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Numerical reconstruction techniques are widely employed in the calculation of multiloop scattering
amplitudes. In recent years, it has been observed that the rational functions in multiloop calculations greatly
simplify under partial fractioning. In this article, we present a technique to reconstruct rational functions
directly in partial-fractioned form, by evaluating the functions at special integer points chosen for their
properties under a p-adic metric. As an application, we apply this technique to reconstruct the largest
rational function in the integration-by-parts reduction of one of the rank-5 integrals appearing in two-loop
five-point full-color massless amplitude calculations in quantum chromodynamics. The number of required
numerical probes (per prime field) is found to be around 25 times smaller than in conventional techniques,
and the obtained result is 130 times smaller. The reconstructed result displays signs of additional structure
that could be used to further reduce its size and the number of required probes.
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I. INTRODUCTION

Multiloop scattering amplitudes are a cornerstone of
high-precision predictions in particle physics. These ampli-
tudes are challenging to calculate and one of the key
bottlenecks in these computations is the symbolic calcu-
lation of complicated multivariable rational functions,
which appear in the final expression for the amplitudes
as well as related results such as tables of integration-by-
parts identities (IBPs) [1,2].
In principle, calculating these rational functions only

requires elementary polynomial arithmetic: addition, sub-
traction, multiplication, and division. But the rational
functions become large at intermediate stages of the
calculation (as compared to the initial or final stages)
and so the arithmetical operations at intermediate stages
become very slow. This “intermediate-expression swell”
phenomenon is well known in computer algebra, and in that
field it has been common since the 1960s [3–7] to instead
perform such calculations numerically at sample points in a
finite field Fp or p-adic field Qp and then construct the
analytic form of the final result by interpolation techniques.
The computational time of this approach is largely deter-
mined by the number of required numerical samples, which
depends only on the complexity of the final expression and

thereby bypasses the complexity of intermediate stages.
During the past decade, finite-field methods have been
directly adopted in multiloop amplitude calculations with
much success [8–12].
The rational functions reconstructed by finite-field

methods are typically interpolated in common-denominator
form, i.e., as a ratio of two polynomials. In multiloop
calculations in recent years, it has been observed that these
rational functions, once reconstructed, can be simplified
by up to 2 orders of magnitude by partial fractioning
them [13–20]. In principle, it would be desirable and
advantageous to exploit this simplification earlier, i.e.,
during the reconstruction, so as to reduce the number of
probes required by up to 2 orders of magnitude. But as we
will show in Sec. II, the simplification under partial
fractioning is not a generic feature of rational functions,
but instead seems to be a special property of the specific
rational functions appearing in IBPs and amplitudes.
Exploiting this simplification therefore requires developing
specialized techniques that go beyond those used in generic
computer algebra calculations. This is in contrast to the use
of finite-field methods, which are the computer algebraist’s
standard solution to the widespread computer algebra
phenomenon of intermediate-expression swell.
To date, some work has been performed with the aim of

optimizing numerical reconstruction methods for high-
energy physics use cases. As will be explained in Sec. II,
it is possible to guess [18,21] the common denominator of
the rational functions in multiloop calculations, thereby
reducing the number of required numerical probes by a
factor of 2. A partial-fractioned reconstruction technique
based on very high-precision floating-point evaluations was
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presented in Refs. [22,23]. Within a finite-field context,
some benefits may also be obtained by reconstructing in
one variable at a time and performing single-variable partial
fractioning at some intermediate stages [6,24–28], possibly
in conjunction with expanding in ϵ, where D ¼ 4 − 2ϵ is
the spacetime dimension variable. Techniques based on
algebraic geometry and evaluations in Qp have been
proposed [29–31] for eliciting information about the
numerator of a rational function prior to performing a
finite-field reconstruction, and Ref. [32] mentions combin-
ing these with the methods of Ref. [22].
In this work, we present a new technique to reconstruct

rational functions directly in partial-fractioned form. Our
technique uses p-adic probes to reconstruct the rational
functions one partial-fractioned term at a time, exploiting
the simplification under partial fractioning and exposing
hints of further patterns and structure. We will apply this
technique to reconstruct one of the largest rational func-
tions appearing in the table of two-loop five-point massless
nonplanar IBPs, a highly complicated example which is at
the edge of the capabilities of current tools and methods. It
will be shown that, for this example function, our technique
requires 25 times fewer numeric (Qp) probes than conven-
tional (Fp-based) reconstruction, and leads to a 130-fold
reduction in the size of the final result.
The rest of this article is organized as follows. In Sec. II,

we give preliminary remarks to motivate our strategy. In
Sec. III we briefly describe some properties of Qp that we
use. In Sec. IV we present our reconstruction method. In
Sec. V we analyze the results and performance. A summary
and concluding remarks are presented in Sec. VI.

