus on the new
developments made for the tidal waveform (Sec. II A)
and outline the details of the new template bank that is built
for this search (Sec. II B).

A. Post-Newtonian tidal waveform

Absent a specific compact object inmind, in Sec. II A 1,we
focus on the inspiral stage of the binary coalescencewhere the
physics is clean and analytically understood,with the putative
new physics parametrized by the tidal parameter. We ignore
the merger part of the waveform as that regime of a binary
coalescence is model dependent and sensitive to the sources’

equations of state, thereby generally requiring inputs from
numerical simulations. InSec. II A 2,we describe a procedure
to cutoff the near-merger part of the inspiral waveform. Care
must be taken when implementing this cutoff in order to
ensure that no undesirable artifacts contaminate the time-
domain waveform.

1. TaylorF2 with tides

We consider a nonspinning inspiral-only waveform that
is derived from the PN expansion of the relativistic
dynamics of binary systems. For data-analysis purposes,
the phase of the waveform must be accurate to high PN
order. This requirement comes from the fact that the overlap
between a potential signal in the data and the template
waveform is very sensitive to phase coherence. We
therefore consider point-particle phase contributions that
are accurate up to 3.5 PN order (i.e., the TaylorF2
approximant [54,64]), while for the finite-size contributions
we consider the leading-order tidal effect, which appears at
5PN [28,30]. Specifically, the phase of our waveform is

ψ insðfÞ ¼ ψTF2ðfÞþψLoveðfÞ

¼ 2πftcþϕc−
π

4
þ 3

128ηv5

�
1þ

�
3715

756
þ 55

9
η

�
v2

þ�� �Oðv7Þ− 39Λ̃
2

v10
�
; ð2:1Þ

where v ¼ ðπMfÞ1=3 is the PN expansion parameter for a
quasicircular orbit, and f is the waveform frequency. In the
above equation, we have introduced the mass-weighted
Love parameter [30,65],

Λ̃ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1

M5
þ 1 ↔ 2; ð2:2Þ

where Λ1, Λ2 are the dimensionless Love numbers of the
binary constituents, cf. (1.1). The parameter Λ̃ is the
combination of Λi that arises at the earliest PN order,
and so it is the combination most precisely measured from
the data [30]. Meanwhile the leading-order phase in (2.1) is
proportional to the chirp mass, ðηv5Þ−1 ∝ ðMfÞ−5=3, while
the next-to-leading-order term is dependent on the mass
ratio. The higher-order point-particle corrections can be
found in, e.g., Refs. [54,64].
Notice that the sign of the tidal term in (2.1) is negative,

i.e., opposite to that of the leading phase term. Intuitively,
this occurs because part of the binding energy of the binary
is transferred to distorting the binary constituents, leading
to a shallower overall binding potential. As we see in
Sec. II A 2, for larger values of Λ̃, this has the effect of
shifting the minimum of the binding energy toward larger
orbital separations and hence lower orbital frequencies.
Since the binding energy minimum formally defines the
innermost stable orbit of the binary system, one must
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implement an appropriate cutoff before the inspiral wave-
form ceases to be valid.
For the amplitude, we use the leading-order PN con-

tribution of the inspiral,

AinsðfÞ ¼ π2=3
ffiffiffiffiffi
5

24

r
M5=6

D
f−7=6; ð2:3Þ

where D is the luminosity distance to the source. Since
higher-order corrections to Ains do not substantially affect
matched-filtering, they are neglected in this work for
simplicity.
Equations (2.1) and (2.3) imply that there is effectively a

three-dimensional intrinsic parameter space spanned by
fM; η; Λ̃g. These are the parameters over which we
perform our search. Notice that in order to reduce the
dimensionality of parameter space, and therefore the size of
our template bank, we have set the spins to zero. Spins
already start contributing at 1.5PN order, and their effect on
the phasing is well known to be partially degenerate with
that of η, which first appears at 1PN order [66–68]. It is
therefore conceivable that spins could be partially degen-
erate with the large tidal 5PN contribution, which we
investigate in Sec. III B 1. Still, it is clear that for

sufficiently large Λ̃ the spin effects should no longer be
able to mimic the phase evolution accurately. This is shown
in Fig. 1, where we fixed the injected signal to have zeros
spins and a range of Λ̃ but allowed for aligned spins up to
jχ1;2j < 0.99 when maximizing over BBH parameters in
our effectualness computation. It is clear that a standard
BBH bank would have missed putative signals with
Λ̃≳ 103. Future searches should therefore look to addi-
tionally include spin effects, such as those from the spin-
induced quadrupole [17,25].

2. Smooth waveform truncation

An important property of the waveform model in
Sec. II A 1 is that for large values of Λ̃ the derivative of
the phase can reach a maximum earlier than the typical
frequency cutoff for the TaylorF2 model, signaling the end
of the inspiral region (a similar observation was first
pointed out in Ref. [25] for spin-induced quadrupole
moments). This is evident from (2.1), where the tidal term
being negative causes the derivative to reach a maximum,
cf. Fig. 2. At higher frequencies, the adiabatic approxima-
tion that holds during inspiral is no longer a good physical
representation of the binary dynamics beyond that stage.
For a BBH, Λ̃ ¼ 0, and therefore, this maximum in the

FIG. 2. The phase model of the waveforms used for our template bank and parameter estimation. We use an inspiral-only PNmodel for
the phases including the contribution from the effective tidal parameter Λ̃; see (2.1). We implement a frequency cutoff for our waveforms
at fc (shown by vertical lines) where the phase derivative is zero, corresponding to the end of the validity of the stationary phase
approximation. Top: waveform phases ψ for a range of Λ̃, with masses fixed to m1 ¼ m2 ¼ 3M⊙. We use the derivative of the phase at
fc to extrapolate beyond fc to enforce C1 continuity. Bottom: same as the top panel, except, we show the derivative of ψ , which is
proportional to the instantaneous time. For reference, we show the naive extrapolation of ψ inspiral from (2.1) beyond fc with reduced
opacity, indicating that the stationary phase approximation breaks down in this regime as a moment in time would correspond to two
frequency solutions.
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TaylorF2 phase is absent. For Λ̃ ∼ 10–103 close to BNS
values, this maximum is normally well above the innermost
stable circular orbit (ISCO) frequency and is naturally
cutoff when constructing a full IMR waveform. However,
for systems with large values of Λ̃, this maximum can occur
well below the ISCO frequency. See Fig. 2 for the locations
of the maxima for various values of Λ̃.
From a practical perspective, truncating the waveform at

the peak of the phase derivative also ensures that the
corresponding time domain waveform is monotonically
increasing in frequency. This can be understood from the
fact that by definition of a frequency-dependent phase,
∂ψ=∂f ¼ 2πt. Without a truncation, the time domain
waveform at any particular time would have contributions
from two different frequencies, signaling a breakdown of
the stationary phase approximation [66,69,70] assumed in
the derivation of (2.1). This behavior is shown in the
bottom panel of Fig. 2, where an instantaneous moment in t
would correspond to two different frequency solutions had
the cutoff not been introduced. To prevent this behavior, we
introduce the cutoff

fc ¼ argmaxf

�
∂ψ insðfÞ

∂f

�
; ð2:4Þ

which can be computed analytically from (2.1), and
truncate the waveforms at the frequencies beyond these
maxima.
It is instructive to compare fc with the GW frequency at

which the binary components touch. We obtain an approxi-
mate analytic expression for fc by focusing on the 0PN and
5PN tidal terms (2.1) and setting the second derivative of
the phase to zero, after which we find

fc≈
29=10

393=10MπΛ̃3=10¼126Hz

�
20M⊙

M

��
104

Λ̃

�
3=10

: ð2:5Þ

On the other hand, the GW frequency emitted when the
binary components touch can be estimated via Kepler’s
third law, where we equate the sum of the bodies’ radii r1;2
with the binary separation,

ftouch ¼
1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 þm2

ðr1 þ r2Þ3
s

: ð2:6Þ

For simplicity, we assume one of the components is a black
hole (approximated by r1 ≫ r2) and both components have
the same mass. Using (2.2) and the definition for the
component Love number (1.1), we obtain

ftouch ≈
23=2k3=10

33=10MπΛ̃3=10

¼ 413 Hz k3=10
�
20M⊙

M

��
104

Λ̃

�
3=10

: ð2:7Þ

This is the same derivation which led to the upper bound
(1.4). Comparing (2.5) and (2.7), we find fc=ftouch≈
0.3k−3=10—the inspiral waveform is truncated before the
objects touch, as it should if our waveform is intended to
only represent the inspiral regime of the binary system.
The cutoff fc introduces a sharp discontinuity in both the

phase and the amplitude, which has a variety of conse-
quences throughout the search pipeline. For example, when
constructing the template bank, we perform a singular value
decomposition (SVD) on the phase. Having discontinuities
in the phase and phase derivatives leads to the spurious
result that a large number of basis functions is required to
accurately model the phase evolution. Additionally, we
require the time domain waveform [5] at various points
during the matched-filter search, and a sharp discontinuity
in the amplitude in the frequency domain leads to undesir-
able features in the time-domain waveform. In particular,
multiplying the Fourier-domain waveform by a step func-
tion corresponds to convolving the time-domain waveform
with a sinc function, which leads to a ringing artifact in the
time-domain waveform after the cutoff due to the Gibbs
phenomenon. For these reasons, we need to enforce
continuity in both the phase and amplitude separately.
For the phase, we enforce C1 continuity by appending an

overall constant and linear-in-f contribution to the phase
beyond the cutoff. As we elaborate in Sec. II B, the C1

continuity significantly reduces the number of dimensions
needed in the SVD of the phase in order to achieve high
effectualness for the template bank. Our full phase function
is given by

ψðfÞ ¼ ψ insðfÞθðfc − fÞ þ ½α0 þ α1f�θðf − fcÞ; ð2:8Þ

where we solve for the α’s by enforcing C1 continuity at the
boundary. See the top panel of Fig. 2 for an illustration of ψ
for a few representative values of Λ̃.
Meanwhile, the location of the sharp amplitude cutoff in

the frequency domain varies with the model parameters. This
makes it difficult to alleviate ringing by using a common
windowing function across our model space. Employing a
window function to smoothly reduce the waveform to zero at
the amplitude cutoff sacrifices part of the inspiral within the
sensitive band of the detectors. This can reduce the SNR
extracted by up to 20%, which is undesirable.
We therefore aim to stitch on a smooth cutoff to

exponentially damp the artificial ringing. In particular,
we only make it approximately C1 continuous at the
boundary and damp the amplitude very quickly using a
sigmoid function. The amplitude after the cutoff is given by

AcðfÞ ¼ AinsðfcÞ
�
fc
f

�
7=6

�
1 −

1

1þ e−ðf−βfcÞ

�
; ð2:9Þ

where AinsðfcÞ is the amplitude of the inspiral (2.3)
evaluated at the cutoff and β is a constant that controls
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the rate at which the amplitude is exponentially damped.
We find that using β ¼ 1.2 works well to preserve con-
tinuity at the boundary, while not introducing artifacts into
time domain waveforms. The final amplitude is therefore
given by

AðfÞ ¼ Ainsθðfc − fÞ þ AcðfÞθðf − fcÞ: ð2:10Þ

An illustration of this cutoff and how it affects the
amplitude can be seen in Fig. 4.
To summarize, the Fourier-domain waveform used

throughout the rest of the paper is

htidalðfÞ ¼ AðfÞe−iψðfÞ; ð2:11Þ

where the total phase and amplitude are found in (2.8) and
(2.10), respectively.

