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We investigate the impact of dark matter on neutron star properties using the relativistic mean-field
theory. By incorporating the dark matter model, we explore how dark matter parameters, specifically dark
matter mass and Fermi momentum, influence nuclear saturation properties, the equation of state, and the
mass-radius relationship of neutron stars. We also examine the universal relation between dimensionless
tidal deformability and compactness in the presence of dark matter. Our results show that the inclusion of
dark matter significantly alters nuclear saturation properties, leading to higher incompressibility and
symmetry energy values. Notably, higher dark matter Fermi momenta and masses result in more compact
neutron star configurations with reduced radii and lower maximum masses, highlighting a complex
interplay between dark matter and nuclear matter. Deviations from the universal relation are observed with
dark matter inclusion, particularly for neutron stars with lower compactness. By leveraging observational
data from PSR J0740þ 6620, GW170817, and Neutron star Interior Composition Explorer measurements
of PSR J0030þ 0451, we derive stringent constraints on dark matter parameter space within neutron stars,
emphasizing the necessity of integrating multimodal observations to delineate the properties of dark matter
along with neutron stars. Our findings underscore the importance of considering dark matter effects in
neutron star modeling and suggest potential refinements for current theoretical frameworks to accurately
predict neutron star properties under various astrophysical conditions.
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I. INTRODUCTION

Neutron stars (NSs), the remnants of massive stellar cores,
present a unique opportunity to explore the fundamental
properties of matter under extreme conditions. These com-
pact objects, characterized by densities exceeding those of
atomic nuclei, exhibit a variety of intriguing phenomena
including rapid rotation, intense magnetic fields, and emis-
sion across the electromagnetic spectrum. Theoretical
models suggest that the immense pressures within NSs
counterbalance gravitational forces that would otherwise
lead to collapse, thereby preventing the formation of black
holes. Observationally, NSs have been extensively studied
through their x-ray, gamma-ray, and radio emissions, with
pulsars—rapidly rotating NSs emitting beams of electro-
magnetic radiation—providing critical insights into their
internal structure and gravitational fields. The precise timing
of pulsar signals has provided valuable data for testing
theories of gravity and understanding the dynamics of
NSs. Additionally, the advent of gravitational wave (GW)
astronomy has opened new frontiers in the study of NSs.
Events such as GW170817 [1] have demonstrated the
potential of gravitational waves to reveal insights into NS

mergers and inspirals. Observations of x-ray oscillations
frommillisecond pulsars and the shape of their pulse profiles
provide additional data for imposing constraints on NS
models [2]. Continuous gravitational wave searches, target-
ing phenomena like elastic deformations and unstable
oscillation modes, offer promising avenues for further
exploration of NS properties. These multimessenger obser-
vations are crucial for validating theoretical models and
enhancing our understanding of the most enigmatic and
extreme states of matter.
Dark matter (DM), which constitutes approximately

27% of the Universe’s mass-energy content, yet remains
one of the most significant mysteries in modern astrophys-
ics and cosmology. The existence of DM, initially called
“missing mass,” was first suggested by Zwicky in 1933
[3,4] and later supported by Rubin and Ford’s optical
studies of galaxies in the 1970s [5,6]. Various models have
been proposed to explain DM, including weakly interacting
massive particles and asymmetric DM. While traditional
models have often assumed DM to be neutral, recent
studies have explored the possibility of charged massive
particles and their implications for astrophysical observa-
tions. These models suggest that DM could form either a
dense core inside NSs or an extended halo surrounding
them, each having distinct effects on the NS’s properties.*Contact author: ankit.kumar@riken.jp
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In asymmetric DM models, where DM particles and their
antiparticles have different properties, such as different
masses or abundances, this asymmetry leads to a net excess
of DM particles over antiparticles [7]; over time, DM
particles could accumulate in the cores of NSs, potentially
leading to their collapse into black holes. This accumu-
lation is influenced by the DM’s mass and self-interaction
strength, which determine whether it forms a dark core or a
halo [8]. For instance, light DM particles tend to form
halos, while heavier ones prefer cores [9]. Despite exten-
sive efforts, its nature and properties are still largely
unknown due to its weak interactions with ordinary matter.
The detection of gravitational waves by the LIGO and
Virgo Collaborations, particularly from NS mergers like
GW170817, has opened new avenues for probing the
nature of DM. This observation provides constraints on
DM properties by analyzing the power spectral density of
GW emissions, especially if DM cores are present within
NSs [10]. The possibility of the 2.6M⊙ compact object in
the binary merger GW190814 [11] being a DM admixed
NS has also been investigated, highlighting the potential of
gravitational wave astronomy in studying DM [12]. The
presence of DM can significantly alter the mass-radius
relationship, surface temperature, and tidal deformability of
NSs, as well as their gravitational wave signatures [13]. As
our observational capabilities improve, particularly with
multimessenger astronomy, the study of DM admixed NSs
promises to yield valuable insights into the fundamental
properties of DM and its role in the cosmos. The combi-
nation of gravitational wave data, x-ray observations, and
theoretical models will continue to enhance our under-
standing of these enigmatic particles and their interactions
with one of the Universe’s most extreme environments.
The concept of DM admixed NSs has been explored

in various studies, with neutralinos often considered as
fermionic DM candidates. Neutralinos, predicted by super-
symmetric extensions of the Standard Model, are stable,
weakly interacting massive particles that could significantly
influence the properties of NSs. Including neutralinos in NS
models allows researchers to theoretically study the impact
of DM on the equation of state (EOS) and other observable
characteristics of NSs. For instance, Bertone and Fairbairn
[14] and Kouvaris [15] explored how neutralinos could
accumulate in NSs, affecting their thermal evolution and
potentially leading to observable signatures in the form
of surface temperature variations [14,15]. Additionally,
Kouvaris and Tinyakov [17] and Pérez-García and Silk [17]
investigated the kinematics and rotation properties of NSs
influenced by neutralino DM [16,17]. The presence of
neutralinos within NSs can alter the mass-radius relation-
ship, as well as the tidal deformability, which is crucial for
interpreting gravitational wave signals from NS mergers.
Recent studies by Ellis et al. [18] and Nelson et al. [19] have
shown that the inclusion of a DM component, such as
neutralinos, can significantly modify the tidal deformability

parameter, thereby providing constraints on theDMproperties
from gravitational wave observations [18,19]. Furthermore,
the interaction between neutralinos and nucleons,mediated by
Higgs bosons, has been studied to understand its impact on the
EOS of NSs. This interaction can lead to the formation of
either a DM core or halo, depending on the properties of the
neutralinos, such as their mass and self-interaction strength
[20]. In addition to these studies, recent research has inves-
tigated the structure of NSs admixed with fermionic self-
interacting DM. These studies analyze different scenarios
based on the properties of dark fermions, interaction medi-
ators, and self-interacting strengths, providing constraints on
DMmodel parameters using multimessenger astronomy [21].
The model adopted in the present work to put constraints

