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Magnetic reconnection within a highly magnetized plasma has been seen as a viable mechanism to
extract the energy from a rotating black hole, as it can generate negative energy plasmoids in the
ergoregion. For a typical accreting black hole, the ergoregion is filled with bulk plasma plunging from the
innermost-stable-circular orbit. In this study, we present an analytical study of the energy extraction via
magnetic reconnection process in the plunging region. In contrast to the toroidal plasma, where the
magnetic field cannot be derived from the magnetohydrodynamics (MHD) scheme, the magnetic field in
the plunging plasma was determined by the ideal-MHD condition. We derive the global magnetic field
structure in a fast reconnection model, and we read the expressions for the energies of plasmoids ejected
from the reconnection region, for general stationary and axisymmetric spacetimes. Then, we demonstrate
the behaviors of ejection energies varying with the reconnection locations in the Kerr spacetime and
identify the region where a negative-energy plasmoid can be produced. We find that for a certain
magnetization there exists a critical value of the black hole spin, beyond which the energy extraction can
occur, and the energy extraction is most efficient for the near-extreme black hole. Moreover, we study the
conditions necessary for a plasmoid with positive energy to escape to the infinity, a crucial requirement for
effective energy extractions. Considering the escaping conditions, we provide the parameter space in the
radius-spin plane in which the energy extraction mechanism is effective.
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I. INTRODUCTION

Energy extraction from a rotating black hole has been a
long-standing topic of interest in astrophysics. It has been
demonstrated that the rotational energy of a Kerr black hole
can be extracted through classical processes without
violating the black hole’s second law, until the black hole
loses its mass to the irreducible value [1]. A prime example
is the Penrose process, where a particle undergoes fission
within the ergosphere, producing two particles. One par-
ticle, possessing negative energy as viewed from the
infinity, falls into the black hole, while the other, carrying
more energy than the original particle, escapes to a
distance. Although theoretically plausible, this process
suffers from a lack of initiation mechanisms [2]. Instead,
the superradiance of a massive bosonic field has been
viewed as a practical mechanism. In this scenario, a
classical field forms a superradiant cloud with a specific

spectrum around the black hole [3]. Another mechanism for
extracting the energy of a rotating black hole involves
magnetic fields. In the case of black holes surrounded by
magnetized accretion flows, Blandford and Znajek [4]
discovered that a stationary electromagnetic field can
extract the black hole’s energy if the magnetic field lines
intersect the event horizon and possess an angular velocity
smaller than that of the horizon. The Blandford-Znajek
(BZ) mechanism serves as a potent engine for generating
relativistic jets, a claim supported by both numerical studies
and observations [5–7].
Beyond the above mechanisms, it has been proposed

theoretically that the energy extraction is viable via
magnetic reconnections. Magnetized accretion flows
around black holes can liberate electromagnetic energy
in the regions where magnetic field lines are highly curved
and reconnect to discharge their energy [8–11]. This energy
release propels the plasma ejected from the reconnection
region. If the released magnetic energy is sufficiently
strong, the accelerated plasma can obtain sufficiently
negative angular momentum and negative energy, as
viewed from the infinity. Koide and Arai proposed the
possibility of energy extraction from black holes through

*Contact author: bchen01@pku.edu.cn
†Contact author: yehuihou@pku.edu.cn
‡Contact author: 2100011312@stu.pku.edu.cn
§Contact author: shenye199594@stu.pku.edu.cn

PHYSICAL REVIEW D 110, 063003 (2024)

2470-0010=2024=110(6)=063003(13) 063003-1 © 2024 American Physical Society

https://orcid.org/0000-0003-4509-9705
https://orcid.org/0009-0002-2375-2689
https://ror.org/03et85d35
https://ror.org/02v51f717
https://ror.org/02v51f717
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.063003&domain=pdf&date_stamp=2024-09-03
https://doi.org/10.1103/PhysRevD.110.063003
https://doi.org/10.1103/PhysRevD.110.063003
https://doi.org/10.1103/PhysRevD.110.063003
https://doi.org/10.1103/PhysRevD.110.063003


magnetic reconnection [12], where they treated the ejected
plasma as relativistic adiabatic incompressible ball, without
delving into the detailed dynamics of the plasmoids. More
recent studies have shown that the plasmoid instability
within the reconnection layer and the generation of
expelled plasmoids can lead to fast reconnection and fast
Alfvén outflows from these layers [13–16]. Subsequently,
Comisso and Asenjo [17] investigated the energy extraction
through the plasmoids in a fast reconnection model [18].
They calculated the energy extraction efficiency and power,
showing that such an energy extraction rate could be
comparable to that of the BZ process, thereby implying
its astrophysical significance. Subsequent studies have
explored the energy extraction via magnetic reconnections
in different types of spacetimes [19–29].
To date, most of studies on energy extraction via

magnetic reconnections have been primarily focused on
circular accretion flows. However, circular orbits within the
ergosphere are largely unstable, since the innermost-stable-
circular orbit (ISCO) of a Kerr black hole lies outside the
ergosphere, as long as a < 0.943M. It is unlikely for the
plasma to maintain a circular orbit within the ISCO, as it
would escape under small perturbations. A more realistic
scenario is that the accretion flows are circular outside the
ISCO, while they plunge toward the event horizon inside
the ISCO, adopting a spiral shape [30,31]. Such a plunging
region has been observed and highlighted in various
astrophysics-related studies [32–37]. It is expected that
in the plunging region the behavior of the ejected plasmoids
produced from magnetic reconnections could present
significantly different features, given that the magnetic
field structure and the ejection directions of the plasmoids
are distinct from those in toroidal flows.
In this study, we present an analytical investigation of