B. A new template bank

We build a new template bank based on the inspiral-only
waveform described in Sec. II A 1. The bank is constructed
using the geometric-placement technique described in
Refs. [61,62]. For details on the bank construction method,
refer to the original works. We motivate our choice of
search parameter space in Sec. II B 1 and provide additional
details of the bank in Sec. II B 2.

1. Search parameter space

The parameter space region over which we perform our
search is defined below. The cuts were madewith the aim of
maximising the space over which we search, together with
computational cost considerations:

(i) Mass lower bound—The lower bound of our mass
region is informed by the fact that the number
of templates required to achieve a predetermined
template bank efficiency grows significantly as
we approach the low-mass regime (roughly as
Ntemplates ∝ M−8=3

min [71]). For instance, in the tem-
plate bank constructed in Ref. [61], the number of
templates needed in the BBH mass range
(m1; m2 > 3M⊙) is only ∼1.5 × 104 while the rel-
atively narrow BNS range (1M⊙ < m1; m2 < 3M⊙)
requires ∼6 × 104 templates. This is the case be-
cause the smaller the binary mass is, the larger the
number of orbital cycles seen by the LIGO and
Virgo detectors are. This makes it necessary to
densely sample the low-mass parameter space in
order to preserve phase accuracy to≪ Oð1Þ radians.

(ii) Mass upper bound—The upper mass bound is
motivated by the fact that the model-independent
coherent WaveBurst (cWB) pipeline [56,58] used by
the LIGO-Virgo-Kagra (LVK) Collaboration is al-
ready well suited to detect any new short duration
signal (corresponding to high masses) which is not

modeled by BBH templates. From the GWTC-2
catalog [2], we observe that the cWB pipeline was
able to detect BBH systems with source-frame
masses Msrc ≳ 40M⊙ and Msrc ≳ 15M⊙ which
were also detected by matched-filtering searches.
Below this mass range, the cWB’s detection capa-
bilities manifestly decrease.

(iii) Love number upper bound—While a search over as
large a range as possible in Λ̃ space would have
been ideal, an upper bound is inevitably imposed
due to its correlation with the cutoff frequency fc in
the waveform model. As shown in Fig. 2, binary
systems with larger values of Λ̃ would have lower
fc. We demand that a template should integrate SNR
over a sufficiently wide frequency range in the data
by imposing a minimum cutoff, fc;min, in the wave-
form model. That is, we require that the upper bound
on the frequency grid, fc, is no lower than fc;min so
that the frequency range entering into the pipeline
computations for a given template with parameters
M; Λ̃ is f∈ ½20;maxðfc; fc;minÞ� Hz.

Based on these considerations, we sample an initial set of
pointswhich are used as the input for the SVD in our template
bank construction below (see Sec. II B 2). Themass sampling
has two contributions: (i) the first is sampled uniformly in the
detector-frame chirp mass and ln q, where q ¼ m2=m1 over
the intervals 3M⊙ < M < 15M⊙, 1=18 ≤ q ≤ 1; (ii) the
second is uniform in the detector-frame total mass and
symmetric mass ratio over the intervals 2M⊙ < M < 40M⊙,
0.05 < η < 0.25. We then apply the parameter cuts 3M⊙ <
M < 15M⊙ andM < 40M⊙ to remove any samples outside
this region. The final distribution ofmasses is shown in Fig. 3.
For the tidal Love numbers, we first sample uniformly in

the log of each component Love number over the interval
log10ð500Þ < log10 Λ1;2 < 7, and then impose a minimum
cutoff frequency fc;min ¼ 60 Hz. This choice of fc;min is
made in order to ensure that the signals are at least integrated
over the frequency range [20, 60] Hz and can therefore
accumulate sufficient amounts of SNR in the data
(see Table I for the range of fc in each bank). The lower
bound in log10 Λ1;2 is intentionally chosen to overlap with
neutron star values and avoid the Λ1;2 ¼ 0 value for black
holes, in order to demonstrate the ability of finite Λ̃ wave-
forms to detect BBHs, cf. Fig. 1. The resulting distribution in
Λ̃ is shown in Fig. 3, where the masked region has
fc < 60 Hz. Despite the masking due to fc, our template
bank covers several orders of magnitude in Λ̃, over-
lapping with regions in parameter space where the effec-
tualness of BBH template bank is significantly degraded,
cf. Fig. 1.
We emphasize that we do not include spins in the template

bank parameter space. This simplification is made in order to
reduce the dimensionality of the waveform model, which
substantially reduces the number of templates needed for an
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effectual bank. In Sec. III we show that, despite this
simplification, we are able to recover many confidently
detected BBHs which overlap with our mass coverage.

2. Bank details and effectualness

Having determined the search coverage above, we con-
struct a template bank using the geometric-placement for-
malism described in Ref. [61]. The key idea of this method
lies in the following decomposition of the waveform phase:

ψðfÞ ¼ ψ̄ðfÞ þ c0 þ c1f þ
XNdimþ2

α¼2

cαψαðfÞ; ð2:12Þ

where ψ̄ is an average phase chosen for convenience, c0 and
c1 are coefficients that capture the overall constant and linear-
in-time phase offset, cα is a set of coefficients which only
depend on the intrinsic source parameters, ψα is a set of
orthonormal basis functions constructed such that their inner
product defines a locally Euclidean space, andNdim is the size
of the ψα set. The basis functions and cα’s are computed
through an SVD performed on random phase samples drawn
from our designated parameter space (as described above).
Ndim and the distance between templates, Δcα, are suitably
chosen so that the truncation in SVD strikes a good balance
between the effectualness of the bank and the density of
templates in cα space (see discussion below).

TABLE I. Additional details of the template banks. The banks are partitioned in such a way that the overlaps between the sampled
waveform amplitudes and their respective reference amplitudes are highest, which is determined by a KMeans algorithm; see Figs. 3
and 4. This partitioning directly correlates with the waveform cutoff frequencies fc of the sampled waveforms, and the ranges of fc
covered by the banks are shown in this table. Nsubbanks is the number of subbanks in each bank; Mboundaries lists the chirp mass
boundaries between subbanks 0, 1, and 2 in each bank over the M∈ ð3; 15ÞM⊙ interval; Ndim is the number of independent cα
dimensions for the intrinsic source parameters; Δcα is the list of grid spacings that we choose for subbanks [0,1,2] in each bank, which
essentially determine the number of templates in each bank ðNtemplatesÞ.

Bank fc range (Hz) Nsubbanks Mboundaries ðM⊙Þ Ndim Δcα Ntemplates

0 (158, 633) 3 [3.0, 3.7, 4.9, 12.1] 3 [0.9, 0.75, 0.5] 9811
1 (116, 158) 3 [3.0, 4.6, 6.6, 15.0] 3 [0.9, 0.5, 0.5] 6907
2 (94, 116) 3 [3.0, 5.2, 7.8, 15.0] 3 [0.75, 0.5, 0.5] 4979
3 (80, 94) 3 [3.0, 5.6, 8.3, 15.0] 3 [0.75, 0.5, 0.5] 2833
4 (69, 80) 3 [3.0, 5.7, 8.6, 15.0] 3 [0.75, 0.5, 0.5] 2068
5 (60, 69) 3 [3.0, 5.9, 8.8, 15.0] 3 [0.75, 0.5, 0.5] 1615

Total 28213

FIG. 3. Parameter ranges of waveforms in our template banks. Left: our banks are divided such that waveforms in the same bank have
similar normalized amplitudes f7=6AðfÞ. In our case, the amplitude is essentially dependent on the reference cutoff frequencies fc
(cf. Fig. 4 and Table I). Hence, the lines in the Λ̃ −M plane demarcating the banks roughly correspond to lines of constant fc.
Considering the current frequency sensitivity of the detectors, we set the range fc ≥ 60 Hz for our search, which leads to the white
region in the top-right being masked out. Right: the detector-frame mass parameters of waveforms in the template banks.
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We divide the parameter space into banks and subbanks
to ensure that differences in noise distributions between
each subbank do not unfairly downweight potentially
viable candidate triggers. Instead of dividing the banks
based on mass ranges and the subbanks based on a set of
reference amplitudes, as in the original work in Ref. [61], in
this paper we adopt a reversed strategy from Ref. [62].
Specifically, we partition the banks based on a set of
reference amplitudes by demanding the overlap in ampli-
tude between a sampled waveform and its closest reference
waveform to be >0.96, and then divide each bank into
subbanks with separate ranges in M.
Here, we briefly outline the procedure used for creating

the template banks based on Ref. [62]. The banks’ reference
amplitudes are obtained through a KMeans algorithm [72],
which identifies centroids in the space of waveform
amplitudes that maximize the average overlap between
the resulting reference amplitudes and the sampled wave-
forms associated to each centroid (2.10). In order to achieve
the requirement of minimum amplitude overlap > 0.96, we
find it is adequate to divide the parameter space into six
banks. To compute this overlap, we use a reference power
spectral density (PSD) that is obtained by applying Welch’s
method [73] over 50 random O3 LIGO-Virgo data files and
taking the 10th percentile of the sample of PSDs in order to
downweight the distortions arising from the spectral lines
and loud glitches. The normalized reference amplitudes are

shown in Fig. 4, where we observe how the KMeans
algorithm essentially differentiates the reference ampli-
tudes through their reference fc. This direct correlation
with reference cutoff frequencies is responsible for the
stratification of template banks in Λ̃ −M space seen in
Fig. 3. In Table I, we list the ranges of fc spanned by each
bank. Note that Fig. 4 also provides an instructive illus-
tration of the smooth exponential damping of waveform
amplitudes near the cutoff, as described in (2.10). Finally,
we divide each bank into three subbanks, with the boun-
daries between subbanks obtained by requiring that the
number of samples of M in the mass region described in
Sec. II B 1 to be equal for each subbank. As a result, the
lower subbanks, which concentrate on lowM, tend to have
shorter ranges compared to the higher subbanks. For
instance, subbanks 0, 1, and 2 in Bank 0 have the following
M ranges: ð3; 3.7ÞM⊙; ð3.7; 4.9ÞM⊙ and ð4.9; 12.1ÞM⊙;
see Table I for the subbank boundaries in M for
all banks.
Empirically, we found that a minimum of Ndim ¼ 3 was

sufficient to achieve a reasonable level of effectualness.
Intuitively, the first three basis coefficients fc2; c3; c4g in
(2.12) correspond to the fM; η; Λ̃g parameters in the
waveform model’s phase; see Sec. II A 1. Crucially, had
we not enforced C1 continuity in the phase after the cutoffs
(a procedure on which we elaborated in Sec. II A 2), sharp
features that otherwise would have been present at the