on the mass-momentum space of DM admixed NS with
neutralinos as fermionic DM candidates has its roots in
this article [22] by Panotopoulos and Lopes. They applied
relativistic mean-field (RMF) theory to NSs, assuming that
fermionicDMparticles are trapped inside the star. They com-
puted the EOS for both baryonic matter and DM, showing
how the presence ofDMcould alter themass-radius relation-
ship and themaximummass ofNSs. Later, this approachwas
explored further in various studies, that confronted the EOS
with gravitational wave constraints from the GW170817
event. Using the RMF model with NL3 parametrization,
Das et al. demonstrated that the inclusion of DM softens the
EOS, lowering the tidal deformability and bringing the
model into an agreement with observational data [23].
Building on these foundational studies, various studies
further investigate the effects of fermionic DM on inspiral
properties of NS, including the mass-radius relationship, a
moment of inertia, tidal Lovenumbers, curvature, and thermal
relaxation [24–27]. In all these works, the model has been
adopted to study NSs with a fixed particle mass of DM
candidate, and no tight constraints have been put forward on
the parameter space of DM. In addition, the crust region of a
NS has not been taken into account properly in most of the
previous studies. Thus, in this study, by considering the crust
region togetherwith theNS core and assuming thatDMexists
only inside the NS core, we systematically explore DM
admixed NS models to constrain the parameter space of
DM particle’s mass and Fermi momentum surface in light of
the astronomical constraints, i.e., current gravitational wave
constraints, particularly GW170817, the mass observation of
themassive NS, and the constraint on the NSmass and radius
via the Neutron star Interior Composition Explorer (NICER).
Additionally, we tested the universal relations, i.e., the
relation between the dimensionless tidal deformability and
stellar compactness, for different DM admixture cases to
assess the applicability of the currentDMadmixedNSmodel.
Our findings aim to provide a comprehensive understanding
of the interplay between DM properties and NS observables,
offering new insights into the constraints on RMF parameter
sets imposed by GW events.
The structure of this paper is designed to methodically

analyze the effects of DM within NS models, guided by the
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RMF theory. Section II introduces the fundamental formal-
ism of RMF alongside DM interactions, setting the ground-
work for the study of DM admixed NSs. In Sec. III A, we
investigate how DM influences the saturation parameters
of nuclear matter, highlighting changes in properties like
binding energy and incompressibility. Section III B delves
into the impact of DM on key NS observables, such as
mass-radius profiles and tidal deformability, and establishes
constraints on DM parameter space based on recent astro-
nomical data. In Sec. III C, we evaluate the universality of
the Λ −M=R relationship in the presence of DM, where Λ
denotes theNSdimensionless tidal deformability andM=R is
the compactness of the NS, testing the robustness of this
relation under varied DM influences. The paper concludes
with Sec. IV, where we summarize our findings and discuss
the implications of DM within NSs, contributing to the
broader understanding of these compact objects in
astrophysics.

II. DM ADMIXED NS MODEL

The RMF theory is a widely used theoretical framework
for modeling the interactions between nucleons in NSs.

The RMF model effectively captures the essential features
of nuclear interactions by incorporating the meson fields,
which generate mean-field potentials felt by the nucleons,
providing a robust framework for studying dense nuclear
matter [28–30]. In the RMF approach, nucleons interact
through the exchange of mesons, which mediate the strong
nuclear force and generate mean-field potentials that
nucleons experience, allowing for a self-consistent calcu-
lation of the EOS of nuclear matter. Over time, the RMF
Lagrangian has evolved to incorporate more sophisticated
interactions to better capture the complexities of nuclear
matter. Modern RMF parameter sets now include self-
coupling and cross-coupling terms of the mesons, extend-
ing up to fourth order [31–34]. These additional terms
allow for a more accurate representation of the nonlinear
interactions within the nuclear medium, enhancing the
predictive power of the RMF model. The RMF
Lagrangian density typically includes contributions from
isoscalar scalar mesons (σ), isoscalar vector mesons (ω),
isovector vector mesons (ρ), and isovector scalar mesons
(δ). The general form of the currently used Lagrangian can
be expressed as [35,36]

LNM¼
X
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where ψ i represents the nucleon field, σ, ω, ρμ
!
, and δ⃗ are

the meson fields, and the terms Fμν and Rμν denote the field
tensors for the ω and ρ mesons, respectively.Mn represents
the mass of the nucleon, i.e., 939 MeV; τi stands for the
isospin operator; gk (k ¼ σ, ω, ρ, and δ) represents the
coupling strengths for respective mesons; and the other
quantities (i.e., κ3, κ4, ζ0, η1, η2, ηρ, and Λω) represent self-
and cross-coupling strengths among mesons. The last term
in the Lagrangian represents the lepton contribution (i.e.,
electrons and muons), and their inclusion is essential for
ensuring that the NS remains charge neutral and in a state of
beta equilibrium, where the rates of beta decay and electron
capture are balanced [37]. Utilizing the Euler-Lagrange
equations of motion, we obtain a set of coupled differential
equations for the meson fields from the above Lagrangian.
These equations are then solved self-consistently until they
converge to a stable configuration. Once the meson field
values are determined, they are substituted into the ex-
pressions for the energy density and pressure which can be
easily obtained by calculating the components of energy-
momentum tensor [36]. This process yields the EOS for

NSs, where the corresponding RMF parameter sets with
their specific coupling constants are used to accurately
model the interactions within the dense matter.
The coupling constants in the RMF Lagrangian, which

determine the strength of the interactions between nucleons
and mesons, are represented by different RMF parameter
sets. These parameter sets are calibrated to reproduce
mainly the properties of finite nuclei and symmetric nuclear
matter. In the present work, we used six RMF parameter
sets to span the nature of the EOS from the stiffest to the
softest region, namely, NL3 (oldest and stiffest), BigApple
(recently developed, with a balanced description of finite
nuclei and massive NS), IOPB-I (moderately stiff with
fewer couplings), G3 (includes higher-order couplings and
δ meson), IU-FSU, and FSUGold (relatively soft EOS).
The coupling constants and masses of mesons for the RMF
parameter sets adopted in this study can be found in the
corresponding references, i.e., NL3 [32], BigApple [38],
IOPB-I [39], G3 [40], IU-FSU [41], and FSUGold [42].
For the crust part of the NS, we use the SLy4 data

to create a comprehensive EOS that spans from the core to
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the crust. The SLy4 EOS is well suited for describing the
properties of the NS crust, providing a smooth transition to
the core EOS generated by the considered RMF parameter
sets [43,44]. Now, the mass-radius (M-R) profile for a given
EOS of NS matter is calculated by integrating the Tolman-
Oppenheimer-Volkoff (TOV) equations [45,46], which
are the relativistic equations of hydrostatic equilibrium,
from the center of the star to its surface with appropriate
boundary conditions. These equations take into account the
balance between the gravitational force and the pressure
gradient within a NS and are given by

dPðrÞ
dr

¼ −
ðεðrÞ þ PðrÞÞðmðrÞ þ 4πr3PðrÞÞ

rðr − 2mðrÞÞ ; ð2Þ

dmðrÞ
dr

¼ 4πr2εðrÞ; ð3Þ

where PðrÞ is the pressure, εðrÞ is the energy density, mðrÞ
is the enclosed gravitational mass, and r is the radial
position. The M-R profiles for the EOS derived from the
six RMF parameter sets (NL3, BigApple, IOPB-I, G3,
IU-FSU, and FSUGold) without any DM admixture are
depicted in Fig. 1. In the same figure, for reference,
we also show the observational data: the mass of PSR
J0740þ 6620, which is one of the massive NSs observed
so far, i.e., M ¼ 2.08þ0.07

−0.07M⊙ (68.3% credibility) [47,48],1

and the constraints on the NS mass and radius from the
NICER analysis for PSR J0030þ 0451 [50–52]. NICER
has also reported the radius of PSR J0740þ 6620,
i.e., R ¼ 12.39þ2.63