energy extraction via magnetic reconnection in the plung-
ing region near a rotating black hole. Our analysis begins
with a general stationary and axisymmetric spacetime,
assuming that the accretion flow in the equatorial plane
conforms to the Killing symmetry of the spacetime. One
remarkable feature in our study is that the global magnetic
field within the plunging plasma can be determined based
on the calculation presented in Ref. [38], in contrast to the
situation in the toroidal plasma. For the detailed structure of
the reconnection region, we utilize a fast reconnection
model from Ref. [18], characterized by strong magnetic
pressure. Subsequently, we derive a general expression for
the energies of the plasmoids ejected from the reconnection
region near the equatorial plane. Within this framework, we
focus on the Kerr black hole and consider magnetic
reconnection occurring in the plasma within the ISCO,
with the streamlines following plunging geodesics. We
explore how the energies of the ejected plasmoids vary with
the positions of the reconnection region under different
black hole spin and magnetization. Furthermore, we dis-
cuss the conditions necessary for a plasmoid with positive

energy to escape to infinity, a crucial requirement for
successful energy extraction.
The paper is organized as follows. In Sec. II, we discuss

the general aspects of the analytical model. We introduce
the basic equations of the fluid model in Sec. II A and the
model of fast reconnection in Sec. II B, present the global
structure of the magnetic field in Sec. II C, and derive the
general expression for the energy-at-infinity per enthalpy of
the ejected plasmoids in Sec. II D. We apply the model to
investigate the energy extraction in the plunging region
of the Kerr spacetime in detail in Sec. III, including
the specifics of the magnetic field angle in Sec. III A,
the behaviors of the energy-at-infinity per enthalpy of the
ejected plasmoids and local energy extraction efficiency in
Sec. III B, and the escaping conditions in Sec. III C. We
summarize our work in Sec. IV. The unit used throughout
the paper is G ¼ c ¼ 1.

II. MAGNETIC RECONNECTIONS:
MODEL AND SETUP

To begin with, let us revisit some basic concepts related
to magnetic reconnections in a stationary, axisymmetric
spacetime. The line element of the spacetime can be written
in the 3þ 1 form as

ds2¼gμνdxμdxν¼−α2dt2þ
X

i¼r;θ;ϕ

ðhidxi−αβidtÞ2; ð2:1Þ

where

α¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttþ

g2tϕ
gϕϕ

s
; hi¼

ffiffiffiffiffi
gii

p
; βi¼δiϕ

ffiffiffiffiffiffiffigϕϕ
p

ωϕ

α
ð2:2Þ

with ωϕ ¼ −gtϕ=gϕϕ being the angular velocity of frame
dragging. The normal observers of the spacetime, often
referred to as zero-angular momentum observers, are
defined via the normal tetrad

êμðtÞ ¼
1

α
ð∂μt þ ωϕ

∂
μ
ϕÞ; êμðrÞ ¼

1

hr
∂
μ
r ;

êμðθÞ ¼
1

hθ
∂
μ
θ; êμðϕÞ ¼

1

hϕ
∂
μ
ϕ: ð2:3Þ

A. Bulk plasma

Strictly speaking, the horizon-scale plasma is nearly
collisionless, with the electron free path possibly compa-
rable to the gravitational radius. The intrinsic properties,
such as the energy distributions of thermal electrons in both
the ejected plasmoids and the bulk plasma, should be
described within the framework of Vlasov gas dynamics.
However, for simplicity, our current study employs the
perfect fluid approximation. The stress-energy tensor of the
bulk plasma is given by
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Tμν ¼ ωUμUν þ pgμν; ð2:4Þ

where p and ω are the fluid’s proper pressure and enthalpy
density, while Uμ is the 4-velocity of the streamlines of the
fluid. The energy conservation law for the fluid,
∇μTμ

t ¼ 0, can be rewritten as

∂teþ
1

h1h2h3
∂iðh1h2h3SiÞ ¼ 0; ð2:5Þ

where e ¼ −αTt
t is called the energy-at-infinity density

and Si ¼ −αTi
i is the flux density. In our work, we are

interested in a stationary, axisymmetric, and geometrically
thin fluid configuration. Thus, all the physical quantities
are defined over the equatorial plane, neglecting their
θ-dependence. The flow is considered to be dominated
by the gravity and flow along timelike geodesics, such that
Uμdxμ ¼ −EdtþUrðrÞdrþ Ldϕ, with E, L being the
conserved quantities along the streamline.
As our focus is on the occurrences within the fluid during

magnetic reconnection, it is necessary to quantify the
processes in the fluid’s rest frame. To do this, we first
project the fluid 4-velocity into the normal tetrad,

ÛðaÞ ¼ UμêðaÞμ ¼ γ̂s
�
1; v̂ðrÞs ; 0; v̂ðϕÞs

�

¼
�
E − ωϕL

α
;

ffiffiffiffiffiffi
grr

p
Ur; 0;

Lffiffiffiffiffiffiffigϕϕ
p

�
: ð2:6Þ

Then, the tetrad for the fluid’s rest frame can be defined
through the normal tetrad as

e½0� ¼ γ̂s
�
êðtÞ þ v̂ðrÞs êðrÞ þ v̂ðϕÞs êðϕÞ

�
;

e½1� ¼
1

v̂s

�
v̂ðϕÞs êðrÞ − v̂ðrÞs êðϕÞ

�
; e½2� ¼ êðθÞ;

e½3� ¼ γ̂s

	
v̂sêðtÞ þ

v̂ðrÞs

v̂s
êðrÞ þ

v̂ðϕÞs

v̂s
êðϕÞ



; ð2:7Þ

where v̂s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv̂ðrÞs Þ2 þ ðv̂ðϕÞs Þ2

q
. Clearly, for a normal

observer, e½1� and e½3� are orthogonal and parallel to the
fluid velocity, respectively.