II. PRELIMINARY REMARKS

The focus of this work is on reducing the number of
numerical probes required to reconstruct rational functions,
since this is the dominant computational cost. This number
is independent of the choice of method for performing the
numerical probes. We therefore develop and test our
techniques by taking a large rational function for which
we have an analytic expression, and performing so-called
“black-box” probes on it. Specifically, we choose to
work with the largest rational function appearing in the
largest IBP expression used in Ref. [16] for calculating
the complete set of full-color two-loop amplitudes for
pp → γγj in massless quantum chromodynamics (QCD).
This is also the second-largest IBP expression needed for
the corresponding three-jet amplitudes of Ref. [33]. Wewill
call this rational function R�.
The inspiration for our method is the observation that, as

shown in Table I, R� becomes ∼100 times smaller after
multivariate partial fractioning, compared to its size in
common-denominator form. Thus, if everything were
known about R� except the integer coefficients in the
numerators of the partial-fractioned expression, only

14,558 free parameters would need to be fitted and so
94 times fewer numerical evaluations would be required
compared to conventional reconstruction techniques. The
aim of this work is to achieve a speedup of this nature
without requiring any prior knowledge about R�.
The denominator of the common-denominator form of

the rational function of interest is usually straightforward to
obtain because it is a product of simple factors, whose
powers can be found by performing a numerical probe at an
integer kinematic point where some of those factors are
prime numbers [18]. The factors themselves can be guessed
in a variety of ways: either by examining the symbol (if
known) of the differential equations describing the master
integrals [21], or by examining the denominators of the
rational functions in the solution to a low-numerator-rank
IBP system, or simply by trial and error.
We believe, however, that the simplification in Table I

does not follow from the mere fact that the denominator of
R� factorizes. To see this, we considered several rational
functions from the solutions to the two-loop five-point
massless IBP equations. For each rational function R we
constructed a second rational function, R̃, obtained by
taking R in common-denominator form and replacing with
random numbers all coefficients in its fully expanded
numerator, while leaving the denominator unchanged.
We observed that each R gets simplified upon partial
fractioning, and the simplification factor is largest for
the largest rational functions. Yet if we partial-fraction R̃,
no simplification occurs; indeed the partial-fractioned form
of R̃ is typically slightly larger than its common-denom-
inator form, regardless of whether it is measured using
ByteCount or the number of free numerator parameters. We
conclude that the above-mentioned simplification of R�
upon partial fractioning does not occur for generic rational
functions, but is instead a special property of R�, which
we conjecture will generalize to many IBP and ampli-
tude expressions.1 Therefore, it should be expected that

TABLE I. Simplification of R� under partial fractioning.
Common-denominator form has the numerator fully expanded
and the denominator fully factorized. Partial-fractioned form is
obtained using MultivariateApart [18] with option UseFormProgram-

>True. (See Table II for results obtained in this work.) Sizes are as
reported using ByteCount in Mathematica. The number of free
parameters is obtained by counting the number of terms in the
fully expanded numerator(s).

Form of expression Size (MB) Parameters to fit

Common denominator 605 1,369,559
Partial fractioned 4 14,558

1We emphasize that the selection of R� as a working example
was not on the basis of any such properties, but was on the
contrary because it is an exceedingly complicated expression that
is on the boundary of current computational techniques.
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exploiting this simplification will require custom tech-
niques beyond those developed for generic computer
algebra problems.
To understand the reason for the simplification in

Table I and guide a strategy for exploiting it, we applied
MultivariateApart [18]2 to several examples of R and R̃. In each
case we compared the resulting expressions3

R ¼
X
i

ni
di
; ð1Þ

R̃ ¼
X
j

ñj
dj

: ð2Þ

For all the examples studied, we observed that the sum in
Eq. (1) contains fewer terms than the sum in Eq. (2).
Furthermore, all of the terms in Eq. (1) also appear in
Eq. (2), albeit with different numerators—in other words,
fdig is a subset of fdjg. We noted that if the partial-
fractioned terms that are present in R̃ but vanish in R could
be identified in advance, it would give a large simplifica-
tion. In the case of R�, we estimated this simplification
would be a factor of 28 compared to the common-
denominator form, reducing the number of free parameters
from 1,369,559 to 48,512. For this reason, the core aim of
our strategy presented in Sec. IV is to identify, as cheaply
as possible, which partial-fractioned terms vanish. The
remaining factor of 48;512

14;558 ≈ 3.3 between this and the figure
in Table I arises because many of the partial-fractioned
terms in Eq. (1) have numerators containing fewer terms
than the most generic polynomial that could be expected;
we will leave to future work the exploitation of this further
simplification.4 In addition, our results (see Sec. V) suggest
that further patterns and structure are present, which could
be exploited in future work to obtain significant further
speedups.

III. Qp AND ITS IMPLEMENTATION

In the field of computer algebra, it is common to obtain
rational numbers not from floating-point real evaluations,
which are prone to rounding errors, but instead from
evaluations in a finite field Fp or p-adic field Qp. The

p-adic numbers Qp are an extension of the rational
numbers Q but are distinct from the real numbers R.
Reference [29] points out that p-adic fields are well
suited to studying the singular limits of polynomials and
rational functions, which is helpful for studying the partial
fractioning of rational functions as desired in this work.
Specifically, we will use the p-adic numbers to evaluate
rational functions at special points that make chosen
denominators “small” under a p-adic absolute value j · jp
(defined below), allowing the corresponding numerators to
be isolated and examined, but not small under the standard
absolute value j · j, thereby ensuring that the evaluations are
numerically stable. Introductory material on p-adic num-
bers and their use in computer algebra can be found in
Ref. [7], but here we will only mention that in this work we
rely on the following facts:
(1) Given a prime number p, any rational number can be

uniquely expanded as a p-adic series, i.e., a seriesP
m cmpm with cm ∈ f0;…; p − 1g. Such series are

analogous to power series in a small parameter, so
large powers of p are considered to be small
according to the so-called p-adic absolute value j · jp,

���� abpn

����
p
¼ 1

pn ; ð3Þ

where a, b, and n are integers, and a and b are
indivisible by p. An example of such a series
expansion is

1

2
¼ 4þ 3 � 7þ 3 � 72 þ 3 � 73 þOð74Þ; ð4Þ

where we have chosen to expand with p ¼ 7.
Equation (4) can easily be verified by multiplying
both sides of the equation by 2 and performing
carries whenever cm ≥ p. While the terms repre-
sented by the notation “Oð74Þ” on the rhs of Eq. (4)
are clearly large under the usual absolute value, they
are small under the so-called 7-adic absolute value
defined by Eq. (3) with p ¼ 7:

���� 12 − 4 − 3 � 7 − 3 � 72 − 3 � 73
����
7

¼
���� − 2401

2

����
7

¼ 1

74
: ð5Þ

(2) Elementary arithmetical operations commute with
performing p-adic expansions.

