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We compute the gravitational form factors (GFFs) and study their applications for the description of
the mechanical properties such as the pressure, shear force distributions, and the mechanical radius of the
proton from its light-front wave functions (LFWFs) based on basis light-front quantization (BLFQ).
The LFWFs of the proton are given by the lowest eigenvector of a light-front effective Hamiltonian that
incorporates a three-dimensional confining potential and a one-gluon exchange interaction with fixed
coupling between the constituent quarks solved in the valence Fock sector. We find acceptable agreement
between our BLFQ computations and the lattice QCD for the GFFs. Our D-term form factor also agrees
well with the extracted data from the deeply virtual Compton scattering experiments at Jefferson Lab, and
the results of different phenomenological models. The distributions of pressures and shear forces are

similar to those from different models.

DOI: 10.1103/PhysRevD.110.056027

I. INTRODUCTION

Nucleons are confined systems of partons (quarks and
gluons) with pressure and energy inside, dictated by the
strong interaction. However, understanding the color con-
finement and the mass generation of the nucleon in quantum
chromodynamics (QCD) theory remains one of the central
questions in modern particle and nuclear physics. As a
composite system, various distribution functions, such as
form factors, parton distribution functions (PDFs), gener-
alized parton distributions (GPDs), transverse momentum
dependent parton distributions (TMDs), etc., are often used
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to describe the structure of the nucleon. The form factors
of the nucleon give critical information about many
fundamental aspects of its structure. The charge and
magnetization distributions are encoded in the electromag-
netic form factors [1,2], while the mechanical properties of
the nucleon, namely the mass, spin, pressure, and shear
force are well encoded in the gravitational form factors
(GFFs) [3-6]. Specifically, one can gain a deeper knowl-
edge on how the nucleon is mechanically shaped by its
partons by studying the Druck term (D-term) GFFs [5]. The
GFFs are parametrized as the matrix elements of the energy-
momentum tensor (EMT) in the nucleon states. The
components of the EMT provide how matter interacts to
the gravitational field. Thus these form factors can be
extracted by direct measurement of the interaction of the
nucleon with a strong gravitational field such as a neutron
star. However, due to weak gravitational interaction, the
direct access to them experimentally is very difficult. An
indirect way to extract the GFFs experimentally is from hard
exclusive processes, for example, deeply virtual Compton
scattering (DVCS) and deeply-virtual meson production
(DVMP), which are sensitive to GPDs. The GFFs are
defined as the second Mellin moments of the GPDs. The
quark GPDs in the nucleon have been constrained in limited
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kinematic regions by DVCS and DVMP experiments
at JLab [7-9], COMPASS [10], HERA [11-13], and
HERMES [14]. The world datasets have been summarized
in Refs. [15-17]. Ongoing investigations at COMPASS and
within the 12 GeV program at JLab will significantly
improve accesses to these quantities. The first extraction
of the quark D-term form factors from DVCS and the
pressure distribution inside the proton was reported in
Ref. [5]. However, the DVCS is nearly insensitive to the
gluon and thus, the gluon D-term form factor is rarely
extracted. The gluon contributions to the nucleon D-term
form factor will be accessed at the future high-luminosity
electron-ion colliders (EICs) [18,19].

The nucleon matrix element of the EMT involves four
GFFs, namely A(Q?), B(Q?), D(Q?), and C(Q?), where Q?
is the squared momentum transfer from the initial to final
nucleon. They encode information on the distributions of
energy density, angular momentum, and internal forces in
the interior of the nucleon. The GFFs A and B are linked to
the mass and spin of the nucleon. The Ji’'s sum rule [20]
relates them to the partonic contribution to the total angular
momentum J. They are again related to the generators of the
Poincaré group, which provides constraints on them at
Q? = 0, which facilitates accessing these form factors from
the experimental data. The form factor D(Q?) is related to
the basic mechanical properties of the nucleon such as the
pressure and stress distributions [3—6]. It contributes to the
DVCS process when there is nonzero momentum transfer in
the longitudinal direction. By virtue of energy momentum
conservation, the form factor C(Q?) contributes to both the
quark and gluon parts with the same magnitude but with
opposite signs, therefore ) ,_,  C;(Q*) = 0. This form
factor records the reshuffling of forces between the quark
and gluon subsystems inside the nucleon [21].

There has been significant progress in the theoretical
determination of the nucleon GFFs, in particular through
phenomenology, QCD inspired models, and lattice
QCD. The GFFs of the nucleon have been studied via
chiral perturbation theory [22-24], chiral quark soliton
model [25-29], bag model [30], Skyrme model [31,32],
light cone QCD sum rules at leading order [33], light-front
quark-diquark model motivated by AdS/QCD [34-38],
dispersion relation [39], instanton picture [21], instant
and front form [4], holographic QCD [40-43], lattice
QCD [44-49], strongly coupled scalar theory [50], etc.,
while the asymptotic behavior of the GFFs has been
reported in Refs. [51,52]. On the other hand, the gluon
contributions to the nucleon GFFs are far less well-
constrained and have so far only been investigated in
holographic light-front QCD framework [53], dressed
quark model [54] and lattice QCD [55-60]. To date, no
experimental constraints on gluon GFFs of the nucleon
have been achieved. However, they are accessible via
photo/leptoproduction of J/yw and T [61-63]; J/y pro-
duction is investigated in experiments, which are ongoing

at JLab [64], whereas YT production are proposed at the
upcoming EICs [18,19]. The quark GFFs for the nucleon
have been extracted at JLab from DVCS [5] and the
constraints on the quark GFFs can be further improved via
the GPDs accessible at several existing and upcoming
experimental facilities, which include the PANDA experi-
ment at the Facility for Antiproton and Ion Research [65],
the proposed EICs [18,19], the nuclotron-based ion
collider facility [66], the International Linear Collider,
and the Japan proton accelerator complex [67].