B. Magnetic-reconnection model

We now turn to a brief review of the magnetic-
reconnection models. The Sweet-Parker model [9,39], a
typical steady-state model, has been extensively applied
in the related studies. However, this model is characterized
by a low reconnection rate, which fails to account for
numerous astrophysical processes such as solar flares
and substorms [8,40]. The Petschek model [10] offers a
remarkably higher reconnection rate, but its self-
consistency has been questioned [41,42].

In this study, we consider the fast reconnection model
within the magnetohydrodynamics (MHD) framework [18],
which estimates a peak reconnection rate to be about 0.1.
This model assumes that the thermal pressure is negligible
relative to the magnetic pressure, an assumption that is
generally applicable in highly magnetized accretion sys-
tems, particularly in magnetically arrested disks [43,44].
The scheme is illustrated in Fig. 1. The top two
panels illustrate the plunging bulk plasma and the global
magnetic field near the equatorial plane, both of which exist
on a global scale defined by the gravitational radius,
rg ¼ GM=c2. Within this scale, the magnetic field lines
reverse directions upon crossing the equatorial plane, as
shown in the top right panel of Fig. 1. Compared to the
gravitational radius, the magnetic reconnection takes place
within a very small region [45], proximal to the dominant
reconnection X-point [46]. Therefore, we consider the
location of the reconnection region as the X-point on the
global scale.
The bottom panel of Fig. 1 provides a detailed illus-

tration of the magnetic field structure around the X-point at
a local scale. This smaller MHD scale is where the physical
quantities of the bulk plasma achieve uniformity. The local
scale is significantly smaller than the gravitational radius,
yet larger than the mean free path of ions, ensuring the
feasibility of the MHD scheme. Two sets of antiparallel
magnetic field lines upstream, represented by B⃗0, are
gradually curved toward each other due to spontaneous
perturbations. This curvature reduces the local magnetic
pressure below its original value, and the resulting pressure
differential continues to push the antiparallel magnetic lines
toward each other until they meet at the diffusion region
(the current sheet). This is where reconnection occurs, and
two resultant plasmoids are ejected downstream, moving
along the direction of the upstream magnetic field line B⃗0.
The current sheet is depicted by an orange square in the
bottom panel of Fig. 1, with a size comparable to the mean
free path of ions in the fast reconnection model [8]. We
denote the width and length of the current sheet as 2δ and
2L, respectively, and define a geometric index as

g ¼ δ

L
: ð2:8Þ

Assuming the plasmoids are not decelerated after leaving the
current sheet, we can estimate the magnitude of their
ejectionvelocities using theMHDequilibrium, which yields

vout ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − g2Þσm

1þ ð1 − g2Þσm

s
; ð2:9Þ

where σm ¼ B2
m=ω represents the magnetization in the

current sheet. As g approaches zero, the ejection velocity
reduces to that of the Sweet-Parker model [11]. Moreover,
the limit limg→1vout ¼ 0 imposes a restriction on the
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geometric index. This restriction implies that, if reconnec-
tion occurs, the magnetic pressure differential between B⃗0

and B⃗m should be capable of overcoming the magnetic
tension, which increases when the magnetic field line
curves. The ratio of magnetization in the diffusion region
to the upstream magnetization reads

σm
σ0

≃
B2
m

B2
0

≃
�
1 − g2

1þ g2

�
2

; ð2:10Þ

given by the local-scale-MHD equilibrium. Combining
Eq. (2.10) with Eq. (2.9), we get the ejection velocity
expressed by the upstream magnetization,

vout ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − g2Þ3σ0

ð1þ g2Þ2 þ ð1 − g2Þ3σ0

s
: ð2:11Þ

We further introduce a local reconnection rate, denoted asR0,
to describe the generation rate of magnetic reconnection.

This rate is defined as the ratio of the local inflow speed (vin;0
in Fig. 1) to the Alfvén velocity. The behavior of R0 varies
with different magnetizations. In the case of low local
magnetization (σ0 ≪ 1), the local-reconnection rate is solely
dependent on the geometric index,

R0 ≃ g
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

q �
1 − g2

1þ g2

�
2

; ð2:12Þ

which peaks at g ≃ 0.31. In the case of high local-magneti-
zation limit (σ0 ≫ 1), we have

R0 ≃ g
1 − g2

1þ g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − g2Þ3σ0

ð1 − g2Þ2 þ ð1 − g2Þ3σ0

s
; ð2:13Þ

which peaks at g ≃ 0.49. In subsequent discussions, we will
consider the high local-magnetization limit and assume that
magnetic reconnection always occurs at themaximum local-
reconnection rate. Therefore, we set the geometric index to
be g ¼ 0.49.

FIG. 1. Schematic diagram of the magnetofluid at various scales. Top left: the plunging plasma viewed from above. The red circle
represents the ISCO, with the blue spiral curve depicting a streamline of the bulk plasma. The light yellow region represents the
ergoregion. Two plasmoids are ejected from the reconnection region (small gray square). Top right: the global magnetic field viewed
laterally, where the black arrowed lines represent the magnetic field lines. Bottom: a closer look at the magnetic structure on the local
scale, where B⃗0 denotes the global magnetic field and B⃗m denotes the magnetic field in the current sheet (small orange square); v⃗in;0 is
the local inflow speed of the plasma, and v⃗out denotes the velocities of plasmoids ejected from the current sheet.
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C. Global magnetic field structure

In this section, we provide an explicit expression for the
global magnetic field near the equatorial plane, which
corresponds to the upstream magnetic field at the local
scale. We assume that the magnetic field lines above and
below the equatorial plane are identical, but with opposite
directions. Therefore, in the subsequent discussion, we will
focus solely on the magnetic field structure above the
equatorial plane.
The conductivity of the plasma is nearly zero outside the

current sheet, which means that the ideal-MHD condition,
Fμν
0 Uμ ¼ 0, holds, where Fμν

