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The essence of the memory burden effect is that a load of information carried by a system stabilizes it.
This universal effect is especially prominent in systems with a high capacity of information storage, such as
black holes and other objects with maximal microstate degeneracy, the entities universally referred to as
“saturons.” The phenomenon has several implications. The memory burden effect suppresses a further
decay of a black hole, the latest, after it has emitted about half of its initial mass. As a consequence, the light
primordial black holes that previously were assumed to be fully evaporated are expected to be present as
viable dark matter candidates. In the present paper, we deepen the understanding of the memory burden
effect. We first identify various memory burden regimes in generic Hamiltonian systems and then establish
a precise correspondence in solitons and in black holes. We make transparent, at a microscopic level, the
fundamental differences between the stabilization by a quantum memory burden versus the stabilization by
a long-range classical hair due to a spin or an electric charge. We identify certain new features of potential
observational interest, such as the model-independent spread of the stabilized masses of initially degenerate
primordial black holes.
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I. INTRODUCTION

The phenomenon of memory burden, originally
described in [1], is summarized in the following statement:
Information loaded in a system resists its decay.
Naturally, the effect is especially sound in systems with

enhanced information storage capacity. This capacity can be
quantified by the number and degeneracy of microstates that
the system possesses for the given values of macroscopic
parameters, such as, e.g., the radius R and the total energy.
Black holes are the prominent representatives of this

category. This is obvious from Bekenstein-Hawking
entropy [2],

SBH ¼ πR2M2
P; ð1Þ

where MP is the Planck mass. Correspondingly, it was
suggested in [1,3] that the phenomenon of memory burden
must be applicable to black holes.
This effect explains, in terms of an explicit microscopic

mechanism, why, at the early stages of Hawking’s decay, the
information stored in a black hole cannot be released together
with radiation. This matches the semiclassical expectation.
However, an important new feature emerges. The inter-

nally maintained information backreacts and creates resis-
tance against the decay of a black hole. This is the effect of
the memory burden phenomenon in a black hole.
Furthermore, by performing a detailed analysis of the

prototype systems, it was concluded in [3] that not only do
black holes undergo the memory burden effect, but they
likely are stabilized by it. That is, in the process of a black
hole decay, the memory burden grows, and after a certain
characteristic time, tM, reaches a critical value. tM is
bounded from above by the age of a black hole that lost
about half of its initial mass.
At this point, the black hole has evolved into a “remnant”

that cannot continue an ordinary quantum decay. A
remarkable feature is that the remnant is macroscopic,
with a mass comparable to the initial black hole. The fate of
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this object cannot be determined by applying a standard
semiclassical analysis that would be valid for a young
black hole.
As pointed out in [3], at the current level of under-

standing, it is not excluded that some new collective
(classical) instability sets in, leading to a disintegration
of the memory-burdened remnant.
Putting this possibility aside, after a black hole enters the

memory burden phase, its evaporation must slow down
dramatically. From the analyticity considerations, it was
suggested in [3] that the remaining lifetime of a black hole
scales as

τ ∼ RS1þk
BH ; ð2Þ

where SBH is the entropy of initial black hole and k > 0 is
an integer.
This has a number of implications which will be

discussed later, after we introduce the second part of
the story.
On the other hand, it was shown recently [4–6] that black

holes are not the only objects with maximal information
storage capacity. Rather, in various consistent quantum
field theories (QFTs) there exist a whole class of objects,
named “saturons” [4], that exhibit the identical properties.
An important aspect is that saturons can emerge in the

form of solitons and other bound states in renormalizable
QFTs at weak coupling where their properties are fully
under control and calculable [4–12].
In order to fix the definition: a saturon represents an

object that saturates the QFT upper bound on the microstate
degeneracy. The bound has been formulated in [4] and can
be given in two equivalent forms as the bound on the
microstate entropy, S≡ lnðnstÞ, with nst number of degen-
erate microstates.
First, for a bound state of radius R formed by QFT

degrees of freedom interacting via a running coupling α, the
upper bound on the microstate entropy is

S ≤
1

α
; ð3Þ

where α must be evaluated at the scale 1=R.
Equivalently, the bound can be written in terms of the

Goldstone scale, f, of the spontaneously broken Poincare
symmetry:

S ≤ πR2f2: ð4Þ

As shown in [4], the above bounds set the maximal
degeneracy reachable within the validity of the QFT
description. In particular, their saturation is correlated with
the saturation of unitarity by the scattering amplitudes.
As already discussed in [4], Bekenstein-Hawking

entropy of a black hole (1) represents a particular case
of saturation of both bounds. First, applied to a black hole,

the formula (4) is identical to (1), since for a black hole of
arbitrary mass, the scale of Poincare Goldstone is given by
the Planck mass, f ¼ MP.
Simultaneously, the black hole entropy (1) is also equal

to (3), since the gravitational coupling, evaluated at energy
scale 1=R, is αgr ¼ 1=ðπR2M2

PÞ.
It has been observed that striking similarities between

black holes and saturons of renormalizable QFTs extend to
their other key properties:
(1) Impossibility of the information-retrieval classi-

cally [4–7,9,10].
(2) The minimal timescale of the start of the informa-

tion-retrieval, t ∼ S R, which is identical to the
Page’s time in black holes [4,9,10].

(3) The existence of information horizon in the semi-
classical theory [10].

(4) Thermal-like evaporation at initial stages of the
decay [9,10].

(5) The relation between the maximal spin and the
entropy [11,12].

The above correspondence makes the study of saturons
important due to the following reasons. First, it shows that
the black hole properties are not specific to gravity and can
be understood within calculability domains of renormaliz-
able QFTs.
Second, saturons can serve as laboratories for under-

standing the microscopic nature of known black hole
properties and for discovering new features.
In the present paper, we shall apply this strategy to

the memory burden effect in two directions. First, follow-
ing [1,3], we outline the generic properties of the memory
burden phenomenon within Hamiltonian models of
enhanced information capacity. We then demonstrate the
concrete manifestations of these properties within solitons,
expanding the earlier analysis of [10,13]. Next, we estab-
lish the link with analogous properties in black holes.
In studying the memory burden effect in black holes, we

shall use two strategies. On one hand, we shall extract the
key features of the effect relying solely on the universality
of the phenomenon and the requirement of QFT consis-
tency of the system.
On the other hand, we shall cross-check our conclusions

with a microscopic theory of black hole’s quantum N
portrait [14–16]. In this picture a black hole is described as
a saturated coherent state of gravitons at criticality, which
makes the origin of its enhanced information storage
capacity very explicit.
This approach allows us to predict certain new features

of memory burden in black holes, moving forward from the
previous studies.
The memory burden effect has a wide range of appli-

cations. As already put forward in [3], one immediate
application is the opening up of a new window of the pri-
mordial black hole dark matter with masses below 1014 g.
In the standard treatment, this interval of masses was
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ignored based on the assumption of the validity of the
semiclassical picture during the black hole’s entire lifetime.
The memory burden effect invalidates this assumption.
Some viable examples of PBH dark matter in the new

mass window were given already in [3]. Further studies,
focusing on the formation mechanisms [17] and various
constraints on memory burdened PBH dark matter [18–21],
have also been performed.
In the present paper, we shall predict a new feature

of potential observational significance: the model-
independent spread in PBH masses induced by the memory
burden effect.
As suggested in [22], another entity, likely subjected to

the memory burden effect, is a de Sitter Hubble patch of
radius R. Similarly to a black hole, de Sitter carries a
maximal microstate entropy of Gibbons-Hawking [23]
given by the expression (1). Due to this, it falls in the
category of systems with enhanced capacity for information
storage. This creates an avenue for studying the imprints of
the memory burden effect in inflationary cosmology, with
the first steps taken in [22].
However, it must be stressed that the situation in de Sitter

is very different from the black hole case since there exists
no sensible notion of a “stabilized” de Sitter. Instead, as
discussed in [22,24], the memory burden gives a consis-
tency upper bound on the duration of classical de Sitter in
terms of tM. Originally, the bound on the duration of the
de Sitter state was derived in [16,25,26] from the self-
entanglement of the de Sitter state caused by the back
reaction from Gibbons-Hawking radiation.
In this respect, we must notice that the memory burden

effect completes a bigger picture of previously suggested
mechanisms leading to a breakdown of the semiclassical
description for a macroscopic system after a certain critical
time, so-called quantum break time [27].
In particular, it has been suggested [16,28] that a black

hole experiences quantum breaking while still being macro-
scopic. This happens the latest after the loss of about half of
the initial mass. It has also been argued that at this point, the
black hole acquires a significant quantum hair, which could
potentially lead to its stabilization [28].
The concept of quantum break time has also been

applied to de Sitter [16,25,26]. However, unlike a black
hole, which can happily continue the existence beyond this
point, the quantum break time represents a consistency
upper bound on the duration of any classical de Sitter state.
In particular, in any consistent inflationary theory, the
inflation must end before the corresponding quantum break
time elapses.1

The memory burden effect strengthens these earlier
quantum break-time proposals for black holes and for

de Sitter, as it provides an additional engine for quantum
breaking [24]. It also makes the microscopic dynamics of
quantum breaking very explicit.
In general, due to its universal nature, the memory

burden phenomenon strongly affects the systems with high
capacity of information storage, leading to a number of
physical consequences.
The rest of this paper is organized as follows. Next

section describes the memory burden effect in general
systems of enhanced memory storage capacity, which is
then specialized to the case of solitons and black holes in
Secs. III and IV, respectively. Section V focuses on the
analogies and differences between memory burden and
classical extremality, while Sec. VI is dedicated to numeri-
cal results showing examples of dynamical stabilization
of solitons by their memory. Finally, Sec. VII contains
remarks on the phenomenological consequences of our
findings as well as our outlook. Visuals of our numerical
simulations can be found at the following [30,31].

II. ESSENCE OF MEMORY BURDEN

The memory burden effect was introduced in [1], where
it was proposed that the loaded information pattern tends
to stabilize the system carrying this information. A more
detailed analysis of prototype systems was performed in
two follow-up papers, [22] and [3], with the purpose of
applying the memory burden effect to cosmology and black
holes, respectively. The last work concluded that the
slowdown of the black hole decay due to the effect is
imminent, at the latest, by its half-decay.
In this chapter, following [1,3,22], we shall explain the

essence of the memory burden phenomenon and give some
helpful classification of its regimes. In order to achieve this,
we first go through the main universal characteristics of the
systems with the enhanced capacity of information storage.
This concept refers to the energetic efficiency of quantum
information storage and was introduced in [32–34] at the
level of basic Hamiltonians. The reader can find the
summary of the setup in [24,35,36].
The main characteristics of effective Hamiltonians

describing systems of enhanced information capacity can
be determined by categorizing quantum degrees of freedom
according to the tasks they perform. The degrees of
freedom shall be introduced as quantum oscillators in
number representations. These shall later be identified with
different modes of the quantum fields.

A. Memory modes

The first category of the degrees of freedom is the
memory modes. We shall introduce them as quantum
fields denoted by θj where the index j ¼ 1; 2;…:;M labels
their “flavor.” The total number of species is M. The
corresponding creation-annihilation operators â†j ; âj can
satisfy either fermionic or bosonic oscillator algebras.

1The quantum inconsistency of an eternally inflating Universe
also follows from its incompatibility with the S-matrix formu-
lation of quantum gravity [29].
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For definiteness, we shall focus on the bosonic one:

½âi; â†j � ¼ δij; ½âi; âj� ¼ 0: ð5Þ

The role of the memory modes is to store information.
The information is stored in the patterns of their occupation
numbers. These patterns are represented via ket vectors in
the Fock space,

jpi ¼ jn1; n2;…; nMi; ð6Þ

where numbers nj ≡ hpjn̂jjpi represents the eigenvalues of
the corresponding number operators, n̂j ≡ â†j âj.
The Hilbert subspace formed by the vectors jpi shall be

referred to as the memory space. The dimensionality of it is
defined by the range of the occupation numbers of the
memory modes nj. These can be subject to constraints.
An example of a simple constraint is to limit each

occupation number to two possible values, nj ¼ 0, 1. In
this case, the free part of the memory system is described by
the Hamiltonian of M independent qubits,

Ĥfree ¼
XM
j¼1

mjn̂j; ð7Þ

where mj are the energy gaps of the memory modes.
The corresponding dimensionality of the memory space
is nst ¼ 2M. In general, the dimensionality of memory
space grows exponentially with the number of memory
species M. Thus, the existence of a large number of
memory species is an essential condition for the efficiency
of information storage. However, it is not sufficient.
Even with large M, the Hamiltonian (7) does not

necessarily represent a system of enhanced information
capacity. This is because the energy span of the memory
space can be very large if the gaps mj are high.
Therefore, the second important characteristic is the

energy cost of an information pattern,

Ep ¼
XM
j¼1

mjnj; ð8Þ

as well as the gaps between different memory patterns, jpi
and jp0i,

Ep − Ep0 : ð9Þ

In short, the efficiency of the information storage by a
system is determined by the density of states: the number
nst, of states jpi, that can fit within a physically meaningful
smallest energy gap ΔE. Usually, this is set by a typical
uncertainty in the system’s energy, such as the level width.