−1.68 km (95% credibility) [53] and R ¼
11.8–13.4 km (90% credibility) [54]. In Fig. 1, we show
the minimum radius of PSR J0740þ 6620, adopting the
result in [53], i.e., R ≥ 10.71 km. In addition to these
astronomical constraints on the NS mass and radius, the
gravitational wave observations at the binary NS merger
also endue us the NS dimensionless tidal deformability,
which leads to the constraint on the 1.4M⊙ NS radius;
i.e., it should be less than 13.6 km [55]. Considering this
constraint, as mentioned earlier, NL3, being the RMF
parameter set with the stiffest EOS,2 predicts a higher
maximum mass for NS but results in too large a radius
around a canonical NS (1.4M⊙). BigApple, while also
predicting high maximum masses, shows a better agree-
ment with observational data for low-mass NSs, as its
M − R profile curve has lower radii for low-mass stars
compared to NL3. The IOPB-I parameter set offers a
balanced EOS that provides a maximum mass prediction

that fits well within the observed mass range for PSR
J0740þ 6620 and the M − R space constraints from
NICER data. On the other end of the spectrum,
FSUGold, being the softest EOS considered, predicts the
lowest maximum mass for NSs after solving the TOV
equations. All these calculations for Fig. 1 are performed
without any DM admixture, providing a baseline for the
EOS of NSs purely based on nuclear interactions as
described by the RMF theory. In the further part of this
section, we will introduce the Lagrangian for DM inter-
actions, and, in the subsequent sections, we will explore
how the inclusion of DM affects the observables of NS and
derive constraints for mass-momentum space of DM from
experimental data and astronomical observations.
Now, the Lagrangian to explore the DM interaction

effects, considering fermionic DM candidate, with mass
Mχ , can be formulated as [22]

LDM ¼ χ½iγμ∂μ −Mχ þ yh�χ þ 1

2
∂μh∂μh −

1

2
M2

hh
2

þ fMn

v
ψ̄hψ ; ð4Þ

where χ expresses the field for the DM candidate; h
represents the Higgs field; Mχ is the mass of DM particle;
Mh is the mass of Higgs (¼ 125 GeV); y is the coupling for
Higgs and DM (fixed at 0.06 in present calculations); and
fMn=v represents the nucleon-Higgs coupling strength
(≈1.145 × 10−3), where v is the Higgs vacuum expectation
value given by v ¼ 246 GeV, adopting f ¼ 0.3 [22]. Using
the same mathematical technique of energy-momentum
tensor as mentioned earlier and mean-field approximation

FIG. 1. NS mass and radius relations constructed with several
EOSs adopted in this study without any effects of DM. The mark
on each line denotes the stellar model with the maximum mass.
For reference, two astronomical constraints are also shown, i.e.,
the mass of the massive NS, i.e., M ¼ 2.08þ0.07

−0.07M⊙ (68.3%
credibility), and mass and radius region constrained from NICER
observation for PSR J0030þ 0451.

1We note that the theoretical maximum mass is given by
Mmax=M⊙ ≈ 2.856þ 1.511 × 10−3ðK0L2Þ1=3=ð1 MeVÞ with the
nuclear saturation parameters, K0 and L [see Eq. (8) for their
definitions] [49].

2In this study, we simply refer the EOS to as stiffer (softer),
when the maximum mass of a NS is larger (smaller).
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for Higgs field as well, the expressions of energy density
and pressure for the DM part can be derived as

EDM ¼ 2

ð2πÞ3
Z

kDMf

0

d3k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðMχ − yhÞ2

q
þ 1

2
M2

hh
2;

PDM ¼ 2

3ð2πÞ3
Z

kDMf

0

kd3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðMχ − yhÞ2

q −
1

2
M2

hh
2; ð5Þ

where the value of DM Fermi momenta, kDMf , must be
selected to ascertain the contribution of DM. We note that
the DM contribution completely disappears by definition
if one sets kDMf ¼ 0. In practice, we examine the nuclear
properties and NS models by changing Mχ and kDMf in this
study. This is because the dependence on the other
parameters, such as y and fMn=v in Eq. (4), is almost
negligible in the DM model we adopted here. For instance,
for a specific DM admixed NS configuration, using the
IOPB-I parameter set with Mχ ¼ 100 GeV and kDMf ¼
0.04 GeV, we confirm a minimal variation of 0.14% in
maximum mass and a 3.42% change in the corresponding
radius with y ¼ 0.004 and 0.06, while the permissible
range for parameter y is 0.001–0.1 [22]. On the other hand,
the Higgs-nucleon coupling parameter f is expected in a
small range of 0.341� 0.021 or 0.348� 0.015 [56]. Then,
the total energy density (E) for a DM admixed star can be
defined as E ¼ ENM þ EDM, and, similarly, the pressure
from both the parts can be added to get the overall pressure
of the system. It is worth mentioning that when we talk
about a DM admixed nuclear matter in the next section,
then the ENM contains the contribution only from neutrons
and protons and not from the leptons; i.e., the last term of
the Lagrangian in Eq. (1) is not present in the definition
of nuclear matter—it has been solely added to construct
NS matter.
In this adopted model, DM particles interact indirectly

with nucleons via the Standard Model Higgs boson, which
acts as a mediator for the self-interaction between DM
particles and antiparticles, as well as for the interaction
between nucleons inside the NS. The presence of DM
particles inside the NS and the interaction between DM and
nucleons, mediated by Higgs, influences the EOS of NSs. It
affects the stability and observable characteristics of NSs,
such as their mass-radius relationship and tidal deform-
ability [24–26]. Now, in the subsequent sections of this
work, we systematically examine the dependence onMχ in
a range of 1 ≤ Mχ ≤ 400 GeV, along with a spectrum of
Fermi momenta for the DM particles. Specifically, we
explore the impact of a certain (Mχ , kDMf ) range on the
saturation parameters of nuclear matter, utilizing exper-
imental observables. For NSs, we explore DM Fermi
momenta range from 0.01 to 0.15 GeV to derive constraints
for the (Mχ , kDMf ) plane based on astronomical observa-
tional data. These analyses are conducted using all six

considered RMF parameter sets, although some of the
parameter sets have already been excluded in light of the
astronomical observations and terrestrial experiments,
allowing us to thoroughly examine the parameter space
and identify viable regions for DM within the context of
NS observations.

III. RESULTS AND DISCUSSION

A. Parameter dependence of experimental observable

In this section, we delve into how the inclusion of the
DM model, as described earlier, influences the overall
nuclear characteristics, basically, nuclear saturation proper-
ties, within the framework of the RMF theory. To begin
with, we analyze the binding energy curve of symmetric
nuclear matter as a function of the DM Fermi momentum
for a fixed DM mass, i.e., Mχ ¼ 200 GeV, across all the
considered RMF parameter sets, with Fig. 2 illustrating this
dependency. We observe that, for a fixed DM mass, the
nuclear saturation density (n0) increases with increasing
kDMf , shifting from the typical range of (∼0.15–0.16 fm−3)
to higher values. Table I presents the saturation density of
symmetric nuclear matter across different RMF parameter
sets, illustrating the influence of DM characterized by
various masses (0, 1, 10, and 100 GeV) and Fermi
momenta (0, 0.01, 0.02, and 0.04 GeV). As seen, saturation
density generally increases with both higher DM mass and
Fermi momentum, indicative of the densification of nuclear
matter in the presence of DM. This indicates that the
presence of DM modifies the equilibrium properties of
nuclear matter. Our observations reveal a critical phenome-
non: For a fixed value ofMχ , the binding energy of the DM
admixed symmetric nuclear matter transitions from neg-
ative to positive values as the DM momentum increases.