(3) Any rational number is congruent (mod p) to the
leading term of its p-adic expansion, assuming the
denominator of that rational number is not a multiple
of p. Taking the example in Eq. (4), we have

2
MultivariateApart implements the Leinartas algorithm [34],

which was also implemented in Refs. [13,35–37].
3In this work, we find it helpful to adopt a convention of

allowing no overall integer factors in the denominator of a partial-
fractioned form, instead preferring to put such factors into the

numerator, e.g., preferring
y2z
3
þ8yz2

3

ðxþyÞðx−zÞ instead of y2zþ8yz2

3ðxþyÞðx−zÞ.
4In contrast to the Oð30–100Þ simplification factors targeted

here, we note that performing single-variable partial fractioning
on these examples of R produces simplifications by only a factor
of between 2 and 12 relative to common-denominator form. The
precise factor depends on the choice of variable with respect to
which such a single-variable partial fractioning is performed.
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1

2
≡ 4 ðmod 7Þ; ð6Þ

which can be verified by multiplying both sides by 2.
There are many choices of practical methods to imple-

ment p-adic numbers on a computer. For example, just as
with the real numbers, two common options are fixed-point
and floating-point representations. While in this work we
focus on reducing the number of required probes, which is
independent of the choice of representation, let us mention
that in practice we have here chosen to represent each
p-adic number by an integer that is p-adically close to it,
simply by truncating the p-adic series. For instance, the
p-adic series on the rhs of Eq. (4) can be represented by the
integer value 1201:

4þ 3 � 7þ 3 � 72 þ 3 � 73 ¼ 1201: ð7Þ

Every p-adic evaluation in this work is performed as a
rational evaluation at an integer point chosen in this way.
Unlike floating-point (real or p-adic) calculations, rational
evaluations are exact and immune from rounding errors and
loss of precision, regardless of whether they are performed
as black-box evaluations on an analytic expression for R, as
we do here, or as step-by-step solutions of a set of IBP
equations, which is one of the applications envisaged. In
principle, rational evaluations should suffer from inter-
mediate-expression swell, but we avoid this: in this work
we surprisingly find that it is possible to use small primes
p ≈ 101 and series truncated to small powers of p, so that
we typically perform evaluations at ten-digit integer values
for the kinematic points and space-time dimension.5

Numerically solving IBPs and amplitudes at such integer
points is well within the capabilities of standard publicly
available tools that internally use finite fields or exact
integer arithmetic.

IV. METHOD

In order to exploit the observations from Sec. II, we have
designed a method to reconstruct rational functions directly
in partial-fractioned form Eq. (1), one partial-fractioned
term ni

di
at a time. A set of all possible denominators fdig is

straightforward to determine by examining the easily
obtainable (see Sec. II) denominator of the common-
denominator-form expression. As explained in Sec. II,
the speedup in this paper will arise because, for many of
the possible denominators di, the corresponding ni is zero.
Reconstructing one partial-fractioned term at a time ensures
that, if a partial-fractioned term vanishes, we can notice this

cheaply and avoid reconstructing its numerator. A key further
advantage of reconstructing one partial-fractioned term at a
time is that our method will scale well for even larger rational
functions than R�, for reasons explained in Sec. IVA 5.
Reconstructing one partial-fractioned term at a time also

has other benefits, which we foresee but will leave to
further work: for instance, noting that the bottleneck in
cutting-edge calculations is sometimes a very small number
of particularly large rational functions, we believe recon-
structing one partial-fractioned term at a time would give
maximum scope for on-the-fly observation of patterns that
can be exploited in the remaining partial-fractioned terms.
Examples of this might be the optimal choice of numerator
variables for particular combinations of denominator fac-
tors, or the appearance of commonly occurring integer or
polynomial prefactors in the numerators of some partial-
fractioned terms, or even (as we observe post hoc in Sec. V)
the appearance of identical numerators in several partial-
fractioned terms. Additionally, we believe our method of
reconstructing one partial-fractioned term at a time will
provide a powerful tool to better analytically understand—
and eventually further exploit—the simplification that
partial fractioning produces for rational functions in ampli-
tudes and IBP expressions.
Let R denote the rational function we wish to reconstruct

and let N be the number of variables it contains. We start by
observing that if we can find a special p-adic point x̄ at
which the denominator dk of one partial-fractioned term
nk=dk becomes smaller than all the others, i.e., if for
some x̄∈QN

p ,

∃ k∶ ∀ i ≠ k; jdkðx̄Þjp < jdiðx̄Þjp; ð8Þ

then evaluating the complete rational function R at that
p-adic point x̄ will give a series