FIG. 4. Left: we analytically model the waveform amplitudes in our template banks using (2.10). Each bank corresponds to a different
(normalized) reference amplitude. Waveforms in different banks are essentially distinguished by their cutoff frequencies fc. Note that
the amplitude for f > fc is damped exponentially (instead of using a sharp cutoff) in order to prevent artificial ringing effects in time-
domain waveforms. Right: the cumulative distribution function of the average effectualness ε of the template banks, tested on
waveforms whose parameters are drawn from the parameter space spanned by the respective banks. We find, on average, that ε≳ 0.9 for
99% of tested waveforms for each bank. Note that each bank is further divided into three subbanks, and the effectualness shown here
corresponds to their average. Note that the loss of effectualness is dominated by subbank 0, which has the lowestM range, and therefore
contains the most templates (we relax the effectualness requirement here to reduce the number of templates). We have tested that
excluding the lowest subbank in each bank, we get ε > 0.96 for 99% of tested waveforms.
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phase cutoffs would have resulted in unnecessary correla-
tions between basis functions of the SVD. In that case, a
larger number of cα dimensions Ndim ∼Oð10Þ, and there-
fore a significantly larger number of templates, would be
needed to achieve the same level of effectualness that our
modified C1 continuous waveform requires. Although we
find that three basis functions capture nearly all of the phase
information of our smoothed waveform, we can achieve
additional accuracy in the templates by including informa-
tion beyond the three-dimensional cα space. To achieve this
accuracy improvement efficiently, we use ten basis ψα

functions but we train a RandomForestRegressor
[72] to use the first three cα coefficients to predict
the next seven [62]. We estimated this to provide an
additional ∼1% improvement in effectualness without
affecting the template bank size. Note that, given the
partial degeneracy between the intrinsic parameters (detailed
later in Sec. III B 1), using two instead of three cα dimen-
sions (and predicting the rest of the coefficients with
RandomForestRegressor) might possibly be enough.
This could, in principle, reduce the number of templates in
our banks, and we explore this direction in future work.
For each subbank, we aim to achieve an effectualness of

ε > 0.96 for 99% of the waveforms used in the effectual-
ness test by tuning Δcα individually. We found that
subbanks 1 and 2 easily achieve this criterion for all banks
with a modest number of templates, Oð102–103Þ. On the
other hand, each subbank 0 would require a rather
exorbitant number of templates ∼Oð104–105Þ to achieve
a similar level of effectualness. To minimize computational
cost, for all subbank 0’s we compromise by only requiring
ε > 0.90 for 99% of the tested waveforms, leading to a
substantial reduction in the number of templates, Oð103Þ.
Since the sizes of subbank 0’s still dominate over those of
the higher subbanks, the average effectualness of ε > 0.90
for 99%, shown in Fig. 4, can be interpreted as a
conservative estimate of the overall banks’ effectualness.
Table I summarizes our choices for Δcα and the total
number of templates used in this work.

III. OBSERVATIONS AND INFERENCES

In this section, we present the results of the matched-
filtering search (Sec. III A) and the parameter estimation
(Sec. III B) using the tidal waveform developed in Sec. II.

A. Matched-filtering results

After constructing the template banks as described in
Sec. II, we use the IAS pipeline developed in
Refs. [5,7,60,61] for conducting a matched-filtering search
on all the Hanford and Livingston detector data from the
O1–O3 observing runs. The details of the IAS pipeline are
summarized in Ref. [5], but we present a brief over-
view below.

The pipeline first preprocesses the strain data. This
includes three steps: first, we measure the PSDs via the
Welch method [73]. Second, we create “holes” in the data
to excise bad data segments such as abrupt transients
(“glitches”) or excess power localized to particular bands
and timescales [5]. Third, we fill the created holes using an
“inpainting filter” (cf. Fig. 6 of [74]). The pipeline then
performs matched-filtering separately for the Hanford and
Livingston detectors, collecting triggers above a certain
SNR threshold. Note that the SNR calculation takes into
account leading-order nonstationarity in the data (also
called the PSD drift correction [74]). The pipeline also
checks whether the SNR of each trigger builds up the right
way with frequency, and triggers that fail any of these “split
tests” are vetoed. A coincidence analysis is then conducted
over the remaining triggers in order to ensure that physical
signals are not separated by more than the detectors’ light
crossing time of ∼10 ms and that phase differences are
consistent with the measured time differences for triggers
with the same intrinsic parameters in both detectors.
Subsequently, a ranking statistic is used to downweight
heavy tails in the trigger distribution caused by loud
transient glitches (which survive all veto tests) in each
detector [5,6]. A multidetector statistic referred to as the
“coherent score”, derived from the relative amplitude,
phase, and detector arrival times, is used to further improve
the ranking score [7,75]. Finally, the pipeline repeats the
full analysis 2000 times on unphysical time slides of the
multidetector data (i.e., artificially shifting one of the two
detectors by more than the light crossing time between
them and finding spurious “coincident” triggers) in order to
estimate the background noise, which allow us to compute
the false alarm rates of our coincident trigger list.
Wediscuss the final list of triggerswith largeLovenumbers

in Sec. III A 1 and also show that we are able to recover
many previously detected BBH mergers in Sec. III A 2.

1. Marginal triggers of Love

In Table II, we present the details of the top few
candidates with large Love numbers, including the event
date-time labels, GPS times, the banks in which they were
triggered, the best fit templates’ detector-frame chirp mass
M and leading 5PN tidal parameter Λ̃, the squared SNR
detected by the Hanford and Livingston detectors, ρ2H
and ρ2L, and the inverse false alarm rate (IFAR) in units
of years per bank.3 We only list candidate events with
IFAR > 1 year per bank.

3The IFARs are computed within each bank and are given in
terms of years based on total analysis times of 46, 118, 106 and
96 days for O1, O2, O3a and O3b Hanford–Livingston coinci-
dences. The IFARs are reported for each bank as we do not
impose a prior over banks. To obtain an approximate estimate of
the IFAR across all banks one can divide the reported IFAR by a
trials factor of Ntrial ¼ 6 (number of banks used in this work).
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Our two most significant candidates were triggered by
Bank 4 in the O2 run. The top event has an IFAR of
8.86 years per bank—absent a prior over banks, we use the
trials factor ofNtrial ¼ 6 to obtain an estimate of the average
IFAR of 1.48 years over all banks for the most significant
trigger. Assuming a Poisson distribution for the

background triggers, the coincident O2 Hanford-
Livingston observing time (118 days) would imply a p-
value of ∼20% for this event, which is not statistically
significant.
In Fig. 5, we show an alternative representation of our

candidate triggers by plotting the cumulative distributions
of candidate triggers for each observing run, and we
compare them with an expected Poisson background.
There we obtain the background triggers by redoing the
Hanford-Livingston coincidence analysis on 2000 runs of
unphysical time slides, where each time slide is shifted by
more than ∼10 ms (the physical time delay between the
two detectors). The top candidate, which is triggered in O2,
is within ∼2σ of the expected background. We therefore
conclude that there is no statistically significant evidence
for binary systems with large Love numbers in the data. In
Sec. VA 1, we translate our null detection to an upper limit
on the merger rates of various models of exotic compact
objects.
While the IFARs of the candidate triggers in Table II are

not significant, it is nevertheless interesting that they are
larger than the IFARs of our inspiral-only template triggers
corresponding to previously detected BBH mergers;
cf. Table III below. This suggests that detailed modeling
of the merger part of BSM compact objects would provide
substantial improvements in the statistical significance of
putative new triggers. In the future, it would be interesting
to test whether the SNRs and IFARs of the triggers in
Table II would improve significantly when full inspiral-
merger-ringdown waveforms are used for BSM compact
object coalescences, though such efforts would necessarily
be model dependent and perhaps involve numerical sim-
ulations [76–80].
Furthermore, in standard BBH searches the interpreta-

tion of marginal events is often supplemented by an
estimated probability of whether the event is of astrophysi-
cal origin, pastro [7,81,82]. This measure assumes a prior
distribution for the intrinsic parameters and a source rate
model and have been used to improve the astrophysical
interpretation of low IFAR marginal BBH events when
pastro > 0.5. On the other hand, for binary systems with
large Λ̃, the evaluated pastro would likely be penalized if the
commonly used prior distributions for BBH and BNS are
used. Absent former detections of binaries with large Λ̃, it
is also difficult to construct a well-informed source rate

TABLE II. Our top triggers with large Love numbers and IFAR > 1 year per bank, sorted by descending order in IFAR. Assuming
Poisson statistics for the O2 background triggers, the top event with an IFAR of 8.86 year per bank corresponds to a p-value of ∼20%
(see main text), which is not statistically significant.

Marginal trigger date-time GPS time Bank M (M⊙) Λ̃ ρ2H ρ2L IFAR (yr)

170212_050900 (O2) 1170911358.28 4 3.8 557386 34.8 42.1 8.86
170317_141415 (O2) 1173795273.38 4 3.3 368151 47.8 27.9 3.35
190524_123941 (O3a) 1242736799.90 5 4.0 73984 48.6 28.8 1.46

FIG. 5. Comparing the distribution of the candidates in our
search to the expected background rate separately for the different
LIGO-Virgo observing runs. Excluding the events already
reported in previous searches, we show the cumulative number
of new candidates found in our search (labeled as foreground) as a
function of their inverse false alarm rate (IFAR). The background
rate is estimated by redoing our coincidence analysis on 2000
runs of unphysical timeslides (i.e., artificially shifting the
detectors by more than the light crossing time between them
and then finding the rate of spurious coincidences), and the
shaded regions correspond to the 1σ and 2σ Poisson background.
We see that the distribution of our candidates is fairly consistent
with the background.
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model for such systems. It would be interesting to explore
how pastro can be adapted to make future searches more
sensitive to a wider class of new GW signals.

2. Known binary black holes

One of the most interesting results of this work is the
recovery of previously detected BBH merger signals within
our template bank mass range in the O1–O3 Hanford and
Livingston data. Crucially, while standard BBH searches
rely on templates with full IMR waveforms, we show that
one can recover the same signals with the inspiral-only
TaylorF2 with Tides waveform in Sec. II A, albeit with
lower SNRs and IFARs. Additionally, the absence of spins
in our templates contributes to SNR loss, especially for
BBH events with large spins. Having said that, the IFAR
estimates for zero-spin templates could improve for low-
spin events, since the number of templates in the zero-spin
template bank is smaller than that of nonzero spin template
banks, and hence, the look-elsewhere effect will be smaller
even though the waveform match will be comparable. In
what follows, we quantify the binary spin with the effective
spin parameter χeff ¼ ðm1χ1 þm2χ2Þ=M.

In Table III, we show the trigger details of known BBH
signals. It is clear that all the best-fit templates have
Λ̃≲Oð103–104Þ, which is consistent with the fact that
these events were detected by Λ̃ ¼ 0 BBH template banks in
earlier works, cf. Fig. 1. In Sec. IVA, we show the parameter
estimation results of these signals computed using the
TaylorF2 with Tides model when including aligned-spin
effects and demonstrate that they are all indeed consistent
with binaries that have zero Love numbers. Note that these
events are triggered by either Banks 0, 1 or 2 because the
parameter coverage of these three banks spans those
relatively small values of Λ̃, as displayed in Fig. 3.
To facilitate comparison between the inspiral-only search

and standard IMR template searches, we duplicate the
summary statistics of these signals reported in Refs. [5–8],
which use the same matched-filtering pipeline as this work.
As expected, the SNRs for all events triggered by the inspiral-
only template bank are smaller than those triggered by full
IMR waveforms. Out of the 19 BBH triggers in Table III:
(1) Five events have no appreciable loss in IFARs despite

a reduction in their measured SNRs of around
5–15%. These are GW190707_093326, GW190725_
174728, GW190728_064510, GW191129_134029

TABLE III. Coincident GWevents in the O1 − O3 Hanford − Livingston data that have been reported in earlier BBH searches and are
recovered in this work. Recall that our template bank mass prior spans over 3M⊙ < M < 15M⊙ and M < 40M⊙ (see Fig. 3)—we
therefore only recover a subset of all known BBHs. Note that the best-fit templates of these events have Λ̃≲Oð103–104Þ, which we
show in Fig. 1 is almost equivalent to the Λ̃ ¼ 0 BBH value. The events labeled by † have source masses (as inferred from parameter
estimation studies in earlier works) that are larger than our banks’ upperM bound, and therefore have their best-fit templates cluster at
the M ¼ 15M⊙ boundary. For ease of comparison of our inspiral-only search with the results from full inspiral-merger-ringdown
searches, we show the corresponding statistics of the same signals reported in Refs. [5–8] (all of which use the same IAS search pipeline
used in this work).