Naturally, many flavors M and smaller gaps mj achieve
more efficiency.
The resulting information storage capacity is quantified

by the microstate entropy of the system defined as

S≡ lnðnstÞ: ð10Þ

In QFT, the limit to memory capacity is set by saturons
[4]: the objects with microstate entropy that saturates the
upper bounds (3) and (4) imposed by the validity of a given
QFT description.

B. Master modes: Assisted gaplessness

The second category of the degrees of freedom are
so-called master modes. We shall denote them by ϕα,
with creation-annihilation operators, âϕα

; â†ϕα
, where α ¼

1; 2;…, is their flavor index.
The role of the master modes is to assist the memory

modes in becoming gapless. As opposed to the memory
modes, which must come in a large number of flavors M,
the number of master mode species can be much less.
To illustrate the mechanism of the assisted gaplessness,

and the resulting effect of memory burden, a single flavor
of the master mode is sufficient. The corresponding number
operator shall be denoted by n̂ϕ ≡ â†ϕâϕ.
With the above conventions, the effect of assisted

gaplessness [32–35] can be illustrated by using the follow-
ing simple prototype Hamiltonian [1,3,22,24],

Ĥ ¼ Ĥms þ Ĥmem;

with∶ Ĥms ≡mϕn̂ϕ;

Ĥmem ≡
�
1 −

n̂ϕ
Nϕ

�
qX

j

mjn̂j; ð11Þ

where, for physical clarity, we have split the Hamiltonian
into the master Ĥms and memory Ĥmem parts, respectively.
The parameters mϕ and mj represent the intrinsic energy

(or mass) gaps of the master and memory modes, i.e., the
gaps around the Fock vacuum state nϕ ¼ nj ¼ 0. The
number Nϕ ≫ 1 is a large number that sets the coupling
between master and memory modes as 1=Nϕ. Notice that,
in QFT systems, for a given Nϕ, M is bounded as

M ⩽ Nϕ: ð12Þ

This bound can be understood as a manifestation of a
general bound

ðcouplingÞ × ðnumber of speciesÞ ⩽ 1; ð13Þ

violation of which invalidates the QFT description [4].
Thus, within the validity of QFT, the maximal number of
memory patterns is achieved for M ≃ Nϕ.
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The parameter q, which we take as some positive even
number, requires clarification. This quantity parametrizes
the functional dependence of the effective energy gaps
of the memory modes on nϕ. Of course, in general, this
function can be more complicated. However, near the point
of the assisted gaplessness, it is well described by a
monomial with a power q. In this form, the assisted
gaplessness takes place for the critical occupation number
of the master mode,

nϕ ¼ Nϕ: ð14Þ

Indeed, if we keep the master mode in the Fock vacuum
state, nϕ ¼ 0, and form a memory pattern via the excita-
tions of the memory modes, jpi ¼ jn1;…; nMi, the cost of
energy is

Ep ¼ hpjĤmemjpi ¼
X
j

mjnj: ð15Þ

This can be extremely high if mjs are large.
However, the system possesses another state (14), with

the exact same memory pattern as jpi, but with a critically
excited memory mode. We shall denote it by jp̃i, where
tilde indicates the difference in nϕ.
On this state, the contribution to the energy from the

memory mode-dependent part of the Hamiltonian is zero:

Emem ¼ hp̃jĤmemjp̃i ¼ 0: ð16Þ

This is because the effective gaps for the memory modes
are no longer given by mj, but rather by the quantities,

ωj ≡
�
1 −

nϕ
Nϕ

�
q
mj; ð17Þ

which vanish on a state with nϕ ¼ Nϕ.
Thus, for the information pattern it is energetically

favorable that the master mode, instead of being in the
vacuum nϕ ¼ 0, is in the critical state nϕ ¼ Nϕ. This is
the essence of the mechanism of the assisted gapless-
ness [32–35] (the term was coined in [35]).
However, the price to pay is the energy of the master

mode:

Ems ¼ hp̃jĤmsjp̃i ¼ mϕNϕ: ð18Þ

Due to this, for a given information pattern p, the
energetically optimal state is determined by the balance
between the two entries Emem and Ems. This fixes the
occupation number of the master mode, nϕ, to a certain
optimal value. The energy difference between this optimal
state and master mode’s Fock vacuum (nϕ ¼ 0), both
evaluated for the same memory pattern p, determines
the energy efficiency of the information storage.

It is useful to quantify this efficiency by defining the
memory-efficiency coefficient as the ratio of the actual cost
of an information pattern Emem to its cost in the master
mode Fock vacuum:

ϵ≡ Emem

Ep
: ð19Þ

Moving away from the above optimal state requires
climbing an energetic barrier. This creates a resistance
against abandoning the state of the enhanced memory
capacity. This is the essence of the memory burden
effect [1,3].

C. Memory burden effect

We now wish to give certain universal characteristics of
the memory burden effect [1,3,22].

1. Generalities

In order to understand the energetic balance leading to
the memory burden effect, let us minimize the Hamiltonian
(37) with respect to nϕ in a state with a memory pattern
jpi ¼ jn1;…; nMi. The intrinsic (vacuum) energy cost of
the pattern, Ep, is given by (15).
Notice that for minimization we can use Bogoliubov

approximation in which we treat the operator n̂ϕ as a c
number nϕ. This is justified, since the occupation number
around the states of interest is macroscopic and the
c-number approximation of the operator works up to
corrections of 1=nϕ (for more detailed discussion of
c-number method see [35]).
We can distinguish the two regimes depending on

whether Ep is above or below the following critical value,

E� ≡ 1

q
mϕNϕ: ð20Þ

For

Ep ⩾ E�; ð21Þ

the minimum of the energy of the system is achieved for

nϕ ¼ Nϕ

�
1 −

�
E�
Ep

� 1
q−1
�
; ð22Þ

and it is equal to

E ¼ mϕNϕ

�
1 −

q − 1

q

�
E�
Ep

� 1
q−1
�
: ð23Þ

Taking into account (20) and (21), we can easily see that
this energy is less than the wouldbe vacuum energy cost of
the pattern Ep. That is, in this case, it is energetically
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favorable to stabilize the system in the state with nonzero
occupation number of the master mode nϕ.
On the other hand, for

Ep ⩽ E�; ð24Þ

the minimum energy state is

nϕ ¼ 0; ð25Þ

with the energy

E ¼ Ep: ð26Þ

Of course, at the critical value E ¼ E�, the two regimes
give the same minimal energy

E ¼ Ep ¼ 1

q
mϕNϕ: ð27Þ

That is, if the vacuum energy cost of the pattern is below
the critical value (20), it is not worth energetically to keep
the system in nϕ > 0 state. Otherwise, the system is
stabilized in a state with nϕ > 0 by the memory pattern.
This is the key ingredient of the memory burden effect.
Notice, the Hamiltonian (11) conserves the number of

the master mode. Correspondingly, the states with arbitrary
nϕ represent its eigenstates and do not evolve in time.
Therefore, in order to observe the stabilizing effect of the
memory burden dynamically, we must add interactions that
do not conserve nϕ and allow for quantum transitions of ϕ
quanta into some “external” degrees of freedom b̂†; b̂, with
energy gaps mb. This can be achieved by the inclusion of
the interaction terms of the form

ðb̂†ÞβðâϕÞα þ H:c:; ð28Þ

where α, β are integers.
The dynamical memory burden effect is clearly illus-

trated already in the simplest case α ¼ β ¼ 1, with
mϕ ¼ mb, which can be solved analytically [1]. The
Hamiltonian (11) is supplemented by

Ĥint ¼
m̃ffiffiffiffiffiffi
Nϕ

p b̂†âϕ þ
m̃�ffiffiffiffiffiffi
Nϕ

p â†ϕb̂þmϕn̂b; ð29Þ

where n̂b ≡ b̂†b̂ is the b-mode number operator and m̃ is a
complex parameter of the dimensionality of energy. Notice
that 1=

ffiffiffiffiffiffi
Nϕ

p
in the mixing terms makes the parametrization

consistent with the normalization of the coupling of the
master mode in (11).
The above system can be solved in two ways. We can

first find the minimum of energy for a fixed total occupa-
tion number

nϕ þ nb ¼ Nϕ; ð30Þ

using the Bogoliubov approximation for aϕ and b modes.
Given the constraint (30), without any loss of generality, we
can parameterize these modes replacing the operators by
the c-number functions,

âϕ ¼ cosðθÞeiαϕ ffiffiffiffiffiffi
Nϕ

p
; b̂ ¼ sinðθÞeiαb ffiffiffiffiffiffi

Nϕ

p
; ð31Þ

where αϕ and αb are phases and θ is an angle that
parametrizes the distribution of the occupation number
among aϕ and b modes. Notice that the phases αϕ and αb
drop out of the minimization procedure, since they align
with the phase of m̃ and give the negative overall sign of the
mixing term.
The total effective Hamiltonian becomes a function of a

single variable θ,

Ĥ ¼ sinðθÞ2q Ep − jm̃j sinð2θÞ: ð32Þ

It is clear that the larger is Ep, the closer is the minimum of
the energy to θ ¼ 0, which implies nϕ ¼ Nϕ and nb ¼ 0.
For qEp=jm̃j ≫ 1, the system gets stabilized in the state

of enhanced memory capacity with the depleted number of
master modes, Δnϕ ¼ Nϕ − nϕ, given by

Δnϕ
Nϕ

¼ sin2 θ ≃
� jm̃j
qEp

� 2
2q−1

: ð33Þ

Correspondingly, this number gets transferred to the
b mode.
On the other hand, for Ep ¼ 0, the minimum is achieved

for θ ¼ π=4 implying that the average occupation numbers
satisfy

nϕ ¼ nb: ð34Þ

These results are fully confirmed by the explicit quantum
evolution of the system.
Indeed, following [1,3], let us time evolve the system

from the initial state nϕ ¼ Nϕ and nb ¼ 0.
For Ep ¼ 0, the occupation numbers evolve in time as

nϕðtÞ
Nϕ

¼ cos2
� jm̃jffiffiffiffiffiffi

Nϕ

p t

�
;

nbðtÞ
Nϕ

¼ sin2
� jm̃jffiffiffiffiffiffi

Nϕ

p t

�
; ð35Þ

which, for the averaged values, reproduce (34).
For qEp=jm̃j ≫ 1, the story is very different. The

oscillation amplitude is now suppressed, so that the average
value of Δnϕ is given exactly by (33). For a detailed
numerical analysis, see [3].
Of course, the above example of the system’s decay

represents an oversimplified toy model, with the main
purpose of illustrating the system with a swift memory
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burden effect. The time evolution must be taken with a
grain of salt, especially in the later oscillatory period.
For QFT systems, such as a black hole or a soliton,

submerged in infinite space, the master mode can decay
into a continuum of the external b modes. These corre-
spond to different momentum (or spin) eigenstates of
outgoing radiation. In such cases, the time evolution of
the system is dissipative rather than oscillatory. Regardless,
as long as the system maintains the information pattern
with Ep ≫ mϕ, it is subjected to memory burden, latest for
Δnϕ=Nϕ ∼ 1. That is, the memory burden phase starts latest
by the time the system gets rid of an order-one fraction of
its initial energy.
The way of avoiding the memory burden would be for

the system to get rid of the information pattern very fast [1].
However, in systems of enhanced information capacity, due
to the assisted gaplessness, this is an extremely suppressed
process [3]. For a detailed numerical analysis of complex
prototype systems, demonstrating this outcome, the reader
is referred to the above paper.
We now move to discussions of different parameter

regimes and distinguish the two extreme realizations of the
memory burden effect.