0 is the electromagnetic tensor.
For a stationary, axisymmetric fluid configuration com-
posed of zero-conductivity plasma, the global magnetic
field is determined by the ideal-MHD condition [38] and
takes the form of

Bt
0 ¼ −

Ψffiffiffiffiffiffi−gp
�
Ur þ

Uϕ

Ur L

�
; Br

0 ¼ −
Ψffiffiffiffiffiffi−gp E;

Bϕ
0 ¼ −

Ψffiffiffiffiffiffi−gp Uϕ

Ur E: ð2:14Þ

Here, g is the determinant of the metric, and Ψ denotes the
overall strength and keeps constant along the streamline.1

Note that Eq. (2.14) only works for noncircular streamlines.
For circular fluid with Ur ¼ 0, the above expression
diverges, which means that the magnetic field in this case
cannot be obtained directly from the ideal-MHD condition.
In the fluid’s rest frame, the magnetic field components

take the forms of [47]

B½1�
0 ¼ Ψffiffiffiffiffiffi−gp

Û
ffiffiffiffiffiffiffiffiffiffiffiffiffi
grrgϕϕ

p
ωϕ; B½3�

0 ¼ Ψffiffiffiffiffiffi−gp
ÛUr

ðγ̂sE − αÞ;

ð2:15Þ

where Û ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðÛðrÞÞ2 þ ðÛðϕÞÞ2

q
. It is essential to know the

direction of the global magnetic field in the fluid’s rest
frame, along which the plasmoids are ejected. To quantify
this direction, we define the magnetic field angle as the
angle formed between the magnetic field line and e½3�,

ξB ¼ arctan
B½1�
0

B½3�
0

¼ arctan
� ffiffiffiffiffiffiffiffiffiffiffiffiffigrrgϕϕ
p

ωϕUr

γ̂sE − α

�
: ð2:16Þ

For the fluid accreted by the black hole, Ur < 0. Then,
from γ̂s ≥ 1, one can deduce E ≥ αþ ωϕL ≥ α for a

prograde flow. Thus, it is easy to see from Eq. (2.16) that
ξB is always negative for an accreted, prograde flow.
Furthermore, it is important to note that the derivation of

the global magnetic field mentioned earlier does not
explicitly rely on the fluid assumption. What we
established is a stationary, axisymmetric, magnetized
plasma system characterized by a bulk velocity Uμ at each
position. The plasma exhibits sufficiently high conduc-
tivity, such that in its rest frame the electrons promptly react
and reorganize to neutralize any electric field Eμ ¼ FμνUν

that might exist. The timescale associated with this con-
ductivity is shorter than the plunging timescale, ensuring a
consistent Eμ ¼ 0. These conditions allow for the deriva-
tion of Bμðr; θÞ. Further details can be found in
Refs. [38,47].

D. Energies of ejected plasmoids

In the magnetic reconnection process, the ejection
velocities of plasmoids are aligned with the magnetic field
line at the X-point. Projected to the fluid’s rest frame, the
four-velocities of the ejected plasmoids can be written as

uμ∂μ ¼ γout
�
e½0� � voutðcos ξBe½3� þ sin ξBe½1�Þ

� ð2:17Þ

with γout being the Lorentz factor measured in the fluid’s
rest frame. The “�” represents two plasmoids toward
opposite directions.
During the reconnection process, most of the magnetic

energy is converted to the plasma kinetic energy in the
current sheet. Thus, within a plasmoid, we can neglect the
magnetic energy and only consider the fluid part. On one
hand, we take the incompressible sphere approximation,
under which the proper thermal quantities of plasma keep
constant during the reconnection process [12]. Thus, the
proper enthalpy density in the plasmoid is equal to that of
the bulk plasma at the X-point, and the enthalpy reads
ΔH ¼ ωΔV, assuming that the plasmoid has a small proper
volume ΔV. On the other hand, the fluid energy-at-infinity
density is defined in the normal tetrad, taken to be
e ¼ −αTt

t ¼ −αðωutut þ pÞ, as has been introduced in
Eq. (2.5). The volume of the plasmoid measured by
the normal tetrad is ΔV̂ ¼ ΔV=ûðtÞ ¼ ΔV=ðαutÞ, and the
energy is ΔE ¼ eΔV̂. Based on these, we can define the
energy-at-infinity per enthalpy for the ejected plasmoids at
the X-point as

ϵ ¼ ΔE
ΔH

¼ eΔV̂
ωΔV

¼ e
αutω

¼ −ut −
p̃
ut
; ð2:18Þ

where p̃ ¼ p=ω is the pressure per enthalpy. In
what follows, we use ϵ, as a widely accepted choice in
previous works, to represent the magnitude of energy
obtained by the plasmoid from magnetic reconnection in
the following discussion. Reading ut, ut from Eq. (2.17),
we have

1For our propose, we require Ψ → −Ψ under θ → π − θ. As
the region for magnetic reconnection is geometrically thin around
the equatorial plane, we can regard Ψ as a constant on either side
of the equatorial plane.
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ϵ� ¼ αγ̂sγout

	
ð1þ βϕv̂ðϕÞs Þ � vout

�
v̂s þ βϕ

v̂ðϕÞs

v̂s

�
cos ξB ∓ voutβϕ

v̂ðrÞs

γ̂sv̂s
sin ξB



−

αp̃
γ̂sγoutð1� v̂svout cos ξBÞ

: ð2:19Þ

Note that Eq. (2.19) is analogous to Eq. (28) in Ref. [17].
The above discussion is quite general and applicable to any
stationary and axisymmetric spacetime. According to
Eq. (2.19), it is clear that the influence of the spacetime
is directly encoded in α and βϕ, while indirectly encoded in
the fluid velocity and the magnetic field angle. The value of
vout depends on the reconnection model, which has no
association with the background spacetime.