TaylorF2 with tides IMRPhenomD

(Inspiral-only waveform, this work) (Full IMR [5–8])

Event name Bank M (M⊙) Λ̃ ρ2H ρ2L IFAR (yr) ρ2H ρ2L IFAR (yr)

GW151012† 2 15.0 879 33.0 33.0 0.1 55.7 46.8 >1000
GW151226 1 8.4 1354 48.4 24.1 0.01 120.0 52.1 >1000
GW190412† 1 14.9 541 63.3 202.1 >1000 76.2 245.5 >1000
GW190503_185404† 1 15.0 749 49.1 30.0 0.4 83.2 57.7 >1000
GW190513_205428† 1 15.0 749 40.9 40.3 44.7 78.0 66.0 >1000
GW190706_222641† 2 15.0 879 58.5 53.8 >1000 91.3 79.2 >1000
GW190707_093326 0 9.8 868 55.2 77.8 >1000 63.7 97.5 >1000
GW190720_000836 1 10.1 2071 27.0 45.3 2.2 44.7 62.3 >1000
GW190725_174728 0 9.0 775 27.1 53.1 30.6 31.3 59.1 34.2
GW190728_064510 0 9.8 625 44.3 81.9 >1000 58.4 110.1 >1000
GW190828_065509† 2 15.0 879 56.1 41.3 >1000 54.5 53.6 >1000
GW190915_235702† 1 15.0 749 59.3 25.1 6.5 92.4 71.1 >1000
GW190930_133541 1 9.5 2860 32.4 42.1 0.5 41.1 55.6 >1000
GW191105_143521 0 9.5 770 30.3 44.0 1.0 31.0 57.0 >1000
GW191129_134029 0 8.41 530 55.6 87.0 >1000 73.1 95.1 >1000
GW191204_171525 2 9.0 9655 32.1 124.6 5.6 87.8 183.3 >1000
GW191222_033537† 1 15.0 749 65.3 29.4 75.4 73.7 66.7 >1000
GW200225_060421† 1 15.0 749 53.8 31.7 26.4 90.7 61.0 >1000
GW200316_215755 1 10.4 1548 28.2 57.4 176 30.8 65.1 106
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and GW200316_215755. In most cases the reduced
IFARs remain at the >1000 per observing run level,
implying that the coherent scores of these triggers still
exceed the distribution of background scores gener-
ated by combining the Hanford and Livingston data at
unphysical time slides [5];

(2) Nine of the events, GW151012, GW190412,
GW190503_185404, GW190513_205428,
GW190706_222641, GW190828_065509,
GW190915_235702, GW191222_033537, and
GW200225_060421, are labeled by the † superscript
because their source masses, as inferred from com-
prehensive parameter estimation studies in earlier
works [1,2,4–7,12], are larger than the upper
bounds of the search mass region used in this work:
M < 15M⊙ and M < 40M⊙. Indeed, the best-fit
templates of all these triggers lie at the M ¼ 15M⊙
mass boundary. It is often the case that a given signal is
triggered by multiple banks, and only the most
significant trigger is reported by the pipeline. For
these events, the best trigger simply lies beyond our
search space. It is therefore unsurprising that the ρ2’s
and IFARs of many of these events are appreciably
lower than those reported in earlier works, where
better-fitting IMR waveforms of BBH mergers at
higher masses are used;

(3) The remaining five events have substantially de-
creased IFARs, depreciating what would have been
identified as highly confident events to marginal
ones. Of these, four also have substantially lower
SNRs (15–35% loss) than the search using the full
IMRPhenomD model, which includes spins; these
are GW151226, GW190720_000836, GW190930_
133541, and GW191204_171525. All of these
systems show a preference for χeff > 0, excluding
or nearly excluding χeff ¼ 0 at the 90% credible
level when using IMR waveforms in parameter
estimation [3,4]. This suggests that our search
becomes increasingly insensitive as spins move
away from χeff ∼ 0, as expected. The remaining
low IFAR event, GW191105_143521, lost ∼15%
of its SNR in our search despite having low χeff. We
attribute this loss in IFAR to changes in the dis-
tributions of background triggers compared to the
full IMRPhenomD search.

There are known BBH events whose masses fall within our
search’s mass range but which we did not recover due to a
variety of well-understood reasons. As in previous works
conducted using the same pipeline [5–8], we only searched
for coincident triggers in the Hanford and Livingston
data but not in the Virgo data. As a result, our
search did not recover GW190708_232457, GW190814,
and GW190925_232845, which were detected via the
Livingston-Virgo network [3,11]. We did not find
GW170608 [1], as was previously the case in Ref. [6],

because the Hanford data for this event was not provided in
the earlier LVK bulk data release and therefore is not part of
our coincidence search. The event GW190924_021846 [3]
was vetoed by the pipeline due to the presence of a loud
glitch that occurred near the trigger [7]. Similarly,
GW191216_213338 [4] was vetoed because it exceeds the
ρ ¼ 20 threshold that is part of the pipeline’s glitchmitigation
procedure (see Refs. [5,8] for details). Finally, many of
the marginal events that were reported in earlier works
[3,4,7,8,12] are not detected in the present work. This is
not surprising given that their statistical significance is already
low when full IMR templates are used in the search. These
marginal events include GW190704_104834, GW190718_
160159, GW190821_124821, GW190910_012619,
GW190917_114630, GW190920_113516, GW191103_
012549, GW191113_071753, GW191126_115259,
GW191126_115259, GW191219_163120, GW191224_
043228, GW191228_085854, GW200202_154313,
GW200210_005122, GW200210_092254, and
GW200316_235947.

B. Parameter estimation

To further examine the aforementioned detected BBH’s,
we perform Bayesian parameter estimation (PE) using our
inspiral-only tidal waveform. Until this stage, we have been
ignoring spins of BHs, but we now include aligned-spin
contributions, via the orbit-aligned spin components χ1;2, to
the phase evolution up to 3.5PN in (2.1) [54,64]. This also
helps us to more closely examine the degeneracy between
spins and tidal effects. We use a 13-dimensional parameter
space: six intrinsic parameters fM; η; χ1; χ2;Λ1;Λ2g and
seven extrinsic parameters fD; tc;ϕc; ι;ψ ;α; δg, whereD is
the luminosity distance to the binary, tc and ϕc are,
respectively, the time and phase of coalescence, ι is the
inclination angle of the binary’s orbital angular momentum
with respect to the line-of-sight, ψ is the polarization angle,
α is right ascension, and δ is the declination. Note that for
the results presented here, we fix the dimensionless spin-
induced quadrupole parameters κi to those of black holes,
κi ¼ 1 [23,83,84].
To remain consistent with our search, we only use the

data from the Hanford and Livingston detectors. We use the
standard Gaussian likelihood and assume that the noise is
stationary at each detector over the relevant timescales and
uncorrelated between detectors. We estimate the PSDs
using Welch’s method [73]. To efficiently and accurately
sample the posteriors for each event, we utilize the code
developed in Refs. [85,86] which uses a combination of
relative binning [87] (also known as the heterodyned
likelihood estimation method [88]), hardware acceleration,
differentiable waveforms, and normalizing flow enhanced
sampling to perform minute timescale PE. Finally, our
priors are shown in Table IV. For the intrinsic parameters,
the priors are chosen to sufficiently cover the parameter
space of our search with an additional buffer on either end
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(when possible) to ensure that the posteriors do not push
against the boundaries. We discuss how these prior choices
influence our results below. Additionally, we do not
consider the events indicated with a dagger in Table III
since their true parameters lie outside the range considered
in our search (see Sec. III A 2).

The primary aims of our PE are to (i) demonstrate that
there is a mild degeneracy between the mass-weighted spin
parameter χeff and Λ̃ (Sec. III B 1), (ii) discuss the bias
observed in the parameter inference from using an inspiral-
only waveform, by comparing to parameter inferences
carried out with IMR waveforms (§III B 2), and (iii) mea-
sure the Love numbers of black holes (Sec. IVA).

1. M− χ eff − Λ̃ degeneracy

As discussed in Sec. II, we set the spin parameters to zero
in the template bank waveforms for computational effi-
ciency during the search. However, previous parameter
inference performed on the BBH signals we detected
typically allows for a range of spin values [1–12]. It is
therefore interesting to investigate whether there exists a
degeneracy between the spin parameters and Λ̃, and if so,
whether it played a role in improving the effectiveness of
our search.
In Fig. 6, we examine the degeneracy between χeff and Λ̃

by looking at a corner plot of the posteriors in fM; χeff ; Λ̃g.

TABLE IV. Priors for the 13-dimensional parameter space used
for the parameter estimation results shown in Figs. 6–8.

Chirp mass, M U½1; 25�M⊙
Mass ratio, q≡m2=m1 U½0.05; 1�
χ1, χ2 U½−0.99; 0.99�
Λ1, Λ2 U½0; 104�
D (Uniform in volume) [100, 3000] Mpc
tc U½−0.2; 0.2�
ϕc U½0; 2π�
Inclination angle, cosðιÞ U½−1; 1�
Polarization angle, ψ U½0; π�
Right ascension, α U½0; 2π�
Declination, sinðδÞ U½−1; 1�

FIG. 6. To highlight the degeneracy between Λ̃ and the other intrinsic parameters, we show the corner plot for one of the events:
GW190707_093326. Contours for the 2D panels correspond to 1σ, 2σ, and 3σ regions, respectively, whereas the titles for the
marginalized posteriors quote the 90% credible region. In particular, we can see that Λ̃ ≥ 0 leads to a larger estimation of the chirp mass.
Similarly, Λ̃ and χeff are positively correlated, meaning that our search region of Λ̃ ≳ 500 can, to some extent, mimic waveforms with
χeff ≲ 0. Note that, due to our priors onΛ1;2, we do not expect the Λ̃ posterior to peak at exactly zero, despite the sources being BBH (see
Sec. IVA for more discussion).
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Here, we choose GW190707_093326, as it clearly
demonstrates the degeneracy in question, although similar
results hold for all other sources. Figure 6 illustrates
that simultaneously increasing χeff and Λ̃ leads to
similar waveforms; i.e., they are positively correlated.
Furthermore, the degeneracy extends to M as well, with
larger values of Λ̃ requiring larger values of chirp mass to
maintain a similar waveform. Heuristically, one can under-
stand the direction of this 3D degeneracy from the phase in
PN theory [30,54,64],

ψ insðfÞ ⊃
3

128ðπMfÞ5=3

×

�
1þ � � � þ 113

3
χv3 þ � � � − 39Λ̃

2
v10

�
; ð3:1Þ

where the reduced spin parameter χ, which first appears at
1.5PN order, is usually dominated by χeff [67,89,90]. Due to
the negative sign on the tidal term in (3.1), lines of constant
phase between the 1.5PN spin term and the 5PN tidal term
appear positively correlated. The same argument applies to
the degeneracy between Λ̃ andM. The degeneracy between
M and χeff along the positive direction is well known: a
binary which would have merged faster due to a larger chirp
mass would be counterbalanced by the repulsive effect of
having higher spins due to the “orbital hang-up” phenome-
non [91,92].
Interestingly, since our search space only covers Λ̃≳ 500,

our waveform can, to some extent, mimic waveforms in the
negative χeff region.We also verified that allowing for Λ̃ ≤ 0
results in posteriors extending further along the degeneracy
in the χeff ≤ 0 region. Nevertheless, since many of the
detected BBH events in Table III have the majority of their
posterior support in the positive χeff region [3,4], the
degeneracy discussed here is unlikely to have played a role
in aiding the detection of those BBH events.
One final thing to note here is that the details of the

degeneracy discussed in this section may change if the
object with large tidal deformability also has large spin-
induced multipole moments. In particular, the spin-induced
quadrupole, which first appears at 2PN [24], can in some
cases replace the tidal deformability as the dominant finite-
size effect in the phase evolution of the binary (note though
that extended objects generally have limited spins as they are
bounded by their mass-shedding limit). Future work should
therefore look to include these effects in order to broaden the
search space [25,59] and explore the degeneracy in that
larger dimensional space of intrinsic parameters.