Rðx̄Þ ¼ nkðx̄Þ
dkðx̄Þ

þOðp−mþ1Þ; ð9Þ

where m ¼ − logp ðjdkðx̄ÞjpÞ.6 In general, this series is
Oðp−mÞ and the coefficient of p−m gives useful information
about nkðx̄Þ.7 In particular, if nk ¼ 0, the Oðp−mÞ term will
vanish and so the leading term of the series Rðx̄Þ will be
Oðp−mþ1Þ instead. Furthermore, even when nk ≠ 0, we can
use Eq. (9) to obtain the leading p-adic digit of nkðx̄Þ, in
effect obtaining a finite-field evaluation of nk. By repeating
for other values of x̄ that still satisfy Eq. (8) for the same k,
we can gather sufficient information to reconstruct the
analytic form of nk, as we will explain below. We have

5The number of digits varies between 4 and 20. In future work
we intend to adopt a more sophisticated approach to reconstruct-
ing the spacetime-dimension variable, which we estimate would
reduce the number of digits in all our larger integer evaluation
points to around 10 digits.

6In this work, logp does not denote the p-adic logarithm
sometimes seen in the mathematical literature, but instead just an
ordinary logarithm with base p.

7The handling of rare exceptions to this is described in
Secs. IVA 4 and IVA 5.
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therefore devised a reconstruction strategy comprising
several steps, which we will summarize here and then
discuss in detail below.
(1) Find the common-denominator-form denominator

of R.
(2) Enumerate a complete set of candidates for the

denominators fdig appearing in Eq. (1). At this
stage, they are merely candidates, most of which will
later turn out to have a vanishing numerator nk ¼ 0.

(3) Choose the p-adic evaluation points.
(4) Filter the candidate denominators fdig by using

probes at the chosen points.
(5) Reconstruct the numerator of one candidate by

performing additional probes.
(6) Repeat steps 4 and 5 to reconstruct the other terms.
From this terse summary the reader might see a super-

ficial resemblance with the reconstruction procedure based
on floating-point numbers described in Ref. [22]. While
both methods seek to produce compact results, we believe
the techniques that we describe in our work offer a practical
new capability to study and maximally exploit the sim-
plification offered by partial fractioning, particularly in
cases where the rational functions are very large or where
floating-point rounding errors need to be avoided.

A. Details of the reconstruction strategy

1. Find the common denominator

Step 1 is straightforward, as explained in Sec. II above.
The obtained common denominator ΔðxÞ is typically a
product of polynomials faðxÞ, each raised to some power
νa ∈N:

ΔðxÞ ¼
Y
a

½faðxÞ�νa : ð10Þ

In our example case, since R� is a function of five-point
massless kinematics, each polynomial faðxÞ has degree 1
in the kinematic variables and space-time dimension. The
code developed in this work therefore assumes linear
factors, and we leave the extension to higher-order poly-
nomial factors to future work. Also, although not essential
to what follows, let us mention that since R� comes from an
IBP reduction into a pure basis of master integrals, each
irreducible factor in the common denominator is a poly-
nomial in either the kinematic variables or the space-time
dimension D but not both. This feature helps us streamline
some of the steps in our calculation.

2. Enumerate candidates for fdig
Having found the common denominator ΔðxÞ, we now

wish to enumerate a set of candidates for the denominators
fdig appearing in Eq. (1). Each denominator di will be the
product of the elements of a subsetGi of the factors ffag in
Eq. (10), each raised to some power μi;a ∈N, i.e.,

diðxÞ ¼
Y
b

½fbðxÞ�μi;b ; ð11Þ

where the index b is understood to run only over the factors
present in di. It is convenient to implicitly define μi;a ¼ 0

for the remaining factors fa not present in Gi. Because of
identities such as

1

yzðyþ zÞ þ
1

y2ðyþ zÞ −
1

y2z
≡ 0; ð12Þ

where y and z are generic variables, choices will need to be
made about which partial-fractioned terms to use as a basis.
The MultivariateApart package uses a basis determined solely
by the common denominator and a specified variable
ordering. Such a basis is helpful in analytic calculations
because it aids vectorized addition of partial-fractioned
expressions, but has a disadvantage in a numerical context
because the individual partial fractioned terms ni=di in its
output sometimes have higher powers μi;b of a denominator
factor fb compared to the corresponding power νb in the
common-denominator expression. In this work we find it
preferable8 to use a basis in which

μi;b ≤ νb ∀ i; b: ð13Þ

Therefore, here in step 2 we create an overcomplete basis
by enumerating a complete set fdig of candidate denom-
inators consistent with Eq. (13), without paying regard to
identities such as Eq. (12). Since in subsequent steps we
perform the reconstruction one partial-fractioned term at a
time, elements of the overcomplete basis that are redundant
due to equations like (12) will automatically get filtered
out after sufficiently many other basis terms have been
reconstructed. To create our overcomplete basis, we use
Eq. (11) to tabulate every possible diðxÞ, requiring only that
Gi ⊂ ffag and that Eq. (13) holds. Note that it is permis-
sible for two distinct denominators diðxÞ; di0 ðxÞ to share the
same factors (i.e., Gi ¼ Gi0) and differ only in one or more
of the powers μi;b; μi0;b.
For reasons of efficiency, during step 2 we discard any

denominator di if its factors fb ∈Gi cannot all simulta-
neously vanish without making all dimensionful variables
in R vanish. Such denominators are not required in our
basis since they can either be further partial fractioned, or
would get filtered out by a later step. For the same reason,
we only allow denominators to contain at most one factor
containing the space-time dimension variable.