FIG. 2. For various EOSs, the binding energy of symmetric
nuclear matter is shown as a function of kDMf withMχ ¼200GeV.
The inset is an enlarged view around the position where the
binding energy becomes zero.
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This transition indicates that the nuclear matter becomes
unbound beyond a certain threshold of DM Fermi momen-
tum. The specific value of the DM Fermi momentum at
which the binding energy reaches zero, termed the critical
Fermi momentum for binding energy and represented by
kDMf;BE, is crucial in understanding the stability of the nuclear
matter in the presence of DM. Furthermore, our analysis
shows that this critical Fermi momentum (kDMf;BE) decreases
as the DM particle mass increases. This inverse relationship
highlights the significant impact of DM particle mass on
the binding energy of nuclear matter. To provide a more
quantitative understanding, the second plot (Fig. 3) in this
section presents the critical values of the DM Fermi
momentum as a function of the Mχ for all RMF parameter
sets. Remarkably, we find that the critical Fermi momen-
tum (kDMf;BE) is independent of the RMF parameter sets and
follows a specific empirical relation given by

kDMf;BE ¼ 0.08791 − 0.06505xþ 0.02048x2 − 0.002597x3;

ð6Þ

where kDMf;BE is in the unit of GeV and x is defined
as x≡ log10½Mχ=ð1 GeVÞ�. The bottom panel in Fig. 3
shows the relative deviation, Δ, of the actual values, ydata,
from the value estimated with the empirical relation, yfit,
quantified by

Δ ¼ ðydata − yfitÞ=ydata: ð7Þ

The maximum deviation from the empirical relation is
found to be ∼2.5% and that is also for a few cases, which is
quite convincing and indicates that the empirical relation
is a robust predictor of the critical Fermi momentum across
different DM masses and RMF parameter sets.
In addition, we also explore how other nuclear saturation

parameters are affected by the inclusion of the DM model
within the RMF framework. For the EOS derived from any
phenomenological model, the bulk energy per baryon,
E=nB, for zero-temperature nuclear matter can be expressed
as an expansion around the saturation density of symmetric

nuclear matter. This expansion is formulated in terms of
the baryon number density nB and the neutron-proton
asymmetry α, defined as α ¼ ðnn − npÞ=nB, with nn and
np representing the neutron and proton number densities,
respectively. The expression is given by [57]

E
nB

¼ w0 þ
1

2
K0u2 þ ðJ0 þ Lsym;0uþOðu2ÞÞα2

þOðu3; α4Þ; ð8Þ

where u is defined as u≡ ðnB − n0Þ=ð3n0Þ, K0 is incom-
pressibility, J0 is the symmetry energy, and Lsym;0 is known
as the slope parameter at saturation density.
The incompressibility is crucial, as it indicates how

resistant the nuclear matter is to compression at saturation

TABLE I. The saturation density n0 of symmetric nuclear matter, depending on the DM parameters, for various RMF parameter sets.
For reference, the values without DM, i.e., Mχ ¼ 0 and kDMf ¼ 0, are also shown.

DM mass (GeV) 0 Mχ ¼ 1 Mχ ¼ 10 Mχ ¼ 100

kDMf (GeV) 0 0.01 0.02 0.04 0.01 0.02 0.04 0.01 0.02 0.04

NL3 0.148 0.148 0.149 0.156 0.150 0.158 0.196 0.160 0.203 0.295
BigApple 0.154 0.155 0.156 0.164 0.156 0.166 0.211 0.169 0.219 0.319
IOPB-I 0.149 0.150 0.151 0.160 0.151 0.162 0.207 0.164 0.215 0.339
G3 0.148 0.148 0.149 0.157 0.149 0.159 0.207 0.162 0.217 0.374
IU-FSU 0.154 0.154 0.156 0.164 0.156 0.166 0.214 0.169 0.223 0.369
FSUGold 0.148 0.148 0.149 0.158 0.149 0.160 0.211 0.163 0.221 0.396

FIG. 3. In the top panel, the critical Fermi momentum of DM,
kDMf;BE, is shown as a function of DM candidate mass for
symmetric nuclear matter. kDMf should be satisfied by the
condition of kDMf ≤ kDMf;BE so that the binding energy of symmetric
nuclear matter at the saturation point becomes negative. The solid
line denotes the fitting given by Eq. (6). In the bottom panel, the
relative deviation of the value of kDMf;BE from the fitting for various
EOS models is shown.
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density; a higher K0 implies a stiffer EOS. Figure 4
illustrates K0 as a function of kDMf for different DMmasses:
1, 10, and 100 GeV from left to right; alongside empirical
values with the shaded region adopted from Ref. [58], i.e.,
K0 ¼ 230� 40 MeV, even though a more severe con-
straint on K0 has also been reported [59]. Our observations
reveal that, for a fixed DM mass, the incompressibility
coefficient K0 increases with increasing kDMf across all
RMF parameter sets. This trend suggests that the EOS
becomes stiffer as the DM Fermi momentum rises.
Additionally, for a fixed kDMf , an increase in K0 is observed
with increasing Mχ , which indicates that the presence of
more massive DM particles also contributes to a stiffer
EOS. However, this apparent increase in stiffness with
higher DM mass or Fermi momentum presents a paradox
when considering NS properties. Typically, a stiffer EOS
would lead to a higher maximummass for NSs. Contrary to
this expectation, our results, as we will discuss in the next
section, show that the maximummass of NS decreases with
increasing DM mass or Fermi momentum. This discrep-
ancy suggests that the interpretation ofK0 as an indicator of
stiffness may be more complex in the context of DM
admixed nuclear matter. One possible explanation for this
apparent contradiction lies in the change in saturation
density with the inclusion of DM. As shown in Table I,
the saturation density increases with increasing DM Fermi
momentum for a fixed value of Mχ . Consequently, the
value of K0 obtained at this elevated saturation density is
higher compared to the case without DM inclusion. This
increase in K0 at a higher saturation density does not
necessarily indicate a stiffer EOS in the traditional sense
but rather reflects the altered equilibrium properties of the
nuclear matter in the presence of DM.
The subsequent series of plots (Figs. 5 and 6) examine

two critical parameters at saturation density of symmetric

nuclear matter: the symmetry energy (J0) and the slope
parameter (Lsym;0). Both parameters are analyzed across
different DM masses (1, 10, and 100 GeV) for all adopted
RMF parameter sets. The shaded regions in these plots
represent the experimentally obtained values, specifically,
J0 ¼ 31.6� 2.7 MeV for the symmetry energy and
Lsym;0 ¼ 60� 20 MeV for the slope parameter [60].3

Starting with the symmetry energy (J0), one notable
observation is that the NL3 parameter set predicts a J0
value outside the experimentally determined range even in
the absence of any DM component (i.e., with kDMf ¼ 0).
This deviation highlights a potential limitation or pecu-
liarity of the NL3 parameter set in accurately modeling the
symmetry energy of nuclear matter. Another significant
observation from our calculations is the trend of rising J0
values with kDMf and DM mass. For instance, for
Mχ ¼ 10 GeV, the J0 value at a DM Fermi momentum
of 0.15 GeV falls within the experimentally determined
range. However, for the same DM Fermi momentum but
with a DM particle mass of 100 GeV, the J0 value is
considerably higher and deviates from the experimental
range. This trend is consistent across all RMF parameter
sets, indicating that higher DM masses tend to push the
symmetry energy beyond the experimentally established
bounds. Turning to the Lsym;0, we observe similar trends.
The NL3 parameter set again exhibits values outside the
experimentally determined range even without any DM
component. As with J0, the Lsym;0 values increase with
rising DM Fermi momentum for a fixed DM mass.