2. Tidal waveform vs IMR waveform

Although our tidal waveform (2.11) is accurate for the
inspiral region of the signal, the point-particle PN
coefficients are not known up to arbitrary order. Full
IMR waveforms such as IMRPhenomXPHM [93]

account for these unknown strong-gravity effects using
semianalytic models calibrated to numerical relativity
merger simulations. In addition to the lack of a merger,
the absence of other physical effects, such as precession and
higher harmonics, makes our waveformmodel inaccurate to
some degree. We therefore want to examine the bias
introduced by performing PE on known BBH events using
our tidal waveform.
In Fig. 7, we show a violin plot for the nondagger events

from Table III. In particular, we compare the marginalized
posteriors for the detector frame chirp mass M obtained
from the tidal waveform, which is evaluated with the PE
code in Refs. [85,86], and those obtained using the state-of-
the-art IMRPhenomXPHM model [93], which were com-
puted in earlier works [5–8] using cogwheel [94]. We
focus on M because it is the dominant intrinsic parameter
in (2.1) and should therefore be measured most precisely
for systems where the inspiral contributes appreciably to
the SNR. Consequently, its measurement is relatively
insensitive to differences in the priors used in the two
PE codes [85,86,94]. As can be seen from Fig. 7, using the
tidal waveform consistently overestimatesM. In particular,
we find that the median chirp mass inferred by
IMRPhenomXPHM is typically 1–6% smaller than the
value inferred by the tidal waveform.
This bias can be partially understood from the degen-

eracy between M and Λ̃, illustrated in Fig. 6 for
GW190707_09332. In particular, we see that larger Λ̃ also
leads to a higher M measurement. Indeed, we find that
performing the same PE run on GW190707_09332 but
with Λ1;2 ∼ 0 reduces the relative error on the median
inferred chirp mass from ∼3.5% to ∼2%. The remaining

FIG. 7. Violin plot showing the detector frame chirp mass M
posteriors for all nondagger events listed in Table III. One can see
that the inspiral-only tidal waveform systematically overestimates
M compared to the state-of-the-art IMRPhenomXPHM. This can
be partially explained by a combination of the missing higher-
order phase contributions in our analytic tidal waveform; see
(2.1), ourΛ1;2 prior choices, and theM − Λ̃ degeneracy shown in
Fig. 6.
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differences stem from the inaccuracy of the inspiral-only
tidal model at higher frequencies, where missing point-
particle PN contributions are important. To check that this
is indeed the origin of the bias, in addition to setting
Λ1;2 ∼ 0, we only consider frequencies up to 160 Hz [95].
Excluding frequencies above this bound from the compu-
tations ensures that the waveform is only evaluated where
the inspiral PN expansion is known to be accurate. In this
case, the relative error on M drops to 0.4%. We therefore
conclude that using inspiral-only waveforms can lead to
small but noticeable biases in parameter inference, and care
must be taken when interpreting the inferred parameter
values. Obtaining more precise inspiral waveforms with
higher-order PN contributions would be highly beneficial
for future analyses, as it would help mitigate this problem;
see, e.g., Refs. [65,96] for the influence of unknown PN
terms on the measurement of Λ̃.
Finally, it is interesting to find that the posterior for

GW190728_064510 is multi-modal. Multimodal posteriors
for intrinsic parameters are not uncommon in the GW PE
literature [4,38,97–100] and could arise due to a host
of reasons, including potential systematic errors in
waveform models, model degeneracies [97–99,101], prior
effects [4], low SNR [4,102], and nonstationary
noise [103], among others. In our case, we found that the
lower-mass mode continues the trend (noted above)
of a small systematic overestimate of M compared to
IMRPhenomXPHM. On the other hand, the higher-
mass peak is accompanied by a significantly higher χeff
value. Interestingly, this is the only event where the Λ̃
posterior is centeredmore than 3σ from the Λ̃ ¼ 0 boundary.
It is therefore interesting that the interplay between
M − χeff − Λ̃ allow for this additional mode to be equally
preferred by the data. Having said that, fixing Λ̃ ¼ 0
almost entirely removes the posterior support for
the high-mass mode and agrees similarly well with
IMRPhenomXPHM.

IV. IMPLICATIONS FOR ASTROPHYSICS

In this section, we briefly discuss some implications of
our results on known astrophysical GW sources, i.e., black
holes and neutron stars.

A. Love number of black holes

The vanishing Love numbers of black holes [32–36]
is a fundamental property of the Kerr solution in
GR [104–110]. This makes a measured deviation of Λ̃
from the BBH value not only a powerful probe for the
existence of new types of compact objects but also an
interesting test of GR in the strong-gravity regime.
On the left panel of Fig. 8, we show the Λ̃ marginalized

posteriors for the six best nondagger events from Table III
(all other events provide looser constraints). For these
events, we find that Λ̃ ≲ 104 at the 90% credible interval,
which is broadly consistent with the results found in
Ref. [95] which conducted a similar analysis. The Love
number of black holes is therefore not well constrained by
current GW detectors, though future detectors would
improve the measurement precision by at least an order
of magnitude [45,111]. The fact that Λ̃’s are constrained to
be ≲few ×Oð103Þ can be traced back to Fig. 1 where we
show that BBH waveform (Λ̃ ¼ 0) begin to significantly
differ from the tidal waveform when Λ̃≳Oð103Þ.
Note that the Λ̃ posteriors in Fig. 8 do not center around

zero—this is not a physical effect but arises entirely from
the our choice of priors for the component mass and Love
number in Table IV. Specifically, our choice of
Λ1;2 ∼ U½0; 104�, which ignores negative Love numbers
as we consider such systems to be unnatural, results in a
prior for Λ̃ that has vanishing support at Λ̃ ¼ 0. The
posteriors in Λ̃ therefore consists of two regimes: (i) at
Λ̃ ∼ 0, the posteriors fall to zero due to the lack of prior
support as one approaches the boundary; (ii) for Λ̃≳ 103,
the data become informative (i.e., we are no longer prior

FIG. 8. Left: marginalized Λ̃ posteriors for the six best nondagger events listed in Table III. We emphasize that the posteriors are prior
dominated at Λ̃ ∼ 0, and therefore, these results do not suggest evidence for Λ̃ > 0 (see text for a discussion). Right: 90% credible region
constraints on the individual Love numbers for the same six events. We note that since by definition m1 > m2, the constraint on Λ1 is
significantly tighter, cf. (2.2).
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dominated), and therefore the posteriors have no support in
this region. Combined, these two effects lead to a peak in
the Λ̃ posteriors away from zero.
Since the dominant tidal term is proportional to the mass-

weighted parameter Λ̃, cf. (2.1), the constraints on the
individual Λ1;2 are weaker. This can be seen on the right
panel of Fig. 8 where we plot the 90% credible region
constraint for the same six events. Similar to Λ̃, these events
all constrain the individual BH Love numbers to be
≲few ×Oð103Þ. Note that Λ1 is more constrained than
Λ2 because the heavier binary component provides a larger
contribution to Λ̃ and is therefore more precisely measured.
Finally, the differences between our posteriors for Λ̃ and

those found in Ref. [95] can be attributed predominantly to
our different choices of Λ1;2 priors. In particular, we were
able to reproduce the results of Ref. [95] when we repeated
the analysis but with a prior that includes Λ1;2 < 0. A prior
which includes negative Λ1;2 would certainly avoid the
issue of vanishing prior support at Λ̃ ¼ 0 described above,
though astrophysical bodies with negative Love numbers
would “contract” instead of “bulge” due to the gravitational
pull exerted by the binary companion, which we consider to
be unnatural. Astrophysical bodies can, in principle, attain
negative Love numbers if they have negative pressure at
their interiors, though such solutions are unlikely to be
stable. To avoid spurious support for nonzero Λ̃, in the
future it would be beneficial to use a prior that is uniform in
Λ̃; see, e.g., Refs. [112,113] for a similar approach for spin
measurements, whereby a uniform-in-χeff prior is used
instead of the uniform in component spin prior.

B. Subsolar-mass neutron star searches

Neutron stars in merging binaries are the second most
abundant source of GWs observed by the LIGO and Virgo
detectors [3,37]. It is important to emphasize that all
searches for BNSs and neutron star-black hole binaries
to date have been performed using BBH template banks.
For instance, GW170817, the most confidently detected
BNS thus far, was triggered by a BBH waveform template
[37]—a fact that already suggests that its effective tidal
deformability is Λ̃≲ 103. Indeed, a comprehensive param-
eter estimation study inferred the event’s component
neutron stars to have masses >1M⊙ and the Love numbers
constrained to Λ≲ 103 at the 90% credible level [37,38].
From our effectualness study in Fig. 1, it is unsurprising
that this system with a relatively small Λ̃ was captured by a
BBH bank without appreciable loss in detector sensitivity.
The neutron stars observed to date are found to have

masses≳1M⊙ (see, e.g., Ref. [114] for a review). However,
a recent claim on the detection of a neutron star [115] with
mass ∼0.77M⊙ has raised the intriguing possibility for the
formation of subsolar-mass neutron stars in astrophysical
environments. If accurate, this event would challenge the
standard paradigm of neutron star formation through

gravitational collapse [114]. For instance, a recent super-
nova simulation [116] for the formation of BNSs, which
incorporates varying metallicity and mass-loss effects into
their stellar progenitor models, suggests that neutron stars
in close binaries have a minimum mass of approximately
1.2M⊙. However, if the proto-neutron star is rapidly
rotating, fragmentation of the star due to a dynamical
instability could produce subsolar-mass neutron star rem-
nants [117–119], though in these cases the supernova
explosions are believed to impart large kicks therefore
reducing the possibility of forming merging binaries.
Despite theoretical challenges and tentative observational
evidence [115], it would nevertheless be interesting to
search for subsolar-mass BNSs in the future, which if
detected would certainly challenge the prevailing astro-
physical framework.
In order to search for subsolar-mass BNSs, one would

have to incorporate the Love number in the template
waveform. This is because subsolar-mass neutron stars
are known to have Love numbers that are orders of
magnitude larger than those of solar-mass neutron
stars, reaching Λ ∼ 104–105 when m ∼ 0.8M⊙ [39,40].
Physically, this arises because the self-gravity of a lower
mass neutron star is weaker, resulting in a stellar equilib-
rium configuration with a larger radius for a given neutron
degeneracy pressure and matter pressure in the high-density
core supporting the star. Subsolar-mass neutron stars there-
fore naturally attain such large values of Love numbers by
virtue of the Λ ∝ ðr=mÞ5 scaling. Interestingly, this behav-
ior is relatively insensitive to the precise nuclear equation of
state [39,40] and is a general phenomenon for subsolar-
mass neutron stars. Figure 1 suggests that current searches,
which only include BBH template banks, would potentially
be insensitive to such signals with large values of Λ̃ (note
however that we did not extend our effectualness study to
the subsolar-mass regime in Fig. 1). Indeed, a recent
comprehensive investigation [120] suggests that the loss
in sensitive volume for subsolar-mass neutron stars could
degrade as much as ∼70% when subsolar-mass BBH
template banks are used in the search [121–124].
In this work, we restricted our search to the M > 3M⊙

BBH mass range because the number of templates, and
therefore, the computational cost in the search, increases
rapidly with decreasing chirp mass. Intuitively, this is the
case because the lower the chirp mass is, the larger the
number of orbiting cycles are that the LIGO and Virgo
detectors would observe, hence the more sensitive the
detectors are to the phase coherence between the templates
and the GW signals. We estimated that reducing the
minimum chirp mass of our search space from 3M⊙ to
0.1M⊙ would increase the number of templates in our bank
from 2.8 × 104 to more than 106, which would be computa-
tionally challenging. As a result of the M > 3M⊙ lower
bound and our minimum cutoff requirement of
fc > 60 Hz, the range in Love numbers that our search
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covers is bounded by Λ̃≲ 4 × 106; see Fig. 3. An extension
of our search space toward the low-mass region would
naturally accommodate the Λ̃ ≫ 106 regime and is well
suited to search for the presence of subsolar-mass neutron
stars. We hope to pursue this interesting line of research in
future work.