Our theoretical framework to study the nucleon proper-
ties is based on basis light-front quantization (BLFQ) [68],
which provides a Hamiltonian formalism for solving the
relativistic many-body bound state problem in quantum
field theories [69-86]. In this paper, we compute the quark
GFFs of the proton and investigate their applications for the
description of the mechanical properties, i.e., the distribu-
tions of pressures and shear forces inside the proton from its
light-front wave functions (LFWFs) based on the BLFQ
with only the valence Fock sector of the proton considered.
The LFWFs feature all three active quarks’ flavor, spin, and
three-dimensional spatial information on the same footing.
Our effective Hamiltonian incorporates a three-dimensional
confinement potential embodying the light-front hologra-
phy in the transverse direction [87] and a complimentary
longitudinal confinement [72]. The Hamiltonian also
includes a one-gluon exchange interaction with fixed
coupling to account for the spin structure [78]. The non-
perturbative solutions for the three-body LFWFs generated
by the recent BLFQ study of the nucleon [79] have been
applied successfully to generate the electromagnetic and
axial form factors, radii, PDFs, GPDs, TMDs, and many
other properties of the nucleon [78,79,88-92]. Here, we
extend those studies to calculate the proton GFFs and their
application for the description of the mechanical properties.

The rest of the paper is organized as follows. In Sec. II,
we briefly summarize the BLFQ framework for the
nucleon. The proton GFFs are evaluated within BLFQ
and discussed in Sec. III. We present the numerical results
for the GFFs and explore the mechanical properties of
proton, e.g., the pressures, energy density distributions,
shear forces, and the mechanical radius in Sec. IV. At the
end, we provide a brief summary and conclusions in Sec. V.

II. PROTON WAVE FUNCTION FROM BASIS
LIGHT-FRONT QUANTIZATION

The LFWFs encoding the structural information
of hadronic bound states are achieved as the eigenfunc-
tions of the eigenvalue problem of the Hamiltonian,
Hyp|¥) = M2|?), with H g and M} being the light-front
Hamiltonian and the mass square eigenvalue of the hadron,
respectively. The light-front effective Hamiltonian for the
proton with quarks being the only explicit degree of
freedom is given by [78]
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where k 1« and x, represent the relative transverse momen-
tum and the longitudinal momentum fraction carried by
quark a. m, defines the mass of the quark a, and « is the
strength of the confining potential. The variable 7, =
¥ L. — T'1p represents the transverse distance between two
quarks. The last term in the Hamiltonian indicates the
one-gluon exchange interaction with Q2, = —¢?
—(1/2)(k,, — k,)* = (1/2) (k) — k;,)> being the average
momentum transfer squared and F- = —2/3 is the color
factor; a; is the coupling constant; and g,, refers to the
metric tensor. u(k,,s,) corresponds to the spinor with
momentum k, and spin s,.

In the BLFQ approach, the discretized plane-wave basis
is conveniently adopted in the longitudinal direction,
whereas we utilize the 2D harmonic oscillator (HO)
function for the transverse direction [68,69]. Solving the
eigenvalue equation of the Hamiltonian, Eq. (1), in the
chosen basis space provides the eigenvalues as squares of
the system masses, and the eigenfunctions that describe the
LFWFs. The lowest eigenfunction with the relevant
symmetries is naturally specified as the proton state.
The LFWFs of the proton are expressed in terms of the
basis function as

Z W{xl n;.m; i}H(pn n; ku_,b (2)

{n;.m;}

{X ktL j’}

with W{{\x,-.n,-,m,-,ﬂ,-} = (P, Al{x;,n;,m;, 1;}) representing the
LFWF in the BLFQ basis obtained by diagonalizing
Eq. (1) numerically, where |P, A) defines the proton state
with P and A being the momentum and the helicity of the
state. The 2D-HO function we employ as the transverse
basis function is given by

opy = V2 n e"a/(sz)(M)m
b

¢n,m(kl’
A
X L‘n <b_é> ezmé" (3)

where b defines its scale parameter; n and m correspond to
the principal and orbital quantum numbers, respectively, and

Llnm| is the associated Laguerre polynomial. The transverse
basis truncation is designated by the dimensionless cutoff
parameter N, such that Y ,(2n; + |m;| + 1) < N .. The
basis truncation N ,,, plays implicitly the role of the infrared

(IR) and ultraviolet (UV) regulators for the LFWFs in the
transverse direction, with an IR cutoff Ag = b/+/N ., and
a UV cutoff Ayy =& b/N - In the discretized plane-wave
basis, the longitudinal momentum fraction x; of the Fock
particles is defined as x; = pj/P" = k;/K, Wl'[h the
dimensionless quantity K =), k;, where k = 5 g %,
signifies the choice of antiperiodic boundary conditions.
The longitudinal basis cutoff K controls the numerical
resolution and regulates the longitudinal direction. The
multiparticle basis states have the total angular momentum
projection M; =%, (m; + 4;), where A denotes the quark
helicity.