III. ENERGY EXTRACTION FROM A KERR
GEOMETRY

In this section, we focus on energy extraction from a Kerr
black hole via magnetic reconnections within the plunging
region. We consider the bulk plasma that is perturbed and
plunges into the black hole from ISCO.The radii of ISCOs are

rms ¼ 3þ Z2 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
;

Z1 ¼ 1þ ð1 − a2Þ1=3½ð1þ aÞ1=3 þ ð1 − aÞ1=3�;
Z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 þ Z2

1

q
; ð3:1Þ

where a denotes the black hole spin and ∓ represents the
prograde/retrograde orbit. Here and thereafter, we set the
Arnowitt-Deser-Misner (ADM)mass of theKerr black hole to
be M ¼ 1, without loss of generality. The conserved energy
and angularmomentumof the geodesics are inherited from the
ISCOs, taking the form of

Ems ¼
r3=2ms − 2

ffiffiffiffiffiffiffi
rms

p � affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3ms − 3r2ms þ 2ar3=2ms

q ;

Lms ¼ � r2ms ∓ 2a
ffiffiffiffiffiffiffi
rms

p þ a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3ms − 3r2ms þ 2ar3=2ms

q : ð3:2Þ

In what follows, we only consider the prograde case.2 In the
Kerr geometry, the ISCO is the triple root of the effective
potential for radial motion, leading to a simple form of the
radial velocity of the plunging geodesics [48],

Ur ¼ −

ffiffiffiffiffiffiffiffiffi
2

3rms

s �
rms

r
− 1

�3
2

: ð3:3Þ

A. Magnetic field angle

In Fig. 2, we present the plot of the magnetic field angle,
as defined in Eq. (2.16). As we can see from the left panel,
ξB is consistently negative, starting from zero at the ISCO
and decreasing with the decrease of the radius. As the
misalignment between the magnetic field lines and stream-
lines is a consequence of the frame dragging effect, it
intensifies as one gets closer to the horizon of the black
hole. Moreover, when the fluid is in close proximity to the
ISCO, its motion is predominantly in the ϕ-direction, hence
confining the magnetic field to the direction of e½3�.
As shown on the right panel in Fig. 2, the magnetic field

angle at the horizon decreases fast with the increasing spin,
approaching a minimum value of−60° as a → 1. To make a
clear analysis for the near-extreme case, we define
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
, λ ≪ 1, and expand the physical quantities

to the powers of λ to see their asymptotic behaviors. The
event horizon takes rH ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
¼ 1þ λ. The quan-

tities related to the ISCO can be expanded, to Oðλ2=3Þ,

rms ≈ 1þ 21=3λ2=3; Ems ≈
1ffiffiffi
3

p þ 21=3ffiffiffi
3

p λ2=3;

Lms ≈
2ffiffiffi
3

p þ 24=3ffiffiffi
3

p λ2=3: ð3:4Þ

The near-horizon region can be recovered by taking a
coordinate transformation, r ¼ λRþ 1, R ≥ 1 [49]. In this
region, the magnetic field components can be expanded as

B½1� ≈
Ψ
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

R2 þ 3

r
þOðλ−2=3Þ;

B½3� ≈ −
Ψ
λ

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 3

p þOðλ−2=3Þ;

ξB ≈ − arctan

ffiffiffi
3

p

R
þOðλ1=3Þ; ð3:5Þ

where the factor λ in the denominators comes from the fact
that Ur → OðλÞ as λ → 0. If a is exactly equal to 1, the
ISCO and the horizon coincide; thus the expression of the
magnetic field Eq. (2.14) fails, which is not the situation we
are considering. However, the magnetic field is still well
defined in the near-horizon region. From Eq. (3.5), for
a → 1, ξB behaves as dξB=da ∼ ð1 − a2Þ−5=6, and the
minimum value takes ξB ¼ −60° at r ¼ rH, as is demon-
strated in the right panel of Fig. 2.
By taking another coordinate transformation r ¼

λ2=3R̃þ 1, we recover the near-ISCO region, where the
radii have the same scaling power with rms (R̃ ¼ 21=3).

2For the retrograde case, we confirm that the plasmoids have
ϵ� > 0, even under strong magnetizations. Thus, energy extrac-
tions via magnetic reconnection cannot occur within the retro-
grade plasma.
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As the fluid plunges from r ¼ rms, we restrict ourselves to
21=3 > R̃ ≥ 0. In such a region, the magnetic field compo-
nents are expanded as

B½1� ≈
Ψ
λ2=3

ffiffiffi
3

p

R̃
þOð1Þ;

B½3� ≈ −
Ψ
λ

ffiffiffi
2

p

ð21=3 − R̃Þ3=2 þOðλ−1=3Þ;

ξB ≈ − arctan

ffiffiffi
3

p ð21=3 − R̃Þ3=2λ1=3ffiffiffi
2

p
R̃

þOðλ2=3Þ: ð3:6Þ

The component B½1�, B½3� have different scaling behaviors,
and the magnetic field is dominated by B½3� in such a region.

B. Energy extraction efficiency

In this section, we discuss the behavior of the energy-at-
infinity per enthalpy of the ejected plasmoids in the
plunging plasma, as described by Eq. (2.19). In Fig. 3,
we illustrate the variations in ϵ� with different reconnection
location.3 In all cases, ϵþ exhibits a gradual increase first as
the X-point moves away from the ISCO and then a rapid
drop as the X-point moves toward the event horizon. The
peaked radial position of ϵþ, located between the horizon
and the ISCO, gets larger with an increase of the black
hole’s spin. On the contrary, ϵ− initially experiences a slight
decrease, then a swift rise as the X-point approaches the
horizon. The radius of the minimum position of ϵ−
decreases with a higher black hole spin a. It is evident
that the energy extraction from the black hole through the
reconnection process is possible only when the minimum
value of ϵ− is negative. For highly magnetized plasma with