V. IMPLICATIONS FOR NEW PHYSICS

In this section, we translate our null detection to model-
independent constraints on exotic compact object mergers
(Sec. VA). In addition, we discuss how these constraints
are mapped to bounds on a few specific models of BSM
compact objects (Sec. V B).

A. Model independent constraints

The null detection of binary systems with large Love
numbers places an upper limit on the rates at which these
binaries would merge in the LIGO-Virgo observation
bands. We provide such an estimate in Sec. VA 1. In
Sec. VA 2, we map our search parameter space in Fig. 3
into an approximate region in the BSM compact objects’
parameter space for which these rate constraints apply.

1. Upper limit on merger rates

We can use our null detection of binaries with large Love
numbers to place limits on the rate of such binary mergers.
We assign an upper limit at 90% confidence using the
loudest event method [125], which assumes the event is
modeled as a rare Poisson process. With the loudest trigger
interpreted as noise, the rate limit is given as [125]

R90;i ¼
2.3

hVTii
; ð5:1Þ

where V is the estimated sensitive volume of the analysis to
a chosen source population assessed at the false alarm rate
of the most significant observed candidate, T is the length
of the Hanford-Livingston coincidence observation period,
and the angular bracket denotes averaging over the ith bin
in intrinsic parameter space.
In principle, a robust estimation of V involves injecting a

simulated source population into real data and evaluating
the detection pipeline’s efficiency as a function of the
distance to a source and its intrinsic parameters; see, e.g.,
Refs. [10,121] for such computations performed for sub-
solar-mass black hole binary rate constraints. In this work,
we adopt a simplified approach whereby we use the root-
mean-square SNR of the loudest trigger in Table II (GPS
time of 1170911358.28) as the threshold for the detector
sensitivity, ρ2thres ¼ ðρ2Hanford þ ρ2LivingstonÞ=2 ¼ 38.6. From
the definition of the SNR and using the waveform model in
Sec. II A 1,

ρi ∝
M5=6
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the minimum threshold in ρ sets the maximum distance at
which the source is detectable. We then simulate the SNRs
of the signal population by fixing the source distance at
1 Gpc but randomly sample over the distributions of masses
and Love numbers that were used to build the template
bank in Fig. 3. The volumetric fraction of signals that
would be retained is then estimated to be ðρi;1 Gpc=ρthresÞ3,
which arises due to our step function approximation for
detectable ρ, with the threshold located at ρthres. The
resulting VT estimate is given as

hVTii
Gpc3 yr
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where a correction factor of ð128=25Þ1=2 ¼ 2.26 to the
horizon distance is included to take into account the effect
of averaging over the detectors’ angular response, the
binary orbital orientation, and GW polarization angle
[126]. Since the three LIGO-Virgo observing runs have
different characteristic noise curves and coincident observ-
ing periods, we compute hVTii separately for each run and
sum them to obtain the total volume-time.
Figure 9 shows the approximate 90% confidence upper

limit for the exotic binary merger rate, which fall in the
∼1–300 Gpc−3 yr−1 range depending on binary para-
meters. For comparison, the merger rates of known
BBHs in the same chirp mass range are approximately
R ∼ 1–50 Gpc−3 yr−1 [127]. The constraints become

FIG. 9. We use our null detection to put constraints on the
merger rates of binaries with large Λ̃. Using the IFAR of our most
significant event, we derive a 90% CL upper limit on the merger
rate as a function of detector-frame chirp mass and the leading-
order tidal parameter of the binary (cf. the loudest event method
[125]). The upper-right region is not colored as it is beyond the
current extent of our template banks.
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stronger as we move from small to large values of M
because the putative signal would have been louder. In
particular, due to the ρ ∝ M5=6 scaling in (5.2), the
constraint scales as R90 ∝ M−15=6. On the other hand,
the constraints become weaker as we move from smaller to
larger values of Λ̃ as the cutoff frequency of the waveform
model decreases with increasing Λ̃. Systems with larger
values of Λ̃ therefore lead to smaller amounts of SNR
integrated in the data and correspondingly a smaller
sensitive volume. Although the analytic scaling between
R90 and Λ̃ is less straightforward to derive, we deduce
empirically R90 ∝ Λ̃1=10 to be a good approximation. The
upper limit rate is therefore much more sensitive to scalings
with M than with Λ̃. Finally, it is interesting that, despite
the crude estimate (5.3), our rate constraint of
R90∼102 Gpc−3yr−1 at M¼3M⊙ and Λ̃ → 0 is broadly
consistent with the rate constraints obtained for subsolar-
mass BBHs which were computed with full injection
campaigns involving the real data [122,124].

2. Love number parameter space

The search parameter space in Fig. 3 and the merger rate
constraints in Fig. 9 are shown as a function of Λ̃, M and
M, which are parameters of the binary system. In order to
express the constraints as a function of the intrinsic
parameters of individual sources, i.e., in terms of m1,
m2, Λ1, and Λ2, one would have to make an assumption on
the nature of the binary system. For instance, one simplified

assumption commonly used in the literature is to assume
that both of the binary components have equal masses and
are the same type of compact object.
In this work, we assume that the binary is composed of a

black hole and a large-Λ object. We believe this scenario is
more astrophysically likely, partly because black holes are
already known to exist and are abundant in nature. In
addition, our search mass coverage of 3M⊙ < M < 15M⊙
and M < 40M⊙ spans over black hole masses—other
astrophysical sources such as neutron stars have maximum
masses that are below 3M⊙, making them unlikely to have
significant overlap with our search space. Furthermore, this
assumption allows us to set either the Love number of the
heavier component Λ1 or that of the lighter component Λ2

to zero, thereby providing a one-to-one mapping between
the effective binary Love number Λ̃ in (2.2) and the Love
number of the binary component.
In Fig. 10, we show the ranges of parameter space of a

BSM compact object for which the constraints depicted in
Fig. 9 apply. On the left panel, we show the constraints in
terms of the Love number of the object, either when it is the
lighter component (red) or when it is the heavier compo-
nent (blue). The red region encompasses much larger
values of component Love numbers and therefore offers
wider constraints. The red region is also the more astro-
physically realistic scenario since black holes, which do not
have a maximum mass, are more likely to have formed the
heavier binary component. In Sec. V B we use the red
region as our default parameter region for constraining

FIG. 10. We map the binary parameter space ðM; Λ̃Þ probed in our search (shown in Fig. 3) to the parameter space of the individual
objects. We assume that the binary consists of a black hole (Λ ¼ 0) and an exotic object with a nonvanishing Love number, as such a
scenario is more likely than both binary components being exotic. Left: the parameter space of the exotic object in the binary to which
our merger rate constraints apply. The red region denotes the constraints applied when the lighter binary component (with mass m2) is
the exotic object while the heavier component (with massm1) is a black hole; the converse applies to the blue region. Right: Same as the
left panel, except we show the constraints in terms of the object’s (inverse) compactness. Here, we use the relationship Λ ∝ kðr=mÞ5 in
(1.1) and set the constant k ¼ 1 as a fiducial guide. The left panel is, in general, the more instructive plot since the radius and k of a
general BSM compact object, such as those with smoothly varying density distributions, are not well defined (see also Footnote 2).
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several models of BSM objects. An exception is made for
the gravitational atom, whereby a bosonic configuration
grows spontaneously around a rotating black hole—in this
scenario, we use the blue region for more conservative
constraints.
In the right panel of Fig. 10 we use the relation between

Λ and r=m in (1.1) to translate the range on the left panel to
the (inverse) compactness of the exotic compact object. As
a fiducial guide, we take k ¼ 1 for the dimensionless
second Love number—for other values of k, one could
adjust the vertical axis according to the ðr=mÞ ∝ k−1=5

scaling. The panel shows that for low-mass systems our
null detection constrains objects with sizes approximately
in the range 5≲ r=m≲ 70. It should be emphasized,
however, that many proposed objects in BSM scenarios
do not have a well-defined radius. This typically occurs
when the compact object has a smoothly varying density
distribution which formally vanishes at spatial infinity. In
these cases, the left panel of Fig. 10 is the more instructive
constraints plot.

B. Bounds on beyond Standard Model physics

The parameter space displayed in Fig. 10, for which our
rates constraints apply, does not assume a specific model of
exotic compact object. In this section, we discuss how
Fig. 10 translates to the model parameter space of a few
representative examples of exotic compact objects pro-
posed in the literature. Our discussion is by no means
comprehensive and serves only as guide on the approxi-
mate region of model space that is constrained by our null
detection, see, e.g., Refs. [128,129] for more examples of
exotic compact objects discussed in the literature.
Motivated by the indisputable evidence for the existence

of dark matter, virtually all BSM proposals posit the
existence of at least a new degree of freedom in our
Universe. In this section, we separate our discussion into
Sec. V B 1 and Sec. V B 2—the former describing
exotic compact objects formed from ultralight boson fields
[130–132] and the latter formed from particle dark matter
[133,134]. The two classes of BSM physics are differ-
entiated depending on if they display coherent wavelike
properties at astrophysical scales. As a rough fiducial
guide, we consider ultralight bosons to have masses
approximately μ ≲ 10−10 eV, as their Compton wave-
lengths of ≳1 km are comparable or larger than the sizes
of black holes. Conversely, we consider particle dark matter
to have masses μ≳ 10−10 eV, though the models we focus
on have μ≳OðMeVÞ.

1. Ultralight bosons

We consider the mini boson star and the gravitational
atom as representative examples of compact objects formed
from ultralight boson field. We see that our constraints

apply to ultralight boson masses of the order of
∼10−12–10−11 eV for these types of compact objects.