The parameters in the effective Hamiltonian are deter-
mined to reproduce the nucleon mass and its electromagnetic
properties [79]. The model LFWFs have demonstrated
significant effectiveness in analyzing a broad range of
nucleon properties, including electromagnetic and axial
form factors, radii, PDFs, quark helicity asymmetries,
GPDs, TMDs, and angular momentum distributions, achiev-
ing notable success across various metrics. [78,79,90].

ITII. GRAVITATIONAL FORM FACTORS

The gauge invariant symmetric form of the QCD EMT is
given by [93]

1 1
o — El/—/i[},ﬂDv + },I/Dll]l// _ F”MFja + ZQW(FAna)z
— g (iy*D; — m)y, (4)

with y and A* being the fermion and boson fields,
respectively. F4” is the field strength tensor for non-
Abelian gauge theory, which is expressed as

Fi = 0"AY — 0" AL + gf P AL AY, (5)

. L . STH
where the covariant derivative iD¥ = id 4 gA* such that

a(id )p = La(0"p) — £ (0*a)p. In this work, we focus only
on the fermionic part of the EMT given in Eq. (4). Note that
the last term in Eq. (4) vanishes owing to the equation of
motion and thus, we have the following fermionic con-
tribution to the EMT:

v 1.
0" = Swily"D* + "Dy (6)
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The matrix elements of local operators such as electro-
magnetic current and EMT have a precise representation
using LFWFs of bound systems such as hadrons. The GFFs
are linked to the matrix elements of the EMT, 6**, whereas
the second Mellin moment of the GPDs also gives the
GFFs. For a spin-1/2 composite system, the standard
parametrization of the symmetric EMT 6" involving the
GFFs reads [94,95]

prpr

<HMW@mM=MﬂM[<¢> +(A(0)
BQY) L (4P 4 1 P)
C.(0%) q"q ;/qug"”
a(@ M urn. 0

where u(P', '),
1(P'+ P)* is the average four momentum of the system.
M is the mass of the system and A(A’) is the helicity of
the initial (final) state of the system such that
(A,N)={"1,!}. Heref(]) represents the positive (neg-
ative) spin projection along the z-axis. The Lorentz index
(u,v)={+,—-,1,2}. Q*>=—¢* is the square of the
momentum transfer. We consider the symmetric Drell-
Yan frame such that the longitudinal momentum transfer
gt =0 and the average transverse momentum Pt = 0.
The form factors A,(Q?) and B,(Q?) are extracted form the
0;+ component of the EMT. In light-front dynamics the
conserved Noether current associated with the conserved
4-momentum is 9q+ #196]. Furthermore, the operator hns
removes a quark (or antiquark) possessing momentum &’
(or k) and spin projection A along the z-axis, and then
generates a quark (or antiquark) with identical spin and
momentum &’ (or k) [97]. The GFF A,(Q?) is analogous to
the Dirac form factor since it is obtained by summing over
the helicity conserving states, whereas B,(Q?), which is
obtained by summing over the helicity flip states, is
analogous to the Pauli form factor. The GFFs C,(Q?)

and Cq( Q?) are extracted from the Hék transverse compo-
nent of the EMT such that (j, k) = (1,2). We compactly

u(P, A) are the Dirac spinors and P* =

express the matrix elements of the EMT required to extract
the four GFFs as

My =5 [(PLAN]657(0)[P, A), (8)

NI*—‘

where the proton state with momentum P and helicity A
within the valence Fock sector can be written in terms of
three-particle LFWFs,

/f[[d x‘i ku} 167:35(1 - i:x,)éz

i=1
3
X(
i=1

The GFFs A,(Q?) and B,(Q?) can then be obtained using
Eq. (8) as follows:

k Ptk B
kiy ) W o [Pt xiP L 4Y).

©)

M+ M| =2(P)A,(02), (10)

Mt =97 g ), )
™ M a ’

while the GFF C,(Q?) is computed from the transverse
components using
ME + M2 = 4C,(0%)g g, (12)
The GFF C,(Q?) can be computed from the noncon-
servation of the partial EMT [4] which gives us

g MY, =C (Qz)q”M(—q“) - iq(z))- (13)

The GFFs A,(Q?) and B,(Q?) can be written in terms of
the overlap of LFWFs upon substituting the proton valence
Fock state as shown in Eq. (9) into the matrix element of
the energy-momentum tensor in Eq. (8) and we get the
following expression:

1
2\ 1 1 b v
Al(0?) = EZ/ [ddP, x {T{ B ke T i W}}

iq®B,(Q%) =M / [dXdP | |x {qﬂ*

{2 }lP{xL ki1 i}

L byl 1

{xi k,M}‘P{X Kiv i} (14)
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where the longitudinal and transverse momenta of the
struck quark are x} =x; and k';; =k + (1 —x1)q,
respectively. The spectator momenta are x} = x; and k¥';; =
ki, + x;q, withi = (2,3). The shorthand notation used for
the integration measure is as follows:

[dXdP,] = H{dxlgzgi] 167 35(1 - Zx)

i=1

x & (Z ku>. (15)

TABLE 1. Parameters of the model with a transverse basis

truncation set at N, = 10 and a longitudinal truncation at
=16.5.