FIG. 4. kDMf dependence of K0 for various RMF parameter sets. The panels from left to right correspond to the results forMχ ¼ 1, 10,
and 100 GeV. The shaded region denotes the constraint on K0 obtained experimentally, i.e., K0 ¼ 230� 40 MeV [58]. It is observed
that the range of critical kDMf varies with Mχ .

3There is still a large uncertainty in the experimental con-
straints on Lsym;0, although we refer to its fiducial value here. For
example, it has been reported 42 ≤ Lsym;0 ≤ 117 MeV [61] or
Lsym;0 ¼ 106� 37 MeV [62].
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These observations suggest that the presence of DM can
significantly alter both the symmetry energy and the slope
parameter at saturation density. The increase in J0 and
Lsym;0 with DM Fermi momentum and mass imply that the
nuclear matter becomes more asymmetric in the subnuclear
density and the density dependence of the symmetry energy
becomes steeper. This could have profound implications for
the structure and properties of NSs and other astrophysical
objects. The deviation of these parameters from the
experimental range, particularly at higher DM masses,
underscores the importance of considering DM effects in
nuclear matter studies. Currently, nuclear experiments do
not account for the potential influence of DM on nuclear
properties. The findings from our study suggest that
future experimental and theoretical investigations should

incorporate DM effects to provide a more comprehensive
understanding of nuclear matter under the presence of DM.
While the consideration of DM in nuclear experiments may
seem hypothetical at this stage, the significant deviations
observed in our study indicate that DM could play a crucial
role in shaping the properties of nuclear matter.

B. Constraints from astronomical observations

This section elucidates the constraints on DM mass and
momentum space derived from astronomical data on the
NS mass and radius. Utilizing a series of detailed plots,
we explore the methodological steps to establish these
constraints, incorporating RMF parameter sets in line with
recent astrophysical measurements. Guided by critical
observational benchmarks—such as the maximum mass

FIG. 5. kDMf dependence of J0 for various RMF parameter sets. The panels from left to right correspond to the results withMχ ¼ 1, 10,
and 100 GeV. The shaded region denotes the constraint on J0 obtained experimentally, i.e., J0 ¼ 31.6� 2.7 MeV [60]. We note that the
RMF model with NL3 parameter set is excluded even without the DM contribution, i.e., kDMf ¼ 0.

FIG. 6. kDMf dependence of Lsym;0 for various RMF parameter sets. The panels from left to right correspond to the results withMχ ¼ 1,
10, and 100 GeV. The shaded region denotes the constraint on Lsym;0 obtained experimentally, i.e., Lsym;0 ¼ 60� 20 MeV [60]. We note
that the RMF model with NL3 parameter set is excluded even without the DM, i.e., kDMf ¼ 0.
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range for PSR J0740þ 6620, the NICER-determined
mass-radius range with 95% credibility for PSR J0030þ
0451, and tidal deformability metrics for a canonical NS
(1.4M⊙)—our analysis provides a quantitative framework
to assess the DM space within NSs. This approach not only
ensures rigorous derivation of DM constraints, but also
integrates these findings effectively with existing observa-
tional data, enhancing our understanding of how DM
properties influence NS observations.
Exploring the impact of DM on the mass-radius (M − R)

relationships of NSs, detailed calculations reveal how
changes in DM parameters can significantly alter NS
properties. One initial analysis focuses on the effects of
varying DM Fermi momenta (kDMf ) with a fixed DM mass
of 100 GeV, alongside a reference curve for the IOPB-I
parameter set without DM (the left panel in Fig. 7). It shows
that increasing kDMf , from 0.020 to 0.080 GeV, leads to a
noticeable contraction in the radius for each mass of NS,
suggesting denser configurations. This trend is accompa-
nied by a slight reduction in the maximum mass of NSs,
indicating a softening of the EOS due to the presence of
DM. Another set shown in the right panel in Fig. 7
examines the role of DM mass on NS properties, holding
kDMf constant at 0.050 GeV and varying the DM particle
mass from 1 to 200 GeV. These results show that increasing
the DM mass leads to more substantial reductions in the
radius of NSs at similar mass points, especially noticeable
for higher DM masses such as 100 and 200 GeV. This
pronounced effect suggests that heavier DM particles
contribute to a significantly denser NS core.
In NS models that include DM, the mass of DM particles

plays a crucial role in defining the gravitational binding and
stability of the star. Heavier DM particles, such as those in
the range of 100–200 GeV, introduce significant additional

gravitational mass within the core of NSs. This additional
mass contributes to the overall gravitational pull exerted by
the star, which can lead to more compact and denser star
configurations as observed in the M − R profiles. This
increase in central mass also affects the NS’s EOS.
Typically, a stiffer EOS, which supports higher maximum
mass against gravitational collapse,might be counteracted by
the inclusion of heavy DM particles, softening the EOS due
to the additional gravitational effects and altered nuclear
interactions influenced by the dense DM core. Despite the
increased density and gravitational binding provided by
heavier DM, this might paradoxically result in a lower
maximummass for the NS as the increased DMmass begins
to dominate thedynamics, potentially hastening gravitational

FIG. 7. The mass and radius of DM admixed NS models for various DM parameters, adopting the IOPB-I parameter set. The left panel
is the kDMf dependence withMχ ¼ 100 GeV, while the right panel is theMχ dependence with kDMf ¼ 0.05 GeV. As in Fig. 1, the mass of
PSR J0740þ 6620 and the constraints on the NS mass and radius for PSR J0030þ 0451 obtained from the NICER observations are
shown. The plus denotes the NS model withM ¼ 1.108M⊙ and R ¼ 10.13 km, which corresponds to the leftmost boundary in the 95%
credibility for PSR J0030þ 0451.

FIG. 8. Dependence of the maximum mass of NSs on the DM
parameter, kDMf and Mχ , using the IOPB-I parameter set. For
reference, the mass of PSR J0740þ 6620 is also shown.
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collapse under certain conditions. Understanding these
dynamics is crucial, especially in light of observational data
from GW events and NS measurements, which can provide
empirical constraints on the theories regarding the interaction
of DM with ordinary matter in extreme astrophysical
environments.
The next plot (Fig. 8) reveals the relationship between the

maximum mass of NSs and varying levels of DM Fermi
momentum, for several fixed DM particle masses. The data
show a range of DMmasses from 1 to 200 GeV considering
the IOPB-I RMF parameter set. A consistent trend observed
across all curves is that the maximummass of NS decreases
as kDMf increases. This behavior is reflective of the softening
of the EOS when higher DM content is factored into the NS
model. Furthermore, the maximum NS mass for each DM
mass scenario is compared against the mass limits of PSR
J0740þ 6620, which has a well-established observational
mass constraint. For eachDMmass profile, a critical value of

FIG. 9. Allowed parameter space in the ðMχ ; kDMf Þ plane
obtained from mass limits of PSR J0740þ 6620 data shown
in Fig. 8, using the IOPB-I parameter set.