8While this basis is helpful for reconstructing rational func-
tions in partial-fractioned form from numerical evaluations, we
do not claim it to necessarily be better for other purposes. Indeed,
the size of R� as reconstructed in our basis is a few percent larger
than in the basis of MultivariateApart.
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3. Choose p-adic evaluation points

Having generated a set of candidate denominators fdig,
we next wish to perform p-adic probes of the black-box
function R in order to identify any denominator di whose
corresponding numerator ni vanishes. Any p-adic evalu-
ation point x̄ will induce a weights vector

w ¼ f−logpðjf1ðx̄ÞjpÞ; − logpðjf2ðx̄ÞjpÞ;…g: ð14Þ
This weights vector w largely determines which partial-
fractioned term (or terms) will be picked out by a p-adic
evaluation Rðx̄Þ, since in general the contribution of a
partial-fractioned term ni=di to the series (9) will be of
p-adic order

−
X
a

μi;awa; ð15Þ

with some caveats to be described shortly. Here wa is the
component of w corresponding to the factor fa, i.e.,
wa ¼ − logpðjfaðx̄ÞjpÞ.
In this work we generate each p-adic evaluation point x̄

by first selecting a desired weights vector w, in a manner
described below, and then finding a point x̄ satisfying
Eq. (14) for that particular w. In practice, Eq. (9) may fail
to hold if the partial-fractioned form of R contains
explicit factors of p, either in a denominator or in a term
in one of the numerators. It may also fail if by chance
niðx̄Þ ¼ 0þOðpÞ for some otherwise nonzero numerator
ni. To avoid this, having selected w we probe R at three
independent points x̄1; x̄2; x̄3, each satisfying Eq. (14)
in a distinct p-adic field Qp1

, Qp2
, Qp3

respectively.
In most cases, these three probes produce identical valua-
tions − logpi

ðjRðx̄iÞjpi
Þ, and we will denote this valua-

tion as R½w�:

R½w� ¼ −logp1
ðjRðx̄1Þjp1

Þ
¼ −logp2

ðjRðx̄2Þjp2
Þ

¼ −logp3
ðjRðx̄3Þjp3

Þ: ð16Þ

If the three valuations are not identical, we adopt a heuristic
procedure whereby we perform a few additional probes
(each in a different p-adic field) until one valuation has
been obtained in three more probes than all other valuations
and in at least twice as many probes as all other valuations.
In this work, we choose pn to be the nth prime larger than
100, so p1 ¼ 101; p2 ¼ 103;….
It remains to be described how the weights are chosen.

We generate a weights vector w by first choosing an
algebraically independent9 subset fhbg of the factors
ffag in Eq. (10) and then assigning a weight w̃b to each

factor hb. The complete weights vector w in Eq. (14) is
inferred from fw̃bg. For example, if ffag ¼ fy; z; yþ zg
and if we have assigned weights fw̃bg ¼ f5; 2g to the fac-
tors fhbg ¼ fy; yþ zg, i.e., y ¼ Oðp5Þ; yþ z ¼ Oðp2Þ,
then it follows that z ¼ Oðp2Þ and so w ¼ f5; 2; 2g.
For comprehensiveness, we tabulated every possible

subset of the factors ffag, although for efficiency we ignore
factors containing (only) the space-time dimension variable.
For each subset fhbg, we generate weights in several ways
which we have heuristically found to be useful:

(i) w̃b ¼ 1 ∀ b

(ii) for some i, set w̃b ¼
�
4 if b ¼ i
1 if b ≠ i

(iii) for some i, set w̃b ¼
�
1 if b ¼ i
4 if b ≠ i

(iv) fw̃bg is a permutation of f1; 2;…; jfw̃bgjg.
Note that some choices of fhbg and fw̃bg are equivalent to
others. For example, the choice fy; zg ¼ fOðpÞ;Oðp4Þg
leads to the same w as the choice fyþ z; zg ¼
fOðpÞ;Oðp4Þg. We highlight that the above-generated
weight vectors, despite only containing small entries
w̃b ≤ 4, are sufficient to uniquely pick out individual
partial-fractioned terms in the manner that we will describe
in Sec. IVA 5.
In total we obtain 6,062 distinct weight vectors, which

we will use in the remaining steps to generate p-adic probe
points for both filtering and reconstruction purposes.

4. Filter candidate denominators

We now wish to filter the candidates generated in
Sec. IVA 2. To do so, we perform a total of 6,062 p-adic
probes per prime field, each probe corresponding to one of
the weight vectors w generated in the previous step. We
expect it to be possible to reduce the number of probes by
being more selective about the choices of fhbg and fwbg,
but since this number is already relatively small we leave
that to future work and here simply state that these probes
are sufficient. Note that although Sec. IVA 6 requires us to
repeat the filtering step many times, these probes do not
need to be repeated if the results are cached and the probes
are performed with exact integer arithmetic (as in our code)
or with sufficiently high p-adic precision in a floating-
point-style p-adic evaluation code.
Having performed the probes in the manner described

above, we can now filter the candidate denominators fdig.
We do this by discarding any candidate di if there exists a w
for which both of the following relations hold:

R½w� > −
X
b

μi;bwb ð17Þ

hfb∶ μi;b ≠ 0i ¼ hfb0∶ ðμi;b0 ≠ 0jwb0 ≠ 0Þi; ð18Þ
where the notation hi indicates the polynomial ideal (see,
e.g., Ref. [7] for a definition) and j denotes the Boolean

9For the massless five-point example R� in this paper,
algebraic independence here is equivalent to linear independence,
since all the factors fa are linear.
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OR operation. Here Eq. (17) indicates that the divergence of
R at points with p-adic weight w is milder than it would
have been if a term with denominator di had been present,
assuming ni does not vanish at the probed points.
Equation (18) is necessary to ensure that indeed ni does
not vanish at the probed points; for instance, it is important
that a partial-fractioned term like x2

y4z5
does not get filtered

out by probing at fx; y; zg ¼ fOðpÞ;OðpÞ;OðpÞg and
obtaining a series Oðp−7Þ, which is less divergent than
the Oðp−9Þ series that one might have expected based on
the behavior of the denominator y4z5 alone.