My/k My/g K s

0.3 GeV 0.2 GeV 0.34 GeV 1.1 £0.1

Similarly the expression for C,(Q*) and C,(Q?) can be
extracted from the equations below,

1) ,(2) 2 2 T i b o
q-'q Cq(Q ) {“ / dXdP O o {T{ ku“lp{x iy A + T{x;,kﬁbﬂ,}l{l{x,.ku.,li}}’
(=4 = ig®) gV C,(02) = __§ [ [4XdP L) (g OO + gP PO S ! (16)
Nl (Ko} {xkidid

where the operator O/ = Zk(j) + (1 - x)q(l’). Identities
relating the overlap of HO wave function pertaining to
the calculation of Eq. (16) is shown in Appendix B. The
LFWF with negative helicity (A = |) is obtained from
the wavefunction with positive helicity (A = 71) using the
mirror parity symmetry [98] which gives the following
relation:

| _ omi+1 1
ll/{xisni-misj'i} B (_1)2! w{xis”is_mh_li}' (17)

IV. NUMERICAL RESULTS

In our calculations, the quark mass influences both the
kinetic energy and the one-gluon exchange interaction
(OGE) terms. We opted for different quark mass values
in these terms due to the distinct physics they represent.
Specifically, the kinetic mass term captures long-distance
physics, while the OGE term encapsulates short-distance
physics through the derived interaction arising from single-
gluon exchanges between quarks. This effective OGE
compensates for fluctuations spanning from the valence
Fock sector to higher Fock sectors.

We now outline our reasoning for the flexibility in
choosing the vertex mass. Specifically, our approach incor-
porates an effective OGE interaction that connects short-
distance physics and approximately describes processes
where valence quarks emit and absorb a gluon, causing
the system to fluctuate between the |gqq), ), and
higher Fock sectors. In the intuitive picture of mass
evolution in renormalization group theory, the dynamical
OGE also contributes to the quark mass from higher
momentum scales, leading to a decrease in quark mass
due to gluon dynamics. Consequently, it is suggested that

|

the mass in the OGE interaction would be lighter than the
kinetic mass, which is associated with long-range physics in
our effective Hamiltonian. Therefore, the quark mass in the
OGE has been introduced as an independent phenomeno-
logical parameter in our effective Hamiltonian. Alongside
other parameters, it successfully describes a wide class
of proton observables, e.g., the electromagnetic and axial
form factors, radii, PDFs, helicity asymmetries, TMDs, etc.,
with remarkable overall success [78,79,88,89,91,99].
This treatment is also acknowledged and adopted in the
literature [100-102]. Besides the quark mass, the model
includes two additional parameters; the confinement
potential strength (k) and the coupling constant («,), both
listed in Table I. Our results employ truncation parameters
with values N, = 10 and K = 16.5. We calibrated these
parameters against existing experimental data on the Dirac
and Pauli form factors [79]. Using this setup, we derive the
proton’s four gravitational form factors of the symmetric
energy-momentum tensor and depict the mechanical
properties, including the quark pressure and shear dis-
tributions inside the proton.

In Fig. 1, we present our calculations for the GFFs
A(Q?) and B(Q?), along with predictions from lattice
QCD [103]. The contributions from the u quark and d
quark are individually presented for both A(Q?) and B(Q?)
at both the initial and final scales. As the existing lattice
data is at a higher scale of y*> = 4 GeV?, we have evolved
our results for a consistent comparison. For the scale
evolution, we employed the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations of QCD [104-106],
specifically utilizing the next-to-next-to-leading order
(NNLO) variant. The evolution is done at each value of
Q? for the GPDs xH(x, Q%) and xE9(x,(Q?) as their
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FIG. 1. Plots illustrating GFFs for both A,(Q?) and B,(Q?) at two scales, plotted against Q°. These include: (a) A,(Q?) at an initial
scale pf = 0.195 + 0.020 GeV?, (b) A,(Q?) evolved to y*> = 4 GeV?, (¢) B,(Q?) at the same initial scale, and (d) B,(Q?) evolved to
4> = 4 GeV?. In the plots, solid magenta lines with shaded areas signify combined u and d quark contributions, while individual d and u
quark contributions are shown with dashed blue and red lines, respectively.The shaded areas represent uncertainties: 10% in the a;
coupling at the initial scale and a combined 10% in yj and a; at the evolved scale, calculated in quadrature. The evolved GFFs are
compared against lattice data at u> = 4 GeV2, shown as red circles and black squares from Ref. [103], and cyan triangles from

Ref. [109].

moments correspond to the GFFs A(Q?) and B(Q?)
respectively. The GFFs were evolved from an initial scale
of 3 = 0.195 £ 0.020 GeV? to the lattice scale using the
higher order perturbative parton evolution toolkit [107].
The initial scale is chosen so as to match the moment of the
valence quark PDFs [79]. The model scale is determined
by matching the moment of the valence quark PDFs,
(x), = Jo dxxfi(x), at u> =10 GeV? with the results
from global fits after performing QCD evolution of our
valence quark PDFs. We use the NNLO DGLAP equations
of QCD to evolve our valence quark PDFs from our model
scale y3 to a higher scale 4*. While applying the DGLAP
equations numerically from such a low scale, we ensure
that the running coupling e, (u?) saturates in the infrared at
a maximum cutoff value of a; ~ 1, consistent with our fit
value [79]. Our analyses indicate that at the initial scale,
the values for A“*(0) and B“*9(0) are 1 and 0, respec-
tively. This is expected as a consequence of the conserva-
tion of momentum and total angular momentum. The
physical meaning of A,(0) is the momentum fraction
carried by quarks inside the proton. Our model
Hamiltonian includes only quark degrees of freedom,