FIG. 10. The left-top and right-top panels are, respectively, the dependence of the dimensionless tidal deformability for the 1.4M⊙ NS
model and the NS radius for 1.108M⊙ with various DM parameters, adopting the IOPB-I parameter set. The shaded region in the left-top
panel denotes the constraint onΛ1.4M⊙

obtained from the GW170817, i.e.,Λ1.4M⊙
¼ 190þ390

−120 [63], while the horizontal dashed line in the
right-top panel denotes the minimum radius for 1.108M⊙ NS constrained from the NICER for PSR J0030þ 0451 (also see Fig. 7).
Considering these constraints, the value of Λ1.4M⊙

should be at least less than 580, which corresponds to the upper boundary of the
shaded region in the left-top panel, and R1.108M⊙

should be larger than 10.13 km, which give us the allowed region in the (Mχ , kDMf )
parameter space as shown in the left-bottom and right-bottom panels.
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kDMf is extracted at which the maximum mass of the NS
drops below the observational lower mass limit of PSR
J0740þ 6620. These critical Fermi momentum values
represent thresholds beyond which the DM parameters
would lead to NS configurations that are not supported
by current observational data. In the subsequent plot, these
critical kDMf values are plotted as a function of Mχ . This
figure (Fig. 9) effectively divides the DM parameter space
into “forbidden” and “allowed” regions. The forbidden
region encompasses DM parameter combinations where
the Fermi momentum exceeds the critical value for a given
DMmass, thus yieldingNSmaximummasses that fall below
the empirical mass of PSR J0740þ 6620. Conversely, the
allowed region contains the combinations of DM mass
and Fermi momentum that comply with the observed NS
mass limits. This analysis imposes tight constraints on the
permissible DM properties within NSs specifically regard-
ing their maximum mass by integrating observational data
from PSR J0740þ 6620 with the adopted RMF theoreti-
cal model.
Our further study investigates the impact of DM on the

tidal deformability of canonical NSs (Λ1.4M⊙
). The left-top

panel in Fig. 10 showcases the dependence ofΛ1.4M⊙
onDM

Fermi momentum for various DMmasses ranging from 1 to
200 GeV with the IOPB-I parameter set. As kDMf increases,
Λ1.4M⊙

consistently decreases, for each case of fixedMχ . This
trend is highlighted against the observational constraints
from GW170817, which provide a shaded region represent-
ing the empirically determined limits for Λ1.4M⊙

, i.e., ¼
190þ390

−120 [63]. From these data, we extract critical kDMf values
at which the tidal deformability reaches the upper limit of the
observed constraint, marking these as thresholds beyond
which the presence of DM renders the NS insufficiently
deformable according to current observational data. Plotting
these critical kDMf values against Mχ (left-bottom panel in
Fig. 10), we again delineate forbidden and allowed regions in
the parameter space of DM in light of canonical tidal
deformability. The forbidden region includes parameter
combinations where kDMf falls below the critical value for
the corresponding value of Mχ , resulting in a tidal deform-
ability that does not comply with empirical observations.
Conversely, the allowed region encompasses parameter
combinations above these critical values, adhering to the
observational limits and suggesting feasible scenarios for
DM characteristics within NSs.
Further refining our analysis, we examine the radius

of a NS with a mass of 1.108M⊙ across different DM
Fermi momenta and masses. This investigation aligns with
recent NICER observations of PSR J0030þ 0451, which
dictate that the radius of such a NS must exceed 10.13 km.
Our findings indicate that, as kDMf and Mχ increase, the
radius of the NS decreases, shown in the right-top panel
in Fig. 10, potentially violating the NICER constraint.

This relationship is crucial for understanding the structural
integrity of NSs under the influence of DM. The critical
kDMf values ensuring compliance with the NICER radius
constraint are plotted against Mχ (right-bottom panel in
Fig. 10), establishing a new set of forbidden and allowed
regions. The forbidden region in this context includes DM
parameter combinations leading to a NS radius smaller than
the NICER threshold, while the allowed region includes
those that maintain or exceed this limit.
In the comprehensive analysis, we consolidate findings

from three critical observational constraints—maximum
mass of PSR J0740þ 6620, tidal deformability of the
1.4M⊙ star constrained from GW170817, and NICER’s
constraints on the radius of a 1.108M⊙ NS—to delineate the
permissiblekDMf as a function ofMχ for the IOPB-I parameter
set. Each constraint independently imposes limits on kDMf for
varying DMmasses, which are plotted together in Fig. 11 to
identify a common allowed region for DM characteristics
that are consistent with all observed astrophysical phenom-
ena. The intersection of the allowed regions from these three
constraints establishes the final permissible range for kDMf
across a wide range of Mχ . Figure 11 clearly illustrates that
the most restrictive constraints are typically provided by the
tidal deformability and PSR J0740þ 6620mass limit,which
limit the higher DM Fermi momenta more stringently than
the NICER radius observations alone. The final allowed
region, therefore, represents a conservative and robust set
of DM parameters that simultaneously satisfies all three
observational constraintswithin the frameworkof the IOPB-I
parameter set.

FIG. 11. The allowed region in the (Mχ , kDMf ) parameter space,
obtained from the mass of PSR J0740þ 6620, the dimensionless
tidal deformability constrained from GW170817, and the NS
mass and radius constraint obtained from NICER observation for
PSR J0030þ 0451, adopting the IOPB-I parameter set, derived
from the overlapped space among the three allowed regions
shown in Fig. 9 and the left-bottom and right-bottom panels
in Fig. 10.
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In addition to the parameters in the DM model consid-
ered in this study, such as kDMf and Mχ , the EOS is another
important input physics for considering the NS mass and
radius, as shown in Fig. 1. That is, in Fig. 11, we derive the
ðkDMf ;MχÞ parameter space, which can be excluded from
the astronomical constraints, but this parameter space
should depend on the adopted EOS as well. Now, in
further discussion, we will examine how the allowed region
in the ðkDMf ;MχÞ parameter space depends on the EOS. The
plots across Figs. 12–14 provide a rich dataset to examine
how the inclusion of DM influences NS properties such as
maximum mass, tidal deformability, and radius across
adopted RMF parameter sets (NL3, BigApple, IOPB-I,
G3, IU-FSU, and FSUGold) in this study.
Figure 12 intricately illustrates how the maximum mass

of NSs varies as a function of DM Fermi momentum for
three distinct DM masses, i.e., 1, 10, and 100 GeV. Stiffer
RMF models like NL3 and BigApple support maximum
masses particularly at lower kDMf values with higher Mχ,

which align with the observational mass limits of PSR
J0740þ 6620. This suggests that stiffer EOS can support
larger NS masses, even under significant DM influences,
particularly for higher DMmasses which inherently present
more gravitational challenges. Conversely, softer RMF
models such as FSUGold and IU-FSU show inherent
limitations, with their NS maximum mass predictions
falling below the PSR J0740þ 6620 limit even in the
absence of DM. The inclusion of DM further exacerbates
this discrepancy, leading these models to deviate more
substantially from observed mass limits as kDMf increases.
This indicates that these softer EOS models are less
compatible with scenarios involving significant DM con-
tent, as they are unable to support NS masses within
observational constraints even at baseline conditions with-
out DM.
Figure 13 examines the tidal deformability of a canonical

NS (Λ1.4M⊙
) as influenced by increasing kDMf for the same

set of DM masses. All RMF models, including softer ones

FIG. 13. The same as the left-top panel in Fig. 10 but for various RMF parameter sets.