σ0 ¼ 100, the critical value of the spin ac ≈ 0.862, where
the minimal value of ϵ− is zero. Energy extraction within
the plunging plasma only occurs when a > ac. The critical
value ac increases with the lowering of the magnetization,
such as ac ≈ 0.887 for σ0 ¼ 30 and ac ≈ 0.938 for σ0 ¼ 10.
To elucidate the efficiency of energy extraction, we

define the local energy extraction efficiency as

η ¼ ϵþ
ϵþ þ ϵ−

: ð3:7Þ

This definition aligns with the convention in Ref. [17]. For
negative ϵ−, the value of η consistently exceeds 1. It should
be noted that in this definition, we have assumed that only
ϵ− can have negative values, a condition that is satisfied in
the plunging plasma.
In the top panel of Fig. 4, we depict the behavior of the

local energy extraction efficiency as a function of the
reconnection location within the ISCO. Our findings
indicate that for a strong magnetization scenario where
the ISCO is situated inside the ergosphere, i.e., rms ≤ 2, the
energy extraction is inevitably localized near the ISCO.
This observation becomes evident when we consider the
limit σ0 ≫ 1, which yields vout ≈ 1, γout ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − g2Þ3σ0

p
=

ð1þ g2Þ with g ¼ 0.49 for the high magnetization limit. In

the vicinity of the ISCO, we have Ur; v̂ðrÞs → 0. Hence,
from Eqs. (2.19) and (3.7), we can derive

ϵ� ≈ αγ̂sγout½1þ βϕv̂s � ðv̂s þ βϕÞ�;

η ≈ 1þ ðβϕ − 1Þð1 − v̂sÞ
2ð1þ βϕv̂sÞ

: ð3:8Þ

For the case of a < 0.943, rms < 2, we observe that βϕ < 1,
and consequently, the efficiency remains consistently
less than 1. Conversely, for the case where a > 0.943,
rms < 2, we have βϕ > 1, and η > 1, suggesting that energy
extraction is necessarily localized near the ISCO.

plunging, a=0.998

plunging, a=0.94

plunging, a=0.6

infalling, a=0.998

infalling, a=0.9

infalling, a=0.8

-10

-20

1.5 2.0 2.5 3.0 3.5 4.0
r

-30

-40

-50

-10

-20

0.2 0.4 0.6 0.8 .01
a

-30

-40

-50

-60

infalling 

plunging

FIG. 2. Behaviors of the magnetic field angle in the bulk plasma plunging from the ISCO (solid lines) in Kerr geometry. We also plot
the results for the infalling plasma with E ¼ 1, L ¼ 0 as a comparison (dashed lines). Left: ξB as a function of r for different a (0.8, 0.9,
0.998). Right: the value of ξB at the event horizon rH ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
, as a function of a.

3Typically, the bulk plasma magnetization σ0 varies with r,
which involves the details of the thermodynamic distributions of
the fluid. For the sake of simplicity in this study, we treat σ0 as a
constant across the fluid.
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The bottom left panel of Fig. 4 displays the maximum
value of η under various magnetizations, which depends on
the spin of the black hole. For moderate magnetization,
such as σ0 ¼ 3, only black holes with a rather high spin
permit energy extraction. In the case of extreme magneti-
zation, exemplified by σ0 ¼ 100, the local energy extrac-
tion efficiency exceeds 1 across the range of a≳ 0.9. In all
these scenarios, the rate of increase of ηmax with respect to a
escalates considerably as a approaches its extreme value.
To estimate the maximum value of ηmax for a near-extreme
black hole, we focus on the near-ISCO region, where the

fluid velocity behaves as

ÛðrÞ
s ≈ −

ffiffiffi
2

3

r
ð21=3 − R̃Þ3=2λ1=3

R̃
þOðλÞ;

ÛðϕÞ
s ≈

1ffiffiffi
3

p þOðλ2=3Þ; v̂s ≈
1

2
þOðλ2=3Þ: ð3:9Þ

Combining Eq. (3.9) with Eq. (3.8), we obtain

ϵ� ≈ 0.534

ffiffiffiffiffi
σ0
3

r
ð1� 2Þ; ηmax ≈

3

2
: ð3:10Þ
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FIG. 4. The local energy extraction efficiency within the plunging plasma. Top: η as a function of the reconnection location, for
different values of a. The magnetization is fixed at σ0 ¼ 30. Bottom left: the maximal value of η as a function of the black hole spin.
Bottom right: The maximal value of η as a function of the magnetization.
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FIG. 3. The energy-at-infinity per unit enthalpy of the ejected plasmoids as a function of the reconnection location, for differing values
of a. Given the assumption of a hot plasma, we fix p̃ ¼ 1=4. The magnetization is set to be σ0 ¼ 10 (left) and σ0 ¼ 100 (right).
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The maximal value of η aligns with those found in
Ref. [17]. This suggests that, despite the fact that the
plasma from the ISCO ultimately plunges into the horizon,
the fluid flow in the near-ISCO region is nearly circular.
Correspondingly, the energy extraction efficiency is peaked
in this region for high-spin black holes. For a → 1, ηmax

behaves as dηmax=da ∼ ð1 − a2Þ−5=6, a distinctive feature
for near-extreme Kerr black holes.
Moreover, in the plunging region, the plasma magneti-

zation can be extremely high, surpassing σ0 ¼ 100 by
several orders of magnitude. For this reason, we present the
maximum value of η as it scales with magnetization in the
bottom right panel of Fig. 4. We observe that, once σ0
exceeds approximately 100, the efficiency becomes nearly
a constant. Therefore, at least in the study of energy
extraction, we can safely use a typical value of σ0 ¼ 100
to represent the cases of extremely high magnetization.
Additionally, we also discuss the case involving the

infalling bulk plasma in (A1), where we confirm that energy
extraction cannot occur within the infalling bulk plasma.