5. Reconstruct a partial-fractioned term

Having performed the filtering, we are now ready to
reconstruct a partial-fractioned term. We remind the reader
that in this work we seek to reconstruct rational functions
one partial-fractioned term nk=dk at a time, to obtain the
benefits described at the start of this section. This requires
finding a probe point x̄ satisfying Eq. (8). At first sight,
it might be expected that this could potentially require
exponentially large values for the weights wb that generate
x̄, which in turn would lead to a need for p-adic evaluations
at very high p-adic precision. Remarkably, however, we
find in this work (albeit without proof) that it is always
possible to generate a suitable weight vector w whose
weights wb are small and for which any point x̄ satisfying
Eq. (14) will also satisfy Eq. (8). In fact, preliminary work
indicates that in future calculations we will continue to be
able to pick out one partial-fractioned term at a time while
keeping the weights wb modest in size.
The weight vectors we use for reconstruction are

essentially based on those generated in Sec. IVA 3, which
we highlight are small: wb never exceeds 4. We remind the
reader that for R� the factors of the common denominatorΔ
contain either D or the kinematic factors but not both, and
that the weight vectors in Sec. IVA 3 had ignored factors
containing D. We find that there always exists a weight
vector amongst those generated in Sec. IVA 3 that selects
either a unique partial-fractioned term, in accordance with
Eq. (8), or several partial-fractioned terms whose denom-
inators differ only by a D-dependent factor. To ensure we
reconstruct a single partial-fractioned term at a time, having
identified such a weight vector we multiply all its entries wb
by a heuristically chosen factor of 2 or 3 as necessary, and
then set one of the D-related entries to 1.10 The weights
vector w obtained in this way uniquely picks out a single
partial-fractioned term as desired.
Next, having obtained one such w and the denominator

dk that it uniquely picks out, we construct a simple fully

generic polynomial ansatz for nk, constrained only by its
mass dimension and the number of variables.11 The mass
dimension of nk can be deduced from the mass dimensions
of R and dk. We determine the number of variables by
observing that in general when performing partial fraction-
ing, the numerator nk of a partial-fractioned term is
uniquely defined only up to the addition of arbitrary poly-
nomial multiples of one or more of the factors fb ∈Gk
of dk. Since in our case we have only linear polynomials as
factors, the redundancy in nk can be removed by using each
linearly independent factor in dk to eliminate one variable
from nk. The ansatz that we construct for nk therefore
contains only the residual variables.
Now given w, dk, and an ansatz for nk, we generate as

many points x̄ as there are free parameters in the ansatz,
which in this work turns out to be up to 56. Each of these
points x̄ is chosen to satisfy Eq. (14), for a fixed prime
p1 ¼ 101, and at each point we evaluate Rðx̄Þ to obtain a
sample nkðx̄Þ modulo p1 according to Eq. (9). By matrix
inversion we obtain an analytic form for nk modulo p1,
which we then verify by generating a fewmore points while
keeping p1 fixed. Note that standard polynomial interpo-
lation methods [7] scale linearly or quadratically with the
number of unknowns whereas the ansatz-based interpola-
tion techniques often seen in particle physics scale cubicly
due to the cost of matrix inversion. We emphasize that
reconstructing one partial-fractioned term at a time offers
the key advantage that the matrix to be inverted is small
(no larger than 56 by 56 in this work), which means our
approach can scale well in future calculations.
Having obtained the analytic form of nk modulo p1, we

then repeat for a few more primes p2 ¼ 103; p3 ¼ 107;…
until we have sufficient information to reconstruct the exact
rational form of nk using the Chinese remainder theorem
and rational number reconstruction [38]. Note that in
contrast to finite-field calculations where machine-word-
sized primes p ∼ 4 � 109 or p ∼ 2 � 1019 are standard,
p-adic calculations can benefit from faster arithmetic using
small primes such as p ¼ 101 (or even smaller), regardless
of whether the probes are performed with exact integers,
floating point, fixed point, or other representations. Since
the coefficients in partial-fractioned form are simpler than
in common-denominator form, we typically require only
three or four primes despite the small size of the primes,
plus one more prime for performing checks. The number
of required prime fields required to reconstruct a free
parameter is proportional to the complexity of that free

10A simpler alternative would be to treat the D-dependent
factors on an equal footing to the kinematic factors in all filtering
and reconstruction steps. This may lead to a smaller maximum
size for wb, and hence simpler p-adic evaluation points.

11Note that in this work, we do not follow the common practice
of “setting a variable to 1,” as this would remove our capability to
make that variable p-adically small when performing probes.
Instead, we always work with homogeneous polynomials of well-
defined mass dimension. We emphasize that this does not add
any inefficiency, since a homogeneous polynomial of fixed degree
has the same number of free parameters as an inhomogeneous poly-
nomial with one fewer variable but the same maximum degree.
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parameter12 and so in a few cases we used up to nine prime
fields (plus one more for checks).