FIG. 12. The same as in Fig. 8 but for various RMF parameter sets.
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like FSUGold and IU-FSU, show a general trend of
decreasing tidal deformability with increasing kDMf .
Interestingly, despite their limitations in supporting NS
masses within the observational constraints for PSR
J0740þ 6620, softer models like FSUGold and IU-FSU
are still able to provide valuable constraints on tidal
deformability. For higher DM masses, these models main-
tain tidal deformability within the observational range set
by GW170817. Figure 14 shifts focus to the NICER
constraints on the radius of a 1.108M⊙ NS for PSR
J0030þ 0451, where observational data require that the
radius be no less than 10.13 km. Similar to the trends
observed in maximum mass and tidal deformability, all
RMF models show a decreasing radius with increasing
kDMf . However, even softer RMF models, which are
generally quicker to fall below the maximum mass

thresholds, are able to sustain radii above 10.13 km up
to a certain point of kDMf for higher DM masses. This
reveals that, while these models may struggle with mass
constraints, they can still offer viable scenarios where the
radius remains within acceptable limits, contributing to the
broader understanding of DM effects on NS structure.
Figure 15 illustrates the constraints on DM parameters

within NSs based on different observational constraints and
for two distinct RMF models known for their relatively
stiffer EOS, i.e., NL3 and BigApple. The analysis in Fig. 15,
akin to the previously discussed Fig. 11, is structured around
the influence of DM on NS properties—specifically the
maximum mass, tidal deformability of canonical stars, and
the radius of NSs as per NICER’s observational constraints.
Because of the inherently stiffer nature of NL3 and
BigApple, these models tend to support larger NS masses

FIG. 15. The same as Fig. 11 but for the NL3 (the BigApple) parameter set in the left (right) panel. We note that the right boundary in
Fig. 11 for the IOPB-I parameter set is given by the constraint on the mass of PSR J0740þ 6620, while those for the NL3 and BigApple
parameter sets are given by the constraint from the NICER observation for PSR J0030þ 0451.

FIG. 14. The same as the right-top panel in Fig. 10 but for various RMF parameter sets.
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at higher kDMf values even for higher Mχ, aligning well with
the observational mass limits of PSR J0740þ 6620
(Fig. 12). This suggests that stiffer EOS can accommodate
higher DM influences without compromising the mass
stability of NSs. The analysis of tidal deformability,
Λ1.4M⊙

, from Fig. 13 further demonstrates that these stiffer
models manage to maintain deformability within the empiri-
cal limits derived from GW170817 up to relatively high
values of kDMf . Each plot within Fig. 15 integrates results
from a series of analyses (i.e., combining the constraints
from maximum mass, canonical tidal deformability, and
NICER radius observations) to outline permissible regions
of DM mass and DM Fermi momentum that align with
astrophysical observations.
The analysis in Fig. 15 for the NL3 and BigApple

parameter sets, alongside previously discussed results for
IOPB-I, highlights a significant observation regarding the
defining constraints on the upper limits of kDMf for a given
Mχ . This boundary is crucial as it determines the extent to
which DM can influence NS properties without conflicting
with empirical observations. For the stiffer RMF models
such as NL3 and BigApple, the right boundary of the DM
parameter space representing the maximum permissible
kDMf for a given DM mass is predominantly defined by
NICER observations of the radius of a 1.108M⊙ NS from
PSR J0030þ 0451. The ability of these models to support
larger NS radii at higher kDMf andMχ reflects their inherent
robustness in maintaining structural integrity under DM
influences. Conversely, for the IOPB-I model, which
exhibits a slightly softer EOS compared to NL3 and
BigApple, the defining boundary of the upper limit for
kDMf is set by the mass limit of PSR J0740þ 6620. The
IOPB-I model, being less stiff, reaches this mass limit at a
lower kDMf compared to how the radius constraint limits
stiffer models, indicating a tighter constraint on DM
parameters due to the softer EOS properties. This variation
in how different RMF models are constrained by obser-
vational data underscores the critical role of EOS stiffness
in theoretical predictions of NS properties in the presence
of DM. Stiffer models like NL3 and BigApple can
accommodate a broader range of DM parameters while
still conforming to the radius constraints set by NICER. In
contrast, the softer IOPB-I model is more restricted by mass
constraints from PSR J0740þ 6620, demonstrating a more
significant decrease in maximum mass with DM incorpo-
ration, which limits the permissible kDMf more stringently.
The final plot in this section synthesizes the allowed

regions for DM parameter space across the above-discussed
RMF parameter sets. Figure 16 compares the allowed
regions for the DM parameters Mχ and kDMf for the
NL3, BigApple, and IOPB-I parameter sets, each shaded
differently to distinguish their respective permissible
spaces. The overlay of these regions provides a visual
representation of where the constraints from different

models intersect, offering a composite view of the possible
DM parameters that can exist without conflicting with
empirical observations of NS mass and radius constraints.
Notably, the NL3 parameter set, while offering some
overlap with the regions permitted by BigApple, is also
subject to exclusions based on terrestrial experiments,
which have previously challenged its broader applicability.
This adds a layer of complexity to interpreting the allowed
parameter space, as the exclusion of regions supported by
NL3 due to terrestrial constraints suggests a more stringent
limitation on the DM parameters that are considered
feasible. The intersection or overlap of the allowed regions
for BigApple and IOPB-I sets forth a critical DM parameter
space that is consistent with astronomical observations
independent of specific EOS assumptions. This overlap
highlights the robustness of the DM parameter constraints,
suggesting that, despite the variations in the stiffness and
other properties of the nuclear matter EOS, there are
fundamental limits on DM properties that remain consistent
across different theoretical backgrounds. Meanwhile, indi-
vidual RMF models exhibit unique sensitivities to DM
influences—reflected in how each model’s permissible DM
parameter space is shaped—the overlap of allowed regions
suggests underlying consistencies in DM constraints that
transcend specific EOS formulations. The exclusion of
certain DM parameters based on terrestrial experiments,
particularly relevant to the NL3 model, combined with
the astronomical constraints, highlights the importance
of integrating multimodal scientific observations and

FIG. 16. Comparing the allowed regions for the NL3, Big-
Apple, and IOPB-I parameter sets. The region except for the
shaded regions should be excluded from the astronomical
constraints on NS mass and radius. Considering that the NL3
parameter set is already excluded from the terrestrial experiments,
the allowed region may become more severe. Or, we may say that
the overlap region between the allowed regions with the Big-
Apple and IOPB-I parameter sets is the (Mχ , kDMf ) parameter
space, which is allowed from the astronomical observations
independently of the EOSs.
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experiments in delineating the properties of DM within
astrophysical observational efforts.