C. Escaping conditions

Even though a negative energy plasmoid (ϵ− < 0) can be
produced, it is essential for the other plasmoid with ϵþ to
escape to the infinity, in order for the energy extraction to
occur. From an astrophysical perspective, the thermal
radiation from the escaping plasmoid, when it is far from
the black hole, offers better detectability compared to that
within the accretion region. The latter tends to be obscured
by background radiation and the in-medium effects.
Therefore, in this section, we will scrutinize the escaping
conditions for the ejected plasmoid.
For strong magnetization, the plasmoid possesses a

relativistic ejection velocity and is nearly collisionless within
the bulk plasma after leaving the X-point [45,46].
Meanwhile, as the thermal energy in the plasmoid cannot
convert into the kinetic energy and will be radiated away, it
does not affect the plasmoid’s trajectory. As a result, we can

decouple the plasmoid from the complicated environment
after magnetic reconnection, and treat it as a point particle
that follows a timelike geodesic. Therefore, we may study
the plasmoid’s kinetic energy, dictated by the ejection
velocity Eq. (2.17), to establish the escaping conditions.
The geodesic equation in the equatorial plane takes the form

−
1

2

�
dr
dτ

�
2

þE2−1

2
¼Vðr;E;LÞ

¼−
1

r
þL2−a2ðE2−1Þ

2r2
−
ðL−aEÞ2

r3
;

ð3:11Þ

where E and L are the conserved energy density and angular
momentum density, respectively, and Vðr; E;LÞ serves as an
effective potential. Generally, for a fixed E, with L incre-
mentally increasing from zero, an extreme point in the
potential will emerge after L reaching a certain critical value.
As L continues to rise, this extreme point will shift toward a
larger radius.
For the plasmoid, the energy and angular momentum per

rest mass are determined by the plasmoid’s four-velocity at
the X-point, as outlined in Eq. (2.17). For constant σ0 and g
(hence, a constant vout), we infer from Eq. (2.16), Eq. (3.2),
and Eq. (3.3) that E and L adopt the forms of

E ¼ Eðr0; ξBðr0ÞÞ; L ¼ Lðr0; ξBðr0ÞÞ; ð3:12Þ

where r0 denotes the radius of the X-point.4 From the
equations in Sec. III A and Sec. III B, we see that the radial
velocity of the plasmoid with ϵþ always points inward. For
the plasmoid to escape, the potential within r ¼ r0 must be
sufficiently high to reverse the plasmoid’s direction, mak-
ing it outgoing. We define rm as the extreme point of the
potential. In the model under consideration, rm is deter-
mined by the radius of the X-point, rm ¼ rmðr0Þ. The
escaping condition is then expressed as inequalities for r0,

Eðr0Þ2 − 1

2
<

�
Vðrmðr0Þ; Eðr0Þ;Lðr0ÞÞ; if rH < rmðr0Þ < r0;

VðrH; Eðr0Þ;Lðr0ÞÞ; otherwise:
ð3:13Þ

Moreover, if the extremal point is situated beyond the
X-point, i.e., rmðr0Þ > r0, the plasmoid cannot be bounced
outward and consequently falls into the horizon. These
conditions are sufficient for the plasmoid with ϵþ to reach
the infinity. As expected, Eq. (3.13) assists in identifying a
critical radius r ¼ rc, which separates the region
fr0jr0 ∈ ðrH; rmsÞg into two distinct sections. One section
is the region where the plasmoid will ultimately be captured
by the black hole, while the other permits the plasmoid’s
escaping. The result of the critical radius is presented
in Fig. 5. We have considered both weak and strong

magnetizations, represented by the blue and red curves,
respectively. When 1 < σ0 < 100, the critical radius lies in
between the two curves. The result indicates that the critical
radius is insensitive to the magnetization σ0 but is sensitive
to the spin of the black hole.

4Note that, unlike the first two sections where r denotes the
reconnection location, in this section we specifically use r0 to
denote the X-point’s location, and r is used to represent the radius
variable of the plasmoid’s motion.
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In Fig. 6, we illustrate the allowed region in the radius-
spin plane for effective energy extraction in the plunging
plasma. The green and purple curves act as the lower and
upper bounds for the production of negative energy
plasmoids, ϵ− < 0. As expected, the upper bound emerges
near the ergosphere when a ≃ 0.862, and asymptotically
approaches it as a increases. Magnetic reconnection
occurring in the region between these two curves results
in a local energy extraction efficiency that exceeds one.
Furthermore, the red dashed curve, which represents the
critical radius for the escaping condition, divides the η > 1
region into two sections, represented in pink and green,
respectively. Magnetic reconnection within the pink area
produces the plasmoids that plunge into the black hole.
On the contrary, magnetic reconnection within the green
area can yield a plasmoid that could escape to the infinity,
validating the energy extraction process. Fortunately,
the escaping restriction still leaves us with a substantial

parameter space in green, where energy extraction appears
promising.

IV. CONCLUSION

In this study, we conducted an in-depth study of energy
extraction from a Kerr black hole via magnetic reconnections
occurring in the plunging region. We initiated our study by
considering a general stationary and axisymmetric spacetime,
assuming that the plasma fluid in the equatorial plane adheres
to the Killing symmetry of the spacetime. The accompanied
magnetic field was set to reverse its direction near the
equatorial plane, a region conducive to potent magnetic
reconnection. Utilizing the ideal-MHD condition, we
obtained the global structure of the magnetic field, which
fixes the ejection directions of the plasmoids. Our following
analysis incorporated a fast reconnectionmodel characterized
by strongmagnetic pressure, wherein electromagnetic energy
is swiftly liberated, resulting in the formation of two high-
velocity plasmoids moving in opposite directions out of the
current sheet. Subsequently, we derived the analytical form of
the energy-at-infinity per enthalpy for the plasmoids.
For a Kerr black hole, a plasmoid with negative energy can