resulting in A“+9(0) = 1, indicating that the quarks carry
all the proton’s momentum in our quark-only model. So, at
the initial model scale, we have A%(0)+ A%(0)=1.
However, scale evolution incorporates contributions from
gluons and sea quarks, which are absent in the initial
quark-only model. After evolution, 1 — A(0) represents the
momentum carried by gluons and sea quarks, dynamically
generated through the evolution process. The value of
B"*(0) = 0 is referred to as the vanishing of the total
anomalous gravitomagnetic moment [108]. We find that
A* > A and B" is positive while B? is negative. Following
the evolution process, the magnitudes of both functions
exhibit a decline. We find that the lattice results for
A"+(Q?) significantly exceed our evolved result at y> =
4 GeV? especially at higher Q.

In Fig. 2, the D-term form factor and the GFF C(Q?) are
depicted. Panels (a) and (b) of Fig. 2 display our findings
for D(Q?) at the initial and evolved final scales, respec-
tively. The D-term for both d and u quarks is observed to be
negative, with the magnitude being larger for the u quark.
Following scale evolution, the characteristics of our
D-term, as shown in Fig. 2(b), correspond well with the
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FIG. 2. Plots illustrating GFFs for both D,(Q?) and C,(Q?) across different scales: (a) D,(Q?) at an initial scale of
U3 = 0.195 4 0.020 GeV?, (b) Dq(Qz) at a final evolved scale of u?> =4 GeV?, (c) C'q(Qz) at the initial scale, and (d) C’q(Qz) at
the final evolved scale, all versus Q2. The solid magenta lines with bands in each plot denote the combined contributions of the « and d
quarks, while the dashed blue and red lines represent individual contributions from the d and u quarks, respectively. The bands across the
plots at the initial scale signify a 10% uncertainty in the a,; coupling constant whereas the bands across the evolved results are due to 10%
uncertainty in 4 and the coupling constant a;. In plot (b) the red circles are the data points taken from [6] where they have rescaled the
Jefferson Lab experimental data used in [5] to 4> = 4 GeV?. Lattice data are represented by cyan triangles and black squares [103].
Additionally, the evolved Df}” (Q?) results are compared with lattice data at y> = 4 GeV? as depicted by blue diamond from Ref. [109].

lattice results [103,109] and JLab experimental data [5].1 A
negative D-term is indicative of a stable bound system, and
our evolved results for the D-term show a reasonable
alignment with the JLab data at 4> = 4 GeV?.

The D-term, related to the stress tensor 7%, provides
insight into the distribution of internal forces within the
nucleon, a subtlety not as readily apparent as the well-
studied mass and spin properties [110]. Its calculation
involves the transverse components of the EMT operator,
as evident from Eq. (12). This introduces a coupling
between the w' and w~ quark fields, where, in the light
cone gauge, the y~ field can be expressed in terms of the
w* field due to constraints imposed by the corresponding
equation of motion. Furthermore, the involvement of
constraint equations implies the potential for nondiagonal
contributions arising from overlaps of light-front wave-
functions originating from Fock sectors with differing
numbers of partons. A more comprehensive calculation

"The notation for the D-term used in [5] is d,(Q?) = £D,(Q?)
and have y*> = 1.4 GeV>.

of the D-term would therefore necessitate considering
contributions from nondiagonal overlaps resulting from
the inclusion of higher Fock sectors. However, it is
important to note that the focus of our current work
was to highlight the quark contribution from the valence
Fock sector.

Panels (c) and (d) of Fig. 2 present the C(Q?) form factor
following our BLFQ framework. We observe C*(Q?) > 0
and C4(Q?) < 0, with the aggregate C**?(Q?) remaining
near zero for most Q2 values. According to the sum rule,
the total C**¢(Q?) should equal zero for all values of Q2.
Within our BLFQ approach, focusing on the valence Fock
sector of the proton state, this condition is partially met,
with C**4(0) being 0.0063 at the initial scale and 0.0024 at
the evolved scale of u> = 4 GeV?. It should be emphasized
that the C, form factors calculated in this work represent
solely the contributions from the quark in the valence Fock
sector of the proton. Accurately computing the genuine
Cq form factors requires considering contributions from
the gluon sector, since the flavor-decomposed Cq form
factors are intrinsically linked to the twist-4 GPDs [111].
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TABLE II.

The GFFs for the valence quark combination at Q> = 0 are compared with predictions from other models and data from

JLab. Predictions from the Skyrme and yQSM models take into account contributions from both quarks and gluons and are not
dependent on scale. The notation (yy — p) indicates the evolution from the starting scale y to the final scale u.