2. Type-I regime

The first regime, which we call type I, takes place when
the intrinsic frequencies of the master and memory modes
are of the same order. We shall take them to be given by an
universal mass gap m:

m ¼ mϕ ¼ mj: ð36Þ

The Hamiltonian (11) becomes

Ĥ ¼ mn̂ϕ þm

�
1 −

n̂ϕ
Nϕ

�
q XM

j¼1

n̂j: ð37Þ

Notice that it is invariant under an arbitrary UðMÞ trans-
formation of the memory modes: âj → Ujkâk.
Let us evaluate the Hamiltonian on a memory pattern,

with total occupation number of all species given by

XM
j¼1

nj ¼ NG: ð38Þ

Due to UðMÞ symmetry this number can be arbitrarily
redistributed among M memory modes, which creates the
following number of degenerate microstates [4],

nstates ≃
�
1þ NG

M

�
M
�
1þ M

NG

�
NG

: ð39Þ

The above expression represents a binomial coefficient ðNG
M Þ

evaluated using Stirling approximation for large NG andM.
This degeneracy can be understood in terms of the

Goldstone phenomenon, since the occupation number of
modes NG breaks the UðMÞ symmetry spontaneously
down to UðM − 1Þ.
The memory pattern back reacts on the master mode. In

order to understand this backreaction, following [34], we
minimize the Hamiltonian (37) with respect to nϕ. This
gives

�
1 −

nϕ
Nϕ

�
q−1

¼ Nϕ

qNG
: ð40Þ

We see that for NG ⩾ Nϕ, nϕ ≃ Nϕ. Plugging (40) in the
generic expression (17) for the effective gaps of the
memory modes, we get

ω ¼ m

�
Nϕ

qNG

� q
q−1
: ð41Þ

In particular, for q ≫ 1, we obtain

ω

m
≃

Nϕ

qNG
: ð42Þ

Notice also that the contribution to the energy from the
master and memory modes

Ems ¼ mNϕ; Emem ¼ ωNG ð43Þ

relate as

Emem ≃
1

q
Ems: ð44Þ

From (43) and (42), it is clear that, in type I, the memory-
efficiency coefficient is

ϵI ≃
ω

m
≃

Nϕ

qNG
: ð45Þ

In realistic systems, due to interactions with external
degrees of freedom, the occupation number nϕ can change
in time. In the previous section we reproduced an example
of [34] in which the transition takes place into a single b
mode. In this case, the behavior is oscillatory. However,
when the number of external decay channels is large,
the inverse transitions practically never happen and nϕ
decreases irreversibly.
For example, this is what happens in black holes [3],

where the master mode gets depleted into outgoing
Hawking particles [14]. In such cases, the system dynami-
cally evolves until it gets stabilized (or semistabilized) by
the memory burden effect.
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In other words, the information drives the system
towards the state in which the energy cost of the informa-
tion pattern is optimal. Correspondingly, the system resists
against the attempts of driving it away from such a state. We
shall later discuss this dynamics in solitons and in black
holes and compare them.

3. Type-II regime

We shall now consider the regime in which the intrinsic
energy gaps of the memory modes are much higher than
that of the master mode:

mj ≫ mϕ: ð46Þ

We shall refer to it as type II. In this case the minimization
of the Hamiltonian with respect to nϕ gives

�
1 −

nϕ
Nϕ

�
q−1

¼ mϕ
Nϕ

qEp
: ð47Þ

Taking into account (13) and (46), we notice that for a
memory pattern with NG ≳M, the rhs, of the above
equation is much less than one. Thus, similarly to type-I
case, we have nϕ ≃ Nϕ. Correspondingly, the energy cost of
the master mode is

Ems ≃mϕNϕ: ð48Þ

At the same time, the actual energy cost of the memory
pattern is

Emem ¼
�
mϕ

Nϕ

qEp

� q
q−1
Ep ≃

1

q
mϕNϕ: ð49Þ

Thus, we arrive to the same relation (44) as in type-I case.
However, the efficiency coefficient ϵ is now extra sup-

pressed. For example, taking all mj to be set by a single
scale, mj ¼ m ≫ mϕ, we get

ϵII ≡ Nϕ

qNG

mϕ

m
: ð50Þ

This is suppressed with respect to type-I case (45) by an
additional factor mϕ=m.
The basic lesson is the following: Increasing the vacuum

gaps of the memory modes with respect to the master mode,
the system becomes more and more efficient in informa-
tion cost. Correspondingly, the memory burden effect is
stronger.

III. MEMORY BURDEN IN SOLITONIC SATURON

We shall now study the memory burden effect in
solitonic saturons. Following [4], we first introduce an
example of a saturon in form of a vacuum bubble. Next, we

discuss their stabilization via memory burden effect closely
following [10].
The bubble is a solution in a renormalizable SUðNÞ-

invariant theory of a scalar field Φ in the adjoint repre-
sentation with the following Lagrangian density,

L½Φ� ¼ 1

2
Trð∂μΦÞð∂μΦÞ − VðΦÞ; ð51Þ

where the potential is chosen as

VðΦÞ ¼ α

2
Tr

�
fΦ −Φ2 þ I

N
TrΦ2

�
2

: ð52Þ

Here α is a coupling constant and f is a scale. I is an unit
matrix in SUðNÞ space.
The validity of QFT description imposes the following

bound on the parameters of the model,

αN ≲ 1: ð53Þ

Basically, the quantity αN, which is analogous to ’t Hooft
coupling, must not exceed the critical value. In the opposite
case (αN ≫ 1), Φ no longer represents a good QFT
degree of freedom. This is unambiguously signaled by
the breakdown of the loop expansion, as well as, by the
saturation of unitarity in multiparticle scattering ampli-
tudes [4]. Notice that after we map the above theory on a
generic Hamiltonian of enhanced memory capacity (11), it
will become clear that the bound (53) represents a particular
case of the bound (13).
The system (51) has multiple degenerate vacua satisfying

the condition

fΦb
a − ðΦ2Þba þ

δba
N
TrΦ2 ¼ 0: ð54Þ

We shall focus on a pair of neighboring vacua.
In the first one, the vacuum expectation value is Φ ¼ 0

and the global SUðNÞ symmetry is unbroken. This vacuum
exhibits a mass gap

m ¼ ffiffiffi
α

p
f; ð55Þ

which sets the minimal energy cost for all particle
excitations.
In the second vacuum of our interest, the vacuum

expectation value is

Φ0 ¼ f
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðN − 1Þp diagðN − 1;−1;…;−1Þ; ð56Þ

and SUðNÞ symmetry is spontaneously broken down to
SUðN − 1Þ × Uð1Þ. Due to spontaneous breaking of sym-
metry, in this vacuum we have the set of massless
Goldstone bosons
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θjðxÞ; j ¼ 1; 2;…;M; ð57Þ

corresponding to broken generators Tj. Their total
number is

M ¼ 2ðN − 1Þ: ð58Þ

These Goldstones form a fundamental representation of the
SUðN − 1Þ group of complex dimensionality N − 1 with
nonzero charge under Uð1Þ.
The effective Lagrangian of the Goldstone bosons has

the following form:

Leff ¼ f2ð∂μUðxÞÞð∂μUðxÞÞ; ð59Þ

with

UðxÞ≡ f−1UðxÞ†Φ0UðxÞ; ð60Þ

where UðxÞ is the space-time dependent SUðNÞ-
transformation matrix,

UðxÞ ¼ exp ½−iθjðxÞTj�: ð61Þ

Up to second order in θjðxÞ s and leading order in 1=N, the
Goldstone Lagrangian can be written as

Leff ≃
1

4
f2
X
j

ð∂μθjÞð∂μθjÞ: ð62Þ

A. Vacuum bubbles

Due to the degeneracy of vacua, there also exist the
domain wall configurations separating them,

ΦðxÞ ¼ ϕðxÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN − 1Þp diagðN − 1;−1;…;−1Þ; ð63Þ

where the function ϕðxÞ interpolates between 0 and f.
We shall be interested in a spherically symmetric bubble
(closed wall) of ϕ ¼ f vacuum embedded in ϕ ¼ 0 one.
Let us first consider the following configuration,

Φ ¼ ϕðr; tÞ
f

Φ0: ð64Þ

The field ϕðr; tÞ satisfies the following equation of motion:

∂
2
tϕ − ∂

2
rϕ −

2

r
∂rϕþ ∂V

∂ϕ
¼ 0; ð65Þ

where

VðϕÞ ¼ α

2
ϕ2ðϕ − fÞ2: ð66Þ

The boundary conditions are such that for t ¼ 0,
ϕðr ¼ ∞Þ ¼ 0 and ∂tϕjt¼0 ¼ ∂rϕjr¼0 ¼ 0.
If the initial radius of the bubble satisfies R ≫ m−1, then

red the initial configuration can be approximated by

ϕðrÞ ¼ f
2

�
1þ tanh

�
mðR − rÞ

2

��
: ð67Þ

The bubble wall has a thickness δw ≃m−1 and a tension,
σ ≃m3=ð6αÞ. Order of magnitude wise, this remains true
also for thick-walls bubbles for which R ∼ δw.
In the interior of the bubble, the SUðNÞ symmetry is

broken spontaneously down to SUðN − 1Þ × Uð1Þ. Due to
this, there are M ¼ 2ðN − 1Þ gapless Goldstone species
localized within the bubble. These species do not exist
outside of the bubble, since SUðNÞ symmetry is restored
there.
As a consequence, the bubble has a large micro-

state degeneracy. This degeneracy follows from sponta-
neously broken SUðNÞ symmetry, since a bubble obtained
from (63) by an arbitrary red and general SUðNÞ trans-
formation U,

ΦðxÞ → U†ΦðxÞU; ð68Þ

represents a classical solution of the same energy.
In quantum theory, the number of degenerate microstates

is not infinite, since only the orthogonal states must be
counted. These states are obtained by redistribution of the
constituent quanta of the bubble among different SUðNÞ
flavors, which (in large-N) amounts to the following
number of degenerate microstates [4],

nstates ≃
�
1þ sðRÞ

2N

�
2N
�
1þ 2N

sðRÞ
�

sðRÞ
; ð69Þ

where the quantity sðRÞ ¼ 4πðRmÞ3=α is the time-
averaged space integral of red ϕ2ðr; tÞ over an oscillation/
pulsation period. This quantity effectively measures the
mean occupation number of constituent quanta of the
bubble soliton viewed as a coherent state [37].
Taking the maximal value of N given by (53), for thick-

wall bubbles R ∼ 1=m, we get the following expression for
entropy,

S ∼ N ∼
1

α
: ð70Þ

It is clear that this expression represents the area (∼1=m2)
in units of the Goldstone scale f. Thus, for thick wall
bubbles the entropy saturates the area-law bound (4).
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For R ≫ 1=m, the entropy is

S ∼ N lnðmRÞ: ð71Þ

Due to the above degeneracy, the bubble represents a
system of enhanced capacity of the memory storage. The
memory modes are Goldstone modes θj. The master mode
is the radial mode, ϕðxÞ.
Setting other components to zero, the effective

Lagrangian of Goldstone modes and of the radial mode
ϕ is given by

Leff ¼
1

2
∂μϕ∂

μϕþ 1

2
ϕ2ð∂μUðxÞÞð∂μUðxÞÞ − VðϕÞ: ð72Þ

The Goldstone modes are well defined, unless ϕ ≠ 0.

B. Stabilization by memory burden

We can now observe the stabilization by the memory
burden effect. In this, we shall closely follow [10], where
this effect was studied. This effect requires that a nonzero
information pattern is stored in nonzero frequency excita-
tions of Goldstone modes. That is, some of the Goldstone
modes (i.e., the memory modes) of nonzero frequencies are
occupied to numbers na.
On such a state, jpi≡ jn1; n2;…; nMi, the measure of

the memory burden effect is the expectation value,

hpjð∂μUðxÞÞð∂μUðxÞÞjpi: ð73Þ

In order to understand the effect, let us first consider a
classical configuration (60) with

U ¼ eitωjTj
: ð74Þ

It is easy to see that this gives the equation

∂
2
tϕ − ∂

2
rϕ −

2

r
∂rϕ − ω2ϕþ ∂V

∂ϕ
¼ 0; ð75Þ

with

ω2 ≡XM
j¼1

ω2
j : ð76Þ

Different patterns ðω1;ω2;…Þ can be obtained from one
another by SUðN − 1Þ transformation, which leaves the Φ0

invariant.
The above equation always has a stationary bubble

solution with time-independent ϕðrÞ. The asymptotic
values are ϕð∞Þ ¼ 0 and ϕð0Þ ≠ 0. Since various patterns
ðω1;ω2;…;ωMÞ are related by a symmetry transformation,
it is sufficient to discuss the case ωj ¼ δj1ω and later
generalize to different patterns.