only be generated within the ergosphere, whose radius
exceeds the radius of the ISCO for a moderately spinning
black hole, i.e., a < 0.943M. Therefore, we considered the
plasma fluid within the ISCO as the site for magnetic
reconnection, with the streamlines following the plunging
geodesics from the ISCO to the event horizon. We illustrated
how the energy-at-infinity per enthalpy of the ejected plas-
moids varies with the reconnection location under different
black hole spin and magnetization parameter. The result
revealed a critical spin a ≃ 0.862M for highly magnetized
plasma, beyondwhich energy extraction can occur within the
ISCO.With theX-point moving toward the horizon, the local
energy extraction efficiency initially increases, then rapidly
falls below one. The peak value of local efficiency escalates
with the black hole spin, exhibiting an infinitely increasing
rate as the spin approaches its extreme value.

FIG. 6. The region in green permits effective energy extraction via magnetic reconnection. Only between the green and purple curves
can η be above 1. The red dashed curve stands for the critical radius for the escaping condition, above which the plasmoid with ϵþ can
escape to the infinity. The magnetization is set to be σ0 ¼ 100.
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FIG. 5. The critical radius as a function of black hole spin.
The magnetization is set to be σ0 ¼ 1 (blue curve) and σ0 ¼ 100
(red curve). Energy extraction becomes effective only when the
X-point is situated beyond the critical radius, enabling the
plasmoid to escape to infinity. For comparison, we have plotted
the ISCO and the event horizon.
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Furthermore, we investigated the conditions necessary
for a plasmoid with positive energy to escape to the infinity,
a crucial requirement for the completion of the energy
extraction. By scrutinizing the equation of motion for the
plasmoid, we pinpointed a critical radius of the X-point,
beyond which the plasmoid with positive energy can
successfully escape. By combining the escaping conditions
with the requirement for producing a negative energy
plasmoid, we determined the region where energy extrac-
tion is effective, as shown in the green region in Fig. 6.
Broadly speaking, the lower boundary of the effective
region is dictated by the critical radius for the escaping, and
the upper boundary is determined by the upper limit for
negative energy when the ISCO is situated outside the
ergosphere. If the ISCO is located within the ergosphere, it
itself serves as the upper boundary of the effective region.
Unlike previous studies that considered magnetic recon-

nections occurring in bulk plasma following (probably
unstable) circular orbits [12,17], our research assumed
that the fluid plunges from the ISCO to the horizon. In
contrast to the toroidal plasma, where the magnetic field
cannot be derived from the MHD scheme, the magnetic
field in the plunging plasma was determined by the ideal-
MHD condition. Thus, the ejection directions of the
plasmoids are fixed in our study, rather than being selected
phenomenologically. We also analyzed the near-horizon
behaviors of the magnetic field and energy extraction
efficiency in the high-spin case. To our belief, it would
be demanding to systematically investigate the magnetic
reconnection model in the near-horizon geometry of a near-
extreme Kerr black hole [49], which may differ signifi-
cantly from those in nonextreme Kerr spacetime.
Building upon the current study, several potential

research directions emerge. First, given that the framework
in this work is applicable to general stationary and
axisymmetric spacetimes, it would be feasible to extend
the study in this work to other Kerr-like black holes,
including the rotating black holes in alternative gravity
theories and in an expanding Universe. Second, our study
confines magnetic reconnections to the black hole’s equa-
torial plane. However, numerical simulations suggest that
magnetic reconnection can occur near the relativistic jet as
well [50], characterized by a parabolic profile beyond the
equatorial plane. Therefore, it could be important to
investigate the energy extraction near the jet via magnetic
reconnection.
Considering that a plasmoid might be significantly

accelerated at the X-point and escape to the distance, its
emission profile would be markedly different from that of
the background plasma fluid. Thus, from an astronomical
viewpoint, it is meaningful to investigate the optical appear-
ance of such a plasmoid [51,52]. As the observational
precision of theEventHorizonTelescope and theGRAVITY
collaboration continues to improve [53,54], it is anticipated
that the characteristics of these plasmoids can be detected in

the radio and near-infrared bands in the future [55]. This
would enable us to identify their energies and origins, and
potentially to test energy extraction mechanisms.
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APPENDIX: INFALLING PLASMA

In this Appendix, we give a brief discussion about
the ejection energies of the plasmoids in the bulk plasma
freely infalling from the infinity in the Kerr spacetime.
The four-velocity of the streamline takes

Ur ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rðr2 þ a2Þ

p
r2

; E ¼ 1; L ¼ 0: ðA1Þ

For a large enough σ0, we can drop the last term in
Eq. (2.19), resulting in

ϵ� ¼ γout
�
1� voutðv̂s cos ξB þ αβϕ sin ξBÞ

�
; ðA2Þ

where v̂s ¼ r2ðUrÞ2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þ2 − a2Δ

p
, with Δ ¼

r2 − 2rþ a2. Noting that for the infalling plasma,
αβϕ=v̂s ¼ − tan ξB, we find

ϵ� ¼ γout

	
1� vout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 þ 2rðr2 þ a2Þ
Δr2 þ 2rðr2 þ a2Þ

s
cos ð2ξBÞ



: ðA3Þ

It can be checked that ϵþ ≥ ϵ− > 0; thus, there are no
negative energy plasmoid after magnetic reconnections,
even with a strong magnetization. The behaviors of ϵ� with
different spin are presented in Fig. 7. It is evident that the
black hole energy cannot be extracted via magnetic
reconnection in the infalling plasma.
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FIG. 7. The energy-at-infinity per enthalpy of the ejected
plasmoids as a function of the reconnection location, within
the infalling plasma. Assuming a hot plasma, we fix p̃ ¼ 1=4.
The magnetization is set to be σ0 ¼ 100.
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