Approaches/models ALTa(0) J,(0) =1[A“4(0) 4+ BY4(0)]  D"T(0) = 4C"+(0) Cutd(0)
This work (1v/0.195 - 2 GeV) 0.420 +0.032 0.210 £0.016 —1.925 +0.398 0.0024 + 0.0034
LQCD (2 GeV) [44] 0.675 0.34 e
LQCD (2 GeV) [45] 0.547 0.33 —0.80

LQCD (2 GeV) [46] 0.553 0.238 -1.02

LQCD (2 GeV) [103] 0.520 0.213 -1.07

LQCD (2 GeV) [48] 0.572 0.226

LQCD (2 GeV) [49] 0.565 0.314

xPT (2 GeV) [24] 0.538 0.24 —-1.44 e

IFF (2 GeV) [4] 0.55 0.24 —-1.28 -0.11
Asymptotic (coGeV) [51] e 0.18 e -0.15
QCDSR-I (1 GeV) [112] 0.79 0.36 —1.832 —2.1 x 1072
QCDSR-II (1 GeV) [112] 0.74 0.30 —1.64 —2.5x 1072
Skyrme [31] 1 0.5 —3.584
Skyrme [32] 1 0.5 -2.832

¥QSM [28] 1 0.5 —1.88

Soliton model [113] 1 0.5 —4.024

¥QSM [29] e e —3.88

¥QSM [114] 1 0.5 —2.60

AdS/QCD model I [41] 0.917 0.415

AdS/QCD model II [41] 0.8742 0.392

LCSR-LO [33] e -2.104

KMI15 fit [115] —1.744

DR [39] -1.36

JLab data [5] —1.688 e

1P [21] 1.4 x 1072

Addressing this by including gluonic contributions in the
computation of the genuine C‘q form factors is planned for
future work. The evolved results for the GFFs obtained
from the DGLAP evolution equation include only the
contributions from perturbative partons. The evolution
process does not account for nonperturbative gluonic
contributions. In particular, our current analysis considers
only the valence Fock state of the proton at the initial scale,
so it does not include contributions from nonperturbative
gluons. To study the nonperturbative gluonic contributions
to the GFFs, we would need to incorporate dynamical
gluons that enter the Fock space expansion of the proton
state. Guidance on the importance of the gluonic contri-
butions to the structure of the proton can be seen in their
role in the protons C form factor which were estimated
using the instanton vacuum in Ref. [21].

In Table II, we provide a detailed overview of the
GFFs at Q®> = 0. We compare them with predictions from
various phenomenological models, lattice QCD, and
the current experimental data for D,(0). For the form
factors A,(0) and J,(0), our estimates are generally
consistent, albeit slightly lower than the projections from
Refs. [4,24,44-46,48,49,103] at a renormalization scale
of u?> =4 GeV?. It is noteworthy that the QCD sum

rule (QCDSR) (I and II) suggests a higher value for
A,(0), likely due to its use of a reduced scale, y* =
1 GeV? [112].

In the yQSM and Skyrme models, only quarks and
antiquarks contribute to the nucleon’s angular momentum,
accounting for the entirety of it. This results in the
relationship 2J,(0) = A,(0) = 1. As for the AdS/QCD
models, the results are given at the model’s inherent scale,
with u# and d quarks collectively accounting for approx-
imately 90% of the nucleon’s momentum.

Regarding the form factor D,(0), we observe the
following trends. Our estimate aligns more closely with
the lattice QCD results [45,46,103], although it is slightly
on the higher side. Comparatively, the predictions from
QCDSR-I [112] and QCDSR-II [112] are in the same
ballpark as our estimate, but with slight variations. On the
other hand, model-based predictions such as those from
the Skyrme model [31,32], along with the yQSM pre-
dictions [28,29,113], deviate more significantly from our
results. Interestingly, the yPT model [24] and IFF
model [4] provide results that resonate closely with our
findings. The KM15 fit [115] and the JLab data [5] offer
values that hover around our prediction, yet show minor
differences. Examining the C%™(0) values in Table II, our
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TABLE III. The mechanical properties: pressure p,, energy density £, and mechanical radius squared (rfnech) of
nucleon. The results presented herein represent the quark contribution to the nucleon.

Approaches/models po [GeV/fm?] £ [GeV/fm?] (r2 ) [fm?]
This work (1v/0.195 GeV — 2 GeV) 0.47 £0.10 2.38 +0.80 0.73 £0.01
QCDSR set-I (1 GeV) [112] 0.67 1.76 0.54
QCDSR set-IT (1 GeV) [112] 0.62 1.74 0.52
Skyrme model [31] 0.47 2.28 e
Modified Skyrme model [32] 0.26 1.45

yQSM [28] 0.23 1.70 e
yQSM [114] 0.35 1.89 0.55
Soliton model [113] 0.58 3.56
LCSM-LO [33] 0.84 0.92 0.54

result has the lowest magnitude. The value of C(Q? = 0),
when summed over all partons, should be zero according
to the sum rule. Our Hamiltonian, as shown in Eq. (1), is
based on the valence Fock sector of the proton system,
which consists of three quarks and lacks any gluonic
degrees of freedom. Therefore, C%(0) is expected to have a
sign opposite to C?(0) so that their total C4¢(0) = 0.
While we do not achieve an exact zero, obtaining a small
value of C4™(0) = 0.0024 is desirable. This reflects the
understanding that a genuine calculation of the C‘q term
requires extending beyond the valence Fock sector to
include contributions from gluonic degrees of freedom.
All GFF outcomes were fitted using a two-parameter
dipole function. Comprehensive details of this function and
the derived parameter values can be found in Appendix A.