In the thin-wall limit, R ≫ 1=m, the profile of the bubble
is given by (67), where the radius R can be determined by
extremizing the energy of the bubble as function of R,

E ¼ 2π

3α
m3R2ð1 − Ṙ2Þ−1=2 þ 2π

3α
m2ω2R3; ð77Þ

subject to the condition that the quantity

Q ¼ 2π

3
f2ωR3 ¼ 2π

3α
m2ωR3 ð78Þ

represents a conserved charge. This determines the radius
of the stationary bubble as

R0 ¼
2

3

m
ω2

: ð79Þ

Correspondingly, the energy of the bubble is

E0 ¼
ω

α

m5

ω5

�
40π

81

�
: ð80Þ

As already discussed in [10], the stationary bubble
solution can be mapped on a Uð1Þ nontopological soliton
or a Q ball [38–40] formed by a complex scalar with
modulus ϕðrÞ and the Uð1Þ-charge Q given by (78) (for
some implications of Q balls, see, e.g., [41–48]). However,
despite the similarity of classical solutions, such a soliton
will not exhibit a significant microstate degeneracy and will
not represent a system of enhanced capacity of information
storage. Correspondingly, the charge Q cannot be associ-
ated with any information pattern. For a significant micro-
state degeneracy, having SUðNÞ symmetry is crucial. Only
in such a case the total charge Q can be distributed among
an exponentially large number of memory patterns.
The stationary bubbles carrying arbitrary patterns are

obtained by SUðN − 1Þ transformations and have identical
macroscopic features such as the energy and the radius.
However, they have different characteristics with respect
to an asymptotic probe with fixed SUðN − 1Þ quantum
numbers relative to which the rotation is performed.
In other words, the information is stored in SUðN − 1Þ

rotations of a pattern relative to a fixed observer. Obviously,
all rotated bubbles have identical energies, but they are
distinguished by the observer who can perform a scattering
experiment using a fixed probe.
The stationary bubble represents a bubble stabilized by

the memory burden effect. In terms of occupation numbers
of Goldstones, nj, the quantities ωj read

ω2
j ¼ ωnj

3

2πf2R3
0

: ð81Þ

From the quantum perspective, it is illuminating to express
the energy of the bubble in terms of the occupation
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numbers of the radial (master) mode, Nϕ, and of the
Goldstone modes

NG ≡XM
j¼1

nj: ð82Þ

Splitting the energy of the stationary bubble (80) into two
contributions, we have

E0 ¼ Emem þ Ems; ð83Þ

where

Emem ¼ ωNG; with; NG ≡ 1

α

m5

ω5

�
16π

81

�
; ð84Þ

is the energy of memory (Goldstone) modes, whereas

Ems ¼ mNϕ; with Nϕ ≡ 1

α

m4

ω4

�
8π

27

�
ð85Þ

is the energy of the master (radial) mode ϕðrÞ. At the
stationary point we have

Emem ¼ 2

3
Ems: ð86Þ

Notice that this reproduces the generic equation (44)
with q ¼ 3=2.
From (78) and (84) it is easy to notice that we have

Q ¼ NG: ð87Þ

That is, the classical charge in quantum theory counts the
total occupation number of Goldstone modes. Various
memory patterns are obtained by distribution of NG among
M ¼ 2ðN − 1Þ flavors of Goldstones.
Next, notice that the memory pattern with the same NG

in the SUðNÞ-invariant vacuum would cost

Ep ¼ mNG; ð88Þ

since in this vacuum the minimal energy gap of any
elementary excitation with SUðNÞ quantum number is m.
Taking this into account, we can evaluate the memory-

efficiency coefficient (19), which gives

ϵ ¼ ω

m
≃
2Nϕ

3NG
: ð89Þ

In the last equality we have expressed ω=m through
occupation numbers via (84) and (85). This reproduces
Eq. (45) with q ¼ 3=2. We thus see that the vacuum bubble
realizes the type-I memory burden effect, with q ¼ 3=2.

The type-I nature of the memory burden is not surpris-
ing, since in the SUðNÞ invariant vacuum, the energy gaps
of all excitations are equal to m.
The stationary bubble represents a bubble stabilized

by the memory burden. Notice that for such a bubble
we have

Q ¼ NG ¼ π

α
ðmR0Þ5=2

�
2

3

�
3=2

: ð90Þ

A bubble with an insufficient memory burden will not be
stationary. In particular, such is a bubble with the radius
larger than the critical value R ≫ R0. Obviously, for such a
bubble,

NG ≪
π

α
ðmR0Þ5=2

�
2

3

�
3=2

ð91Þ

and

Emem ≪
2

3
Ems: ð92Þ

The memory burden is insufficient for stabilizing such a
bubble. Instead, as shown in [10], the bubble starts to
collapse and oscillate emitting energy. This decreases
the occupation number of the master mode. This process
shall continue until the balance is restored to (86). At this
point the bubble gets stabilized by the memory burden
effect.
In particular, the initial bubbles of equal energies but

different values of NG will evolve into the stabilized
bubbles of different energies as we shall discuss next.

C. The energy splitting by memory burden

We wish to discuss the following important effect which
is characteristic of the phenomenon of memory burden
stabilization. Namely, the initially degenerate energy states
with different memory patterns NG ≠ N0

G, upon stabiliza-
tion by the memory burden, split in energies.
Let us start with two initial bubble states with different

values of the Goldstone occupation numbers, NG and
N0

G, respectively. We assume that both numbers are sub-
critical (91). Thus, initially the memory burdens are
dynamically insignificant. According to (93), the contri-
bution to the energy from the memory modes is

Emem ¼ ωNG ∼ NG

ffiffiffiffi
m
R

r
: ð93Þ

Notice that order-of-magnitude wise this expression holds
also for (91), since ω ∼

ffiffiffi
m
R

p
.

Correspondingly, the energy splitting between the two
bubble states with fixed difference, ΔNG ≡ NG − N0

G,
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ΔE ∼ ΔNG

ffiffiffiffi
m
R

r
; ð94Þ

vanishes for R → ∞. Thus, for sufficiently large and equal
radii, the two bubble states are nearly degenerate.
Notice that the states with different NG are fully legiti-

mate microstates of the same macrostate. Semiclassically,
the detection of the Goldstone charge is not possible. In
quantum theory any attempted measurement is suppressed
by powers ofΔNG=Nϕ, which vanishes in the semiclassical
limit. Thus, the microstates with different NG are equally
indistinguishable semiclassically as the microstates with
equal NG but relatively rotated in SUðNÞ space.
Now, since the occupation numbers of Goldstones,

NG; N0
G, are subcritical (91), the bubbles will evolve in

time by oscillating and emitting energy until they get
stabilized by the memory burden effects. Since during this
process the radii diminish and correspondingly the Gold-
stone frequencies (ω) grow, so does the energy splitting
between the two bubble states.
At the stabilization point, the bubble energies can be

highly split if the relative difference of Goldstone numbers
is large. For example, for ΔNG=NG ∼ 1, the energy split-
ting between the two bubble “remnants” is of order their
masses. Of course, the energy of a remnant plus radiation is
the same in both cases.
To summarize: For a soliton that has not yet entered the

memory burden stabilization phase [i.e., an underburdened
soliton with (91)], we can distinguish the two types of
degenerate microstates: (1) the microstates that have the
same memory burden NG and (2) the microstates with
different values of NG.
The first category belongs to the same orbit in SUðNÞ

space and, therefore, remains degenerate throughout the
bubble evolution. However, the energies of the second
category undergo the splittings according to (94).
The above situation is generic for the memory burden

effect. In particular, as we shall discuss, the same phe-
nomenon takes place in black holes. There too, after
entering the memory burden domination phase, the masses
of initially degenerate black holes with different informa-
tion patterns can become vastly different—see Fig. 1 for a
schematic visual. We shall also demonstrate this effect
numerically in Sec. VI.
Finally, we wish to stress that while the memory burden

stabilizes the systems, the converse is not excluded: the
stable systems with very little information capacity can
happily exist. An example of such a system would be the
Q ball with the Uð1Þ charge. Although the Uð1Þ charge
carries very little information, it nevertheless can stabilize
the system dynamically.
The important thing about the systems with high

information content (such as saturons) is that they have
no choice: the memory burden effect stabilizes them
necessarily.

IV. MEMORY BURDEN IN BLACK HOLES

Already in the original papers on memory burden
[1,3,22] it has been argued that black holes must be
subjected to this phenomenon. Furthermore, the analysis
of [3] revealed that the stabilizing nature of the effect, with
high likelihood, leads to the prolongation of black hole’s
lifetime. Here, we shall further scrutinize this question in
light of our analysis.
Let us first structure the arguments that justify the

presence of the memory burden effect in black holes.
This conclusion can be reached by three independent lines
of evidence.
The first line developed in [1,3] is based on the

universality of the phenomenon. The review of the effect
given in Sec. II makes it evident that it is impossible to
construct a Hermitian Hamiltonian with efficient informa-
tion storage that avoids the memory burden phenomenon.
The fact that the black holes are efficient (in fact, the most
efficient) storing devices, indicates that the effect must be
present there.
Further justification is provided by the analysis of [10]

and by its continuation in the present work. This analysis
shows the presence of the memory burden effect in
solitonic saturons. These objects share with black holes
all the known key features such as information horizon,
area-law entropy, thermal decay, and Page-like time of
information retrieval. This gives a strong indication that
memory burden must belong to this list.
Finally, the third line of reasoning is based on hints from

a microscopic theory, a so-called black hole’s quantum N
portrait [14–16]. According to this theory, a black hole

FIG. 1. Schematic view of the splitting of energies of the
microstates of either a soliton or a black hole, time evolved from
initially (nearly) degenerate microstates with different memory
patterns. The solid lines represent the energies of the remnant
states, whereas the black dashed line represents the total energy
of the system (the remnant mass plus the energy of emitted
radiation). Notice that each solid line is not a single state but
accounts for all the states that remain degenerate due to identical
memory burdens. The degeneracy can be exact due to symmetry.
For example, such are the vacuum bubble microstates related by
SUðNÞ symmetry. The line can also exhibit a finer structure, in
case the symmetry is only approximate.
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represents a saturated coherent state (or a condensate) of
gravitons, at criticality. The term criticality implies that the
mean occupation number is inverse of the gravitational
coupling. In the present language, these coherent gravitons
play the role of a master mode. This theory offers a micro-
scopic explanation of black hole properties within the
domain of calculability.
In particular, the entropy of a black hole is explained by

the emergence of M “flavors” of the gapless modes in the
above critical state of gravitons. These can be described
as Bogoliubov/Goldstone modes of the critical graviton
condensate [15,49–51].
In the present language, they represent the memory

modes. In our reasoning of establishing the nature of the
memory burden in black holes, we shall borrow only very
general features of N portrait, as this was done in [1,3]. We
shall stay strictly within the calculability domain of the
QFT framework.
Namely, we shall rely on the following rather conser-

vative (and natural) starting points:
(1) Both memory and master modes of a black hole are

describable as modes of the graviton field. Although
additional field species can certainly exist, e.g., in
form of string excitations, they do not change the
essence of the effect (although, can lead to certain
modifications [24]). We come to the role of the extra
species later, in Sec. IV C.

(2) The memory modes can be classified according to
the symmetries that are left unbroken by the black
hole metric. This is analogous to how in our bubble
example the Goldstone memory modes have been
characterized by their quantum numbers under the
SUðN − 1Þ ×Uð1Þ unbroken symmetry.

Equipped with the above guidelines, we shall discuss the
black hole memory burden effect. Let us first identify the
master and memory modes.
The identification of the master mode is easy, since at the

initial times, this mode has macroscopic occupation num-
ber and is therefore well-described classically. Moreover,
since the Bogoliubov approximation works for such modes,
as a control parameter we can use the suitable character-
istics of the classical metric. Basically, the master modes
are Fourier harmonics of the classical metric. For a black
hole of radius R, the dominant contribution comes from the
modes of energy gap,

mϕ ∼ 1=R: ð95Þ

Of course, the black hole metric viewed as the coherent
state of gravitons is a distribution peaked around the above
value [14]. For our purposes, it suffices to consider a single
mode rather than a sharply peaked distribution.
Let us now identify the memory modes. As already said,

we shall only use very general points outlined above. We
know that the memory modes must come from graviton

modes and can be classified according to symmetries of the
classical metric. Moreover, the number of their flavors, M,
must be

M ∼ SBH; ð96Þ

where SBH is the Bekenstein-Hawking entropy which for a
black hole of mass MBH and radius R is [2]

SBH ¼ πðRMPÞ2 ¼ 4π
M2

BH

M2
P
: ð97Þ

There exist unique candidates fulfilling the above require-
ments that can emerge as the assisted gapless modes [1,33].
These are the modes of the graviton corresponding to
various spherical harmonics, Ylm. Only the harmonics with
momenta up to cutoff of the theory must be included, since
only such modes are the legitimate (weakly coupled) QFT
degrees of freedom. In Einstein gravity, with no additional
light species besides graviton, the cutoff is MP. We thus
need to include all possible spherical harmonics of graviton
up to the Planck mass.
For a black hole of radius R, this counting gives the

multiplicity of memory flavors that scales as the area of a
black hole in units of MP,

M ∼ ðRMPÞ2; ð98Þ

and therefore precisely matches the entropy demand
(97) [1,33].
As an additional supporting evidence, the above fully

matches the counting of gapless modes from the black hole
symmetries derived in [51,52].
Of course, the majority of modes comes from the highest

spherical harmonics. We thus identify the gapless memory
modes of a black hole as the modes of angular momenta
∼MPR. Their counterparts in the asymptotic vacuum are
the same angular harmonics Ylm of a free graviton.
However, these carry the energy gaps mj ∼MP.
Notice that the above explains why a black hole cannot

emit information efficiently [1]: in order to “escape” from a
black hole via a quantum process, a memory mode has to
climb an extremely high energetic barrier.
The existence of modes with the same Ylm but with

largely split energy gaps inside and outside of a black hole
is not surprising. The black hole breaks the Poincare
symmetry at the scale MP [4]. Due to this, the memory
modes of a black hole, despite having the high orbital
momenta, are gapless, whereas the asymptotic modes with
similar momenta are gapped by ∼MP.
The above knowledge suffices for adapting the generic

Hamiltonian (11) to a black hole situation. The effective
Hamiltonian of black hole memory and master modes is
described by (11) with the understanding that index j labels
spherical harmonics Ylm. Correspondingly, the intrinsic
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gaps of master and memory modes are

mϕ ∼
1

R
and mj ∼MP; ð99Þ

respectively. The coupling of the master mode to memory
modes is set by the standard gravitational coupling αgrðRÞ
evaluated at scale R,