Mini boson stars.—Boson stars [135–141] constitute a
generic class of BSM objects that arise from a new Uð1Þ
complex scalar field. They are prototypical examples of
BSM compact objects as they are relatively simple systems
with many of their properties well explored in the literature.
A key feature of boson stars is that they have regular
boundary conditions at their centers—in fact, many of the
properties of boson stars are determined by the scalar field
value at the origin,Φ0. The larger the central values are, the
more important relativistic and strong gravity effects are,
and the more compact the boson stars are.
Mini boson stars [135–139] form a subclass of boson

stars in that they are only bound through self-gravity and do
not contain self interaction operators in the scalar potential.
The minimally coupled complex scalar field Φ is described
by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−∇αΦ�∇αΦ − μ2jΦj2
�
; ð5:4Þ

where R is the Ricci scalar, and μ is the boson mass. The
self-gravity of mini boson stars is balanced by the “quan-
tum pressure” which arises due to Heisenberg’s uncertainty
principle, resulting in ultralight particles which cannot be
localized within distances shorter than their de Broglie
wavelengths. Mini boson stars are therefore effectively
macroscopic coherent wave objects which behave like a
Bose-Einstein condensate of astrophysical scales.
A boson field with a given mass μ admits a family of

stable mini boson star configurations, with each solution
characterized by their central values Φ0. As Φ0 increases,
the boson star mass, MBS, increases as well. This trend
proceeds until the central field value is sufficiently large to
yield solutions that are unstable to linear perturba-
tions. Like white dwarfs and neutron stars, mini boson
stars also have a theoretical maximum mass which is given
as [137]

MBS;max ≈ 0.633
M2

pl

μ
¼ 8.4M⊙

�
10−11 eV

μ

�
: ð5:5Þ

These boson stars are called “mini” because their maximum
mass scales more slowly with μ than the Chandrasekhar
limit for white dwarfs due to electron degeneracy pressure,
MWD;max ∼M3

pl=μ
2
electron, and therefore generally have

smaller masses.
The Love numbers for mini boson stars, ΛBS, has been

computed both analytically in the nonrelativistic
Newtonian limit and numerically in the relativistic regime
[43–45]. The result can be expressed succinctly as
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ΛBS ≃ 103
�
kBSðΦ0Þ

10

��
0.633
αBS

�
10

; ð5:6Þ

αBS ≡MBSμ

M2
pl

≈ 0.633

�
MBS

MBS;max

�
; ð5:7Þ

where kBS is the constant k defined in (1.1) for boson stars,
and αBS is the ratio of the boson star mass to the Compton
wavelength of the boson field. We substituted (5.5) into
the definition of αBS in (5.7) to illustrate that stable and
hence physically motivated solutions have αBS < 0.633.
Crucially, we observe that ΛBS scales very sensitively with
αBS and therefore easily spans over several orders of
magnitude. The dimensionless constant kBS depends on
the central value of the scalar field: as Φ0 → 0 the
system approaches the nonrelativistic Newtonian limit,
with kBS ≈ 1149 [43]; as Φ0 increases, the system
approaches the relativistic regime and the coefficient can
be as small as kBS ∼ 10 [43,44].
On the left panel of Fig. 11, we show the parameter space

of merging mini boson stars to which our rate constraints
apply. Since mini boson star masses can span over both the
black hole mass range and the subsolar-mass range, we
assume they are the lighter component in the binary
system (red region of Fig. 10). In Fig. 11, we use kBS ¼
10 as the representative value for the relativistic case,
though the dependence onMBSμ ∝ k1=10BS is rather weak. We
see that, depending on the boson star mass, our constraints

apply to ultralight bosons with masses over the range
10−12 − 10−11 eV. This range is primarily determined by
the compactness of the star, which scales inversely with
αBS, and the finite frequency ranges at which ground-based
detectors are capable of probing; cf. (1.4).

Superradiant clouds/gravitational atoms.—Another candi-
date for compact objects that arise in many BSM scenarios is
the gravitational atom [142–146]. The gravitational atom is a
bosonic cloud configuration which would grow spontane-
ously around a rotating black hole through a process called
black hole superradiance [147–150]. This process is trig-
gered if (i) the Compton wavelength of the boson is
comparable to the size of the black hole, and (ii) the initial
black hole’s spin is sufficiently high to satisfy the super-
radiance inequality [147–150]. These bound states are called
gravitational atoms because they resemble the proton-elec-
tron structure of the hydrogen atom. Crucially, unlike boson
stars, they do not have regular boundary conditions at the
centre but are instead characterized by the purely ingoing
boundary condition at the black hole horizon.
Although black hole superradiance would be triggered by

both minimally coupled [142–146] and self-interacting
[151–154] boson fields, we focus on the minimally coupled
case as this is the simplest and most explored scenario in the
literature. For simplicity, we also limit ourselves to ultralight
scalar fields, though we do not expect our quantitative results
to differ substantially for ultralight vector and tensor fields.

FIG. 11. Same as Fig. 10, except expressed in terms of BSM physics parameter space corresponding to ultralight bosons. Left:
parameters of mini boson stars (BS), which couple minimally through gravity, to which our rate constraints apply. From the relationship
ΛBS ∝ kBSðr=mÞ5, we use the tidal constant kBS ¼ 10 as the representative value for a relativistic BS. In the Newtonian nonrelativistic
limit, kBS → 1149, and the vertical axis would scale mildly by a factor of k1=10BS . The physically feasible regime corresponds to a bound
on the ratio of the boson star mass to the Compton wavelength of the boson field: αBS ≲ 0.633. Right: the parameter space constrained
for a minimally coupled scalar gravitational atom (Mc,M are the masses of the boson cloud and black hole, respectively). Here, we show
the constraints applied to the jnlmi ¼ j433i eigenstate; for other l-eigenstates, the vertical axis would change slightly with the tidal
constant as k−1=8c;l ∼Oð1Þ, and the range of the gravitational fine structure constant α probed would be adjusted according to the
α=l≲ 0.4 physical region (see Sec. V B 1 for more discussion).
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The action of the gravitational atom which we investigate is
therefore the same as (5.4) for a complex scalar field and can
be trivially extended to the real scalar field. Crucially, the
background spacetime gαβ in the Fermi frame of the
gravitational atom would now be the Kerr metric.
The eigenstates of the scalar gravitational atom are

determined by the set of “quantum numbers” fn;l; mg,
which are the principle, orbital, and azimuthal numbers,
respectively, that satisfy n ≥ lþ 1;l ≥ 0; jmj ≤ l. The
growth rates of the eigenstates scale very sensitively as Γ ∝
α4lþ5=M [144–146], where α is the gravitational fine
structure constant.

α≡ Mμ

M2
pl

≃ 0.23

�
M

3M⊙

��
μ

10−11 eV

�
; ð5:8Þ

which is similar to αBS in (5.5) for the boson star except that
here M is the black hole mass while αBS is defined with
respect to boson star mass. The first few fastest-growing
eigenstates are therefore the jnlmi ¼ j211i; j322i, and
j433i modes (listed in decreasing order) and, depending
on the value of α, could grow well within astrophysical
timescales. Superradiant amplification would occur when
α=l≲ 0.4, where the upper bound is saturated when the
black hole is initially spinning maximally. Consequently, the
higher the l-eigenstate is, the wider the range of α probed is.
When the gravitational atom is part of a binary system,

various resonance phenomena would be excited which could
significantly backreact onto the orbital dynamics of the
binary [41,155–161]. However, these resonances typically
occur when the binary companion is either near or within the
Bohr radius of the cloud, rc—when the orbital separation is
larger than rc, the cloud’s tidal deformation remains the
leading-order finite-size effect [41]. In the α=l ≪ 1 regime,
the Love numbers of these boson clouds are [41,42]

Λc;l ≃ 3.3 × 105kc;l

�
Mc=M
0.1

��
0.3
α

�
8

; ð5:9Þ

where the constant kc;l varies with l and Mc is the mass of
the cloud.4 Depending on the initial black hole spin, the
superradiance process can, in principle, extract up to 29% of
the initial black hole mass [162]. From (5.9), we see that the
Love number of the gravitational atom also scales very
sensitively with α and can therefore easily span over several
orders of magnitude.

On the right panel of Fig. 11, we show the parameter
space of the scalar gravitational atom to which our rate
constraints apply. Since these boson clouds can only form
around black holes, we assume they are the heavier
component of the binary (blue region in Fig. 10). There
we show the constraints applied specifically to the j433i
mode because the α=l≲ 0.4 condition implies that the
j433i mode admits a wider feasible range of α. For other
lower l-eigenstates, the values on μ constrained would only
change slightly by k1=8c;l ∼Oð1Þ (see Footnote 4) and the
range at which α would be valid is reduced. Note that the
ultralight boson masses that are probed by the gravitational
atom are of a similar scale to those of the mini boson star—
this is the case because their respective physically feasible
regimes in parameter space, αBS < 0.633 and α=l≲ 0.4,
are of the same order of magnitude.
Strictly speaking, the constraints shown on the right of

Fig. 11 only applies to the complex scalar field. For the real
scalar field, a key consideration in interpreting this figure is
that the real boson cloud consists of an oscillating quadru-
pole structure and therefore sources continuous gravita-
tional waves [143,163]. The typical lifetimes of the real
scalar cloud eigenstates are

McðtÞ ¼
Mc;0

1þ t=τc
; ð5:10Þ

τc ∼ τc;l

�
M

3M⊙

��
0.3
α

�
4lþ11

; ð5:11Þ

where Mc;0 is the initial cloud mass, τc;l ∼ 10−3;
103; 109 years for the l ¼ 1, 2, 3 modes, respectively
[163].5 In the α≳ 0.3 regime, the emission power for
the real j211i and j322i eigenstates would be sufficiently
high for the cloud to fully dissipate within a Hubble time,
making them unlikely to have been part of a merging binary
as observed by the LIGO and Virgo observatories. These
gravitational wave signatures from real boson clouds have
been probed in Refs. [164–166]. On the other hand, the
j433i eigenstate (and higher-order l-eigenstates) could
survive over a Hubble time and therefore be probed by
ground-based detectors. Such finite-lifetime considerations
do not apply to complex scalar fields because they possess
conserved Uð1Þ charges and therefore do not emit con-
tinuous gravitational waves.

2. Particle dark matter

In this section, we focus on massive boson stars as a
candidate compact object that is formed from particle dark
matter. This is a rather rare example as compared to other

4From dimensional analysis, Λc ∼ ðMc=MÞðrc=MÞ4 [41],
where rc=M ≃ n2=α2 is the Bohr radius of the boson cloud.
We therefore expect the relative ratios between
kc;l¼1∶ kc;l¼2∶kc;l¼3 to be approximately 1∶25.6∶256. This
simple scaling is in approximate agreement with the more precise
calculation performed for these coefficients, kc;l¼1 ¼ 1 and
kc;l¼2 ¼ 16 [42]. Since the precise coefficient for kc;l¼3 was
not shown explicitly in that work, we will use kc;l¼3 ≈ 200 as an
order of magnitude approximation.

5Note that these values are strictly derived in the α ≪ 1 regime.
For larger values of α nonlinear effects would reduce the emission
power and can therefore increase τc;l by up to two orders of
magnitude [163].
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BSM compact objects in that many of its macroscopic
properties, including their Love numbers, have been
investigated comprehensively in the literature.