A. Mechanical properties

The (D)-term can be directly related to the pressure p, in
the center of the nucleon and the mechanical radius squared
2
Tech a8 [3]

1 PP 2
247[2MHA d0"0"D(C").

Po=—
(72 ) = 6D(0) [ I szD<Q2>} INGTY

The energy density £ can be obtained as follows [3]:

is less than that predicted by the soliton model [113] but
higher than most other predictions, including those from
QCDSR [112] and LCSM-LO [33]. The energy density,
similar to the pressure, aligns well with the prediction from
the Skyrme model [31]. Note that the combination A, (0) +
C'q (0) is interpreted as the average energy density of a
nucleon at rest, expressed in mass per unit volume [4,116].
Therefore, the mass decomposition is closely linked to this
combination, and an accurate analysis of the mass decom-
position necessitates the inclusion of gluonic degrees of
freedom. Finally, concerning the mechanical radius squared,
<rﬁmh>, our prediction surpasses the values reported in
Refs. [33,112,114]. We emphasize that the effective
Hamiltonian utilized in this investigation, as depicted in
Eq. (1), pertains solely to the three quarks within the valence
Fock sector of the proton. Consequently, our findings
exclude the gluonic contribution and highlight solely the
quark contribution within the valence Fock sector. The
crucial gluon contribution will be computed in future
research.

1. Pressure and shear forces

In our study, the D-term is derived from the transverse
components of the EMT, which have connections to
mechanical properties like the pressure and shear distribu-
tions [3,21,110,117]. A deeper understanding of these
quantities can be achieved by undertaking a 2D Fourier
transformation (FT) of the D-term with respect to the
transverse momentum transfer thereby transitioning from

M, [ N A0 0? 2 momentum space to impact parameter space.
£= 47z2A d0°0 <A(Q )+ Q)+ 4M? (D(07) The FT [D(b)] of the D-term can be expressed using the
Bessel function of the zeroth order (J,) as follows:
- B (19) 1
D(b) = 5 z/dque_iquLD(qQ),
Here, M, denotes the mass of nucleon. In Table III, we list (27)
our findings alongside those from various models and :i © da 27 (a*b\D( o> 20
approaches. For the pressure, p, our results are closest 27 Jo 4~Jo(q"b7)D(7"). (20)

to those of the Skyrme model [31] and the soliton
model [113]. Regarding the energy density, &£, our value

where, b = |l; || represents the impact parameter.
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FIG. 3.

Plots of (a) the pressure distribution 2zb P(b), and (b) the shear force distribution 2zb S(b) as a function of b. Our results are

compared with results based on LCSR evaluated in Ref. [33] (purple dot-dashed lines) and using the fitting function of D(Q?) based on
JLab experimental data [5] (red dashed lines). Additionally, we draw comparisons to the results from the yQSM for the nucleon with
flavor SU(3) symmetry as presented in Ref. [114], indicated by the dot-dashed black line. The solid magenta lines with magenta bands
and the solid blue lines with blue bands represent the results at the initial scale x5 = 0.195 & 0.020 GeV? and the final evolved scale of
u? = 4.00 GeV?, respectively. The systematic uncertainties presented in the experimental extraction of the D-term [5] were added in

quadrature.

The 2D pressure p(b) and shear distributions s(b) can
thus be defined in the impact parameter space as follows
[118,119]:

1 1d[, d -
=~ |p=D
p(b) 8P+bdb{bdb q(b)]’

1 d|1d .

where P* denote the light cone total longitudinal momen-
tum. The densities described in Eq. (21) are scaled by the
Lorentz factor for practical purposes, as outlined in [119],
resulting in the following expressions:

(21)

P(b) = p(b). @)
S(b) = %s(b). (23)

A spherical shell of radius b experiences normal and
tangential forces, which are defined by the combined
effects of pressure and shear [3],

F(b) = <7>(b) + ;S(b)), (24)

Fib) = (Pe)-350)), (25)

In Fig. 3, we present the 2D pressure [2zb P(b)] and
shear distributions [2zb S(b)] as functions of the impact
parameter b. Our results are compared with analyses from

the LCSR [33], the yQSM for the nucleon with flavor SU
(3) symmetry [114], and experimental data from JLab using
fitting functions for D(Q?) [5]. The conservation of the
EMT also informs the 2D stability condition of the nucleon,
with the pressure and shear force distributions playing
fundamental roles in this stability condition. The 2D
equilibrium equation, derived from the conservation of
the EMT current, is given by [118]

P(b) +58'(b) + 5(b) = 0. (26)

Furthermore, the pressure and shear distributions must
adhere to the von Laue condition and its lower-dimensional
subsystem within the nucleon, expressed as follows [114]:

/ " 2bP(b) =0,

0

A " db {P(b) - ;S(b)] ~0. (27)

We confirm the global stability condition, as shown in
Eq. (27), through numerical integration. The results,
summarized in Table IV, approximate zero within the limits

TABLE IV. Numerical values for the stability condition shown
in Eq. (27) at the initial and the evolved final scale.

Initial scale Final scale

Stability condition (v0.195 GeV) (2 GeV)
J&o d*bP(b) -2.39x 1079 —-4.38 x 1071
e db[P(b) —1S(b)]  —7.03 x 10710 ~3.80 x 10710
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FIG. 4. Plots of (a) the normal forces F,, and (b) the tangential
in Fig. 3.

of numerical precision, affirming the validity of our
approach under the uncertainty of numerical calculations.
The von Laue condition arises from the need to balance
internal forces in a system [3,110], indicating that the
distribution should have a point where it changes sign. Our
data shows a positive region followed by a negative region,
suggesting the presence of both outward-pushing and
inward-pulling forces within the nucleon. In our results,
the point where the pressure changes sign is approximately
b = 0.6 fm for both scales. For the light cone sum rule [33],
this point is at b ~ 0.51 fm, and for the JLab data [5], it is
around b = 0.45 fm. For the yQSM, this point lies between
the JLab and LCSR, but closer to the JLab crossing point.
Even though the zero crossings in our model occur some-
what later than those in the comparative datasets, the
overarching characteristics and mechanical implications
of the pressure distribution align across different models
and empirical findings [6,28,31-33,113].