6. Repeat to reconstruct more terms

Having reconstructed a term Rrec ¼ nk=dk, we next wish
to reconstruct the rest of the terms. To do so, we repeat the
filtering (Sec. IVA 4) and reconstruction (Sec. IVA 5)
steps, but now seek to reconstruct R − Rrec. All probes
are hence performed on R − Rrec instead of R, and in
practice we do this by separately probing R and Rrec and
then subtracting. Whenever we obtain a new reconstructed
term, we then add it onto Rrec and then repeat the filtering
and reconstruction steps again.
As a technical point, we should highlight the importance

of lifting each numerator nk from Fp to the rationals in the
previous step before attempting to reconstruct further terms.
If nk=dk is added onto Rrec after merely reconstructing in Fp,
subleading p-adic contributions from nk=dk will continue to
contribute to evaluations of R − Rrec and so prevent the re-
construction of other terms with denominators similar to dk.
Regarding efficiency, we note that Rrec is cheap to probe,

since we always have an analytic expression for it. Probes of
R are therefore the main cost that we seek to minimize. Note
that as mentioned in Sec. IVA 4, the probe points used in the
filtering step are fixed and so if the probes are exact and the
value of R at each of those points is saved once, there is no
need to probe R again when repeating the filtering step.13

The reconstruction step, conversely, requires probing R
(and Rrec) at points specially chosen to select a specific
denominator. In principle, large efficiency gains could be
obtained in the reconstruction step by recycling probes
performed in previous iterations of the reconstruction step
for similar denominators, but this would require careful
further study and so we leave it to future work.

V. RESULTS AND DISCUSSION

By employing the technique presented in Sec. IV, we
reconstructed R� in full. We did so using no knowledge of
R� other than its mass dimension, its common denominator,

and the results of “black-box” p-adic probes. As explained
above, the p-adic probes were used for two purposes: filter-
ing (see Sec. IVA 4) and reconstruction (see Sec. IVA 5).
For filtering we performed 6,023 p-adic probes per prime
field, while for reconstruction we performed a total of
6 × 104 probes per prime field. As mentioned above,
we use very small-sized primes p ¼ Oð100Þ and yet we
mostly require only three or four prime fields (plus one
more for checks) thanks to the relative simplicity of
numerical coefficients in partial-fractioned form compared
to common-denominator form. We verified that the recon-
structed expression is exactly equal to the original expres-
sion. As shown in Table. II, the reconstructed result is 134
times smaller than the common-denominator form that
would be produced by conventional finite-field methods.
The total number of free parameters fitted was 52,527. Each
free parameter accounts for 1 of the 6 × 104 probes (per
prime field) performed for reconstruction, the remaining
probes being used for checking purposes out of prudence,
although these checks never failed. We remind the reader
that we never fit more than 56 free parameters at a time
since, as discussed extensively in the previous sections, our
result was reconstructed one partial-fractioned term at a
time, bringing the many advantages already described.
The reconstructed result exhibits further structure which

in future work it would be beneficial to study and exploit.
This is best seen and discussed with an example. We will
consider the following reconstructed terms:

45
1024

s645s
3
12

ðD − 3Þs434s51ð−s23 þ s45 þ s51Þ3
þ

9
5120

s645s
3
12

ðD − 1Þs434s51ð−s23 þ s45 þ s51Þ3
−

693
5120

s645s
3
12

ð2D − 7Þs434s51ð−s23 þ s45 þ s51Þ3

−
3

1024
s645s

3
12

s434s51ð−s23 þ s45 þ s51Þ3
þ − 45s6

45
s2
51

1024
− 135s6

45
s51s12

1024
− 135s6

45
s2
12

1024

ðD − 3Þs434ðs23 − s45 − s51Þ3
þ − 9s6

45
s2
51

5120
− 27s6

45
s51s12

5120
− 27s6

45
s2
12

5120

ðD − 1Þs434ðs23 − s45 − s51Þ3

þ
693s6

45
s2
51

5120
þ 2079s6

45
s51s12

5120
þ 2079s6

45
s2
12

5120

ð2D − 7Þs434ðs23 − s45 − s51Þ3
þ − 3s6

45
s2
51

1024
− 9s6

45
s51s12

1024
− 9s6

45
s2
12

1024

s434ð−s23 þ s45 þ s51Þ3
; ð19Þ

TABLE II. Comparison of original and reconstructed form of
R�. The original expression is in common-denominator form,
with numerator fully expanded and denominator fully factorized.
Sizes are as reported using ByteCount inMathematica. The number
of free parameters is obtained by counting the number of terms in
the fully expanded numerator(s).

Expression Size (MB) Parameters to fit

Original 605 1,369,559
Reconstructed 4.5 52,527 (of which 15,403 nonzero)

12For simplicity, in this work we used the same number of prime fields for all the free parameters in a given numerator ni, but
optimizing by removing this redundancy would be straightforward.