1

Nϕ
∼ αgrðRÞ ∼

1

ðRMPÞ2
: ð100Þ

As pointed out in [14], this coupling is equal to the inverse
of the Bekenstein-Hawking entropy SBH. This is not an
accident. As explained in [4], this equality puts SBH in
accordance with the generic bound on entropy (3).
Now, in this description, the initial state of a classical

black hole corresponds to the critical state nϕ ¼ Nϕ in
which the memory modes are essentially gapless, ωj ¼ 0.
As already discussed in [1], this explains why at the

initial stages of evaporation, the black hole information
cannot come out. Indeed, due to the conservation of the
angular momentum, translating the information stored in
the memory modes into the asymptotic quanta, would
require radiating the quanta of energies ∼MP, which is not
possible. In addition, a pair-wise annihilation of memory
modes of frequencies ω into the soft (low angular momen-
tum) external quanta is suppressed as ∼ω5

j=M
4
P and is

negligible (see below). Thus, neither the emission of the
memory modes nor their conversion into the external
quanta is an option.
At the same time, the black hole can emit the master

mode via quantum scattering, reproducing the ordinary
Hawking radiation [53]. Basically, the process is a con-
version of a master mode into asymptotic quanta of similar
frequencies. This process is unsuppressed, since the occu-
pation number of the master mode is equal to its inverse
coupling. As a result, the suppression by powers of
coupling is compensated by the occupation number, and
the rate of emission is [14]

Γms ∼
1

R

n2ϕ
N2

ϕ

∼
1

R
; ð101Þ

which reproduces the Hawking rate. This simple quantum
explanation of the Hawking effect is one of the successes of
N portrait [14]. However, due to generic nature of the
effect, it holds for arbitrary saturons [9,10].
Since we start in the critical state nϕ ¼ Nϕ, at the initial

stages the memory burden effect is weak. At this stage,
Eq. (101) is a good approximation. It tells us that, on
average, nϕ decreases by Δnϕ ∼ 1 over time Δt ∼ R.
As is obvious from (11), in general, decreasing the

occupation number of the master mode by Δnϕ affects
its gap by

Δmϕ ∼
q
Nϕ

�
Δnϕ
Nϕ

�
q−1

Ep: ð102Þ

Taking into account (99), (100) and NG ∼M ∼ SBH, this is
of the order

Δmϕ ∼ q

�
Δnϕ
Nϕ

�
q−1

MP: ð103Þ

The memory burden effect becomes dominant by the time
when Δmϕ ∼ 1=R, which gives

Δnϕ
Nϕ

¼ ðqMPRÞ−
1

q−1: ð104Þ

The same expression is obtained from (47) after taking into
account (99).
The effective gaps of the memory modes also grow with

Δnϕ as

ωj ¼
�
Δnϕ
Nϕ

�
q
MP; ð105Þ

and by the time of validity of (104), they become

ωj ¼
1

qR
1

ðqMPRÞ
1

q−1
: ð106Þ

In the above expressions, the quantities R and SBH must be
understood as the parameters of the initial black hole.
We must remember that we track the evolution of an

initial state with a given memory pattern. The microstate
entropy SBH accounts for the degeneracy of various
patterns. However, as the evolution goes on and memory
modes gain energy gaps, the initially degenerate memory
patterns get split in energy. Of course, the total energies of
the systems, i.e., black hole plus radiation, obtained by
evolving different initial patterns, are degenerate. However,
the fractions of energy that remain stored in the black hole
relative to radiated portion are different for states evolved
from different initial patterns (see Fig. 1).
Equations (104) and (106) determine the onset of the

memory burden using as a clock the change in occupation
number of the master mode Δnϕ. Since before the onset of
the memory burden effect, this number changes by usual
Hawking emission, essentially it measures the time in units
of R: t ¼ ΔnϕR.
It also measures the onset of memory burden in terms of

the emitted fraction of the initial mass of a black hole
as ΔMBH=MBH ¼ Δnϕ=Nϕ.
Equations (104) and (106) depend on an unknown

parameter q. However, independently of the precise value
of this parameter, the tendency is very clear: the domination
of the memory burden takes place latest by the time the
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black hole radiates away about half of its mass. That is, the
expected upper bound on memory burden time of a black
hole is

tM ∼ SBHR: ð107Þ

This is the case for relatively large q. For smaller values of
q, the memory burden can dominate sooner. For example,
for q ¼ 2, this takes place for Δnϕ ∼

ffiffiffiffiffiffiffiffi
SBH

p
, i.e., after the

time tM ∼
ffiffiffiffiffiffiffiffi
SBH

p
R.

Since the intrinsic gaps of the memory and master modes
are very different—mϕ=mj ∼ 1=ðMPRÞ—the memory bur-
den effect in black holes is type II.
The coefficient of memory efficiency for a black hole can

be estimated following the reasoning of [1]. In a black hole
of mass MBH, the energy difference between the most
distant information patterns is ∼1=R. If we would store the
same pattern by a nongravitational device of size R on top
of a flat space vacuum, then the energy cost would be of
order Ep ∼MpSBH. The memory-efficiency coefficient at
the beginning of evaporation, when black hole is still
classical, is therefore

ϵinitial ∼
1

ðMPRÞSBH
∼

1

S
3
2

BH

: ð108Þ

By the onset of the memory burden effect this becomes

ϵMB ∼
1

RMP
∼

1

S
1
2

BH

: ð109Þ

In the next section we discuss the mass splitting among the
stabilized black hole states.

A. Spread of black hole masses

Since the mass of a stabilized black hole is a function of
the memory burden Ep, the prediction is that initially
degenerate black holes over time become spread in masses,
as schematically given in Fig. 1. This is similar to the
evolution of equal mass vacuum bubbles with different
values of NG.
In order to share with the reader a general sense of

scaling, let us analyze an oversimplified toy model in
which the memory modes of a black hole are treated as
independent qubits with the Hamiltonian (11) with equal
intrinsic gaps mj ¼ MP. In this case, Ep ¼ MPNG.
Correspondingly, the memory burden effect can be mea-
sured by the total occupation number of the memory modes
NG. ForM qubits, this number is bounded by NG ≤ M and
the total number of patterns is given by nst ¼ 2M. This gives
the entropy SBH ∼M (more precisely, SBH ¼ M ln 2).
For estimating the spread in this toy model we can use

Eq. (103) and take into account that the memory burden
effect becomes significant for Δmϕ ∼ 1=R. We also take

into account that for a black holemϕ ∼ 1=R;mj ∼MP ∼M,
and Nϕ ∼M ∼ SBH. However, we keep NG as a free
parameter.
Correspondingly, for a black hole of the initial massMBH

and the memory burden NG, the relative change in mass by
the time of stabilization is

ΔMBH

MBH
∼
�

SBH
qðMPRÞNG

� 1
q−1

∼
� ffiffiffiffiffiffiffiffi

SBH
p
qNG

� 1
q−1
: ð110Þ

One must remember that the above expression is valid as
long as

NG ⩾
1

q

ffiffiffiffiffiffiffiffi
SBH

p
: ð111Þ

This inequality represents a manifestation of the general
formula (21) for a black hole. In the opposite case the
stabilization is not efficient. Thus, forNG at its lower bound
(111), the stabilization takes place at ΔMBH=MBH ∼ 1. On
the other hand, for NG ∼ SBH, we recover (104).
Equation (110) tells us that the spread in masses of

stabilized remnants is determined by the statistical distri-
bution of NG among the initial black holes. For simplicity
of estimate, let us assume that, at the time of formation,
the occupation number of the black hole master mode is
critical, nϕ ¼ Nϕ. That is, the memory patterns are strictly
degenerate. In practice, this is expected to be an extremely
good approximation, since the initial black hole is well-
described classically up to corrections ∼1=Nϕ.
In such a case, we can assume that the probability

distribution of patterns is flat, with no energy bias.
Correspondingly, the probability of a pattern with given
NG is

PNG
¼ 2−M

M!

ðM − NGÞ!NG!
; ð112Þ

which is maximal for NG ¼ M=2 with

PM=2 ∼
1ffiffiffiffiffi
M

p ; ð113Þ

and the width of
ffiffiffiffiffi
M

p
=2. On the other hand, for NG ≪ M,

the probability is exponentially suppressed as

PNG≪M ∼ 2−M
�
Me
NG

�
NG

; ð114Þ

where we dropped polynomial factors for simplicity.
Taking into account that the black hole entropy is
SBH ∼M, the above implies that the probability of forming
a black hole with memory burden NG ≪ SBH is exponen-
tially small. Thus, it is expected that the most probable
black holes are the ones with NG ∼ SBH.
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To summarize, as it is clear from Eq. (110), the change of
the black hole mass prior to its stabilization is set by NG as

ΔMBH ∝ N
− 1
q−1

G ; ð115Þ

where the coefficient of proportionality, MBHð
ffiffiffiffiffiffiffiffi
SBH

p
=qÞ 1

q−1,
is fully determined by the initial mass of a black hole. At
the same time, the memory burden NG is determined by the
mass only statistically, via (112).
This fact has potentially important observational impli-

cations since it predicts a statistical spread of ΔMBH in
addition to the initial mass distribution determined by
particularities of a cosmological scenario (see Sec. VII).

B. Fate of a black hole burdened by memory

What happens after a black hole enters the memory
burden phase requires a more detailed understanding of the
picture. The two possible outcomes were discussed in [3].
The first option is that a new classical (collective)

instability sets in and the (former) black hole evolves
through it. From our current understanding, it cannot be
excluded that due to this instability the remnant can
disintegrate via some nonlinear process.
The second (more conservative) option assumes no

immediate classical instability. In such a case, the black
hole continues to decay via a quantum process. However,
due to the memory burden, the process is extremely slow.
In [3], the remaining lifetime of a black hole was given as

τ ∼ RS1þk
BH ; ð116Þ

where k > 0 is an integer. This form follows from the fact
that the prolonged lifetime is an analytic function of SBH.
The analyticity in SBH is enforced by the requirement that
the decay rate must be analytic in occupation numbers as
well as in gravitational couplings, all of which are set by
SBH. The case k ¼ 0 (zero memory burden) would corre-
spond to a standard extrapolation of Hawking’s decay rate.
The value k > 0 can be understood from the following

argument. In order to continue its decay, the black hole
must get rid of the memory burden. That is, the excited
memory modes must get deexcited. This can only be done
by the scattering processes that involve at least a pair of the
memory modes. The memory modes must annihilate into
the modes of lower angular momenta in order to match their
energies. That is, each mode Ylm must find a partner Yl0m0

with very close values of l,m. Such pairs are extremely rare
and their annihilation rate is

Γ ∼
ω5
j

M4
P
∼

1

R5M4
P

: ð117Þ

In terms of the initial entropy, the lifetime translates to

τ ≳ RS2BH: ð118Þ

This reinforces Eq. (2), giving k ¼ 1 as the most
conservative estimate.

C. The effect of species

It is known that black holes provide a link between the
number of QFT species Nsp and the upper bound on the
scale of strong quantum gravity [54–59],

Msp ¼
MPffiffiffiffiffiffiffi
Nsp

p : ð119Þ

The expression is fully nonperturbative and cannot be
removed by any resummation of perturbative series. The
physical meaning of the scale Msp, called “species scale,”
is that a black hole of size < 1=Msp, cannot be treated
semiclassically. This can be seen from a number of
arguments.
For example, if the standard semiclassical evaporation

rate would apply to such a black hole, one would conclude
that the black hole would live shorter than its radius, which
is absurd.
Similarly, the violation of the bound (119) is excluded

by quantum information arguments [57]: a black hole of
size < 1=Msp, would have the microstate degeneracy, and
correspondingly the information storage capacity, exceed-
ing the one of Bekenstein-Hawking entropy (97). In other
words, the “species entropy” would exceed the entropy of
Bekenstein-Hawking [4].
In general, the increased number of species shortens the

standard stage of black hole evaporation by a factor 1=Nsp.
This has implication for the memory burden, since the time
for reaching this phase is correspondingly shortened [24]:

tM ∼ SBHR
1

Nsp
: ð120Þ

The effect of the species beyond this point is less certain,
since due to quantum hair, no universality in decay rates of
different species is guaranteed. In other words, the black
hole can develop a “species hair” [56]. Therefore, the
further decay of the remnant can be biased towards some of
the species.
As discussed in [18], already the formula (120) can have

important implications for PBH dark matter, as it can shift
the masses of memory burdened black holes towards higher
values. Furthermore, assuming that decay of the remnant
remains approximately democratic in species, the lifetime
in memory burden phase will subsequently be shortened by
the quantity ∼1=Nsp.
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V. QUANTUM MEMORY BURDEN VERSUS
CLASSICAL EXTREMALITY

It is well known that black holes, as well as solitons,
can be stabilized against the quantum decay by classical
charges, either Noether or topological. The term “classical”
implies that the charge is classically detectable. In other
words, the object must carry a classical “hair” with respect
to this charge.
In case of a black hole, in the light of “no-hair” theorems

[60–62], such are the charges associated with massless
gauge fields that can be measured via Gaussian fluxes at
infinity.2 Usually, the amount of charge capable of stabi-
lization is comparable to the mass of a black hole (or a
soliton).
We now wish to confront a mechanism of stabilization

of an object by a classical hair with the one of a quantum
memory burden. For achieving this, we first need to
understand the stabilization of a black hole (or a soliton)
by a classical charge in a fully quantum language of a
microscopic theory.
The first steps in this direction were undertaken in [14].