C. Relation between Λ and M=R

In this subsection, we explore the universal relation
between the dimensionless tidal deformability (Λ) and the
compactness (M=R) of NSs. This relationship is known to
hold independently of the theoretical framework, parameter
sets (EOS), structure, chemical composition, or any other
factors affecting NSs. We aim to investigate whether this
universality persists even in the presence of DM compo-
nents for the adopted DM model in this study [22].
Dimensionless tidal deformability Λ is a measure that
quantifies the extent to which a NS deforms in response
to the tidal field of its companion in a binary system.
Mathematically, Λ is expressed as [64]

Λ ¼ 2

3
k2

�
R
M

�
5

; ð9Þ

where R and M are the radius and mass of the star,
respectively, and k2 is defined as the quadrupole dimen-
sionless tidal Love number which depends on the structure
of the star [65].
In Fig. 17, the dimensionless tidal deformability is

plotted against the compactness for six different RMF
parameter sets (NL3, BigApple, IOPB-I, G3, IU-FSU, and
FSUGold), all considering pure RMF EOSs without any
DM inclusion. Through these models, we establish an
empirical relationship between Λ and M=R that demon-
strates a universal behavior across various EOSs, indicative
of the underlying physics that is independent of the specific
models exploring NS matter and could potentially be used
to infer properties of NSs across different observational
scenarios and theoretical models. The figure includes a
fitted line that represents this empirical relationship derived
from the data, highlighting a consistent pattern across
different RMF models and defined by the equation

log10 Λ ¼ 0.1641
X

þ 5.7791 − 5.3095X þ 1.9191X2

− 0.4275X3; ð10Þ

where X is scaled as X ≡ ðM=RÞ=0.2. The bottom panel in
the figure displays the absolute values of the relative errors
for each RMF parameter set with respect to the empirical
fitting formula. This error analysis evaluates the consistency
and reliability of the empirical relationship across different
theoretical models. The small and consistent error margins
underscore the robustness of the fitted relationship, sug-
gesting its potential applicability as a universal tool for
predicting NS properties across a broad spectrum of
scenarios.
The next figure in this subsection (Fig. 18) presents a

critical examination of the above-established empirical

relationship between Λ and M=R of NSs, extending the
analysis to include scenarios with varying DM parameters.
This analysis aims to test the universality of the relationship
in the presence of DM and to evaluate the need for potential
modifications to the current DM admixed model in light of
this universal relation. The left plot in Fig. 18 depicts Λ as a
function of M=R for a fixed DM Fermi momentum
(kDMf ¼ 0.05) across several DM masses (i.e., 10, 100,
and 200 GeV). The empirical relationship derived without
DM is included for comparison. Observations show that, as
DM mass increases, the deviations from the empirical
relationship—or, in principle, deviation from the universal
relation—also increase, particularly at lower M=R values,
indicating a significant impact of DM on the tidal deform-
ability of less compact NSs. In the right side plot in Fig. 18,
Λ is evaluated against M=R for a fixed DM mass
(Mχ ¼ 100 GeV) while varying kDMf (i.e., 0.040, 0.060,
and 0.080 GeV). This plot further supports the findings
from the first analysis, showing increased deviations from
the established empirical relationship as the value of kDMf
increases. The results clearly demonstrate that the intro-
duction of DM parameters significantly influences the tidal

FIG. 17. In the top panel, the dimensionless tidal deformability
Λ is shown as a function of the stellar compactness M=R for
various EOS models in the absence of DM. The thick solid line
denotes the fitting line given by Eq. (10), which is a kind of
universal relation. In the bottom panel, the absolute value of the
relative deviation from the estimation with the fitting line, given
by Eq. (7), is shown.
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deformability of NSs, resulting in notable deviations from
the previously established universal empirical relationship.
These deviations are more pronounced for NSs with lower
compactness and increase with higher DM mass or Fermi
momentum at least within our adopted DM model. This
could be attributed to the increased relative influence
of DM on the overall mass-energy balance within less
compact stars, potentially leading to significant changes in
their deformation properties under tidal forces. Further
research should focus on refining the theoretical framework
to include the effects of DM that can accurately predict NS
properties across a broader range of astrophysical con-
ditions. This will enhance the predictive power of models
used in gravitational wave astronomy and aid in the
interpretation of signals from NSmergers, providing deeper
insights into the nature of dense matter and dark matter in
the Universe. Subsequent research will explore these
dimensions.

IV. CONCLUSION

In this study, we comprehensively explored the influence
of DM on NS properties within the framework of

relativistic mean-field theory. By incorporating a DM
model, we examined how DM parameters, such as the
DM particle’s mass and Fermi momentum, impact the
nuclear saturation properties, the EOS, and the mass-radius
relationship of NSs. By integrating observational con-
straints from PSR J0740þ 6620, NICER’s analysis of
PSR J0030þ 0451, and GW data from GW170817, we
have delineated a multidimensional parameter space for
DM that is consistent with current astrophysical observa-
tions. Our analysis also extended to the universal relation
between dimensionless tidal deformability and compact-
ness of NSs, assessing whether this relationship holds in the
presence of DM. Key insights from this work include the
identification of critical DM Fermi momenta and masses
that significantly alter the nuclear properties and structural
configurations of NSs.
Our findings reveal that the inclusion of DM signifi-

cantly alters the nuclear saturation properties. As the DM
Fermi momentum increases, the nuclear saturation density
also increases, leading to higher incompressibility K0

values. However, this increase in K0 does not necessarily
indicate a stiffer EOS in the traditional sense due to the shift
in saturation density. The symmetry energy J0 and slope

FIG. 18. The values of Λ for the DM admixed NSs constructed with various EOSs are shown as a function of M=R. The left panel
corresponds to the results by varyingMχ with the fixed value of kDMf ¼ 0.05 GeV, while the right panel is by varying kDMf with the fixed
value ofMχ ¼ 100 GeV. In both panels, the universal relation obtained in the NS models without DM given by Eq. (10) is shown with
the thick solid line. In the bottom panels, the absolute value of the relative deviation from the solid line is shown.
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parameter Lsym;0 also increase with higher DM Fermi
momentum and mass, suggesting more asymmetric
nuclear matter and a steeper density dependence of the
symmetry energy.
We derived constraints on DM Fermi momentum

and mass using observational data from PSR J0740þ
6620, GW170817, and NICER measurements of PSR
J0030þ 0451. Our analysis revealed that the maximum
mass constraint from PSR J0740þ 6620 imposes the most
stringent limits on DM parameters, particularly for softer
EOS models like IOPB-I. The tidal deformability constraint
from GW170817 and the radius constraint from NICER
also significantly restrict the DM parameter space, particu-
larly for stiffer EOS models like NL3 and BigApple. By
overlaying these constraints, we identified a permissible
region in the DM parameter space that is consistent with all
observational data. This permissible region of DM param-
eters depends significantly on the chosen EOS. Stiffer EOS
models like NL3 and BigApple can support higher maxi-
mum masses and larger radii even with higher DM content,
while softer models like IOPB-I are more restricted by
observational constraints. This variation underscores the
critical role of EOS stiffness in theoretical predictions of
NS properties in the presence of DM. The intersection of
constraints from different observational sources and theo-
retical models has allowed us to delineate a robust set of
permissible DM parameters, highlighting the importance of
integrating multimodal scientific observations to delineate
the properties of DM within NSs. Moreover, this study

challenges the assumption of universality in the presence of
DM, showing that DM parameters could lead to deviations
from the established empirical relationship, particularly for
less compact NSs. This suggests a need to refine theoretical
models to better account for DM effects, enhancing the
predictive power and accuracy of NS models used in
multimessenger astronomy.
Future work will focus on further refining these

models to accommodate a broader range of DM effects
and exploring additional observational data to tighten the
constraints on DM properties. We acknowledge that the
potential decay and/or annihilation processes of DM
particles could be an important aspect to consider in this
direction. While our current study does not address this, it
is crucial to explore how stellar properties might evolve in
light of such processes using the currently adopted DM
model. This direction could reveal new insights into the
interaction between DM and nuclear matter, further refin-
ing our theoretical framework. Additionally, experimental
investigations should consider the potential influence of
DM on nuclear properties to provide a more complete
understanding of nuclear matter in the presence of DM.
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