13A cache of this sort should be straightforward to implement in software, although for simplicity in this proof-of-concept work we
have not done so.
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which form a small part of our full reconstructed result.
Here sij are the five kinematic variables of R.
First, let us note that 70% of the free parameters that we

fitted turn out to be zero, as anticipated from the discussion
at the end of Sec. II. This can be seen in expression (19) in
the following way. Expression (19) contains 16 numerator
terms and therefore accounts for 16 of the 15,403 non-
zero free parameters mentioned in Table II. Considering
the first term in (19), we note that a priori there was no
reason for the numerator to only contain a term ∼s645s

3
12;

it could equally well have contained other mass-squared-
dimension-9 combinations of s45 and s12, such as s245s

7
12. To

obtain (19) we therefore actually fitted a total of 220 free
parameters, of which 204 turned out to be zero. These terms
thus account for 220 of the 52,527 free parameters
mentioned in Table II. Identifying the vanishing parameters
in advance would reduce the number of parameters to be
fitted from 52,527 to 15,403, and reduce the number of
probes correspondingly.
Second, some of the numerators in our reconstructed

result are linearly related to each other by a simple
integer multiple. Looking at two of the numerators in
the expression (19)

n1 ¼ −
45s645s

2
51

1024
−
135s645s51s12

1024
−
135s645s

2
12

1024
; ð20Þ

n2 ¼ −
9s645s

2
51

5120
−
27s645s51s12

5120
−
27s645s

2
12

5120
; ð21Þ

we notice n1 ¼ 25n2. If this can economically be discov-
ered prior to reconstruction, it would further reduce the
number of free parameters to be fitted and thus the number
of probes required.
Third, we notice that in some cases it is possible to

combine several of our reconstructed terms and obtain a
simpler expression. For example, if we combine together
all the terms in expression (19), we obtain the following
simple term:

−
3

512
DðD2 − 4Þs645ðs51 þ s12Þ3

ðD − 3ÞðD − 1Þð2D − 7Þs434s51ð−s23 þ s45 þ s51Þ3
:

ð22Þ

Note, however, that the first two properties do not neces-
sarily imply the third, and we observe from examining
other reconstructed terms that combining them in this
manner does not always simplify them. The results in
Table II do not employ any such recombination of terms,
and further study is required to understand which cases are
amenable to such simplification and to devise a manner to
exploit it during the reconstruction itself, rather than
afterwards. This is an interesting direction for exploration,
with the potential to yield a further order-of-magnitude
reduction in the number of free parameters to be fitted, the

number of probes required per prime field, and the size of
the final result. Additionally, since the numerical coeffi-
cient 3

512
in (22) is somewhat simpler than coefficients like

2079
5020

in (19), fewer prime fields would be required to fit this
coefficient.
It is worthwhile to note that, while the patterns and

structure exploited in this work—as well as those left for
future work—could be studied post hoc by partial fraction-
ing an expression obtained by conventional means, our
method of reconstructing one partial-fractioned term at a
time provides the capability to study and exploit these
structures during the reconstruction process. For cutting-
edge calculations where obtaining any analytic expression
in the first place is the principal challenge and goal, we
believe this new capability will be a valuable asset.
Going further, we emphasize the desirability of analyti-

cally studying the simplifications explored in this
work, possibly in conjunction with the observations in
Refs. [22,29,32]. We hope our techniques will prove to be
useful tools in this regard, with benefits for our theoretical
understanding as well as the speed of calculations.

VI. CONCLUSION AND OUTLOOK

In this work we presented a technique to reconstruct
rational functions in partial-fractioned form by using
numerical evaluations in p-adic fields. Using the example
of R�, a highly nontrivial rational function at the edge of the
reach of current calculational techniques, we showed that
our technique can reconstruct such functions using 25 times
fewer numerical probes than conventional techniques based
on finite-field probes, and yields a 100-fold simplification
in the size of the reconstructed result.
The rational functions appearing in the final results for

amplitudes are typically simpler than the IBP reductions
used to compute them, and so having demonstrated our
techniques on this large expression from the two-loop five-
point massless nonplanar IBP table, we are confident that
our techniques can efficiently reconstruct any two-loop
five-point massless full-color amplitude. The natural next
step would be to apply our techniques to two-loop five-
point processes with masses, most of which currently
remain unknown. We expect our partial-fractioned recon-
struction technique will continue to be beneficial in the
massive case, although some technical changes will be
required in our code since we can no longer rely on the
denominator factors fa to be linear. More generally,
experience shows that partial-fractioning produces simpli-
fications in amplitudes whenever several kinematic scales
are present, and so we expect our techniques will be
applicable to a wide range of higher-point or higher-loop
amplitudes.
Since rational function reconstruction can be used in a

wide variety of multiloop contexts, ranging from integrand
construction to IBPs to differential equations, we focused in
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this work on reducing the number of probes without regard
to the choice of method for performing the probes them-
selves, for which many options exist. One option is a
floating-point-like representation of p-adic numbers, which
we believe can be achieved with relatively little overhead
compared to finite field probes particularly if small primes
p ∼Oð100Þ are used, but may be susceptible to loss of
p-adic precision depending on the specific framework used
for performing the probes. Another option is to use exact
integer probes at points p-adically close to the desired
p-adic probe points—see Eq. (7). Such probes completely
avoid precision loss and would benefit from a speedup by
using small primes but at present it may still be prudent to
assume each probe to be slower than a conventional finite-
field probe. Since integer probes are exact, we expect them
to be well suited to reconstruction probe recycling: using
the same probes to reconstruct numerators for multiple
terms that have similar denominators. This would further
reduce the number of required probes beyond the improve-
ments already reported here and could partly or fully
mitigate against any additional cost of p-adic probes
compared to finite-field probes.
Finally, we observed that our reconstructed result for R�

displays further patterns and structures which would be
worthwhile to study, understand, and exploit in future

work. These observations provide hints of the potential
to obtain even further improvements in the speed and reach
of this calculational method, as well as potential avenues
for starting to seek further understanding of the physical
origin of these simplifications and of the structure of the
rational functions appearing in scattering amplitudes
and IBPs.
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