Massive boson stars.—Massive boson stars [139–141] are
generalizations of the mini boson star investigated in
Sec. V B 1 whereby additional nonlinear scalar self-inter-
action operators are included in the action. Although
several classes of nonlinear couplings have been inves-
tigated in the literature, in this work, we focus on the
quartic interaction [140] which is a natural renormalizable
operator from an effective field theory point of view which
preserves the global Uð1Þ symmetry. The action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−∇αΦ�∇αΦ − μ2jΦj2 − λ

2
jΦj4

�
;

ð5:12Þ

where we focus on the repulsive λ > 0 potential to ensure
the Hamiltonian is bounded from below, R is the Ricci
scalar, and μ is the boson mass. As we see, the presence of
scalar nonlinearities introduces a new scale in solutions of
boson stars. For stellar mass boson stars, this new scale
allows us to probe values of μ that are much larger than the
∼10−11 eV range for mini boson stars.
In general, solutions to (5.12) for arbitrary values of λ

have to be obtained numerically. Remarkably, various
analytic results can be derived for the massive boson star
when the quartic coupling is large compared to the boson
mass in Planck units, λ ≫ ðμ=MplÞ2. In fact, this so-called
“strong-coupling limit” [140] is naturally satisfied by most
dark matter scenarios: dark matter particles are often
postulated to have masses that are smaller than the
Planck mass, while technical naturalness arguments typi-
cally demand λ ∼Oð1Þ. As we see below, solar-mass boson
stars would only form if the particle mass lies within
μ≲Oð100 MeVÞ; the large hierarchy ðμ=MplÞ2 ≲ 10−40

therefore makes the strong-coupling limit trivially satisfied
in most models. As is conventional in the boson star
literature, we define the rescaled quartic coupling λ̃≡
λðMpl=μÞ2=8π such that the strong coupling limit is
equivalent to λ̃ ≫ 1.
In the limit where λ̃ → ∞ but λ remains finite, the

maximum mass of the boson star is [140]

MBS;max ≈ 0.044
ffiffiffi
λ

p M3
pl

μ2

¼ 7.2M⊙
ffiffiffi
λ

p �
100 MeV

μ

�
2

: ð5:13Þ

Unlike the mini boson stars, whose maximummass scale as
MBS;max ∼M2

pl=μ, cf. (5.5), here the maximum mass of the
massive boson star scales in a similar way to the

Chandrasekhar limit for neutrons stars. This is the case
because the repulsive potential provides an additional
source of pressure against the star’s self-gravity, thereby
allowing the bosonic particle to be more massive than that
is the mini boson star. The Love numbers of the massive
boson stars have also been computed in Ref. [44] for a
range of values of λ̃. In the λ̃ → ∞ and finite-λ limit, the
Love number of the boson star is approximately

ΛBS ≃ 300

�
0.22

αBS=λ̃
1=2

�
10

; ð5:14Þ

αBS
λ̃1=2

≡ MBSμ

M2
plλ̃

1=2 ≈ 0.22

�
MBS

MBS;max

�
; ð5:15Þ

where we extract the overall coefficient and the parametric
scaling in αBS=λ̃

1=2 from the right panel of Fig. 2 in [44].
Similar to the mini boson star case in (5.7), the ΛBS ∝ α−10BS
scaling arises from the fact that the stellar radius scales as
rBS=m ∼ α−2BS. Crucially, unlike the mini boson star, the
Love numbers of massive boson stars are proportional toffiffiffi
λ

p
and the physical range of parameters lie within

αBS=λ̃
1=2 ≲ 0.22.

In Fig. 12, we use (5.15) to translate the constraints of
our search space into the parameter space of the massive
boson star. We choose a few representative values of λ,
illustrating how each “band” for a given value of λ would
shift on the vertical scale as μ ∝

ffiffiffi
λ

p
. Crucially, the boson

FIG. 12. Same as the left panel of Fig. 11, but instead trans-
lating our constraints to boson stars (BS) with relatively massive
boson particles and including quartic self-interactions; see (5.12).
Each colored band corresponds to a different value of the quartic-
interaction parameter λ; for fixed αBS=λ̃

1=2, the relative vertical
scale between the bands scale with the boson mass as μ ∝

ffiffiffi
λ

p
.

The physically feasible regime for the massive boson star lies
in αBS=λ̃

1=2 ≲ 0.22.
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mass scale that is constrained for this compact object is
≲Oð100 MeVÞ, which is orders of magnitude larger than
that of the mini boson star in Fig. 11. In principle, one could
constrain boson masses below the MeV scale by consid-
ering λ ≪ 10−2 while maintaining the strong coupling
condition, though such small λ couplings generally demand
the existence of an underlying (approximate) symmetry that
is a priori absent in (5.12); see, e.g., Ref. [167] for
constraints applied to that region of parameter space from
astrophysical considerations.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we conducted the first matched-filtering
search for compact objects with large Love numbers in the
O1–O3 LIGO Hanford and Livingston data. We first
construct a PN inspiral-only waveform model for objects
with large tidal deformabilities and build an effectual
template bank (Figs. 2 and 4). Our search spans effective
binary tidal deformabilities 102 ≲ Λ̃ ≲ 106 and chirp
masses 3M⊙ < M < 15M⊙, cf. Fig. 3 (with the lower
bound of Λ̃ intentionally chosen to avoid the Λ̃ ¼ 0 BBH
value). We list the detection statistics of our top three
triggers with large Love numbers in Table II, concluding
that they are not statistically significant. In Fig. 5, we
illustrate the IFAR distribution for all observing runs,
demonstrating how our triggers fall within the ∼1–2σ
range of Poisson noise.
We used our null detection to place an upper limit on the

merger rates of such binary systems in the LIGO and Virgo
bands (Fig. 9). This upper limit is model agnostic and
applies to any type of compact object whose masses and
Love numbers fall within the parameter space indicated in
Fig. 10, and whose spins are negligible. We discuss the
implications of these constraints on BSM physics, includ-
ing several scenarios for ultralight boson field and particle
dark matter (Figs. 11 and 12). While we focused on boson
stars [135–141] and gravitational atoms [142–146], our
model-independent rate constraint applies to any BSM
compact object as long as their orbital dynamics during
inspiral are captured by our tidal waveform. Note that the
merger rate constraints can also be used to constrain the
abundance of exotic objects and the fraction of dark matter
that could be composed of these objects—we hope to
pursue this question in future work.
Remarkably, using the nonspinning inspiral-only tidal

waveform we are able to recover many of the known BBH
events that were previously identified using full IMR
searches [1–12]. The detection statistics for our triggers
from these events are listed in Table III. It is worth noting
that all of the best-fit templates in that table have
Λ̃ ∼ 102–103. This is not surprising because, as we have
demonstrated in Fig. 1, these relatively small values of Λ̃
are consistent with the Λ̃ ¼ 0 BBH value [32–36] at the
level of a matched-filtering search. Interestingly, almost

half of the previously identified BBHs, which are labeled
by the † superscript in Table III, have masses that fall
outside of our search parameter space. While the SNRs of
all of the inspiral-only BBH triggers are lower than those
reported in full IMR searches [1–12], our work is the first to
demonstrate the ability of using an inspiral-only waveform
to search for black holes. Furthermore, our work has the
added advantage of easily allowing for additional effects to
be incorporated into the waveform model as needed—a
desirable quality when searching for new signals.
In Fig. 8, we show parameter estimation results for the

Love numbers of black holes using the tidal waveform. We
constrain the BBH effective tidal parameter to Λ̃≲ 103 at
the 90% credible interval, which is broadly consistent with
the results reported in Ref. [95]. Future detectors will
potentially improve this constraint by at least an order of
magnitude [45,111]. In Fig. 6, we additionally show that
there is a mild degeneracy between χeff and Λ̃. This
degeneracy, however, did not help in recovering most of
the known BBH merger signals, which have positive
spins [3,4], because the degeneracy direction implies that
Λ̃ > 0 would partially mimic χeff < 0. Finally, in Fig. 7, we
show that using an inspiral-only waveform for para-
meter estimation leads to small biases in the recovered
parameters compared to more advanced IMR waveforms
such as IMRPhenomXPHM. This bias comes from a
combination of our prior support vanishing at Λ̃ ¼ 0
together with an incomplete set of phase terms at high
PN order. Pushing analytic waveform development to
higher PN orders will therefore be highly beneficial for
future analyses.
This work represents the first-ever dedicated matched-

filtering search that extends beyond previous efforts where
templates were limited to detecting black holes and neutron
stars. However, we believe we have barely scratched the
surface of the boundless potential for new discoveries in
this emerging era of GW astronomy. Our analysis can be
extended in a variety of ways:

(i) Low-mass binary systems: We restrict ourselves to
the M > 3M⊙ BBH mass range because the num-
ber of templates required for an effectual template
bank, and therefore the computational cost of the
search, increases rapidly as one extends the lower
bound of the mass range into the neutron star regime
and below. However, low-mass binaries are the most
well-motivated part of the parameter space because
(i) the range of Λ̃ which could be probed by our
template bank significantly widens as the binary
mass decreases (see Fig. 3), and (ii) the masses of
compact objects in many BSM scenarios are often
bounded from above, see, e.g., (5.5) and (5.13) for
boson stars, but otherwise admit stable solutions at
lower masses. A dedicated search in the low-mass
and large-Λ̃ region is therefore not only interesting
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observationally, but also highly motivated theo-
retically.

(ii) Additional finite-size effects: We modeled the com-
pact objects as point particles with large tidal deform-
abilities, which is an excellent starting point since the
tidal deformability is the leading nonspinning finite-
size effect. However, other finite-size effects, such as
spin-induced moments [23,24,84,168] and tidal dis-
sipation [29,32,33,169,170], would also generically
be present in binaries with exotic compact objects. A
comprehensive search should consider all of the
above effects in order to more accurately model the
full space of potential signals. However, doing so
would come at a price of including more free param-
eters, increasing the dimensionality of the template
bank and ultimately increasing the search’s computa-
tional cost. References [25,59] have taken the first
steps toward a search similar to the one reported here,
for objects with large spin-induced quadrupole
moments.

(iii) Other physical imprints: In addition to other finite-
size effects, our templates do not incorporate various
BSM imprints which cannot be mimicked by the
5PN tidal parameter Λ̃. These include, but are not
limited to, the resonances excited in gravitational
atoms when their binary companion approaches the
Bohr radii [41,155–161], an additional long-
range fifth force induced in binary neutron stars
[171–173], dynamical effects generated in modified
theories of gravity [174–179], and so on. Dedicated
searches for these effects, if they are sufficiently
large to deviate from BBH waveforms, would
require precise additional modeling.

(iv) Full IMR model-dependent waveforms: We focused
on the inspiral portion of the signal because the
imprints of new physics can be incorporated ana-
lytically in this regime, thereby allowing for a
source-agnostic search for exotic compact objects
that does not require specifying a model for the
strong-field physics determining their merger sig-
nals. It would be interesting to perform searches
using full IMR waveforms for specific BSM com-
pact objects, see, e.g., Refs. [76–80], as this would
increase the statistical significance of putative de-
tections. Such a search, however, would require
waveform calibration between the analytic inspiral
and full numerical relativity simulations, and its
scope would be limited to to the specific type of
exotic objects being modeled (i.e., losing the source-
agnostic advantage).

(v) Space-based GW observations: Future space-based
GW detectors which observe the ∼10−4 − 1 Hz
frequency range, including LISA [180], TianQin
[181], Taiji [182], MAGIS [183], and DECIGO
[184], would probe new binaries over a vast region

of unexplored parameter space. Following the same
argument which led to (1.4), space-based detectors
would, in principle, probe objects with compactness
and Love numbers over the ranges

r
m
≲ 2 × 105

�
10−3 Hz
flow

�
2=3

�
M⊙

m

�
2=3

; ð6:1Þ

Λ≲ 1026
�
10−3 Hz
flow

�
10=3

�
M⊙

m

�
10=3

; ð6:2Þ

which is significantly wider than the reference
values shown in (1.4) for ground-based detectors.
Future template-based searches must therefore ac-
curately incorporate the imprints of large Love
numbers (and other physical effects) in waveform
models to make the most of the discovery potential
of space-based GW astronomy.

We hope to pursue these research directions in future
work. The pursuit of Love, and other forces of nature,
carry on.
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