This microscopic description was further generalized to
topological solitons in [37].
In black hole’s quantum N portrait [14], a purely

gravitational black hole represents a critical coherent state
or a condensate of master mode gravitons. The typical
energy gaps of these modes are mϕ ∼ 1=R and their mean-
occupation number, nϕ, is critical, nϕ ∼ SBH.
Correspondingly, as in any other system with enhanced

information capacity, prior to stabilization, the master
modes are the main contributors into the mass of an
initially classical black hole,

MBH ∼ nϕm ∼ SBH
1

R
: ð121Þ

In this quantum picture, the existence of a classical charge
of a black hole means that, on top of the master mode,
some other mode carrying this particular charge becomes
macroscopically occupied. In other words, a second master
mode appears.
For example, the electrically charged Reissner-

Nordström black hole contains a macroscopic occupation
number of photons. These photons compose a coherent
state describing the classical electric field of the black hole.
That is, when a black hole carries a classical charge, the
“status” of a master mode is shared between the master
graviton and some other mode.
Now, as argued in [14], the occupation number of the

master graviton sets the upper bound on other occupation
numbers. That is, for a black hole the occupation numbers

of master modes satisfy the bound,

nany mode ⩽ nϕ: ð122Þ

In this way, the theory [14] provides a quantum explana-
tion of why a black hole charge can never exceed its
mass. Notice that this is true for an arbitrary saturon. In
particular, (122) is satisfied by saturated vacuum bubbles
discussed in Sec. III.
According to [14], a black hole reaches extremality when

the occupation number of a certain mode, other than the
master graviton, saturates the above bound. In this descrip-
tion, the stability of an extremal Reissner-Nordström black
hole can be viewed as the saturation of the bound (122) by
the photon constituents of a black hole.
It is intuitively clear [14] as well as evident from

computations [70] that in this case the black hole evapo-
ration must stop. The reason is that for maintaining the
saturation of the bound (122), a further lowering of the
occupation number of the graviton master mode, nϕ, must
be accompanied by the depletion of the electric field. This
is not possible without the emission of the charged quanta.
However, the fact that the black hole of size R has an
unscreened electric charge to start with implies that in the
theory the mass of the lightest charged particle,me, satisfies
me ≫ 1=R. In the opposite case, the charge would be
screened by the Schwinger effect.
Correspondingly, the quantum emission of electric

charge is exponentially suppressed, since such a process
requires a rescattering of many soft constituent quanta
(of energies ∼1=R) into a quantum of energy me ≫ 1=R.
The transition rate of such processes is bounded from
above by e−meR, as indicated by a general argument given
in [4]. This is confirmed by explicit computations of
corresponding multiparticle processes [70]. The suppres-
sion of the transitions many → few can also be extracted
from explicit computations of graviton scattering pro-
cesses [71,72]. The analogous suppression is exhibited
by scalar theories [73–80].
Thus, the characteristics of black hole stabilization by a

classical charge is the existence of a long-range classical
hair with respect to that charge. At the same time, the
quantum information pattern carried by the black hole plays
no role. For example, the extremal black holes of the same
electric charge and mass can carry information patterns of
very different content.
In contrast, when a black hole is stabilized by a quantum

memory burden, no classical charge associated with a long-
range gauge field is required. Of course, a macroscopic
“hair” emerges in form of a memory burden parameter, NG.
This parameter is in principle measurable by a scattering
experiment, but there is no inconsistency with the no-hair
properties: since the memory-burdened black hole is a
quantum object, it has no reason to respect classical no-hair
theorems. Therefore, unlike classical extremal case, there is

2The seeming exceptions, such as a classical skyrmion hair
[63–65], have been shown [66,67] to be equivalent to Aharonov-
Bohm type hair under a discrete gauge symmetry [68,69].
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no specific gauge charge or a long-range Gaussian flux
associated with the quantity NG.
The difference between the two mechanisms is also clear

from the fact that the decay of a memory-burdened black
hole is not suppressed exponentially but only slows down
as a power law (2).
Interestingly, the solitons stabilized by the memory

burden unify both features. The main reason is the exis-
tence of two types of microstates discussed above.
The first category of microstates have equal NG but are

distinguished by the relative SUðNÞ transformations. These
remain exactly degenerate even after the memory burden
sets in. The microstates belonging to the second category
are distinguished by values of NG. The energies of such
microstates get split after stabilization.
Both sets of microstates have counterparts in a black hole.

As discussed, the microstates of a black hole correspond to
degeneracy of patterns obtained by occupation numbers of
different memory modes Ylm. Among these states, there exist
both categories: with equal and distinct memory burdens. As
time elapses, the level splitting develops according to the
memory burdens they carry, as given in Fig. 1.
Another example of a classical “charge” that can

stabilize a black hole against quantum decay is the angular
momentum. The similar case in solitons reveals a certain
interesting peculiarity.
The stationary SUðNÞ bubble with nonzero spin is ob-

tained via giving the winding number n to the Goldstone
mode [11]. Basically, the matrix U in (74) is replaced by

U ¼ eiðtωþnφ=
ffiffi
2

p Þωjω Tj
; ð123Þ

where φ is the polar angle and the factor
ffiffiffi
2

p
is added to

ensure the phase continuity.
The winding of the Goldstone phase produces the

vorticity and, simultaneously, the angular momentum,

J ¼
Z

d3 x T0φ ¼ nNG ¼ nQ; ð124Þ

where Tμν is the energy momentum tensor.
The fact that the winding number n induces the spin

given by (124) has been known for Q balls with Uð1Þ
charge [47,48,81]. The remarkable thing about the satu-
rated SUðNÞ vacuum bubbles is that Eq. (124), describing
the relation between the maximal spin and the entropy, is
strikingly similar to the one satisfied by a black hole [11],

Jmax ¼ S: ð125Þ

A saturon vacuum bubble of SUðNÞ, which has entropy

S ¼ NG; ð126Þ

reproduces the relation (125) due to the limited vorticity,
n ∼ 1, that it can sustain. Attaining a higher spin would

require a larger vorticity, n ≫ 1, which would increase
the mass and the size of the bubble, thereby making it
undersaturated.
Note that the relation (125) is shared by other saturons.

For example, it is automatic in saturated baryons in QCD
with a large number of colors and flavors [5].
The same relation is shown [82] to be shared by a

saturated version of a spinning cosmic string loop (a so-
called vorton [83]).
To summarize, the saturon bubbles of maximal spin

exhibit the exact same relation between spin and entropy as
the extremal spinning black holes. At the same time, in
extremal saturon bubbles this relation reveals an explicit
microscopic meaning in terms of vorticity.
Notice also that vorticity gives a topological meaning to

the quantum stability of the extremal bubble [11]. Indeed,
the decay of a bubble via the particle emission is blocked
because of conservation of the topological winding number.
The decay is only possible if the entire vortex is ejected via
a quantum tunneling, which is an exponentially suppressed
process.
In this sense, the extremal spin represents another form

of a “classical” memory burden. As in the case of the
burden induced by a pure SUðNÞ charge, the burden
induced by the spin is due to a critical occupation number
NG of a Goldstone/memory mode. For a saturon bubble,
ω ∼m, this memory mode becomes an additional master
mode. The difference from nonspinning case is that the
macroscopically occupied memory mode has a nonzero
angular momentum.
This analogy is fully extended to black holes if we

conjecture that a spinning black hole corresponds to the one
in which a mode of a particular angular harmonic Ylm is
macroscopically occupied. In this light, it is interesting to
discuss a conjecture of [11] stating that the extremal spin in
a black hole is accompanied by vorticity, similarly to the
case of a spinning saturon bubble. Again, as in the case of a
bubble, the vorticity gives a topological explanation to the
quantum stability of the extremal black hole. In the case of
the spin, similarly to other classical charges, the extremal
black hole does carry a classical hair in form of the angular
momentum.
To summarize, there exist fundamental differences

between the black holes stabilized via classical charges and
the ones stabilized by a quantummemory burden effect. One
obvious difference is that the classical extremality is nec-
essarily accompanied by a long-range classical gauge hair.
This is not the case for a black hole stabilized by the

memory burden effect. Instead, for a memory-burdened
black hole, the hair is short range and carries no Gaussian
flux at infinity.
More importantly, a memory-burdened black hole carries

a significant quantum hair. The significance is measured by
the fact that the energy of the quantum information pattern
is comparable to the mass of the remnant.
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Such a remnant is neither a black hole nor classical, and,
therefore, is not constrained by classical no-hair theorems.
Although macroscopic, it nevertheless is a quantum entity.
This “macroquantumness” is a feature of black holes [16]
as well as of other saturons [4].
The above important difference between the quantum

memory burdened and (quasi)extremal black holes must be
taken into account when applying such mechanisms of
stabilization to light PBH dark matter. In particular, if the
naive semiclassical timescale required for approaching
extremality is longer than the memory burden time tM,
the latter effect becomes the dominant one and must be
taken into account.
In addition to differences at a fundamental level, this

will have observational consequences. For example, the
memory-burdened PBH dark matter [3,17–21] will be
subjected to the mass spread discussed in the present
paper. This spread is absent for PBHs stabilized by
extremality within the validity of semiclassical regimes,
such as discussed in [84] (and references therein).
The fundamental difference between the prolongations

of a black hole lifetime due to a classical hair versus the
quantum memory burden effect, extends beyond the
ordinary black holes. The example is provided by a black
hole smaller than the compactification radius in the
framework of large extra dimensions [85].
Such a black hole is a solution of Einstein’s equations in

high-dimensional gravity and its radius and temperature are
defined by the fundamental Planck mass, MF, which is
suppressed relative to the four-dimensional one by the
volume of extra space [85]:

MF ¼
MPffiffiffiffiffiffiffiffiffiffiffi
Vextra

p : ð127Þ

Correspondingly, the high-dimensional black holes are
colder relative to wouldbe four-dimensional black holes
of the same mass. It was proposed in [86,87] that such
black holes can serve as dark matter.
Let us confront the Kaluza-Klein (KK) hair of young

high-dimensional black holes with the memory burden
effect. Of course, the question arises solely from the point
of view of a four-dimensional observer, since from high-
dimensional perspective these are usual classical black holes.
From four-dimensional perspective, the decay of high-

dimensional black holes can be understood in terms of
species. First, as discussed in [54], Eq. (127) can be viewed
as a particular case of (119), with the role of particle
species played by KK gravitons and the role of the four-
dimensional species scale assumed by the fundamental
Planck mass Msp ¼ MF.
When evaluating the evaporation rate, we must take into

account that the black hole is smaller than the compacti-
fication radius, correspondingly, it develops the species
hair [56]. That is, the black hole sources a tower of massive

KK gravitons to which it also evaporates. The evaporation
into many KK species is equivalent to the emission of a
single high-dimensional graviton [58].
Therefore, the evaporation of a young black hole is well-

described semiclassically through a high-dimensional
Hawking process. From the point of view of a four-
dimensional observer it is an object that caries a classical
species hair [56] under KK gravitons. Such a classical hair
is fundamentally different from the quantum memory
burden that sets in at a later stage.
This is already evident from the fact that quantum

memory burden will be experienced by a high-dimensional
black hole after it gets sufficiently “old.” Extrapolating our
results, we can say that this will happen the latest by half-
decay. Therefore, for a high-dimensional PBH, the quan-
tum memory burden effect must be taken into account in
the same way as for ordinary Einsteinian black holes.

VI. NUMERICAL ANALYSIS: STABILIZATION
OF SOLITONS

We summarize here our numerical findings. We focus on
the dynamics of underburdened solitons, whose evolution,
as discussed in Sec. V, offers analogy with evaporating
black holes that are stabilized by their quantum memory.
The idea is to start with a vacuum bubble, with the value

of the charge NG given by (92). As discussed in Sec. III B,
this amount of charge is insufficient for an immediate
stabilization. In particular, for such a bubble the energy of
the memory pattern is negligible as compared to the energy
of the master mode (92), which constitutes the main source
of the energy.
Such a bubble oscillates, emitting energy and corre-

spondingly shrinking in size. We map this stage of evo-
lution on the one of a black hole before entering the
memory burden phase.
The decay process of the bubble continues up until

the Goldstone charge fulfils the condition (90). Simul-
taneously, the energy of the memory pattern catches up
with the energy of the master mode (86). Correspondingly,
the bubble is stabilized by the burden of memory. At this
point, the bubble becomes a stationary Q ball.
Let us denote the reference stationary Q-ball charge by

Qs ¼ NG and its frequency by ωs. We then vary the initial
charge by changing the frequency of constituents, while
keeping the profile fixed, to the following values
(1) ω ¼ 3ωs=4, Q ¼ 3Qs=4.
(2) ω ¼ ωs=2, Q ¼ Qs=2.
(3) ω ¼ ωs=4, Q ¼ Qs=4.
(4) ω ¼ 0, Q ¼ 0.

resulting in underburdened configurations of different NG
[therefore, not related by a SUðNÞ transformation] in the
regime (92) and (91).
Our numerical analysis supports the analytical discus-

sion of the previous sections. Namely, the bubbles of
different initial charges—but of similar energies—while
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they have analogous dynamics at initial times, are stabilized
towards Q-ball configurations of different masses.
The statement holds true for all regimes analyzed in our

study—regardless of other details such as the winding
number, the inclusion of new interactions and the thickness
of the bubble wall. This shows that the mechanism of
stabilization by memory is a general consequence of the
high-memory storage capacity of the object and is only
secondarily affected by other features, such as, for example,
saturation or vorticity. Consequently, this further supports
the prediction of Sec. III C that an analogous mass splitting
is expected in the asymptotic distribution of black holes of
equal initial masses but different memory burdens.
The rest of this section is dedicated to showing how the

above statement comes about. For numerical simplicity, we
focus on the SUð4Þ symmetric case. Unless otherwise stated,
we fix α ¼ m ¼ 1 in units of f and choose ω ¼ 0.3m. Since
we are interested in the winding n ¼ 0 and n ¼ 1 cases,
a (2þ 1)-dimensional analysis is sufficient. Furthermore,
absorbing boundary conditions are adopted. Finally, some of
the simulation visuals can be found at the following [30].

A. Winding n= 0 case

The energy density evolution is shown in Fig. 2. ForQ ¼
3Qs=4 (first panel), the system is close to the stationary
case, and therefore has a significant burden. In fact, the

bubble starts collapsing, but the information (charge) stored
within immediately backreacts on the dynamics. This, in
turn, results in an oscillatory behavior analogous to what
was already observed in [10]. The reason the bubble does
not relax to its stationary configuration is energetic. Simply,
the excitations are smaller than the mass gap outside of the
configuration. As a consequence, (almost) no charge is
emitted and the information is retained within the bubble.
This is a manifestation of the existence of the information
horizon [10]. The notion becomes exact in the semiclassical
limit which corresponds to large N.
This can be seen explicitly in the third column of Fig. 2

where the integrated energy and charge densities are shown
as functions of time (the integrated charge, corresponding
to the blue line, is obscured by the cyan curve of the
case Q ¼ Qs=2).
An analogous situation is observed in the second panel

of Fig. 2. Since in this case the initial charge is smaller
—Q ¼ Qs=2—the resulting oscillations are more pro-
nounced. Still, the burden forbids the collapse, and the
energy gap ensures that almost no charge is emitted. The
oscillatory frequency of the profile in both cases is roughly
given by R−1 as it can be qualitatively seen from the plot. A
perturbative analysis of the system energy would inform us
of this fact, as already shown in [10].
In the first panel of the second row, for Q ¼ Qs=4, the

energy of the collapse is sufficient for overcoming the mass

FIG. 2. Energy density evolution for different initial charges and winding n ¼ 0. The third column shows the integrated charge and
energy as functions of time.
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gap outside of the Q ball. As a consequence, charge is
emitted and part of the information is lost in the first
oscillation as it can be seen in Fig. 2. At later stages, the
pulsation energy becomes insufficient for exciting new
quanta, resulting in a stationary configuration with smaller
charge and radius. For analysis of such excitations in Uð1Þ
symmetric Q balls, see, e.g., [88].
Finally, in the zero charge no burden is present to stop

the collapse. The system is effectively a bubble interpolat-
ing between two degenerate vacua. Therefore, the collapse
due to the surface tension takes place within one oscillation
and is rather violent. However, for smaller values of
coupling, the oscillation can last longer.

B. Winding n= 1 case

Memory burden has an analogous stabilizing impact on
underburdened bubbles endowed with vorticity character-
ized by winding number n ¼ 1. We refer the reader to [89]
for the numerical construction of the stationary solution.
As discussed in Sec. V, vorticity is realized in terms of a

macroscopic occupation number of Goldstones under the
ansatz (123), leading to nonvanishing angular momentum
according to (124).
Since saturated bubbles with vorticity and black holes

obey the same maximal-spin bound—cf., (125)—one
might be tempted to map underburdened bubbles with

vorticity on evaporating black holes dynamically approach-
ing extremality. Of course, within the semiclassical picture,
whether or not a black hole evolves towards such point, is
determined by the particle spectrum participating in the
emission [90]. However, the semiclassical analysis does not
take into account the memory burden effect which invalid-
ates it. This must be kept in mind when mapping the
quantum evolution of a black hole on the dynamics of
underburdened bubble in our numerical analysis.
The first panel in Fig. 3 shows the evolution of energy as

a function of time for the case Q ¼ 3Qs=4. Although the
simulation is performed in two spatial dimension, for
illustrative purposes, we slice here along the x coordinate,
fixing y along the center of the vortex. The situation is
similar to the n ¼ 0 case with similar initial charge. Notice
that in this case the energy of the vortex in the central region
oscillates together with the pulsating radius of the con-
figuration. The period of pulsation also here is of order
R−1 − R being the radius of the stationary configuration
(and therefore, also the initial radius at the simulation time).
As expected, the bubble is stabilized by the conserved
charge and the angular momentum in its interior—see third
column of Fig. 3.
A similar behavior is observed in the second panel for

Q ¼ Qs=2. Indeed here the pulsations are more pro-
nounced due to the larger initial off balance between

FIG. 3. Energy density evolution for different initial charges for winding number n ¼ 1. The third column shows the integrated charge
and energy and angular momentum as functions of time.
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memory and master mode energy. Concomitantly, a mild
emission of energy and charge is observed through the
initial collapse. Notice that at the end of the simulation, at
large time, the axial symmetry is broken. Consequently,
instability mode grows in time, eventually leading to the
emission of the vortex. The numerical duration of the simu-
lation is insufficient to capture the impact of this phenome-
non on the integrated quantities in Fig. 3. However, we
have already characterized it in [12] when studying soliton
mergers. Therein, we noted that a vortex localized in the
merged configuration is unstable, therefore resulting in its
eventual ejection. Examples of such dynamics can be found
at the following [91,92].
A different behavior is observed in the first panel of the

second row for Q ¼ Qs=4. In this case, the first collapse is
extremely violent, and one might naively expect the features
analogous to the case n ¼ 0. Instead, only a negligible
charge is emitted by the configuration, which is localized in a
large ring around its center. The ring is, effectively, a slowly
rotating (quasi)oscillon. Eventually, due to the broken axial
symmetry, for t≳ 120m−1, the system fragments into
smaller Q balls [a phenomenon known in the case of
Uð1Þ-symmetric Q balls, see, e.g., [93,94] ], which cannot
be visualized due to the y cut of the plane performed in the
figure. The phase keeps rotating between the fragmented Q
balls due to the angular momentum of the configuration.
Correspondingly, significant amount of energy and angular
momentum are expelled from the configuration, as can be
visualized at the following [30] and Fig. 3 show.
Analogous dynamics, eventually leading to fragmentation

is observed also for vanishing charge (red line). Energy is
discretely emitted from the configuration as the outer wall of
the bubble squeezes the central vortex. These correspond
to the three observed pulses in the fourth panel of Fig. 3.
Characterization of both phenomena of fragmentation, as
well as vortex ejection, are beyond the scope of this work.

C. Derivative interaction case

In order to make the analogy between bubbles and black
holes maximally transparent, and to allow for a significant
relaxation of the configuration pulsations, we further
extend the system by derivatively coupling the soliton
field to a SUðNÞ-singlet scalar χ via the Lagrangian,

L ⊃
1

2
∂μχ∂

μχ þ g
2
χTrð∂μΦÞð∂μΦÞ − λ

4
χ4: ð128Þ

The above interaction term is sensitive only to the master
mode of the saturon, while leaving the charge unaffected.
The mechanism of stabilization by memory proceeds
similarly to the previous cases.
In units of m, the couplings are g ≃ 0.5 and λ ≃ 0.15 and

we further initialize χ to be vanishing. The resulting energy
density evolution, adopting analogous initial conditions
to the cases discussed in the previous subsection, are

displayed in Fig. 4. The top row shows the dynamics for
the case of winding number n ¼ 0, while the bottom
corresponds to the case with vorticity. The cases with
charge Q ¼ 3Qs=4 (first column) and Q ¼ Qs=2 (second
column) are sufficient for our discussion.
Although χ is massless, a full relaxation is not possible.

In fact, the derivative interaction sources a tadpole for χ,
which therefore localizes on the bubble support. A quartic
coupling has been added in (128), in order to tame the
growth of χ. This setup effectively generates a local mass
gap for χ of magnitude ∼ð ffiffiffi

g
p

λω2f2Þ1=3. This backreacts on
the capacity of the system to fully relax to a stationary
configuration, and constitutes the main reason we observe
oscillations—although much less pronounced—at late
times. This is in stark contrast to the case without singlet
χ of the previous subsection cf., Figs. 2 and 3, in which the
bubble simply pulsates with almost constant frequency and
amplitude.
The integrated energy confirms this behavior as shown in

the third column of Fig. 4. Clearly, significantly more energy
is emitted in the case of initial charge Q ¼ Qs=2 (red lines)
as this is further away from being stationary and, therefore,
has more energy available for the emission. In general, for
n ¼ 1 (dashed lines), the energy damping is both faster and
more efficient, due to the extra gradient energy of the bubble
background around the vortex region. Nevertheless, charge
is well conserved—within 1%—throughout the simulation
time. This is expected given the nature of the coupling, not
sensitive to the flavor of the bubble.
Compared to the case without χ, the charge and the energy

of the bubble are seen to be significantly more oscillatory.
Notice that the derivative interaction leads to a redefinition of
charge by a factor 1þ gχ. In fact, the oscillatory behavior
is seen in correspondence of χ oscillations on the bubble
support. The effect is larger at the beginning of the simulation
since the χ field is very far from equilibrium and this leads to
violent oscillations, modestly challenging the capabilities of
our numerical implementation (as expected, given that we
are dealing with a derivative interaction term).3

3In order to be exactly charge and energy conserving, an
indirect inversion method should be used when computing the
time-evolution involving a matrix of both ϕ and χ at each lattice
point. This is not very efficient, as a huge matrix should be
inverted at once, leading to a significant restriction on the lattice
dimension. Instead, we adopt a direct method, based on finite
difference, and compute each tþ 1 component of the field
restricting to neighboring points from time slices at t and
t − 1, t being the index characterizing the step number. In
practice, an exact method for the ϕ field evolution is used,
evaluating all time derivatives with central scheme at the time
slice t and using it to obtain the tþ 1 component. However, then
to update the χ field it becomes necessary to use a backward
derivative for source term proportional to g. This induces an error
in our algorithm dependent on the time step size which, we
verified, reflects—partly—the amplitudes of the peaks in the first
panel of the third column of Fig. 4.
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Finally, analogously to the case of the previous sub-
section, in the last panel we can observe the onset of the
vortex ejection phenomenon towards the final stage of the
evolution.

D. Thick-wall regime

So far, our numerical analysis focused on bubbles in the
thin-wall regime. Although such bubbles are undersatu-
rated in terms of the bound (4), they nevertheless represent
the systems of enhanced capacity of information storage.
This is fully sufficient for understanding the key features
of the memory burden effect and mapping it on black holes.
In fact, the thin-wall bubbles are very well suited for
capturing the type-II nature of the black hole memory
burden effect.
On the other hand, in the thick-wall regime the

bubble=Q-ball represents a saturon [see discussion around
Eq. (69)]. This has advantage of reproducing the feature of
a black hole in terms of the area-law scaling of entropy (4).
Therefore, we shall also study this case.
As we will see, at a qualitative level, statements

analogous to the ones of the previous subsection hold also
in this regime, providing further evidence for the generality
of the stabilization by the burden of memory. However,
there are some quantitative differences, since the memory
burden effect in thick-wall bubbles is of type I.

The two panels in the third column of Fig. 5 show the
energy and the charge of the configuration as functions of
time for the four cases of underburdened bubbles, corre-
sponding to the four different colors and compare the cases
without (continuous) and with (dashed line) the derivatively
coupled singlet χ. For simplicity, we focus on the case
of zero winding. Moreover, we chose ωs ¼ 0.8m, while
keeping other parameters unchanged.
One notable feature in the thick wall regime is that the

constituents within the bubble have larger frequency.
Therefore, it is easier to excite modes above the asymp-
totic mass gap, as compared to thin-wall case. This, in
turn, leads to a progressively larger relative emission of
charged particles as the initial charge of the configuration
decreases. This is due to the fact that the system is in the
type-I regime, which, for larger ω, has a worse storing
efficiency—see Eq. (89).
Remarkably, charge emission seems alleviated in pres-

ence of χ field, as another channel becomes available for
relaxation, allowing the system to reach equilibrium while
retaining information. On the other hand, a significant
amount of pulsation energy is depleted due to the presence
of the singlet.
A further comment related to the behavior of the system

at small and vanishing charge (green and red line, respec-
tively) is due. In this case, the system does not collapse,
as opposed to the thin wall scenario. Instead, only a small

FIG. 4. Energy density evolution for different initial charges for winding number n ¼ 0 (top row) and n ¼ 1 (bottom row) for
nonvanishing interaction with derivatively coupled singlet χ. Third column shows the integrated charge and energy as functions of time.
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fraction of the initial energy is emitted; the reason being
that the “oscillon” configuration is not sufficiently excited
to produce asymptotic quanta. This basically results in
stationary configurations. Equally stated, the oscillation
frequency of the oscillon is smaller than the asymptotic
mass gap.
For completeness, we report in Fig. 5 also the energy

density evolution of underburdened bubbles in the thick-
wall regime for the winding numbers n ¼ 0 (first row) and
n ¼ 1 (bottom row). In the left column the singlet coupling
is g ¼ 0, while in the central column g ¼ 0.6. In the n ¼ 1

case, we can observe a marginal energetic emission due to
the presence of the singlet χ channel of about 5%–10% of
its total energy.
Noticeably, in the third panel, a vortex ejection takes

place at t ≃ 150m−1. Correspondingly, the configuration
looses about 40% (30%) of its initial energy (charge).
Moreover, since the vortex is responsible for the spin, its
ejection causes a drop of about 90% of the total angular
momentum (we, once gain, refer the reader to [12] for a
detailed discussion of this phenomenon). In the case of
derivative interaction (central panel) the ejection takes
place later, towards the end of the simulation time,
indicating that the derivative coupling can stabilize the
vortex within the Q-ball support.

VII. IMPLICATIONS AND OUTLOOK

The goal of the present paper was to further investigate
the physical nature and the extent of universality of the
memory burden phenomenon [1,3]. After introducing the
essence and generic features of the phenomenon, we have
studied its manifestations in solitons building up on the
previous work [10].
We have established a close correspondence with the

expected features of the memory burden phenomenon in
black holes. In this analysis, we took a double approach. On
one hand, following [1,3], we have modeled the memory
burden effect in black holes relying exclusively on their
well-established features. These features unambiguously
place black holes in the category of objects of enhanced
capacity of information storage susceptible to the memory
burden effect.
On the other hand, we used a microscopic theory of

black hole’s quantum N portrait [14,15] as the reference
point for the consistency checks of our results.
The emerging picture speaks in favor of close simila-

rities between black holes and other objects of enhanced
capacity of information storage, such as the solitonic
saturons [4–12].
We have confronted the stabilization via memory burden

with the stabilization by means of the classical hair and

FIG. 5. Energy density evolution for different initial charges for winding number n ¼ 0 (top row) and n ¼ 1 (bottom row) for
vanishing (left column) and nonvanishing (central-column) interaction with derivatively coupled singlet χ. The third column shows
energy and charge evolution as functions of time for n ¼ 0 winding.
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outlined the fundamental differences between the two
mechanisms.
We have predicted that the memory burden effect

induces the mass splitting between initially degenerate
black holes according to differences in their information
patterns.
We have performed numerical analysis for various regimes

of the solitonic memory burden, with or without the topo-
logical winding numbers. The results of these numerical
simulations fully confirm our analytic conclusions.
Let us now briefly go over some implications of the

memory burden effect and the future prospects.

A. New dark matter window for PBH

As put forward in [3], one immediate implication for
black hole stabilization by the memory burden effect is the
opening of a new window for PBH dark matter in the range
of masses below ∼1014 g. The idea of PBH goes back
to [95–97], and the proposal of PBH composition of dark
matter is also old [98] (for a review, see [99]). However,
in the standard treatment, in which one extrapolates the
Hawking regime till the very end of black hole existence,
the PBH of masses below ∼1014 g were assumed to be
excluded from dark matter, since they were expected not to
survive till the current epoch.
The understanding that black holes undergo the memory

burden effect [1] and can get stabilized by it [3] drastically
changes the standard view. PBHs in the wide range of
masses below 1014 g can now account for the entirety of
dark matter. The proof-of-concept type examples of light
PBHs (e.g., with masses ∼108 g) that satisfy all the known
constraints, were originally given in [3].
Furthermore, the possibility of dark matter in the form of

PBHs stabilized by memory burden in the mass range
above ∼104 g [corresponding to most conservative value
k ¼ 1 in (116)] was discussed in [17]. This paper proposes
an explicit cosmological mechanism for the formation of
such PBHs in the right abundance.
A further analysis of various constraints on light

(≲104 g) PBH dark matter stabilized by memory burden
was offered in two recent papers [18,19]. In particular, it
was shown that PBHs that enter the memory burden phase
prior to BBN epoch, are unconstrained from BBN and
CMB. For the most conservative estimate of the post-
memory-burden lifetime, corresponding to k ¼ 1 in (2),
these are PBHs with masses below 109 g. Such PBHs can
easily compose the entirety of dark matter. Further impli-
cations of the memory burden effect for PBHs can be found
in [20,21] (see [100] for some future prospects).
The analysis of the present paper predicts a spread in PBH

dark matter masses, regardless of their production mecha-
nism. This is due to the mass splitting of the remnants
evolving from initially degenerate black hole states, as
shown in Eq. (110) and schematically described by Fig. 1.

Let us consider a black hole, formed at time tf with initial
mass MBHðtfÞ, which entered the memory burden phase
around some time tM, prior to today’s Hubble time. For
definiteness, let us assume that the subsequent change of
the mass is negligible. For instance, this will be the case for
k > 0 and MBHðtfÞ ≳ 104 g.
However, the mass of PBH at stabilization is determined

by the memory burden that it carries (115). To the leading
order, the burden is controlled by the occupation number of
the memory modes,NG. As we have discussed, statistically,
the most probable value of this number is of the order of the
PBH initial entropy SBH. The probability of forming a black
hole with memory pattern NG ≪ SBH is exponentially
small. This implies that most of the PBHs that we observe
today as dark matter carry the memory burdens of order the
initial entropy NG ∼ SBH, with the statistical spread given
by (112). This translates as the corresponding spread in
PBH masses via (115).
In particular, PBHs of masses MBH ≲ 1014 g are sub-

jected to this spread. Notice that in case of existence of a
large number of hidden particle species, the time tM gets
shortened as (120) [24]. Due to this, the memory burden
can affect much heavier PBH dark matter [18]. Corres-
pondingly, the prediction of the mass spread will extend to
such black holes.
Notice that the spread is predicted even if the production

of PBHs is sharply peaked at a particular mass.
A schematic representation of this effect is provided in

Fig. 6, where the fraction of PBH energy density as dark
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FIG. 6. fPBH as a function of MBH. Shaded areas represent
existing constraints—we refer the reader to [19,101,102] for an
accurate description. The ones on the left follows from Hawking
evaporation and are, therefore, only mildly affected by the most
conservative estimates of memory burden effect, k ¼ 1 [see (2)].
Dotted lines represent the monochromatic distribution at for-
mation time tf . PBHs lighter than 1014 g (ignoring corrections
due to large number of species) are affected by the burden over
cosmological times, resulting in a smearing of the distribution,
with spread of order M�, for t≳ tM. The qualitative spread is
schematically shown by the red-dashed line.
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matter, fPBH, is shown as a function of the PBHmass,MBH.
The shaded areas denote the existing bounds. To explicate
our point, at formation time, tf , we consider two mono-
chromatic distributions peaked at M� ∼ 1018 g and 108 g.
The former is in the currently unconstrained asteroid

mass window where PBHs can constitute an Oð1Þ fraction
of dark matter. Ignoring a possibility of large number of
hidden particle species (120), these objects are unaffected
by their memory over the cosmological timescales.
The latter (lighter) PBH distribution, instead, lies in the

new mass window opened by the memory burden effect. At
late times, t≳ tM, PBHs are stabilized by their memory.
Consequently, the distribution—pictorially represented
by the red-dashed line—develops a spread of order M�
according to (115).
Of course, the quantitative confrontation of the model-

independent spread (115) with the model-dependent one
coming from particularities of a production mechanism can
only be performed within a specific cosmological scenario
providing such a mechanism. For example, the mechanism
of [17] is based on black hole production due to collapse of
confining strings connecting the heavy quarks and anti-
quarks. Strings are produced and stretched during inflation.
After reentering the Hubble patch, the string tension pulls
the quark and antiquark towards each other, colliding them
and forming a PBH (see [103] for a numerical simulation of
the dynamics).
This mechanism has certain intrinsic spread of PBH

masses, due to the factors such as the duration of inflation.
The memory burden imposes an additional spread (115),
due to a statistical distribution of the initial memory burden
of the type (112).
We must note that possibility of black hole stabilization

at macroscopic size due to quantum backreaction has
been suggested previously in [28]. Even if such additional
mechanisms are realized, the memory burden effect must
be taken into account regardless, since it represents a
generic physical mechanism of stabilization. Most impor-
tantly, this phenomenon is universal for systems of
enhanced information capacity and independent on par-
ticularities of a microscopic picture [1,3].4

B. Implications for inflationary cosmology

As proposed in [22,24], the memory burden effect can be
applicable to cosmological spacetimes such as de Sitter or
inflation. This is due to the fact that, just like a black hole, a
de Sitter Hubble patch of radius R represents a system of
enhanced information capacity. The evidence for this is
provided by Gibbons-Hawking entropy of de Sitter space
SGH [23], which is very similar to the Bekenstein-Hawking
entropy of a black hole (97).

In fact, treated as a coherent state of gravitons con-
structed on top of the Minkowski vacuum, the quantum
portrait of de Sitter [16,25,26,105] shares some key
features with a similar portrait of a black hole [14]. For
example, the Gibbons-Hawking radiation is a result of the
quantum depletion of the graviton coherent state.
It was suggested in [16,25,26] that the backreaction

from this radiation necessarily leads to a gradual loss of
coherence and, subsequently, to a complete breakdown of
the classical description. This happens after a so-called
quantum break time, tQ.
The concept of quantum break time was originally

introduced in [27] in the study of quantum evolution in
a prototype many-body model invoked in [15] as a toy
analog of a black hole N portrait [14]. It was shown [27]
that in the regime in which the system possesses a
Lyapunov exponent, λ, the quantum break time can be
logarithmically short tQ ∼ λ−1 lnðNÞ, where N is the occu-
pation number of constituents (in the present language, a
“master mode”). The same system, in the classically stable
regime exhibits a power-law break time, tQ ∝

ffiffiffiffi
N

p
[50].

The concept of quantum break time was applied to de
Sitter in [16,25,26] and it was argued that for a cosmo-
logical constant source the quantum break time is bounded
from above by tQ ∼ SGHR. However, for a generic source, a
shorter timescale, tQ ∼ R lnðSGHÞ, emerges.
In recent years, other aspects of the phenomenon of

quantum breaking have been studied extensively in various
setups [26,106–116].
Now, based on the universality of the memory burden

effect [1], it was argued in [22] that the phenomenon must
be operative in de Sitter and must contribute into quantum
breaking.
The idea of [22] is that de Sitter must posses memory

modes which are responsible for initially degenerate micro-
states accounted by the Gibbons-Hawking entropy. It was
concluded that, due to the depletion of the graviton cohe-
rent state via Gibbons-Hawking radiation [16,25,26], the
memory burden effect must set in, latest, by the time
tM ∼ SGHR. This claim matches the previously suggested
limit on quantum break time of de Sitter due to the loss of
coherence and self-entanglement [16,25,26]. It is also very
similar to the upper bound (107) on the memory burden time
of a black hole. In general, the memory burden effect is one
of the main engines of quantum breaking of de Sitter [22,24].
The observational signatures of the Hubble memory

burden effect still remain to be understood. In inflationary
context, it is expected to create departures from the standard
semiclassical spectrum of density perturbations, with the
amplitude increasing with the duration of inflation [22,24].
In this way, the memory burden effect provides a quantum
clock that records the entire duration of the inflation-
ary phase.
Although the analysis of the present paper was not

directly intended at de Sitter, it nevertheless supports the

4In a separate context, the memory burden effect can play an
important role in dark matter composed of nongravitational
saturons [104].
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generic expected features previously proposed in [22,24].
This motivates future studies of applications of the memory
burden effect to various cosmological backgrounds.

C. Memory burden in the Standard Model?

It was argued recently [8] that the Standard Model
contains a saturon in form of a color glass condensate
(CGC) [117]. This substance represents a saturated state of
Nglue ¼ 1=αsðQsÞ gluons where αsðQsÞ is a running QCD
coupling evaluated at a saturation scale Qs. As discussed
in [8], CGC exhibits a striking correspondence with the
black hole N portrait [14], with the gluons of CGC mapped
on the graviton constituents of a black hole.
Being a saturated state, CGC is expected to be subjected

to the memory burden effect, with potentially observable
consequences. In particular, this can be manifested in
emission of quanta by a factor of αs softer than the
saturation scale Qs [7].
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