This shear distribution is associated with attributes like
surface tension and surface energy, which are typically
positive in stable hydrostatic systems [3]. In line with
previous studies, our results confirm that the shear dis-
tribution remains positive across all b values, thus satisfy-
ing the local stability condition S(b) > 0. Furthermore, the
behavior of our shear force distribution is consistent with
outcomes from other methodologies [6,28,31-33,113]. It
appears to be a coincidence that our initial scale results for
both pressure and shear align more closely with the light
cone sum rule [33], yQSM [114], and the JLab data [5] than
the evolved results. Additionally, the peak position of our
results at the final scale occurs at a lower value of b.

In Figs. 4(a) and 4(b), we present our results for the
normal and tangential forces attributed to the valence quark
combination, respectively. A salient observation is the
consistently positive nature of F,(b). We thus find that
the local stability condition pertaining to F,(b) = P(b) +
18(b) > 0 is also satisfied. On the other hand, F,(b)
showcases a dual character: a positive core, indicative of

01F

27wb F; (b) [GeV /fm]

-0.2F

b[fm)]
(b)

forces F, as a function of b. The legends are same as mentioned

repulsive forces, and a subsequent negative domain, signi-
fying attractive forces, with the transition (zero-crossing)
located around b = 0.4 fm. The peak of the repulsive force
occurs close to b ~ 0.3 fm, while the maximum attractive
force, which plays a pivotal role in binding, is more
pronounced around b = 0.6 fm. It is worth noting that this
binding force exhibits a greater magnitude than the repul-
sive counterpart. Thus, within the BLFQ framework, the
key features of these forces exhibit good agreement with
insights from the light cone sum rule [33], the distributions
inferred from JLab’s D(Q?) fitting function [5], and the
predictions of the chiral quark-soliton model [114]. We
further explore the normal and tangential force by plotting
them as vector fields in the impact parameter space in Fig. 5.
We observe that the normal force fields 2zbF,(b)e, are
directed outwards, while the tangential force fields are
found to rotate inside the nucleon. The inner part of
27bF,(b)é, rotates anticlockwise, whereas the outer part
rotates clockwise. These observed patterns in the vector
plots facilitate the visualization of the crucial requirements
for a stable nucleon.

2. The Galilean energy density and pressure distributions

Within the context of nucleonic internal structures,
understanding energy density and pressure distributions
offers invaluable insights. To this end, we have drawn upon
the Galilean framework to study these distributions, as
described in Ref. [4]. We represent the Galilean energy
density u(b), radial pressure o”(b), tangential pressure
o'(b), isotropic pressure o(b), and pressure anisotropy
I1(b) through the equations below,

o=
@%{“’ D} &
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Tangential force
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Vector plot showcasing the normal and tangential forces at the initial scale in the transverse plane (b,, b, ), where the impact

parameter b is defined as b = /b2 + bg. The normal force is represented as 2zbF, (b)eé,, and the tangential force as 2zbF,(b)éy. Here,

¢, and &, denote the polar unit vectors, related to the Cartesian unit vectors by &, = cos(6)i + sin(6)j and &, = — sin(6)i + cos(6)J,

where 6 = tan~' (b, /b,).

o' (b) = M|—-C(b) + #%dfl—;b)] : (29)
o(b) = M|~C(b) + #d;é(;)] , (30)

o(b)=M -—C(b) +%#%d% (bwﬂ , (31

db

—— This work (initial scale)

= This work (0.195 — 4.00) GeV*

= ---multipole

0.2

27b p (b) [GeV /fm]

0. 0.5 1. 1.5 2. 2.5
b[fm)]

FIG. 6. Plot of the two-dimensional Galilean energy density
27b 4 (D). The solid magenta line with magenta bands and the
solid blue line with blue bands represent the results at the initial
scale 2 = 0.195 + 0.020 GeV? and p? = 4 GeV?, respectively.
Our results are compared with the results in a multipole model
(red dashed line) [4] and the red band denotes a 10% uncertainty
in the parameter F,(0) as defined in [4].

T Y ()

In Fig. 6, we present our findings for 2zbu which
encompasses all four GFFs as per Eq. (28). The energy
density’s peak at the initial scale is discerned around
b =~ 0.4 fm. However, when evolved, this peak not only
diminishes in magnitude but also repositions closer,
at b~ 0.3 fm.

Turning to Fig. 7, we elaborate on the results for the
pressures defined in Egs. (29)—(32). The radial pressure
remains consistently positive, indicating a repulsive nature.
The tangential pressure, on the other hand, displays a more
varied behavior; its positive (repulsive) region is located at
smaller impact parameters, while the negative (attractive)
region spans towards the larger values of b. The isotropic
pressure and the pressure anisotropy are essentially linear
combinations of the radial and tangential pressures.
Specifically, they are defined by the relations ¢ = (”—g”')
and Il = 0, — 6,. We observe that the isotropic pressure
largely mirrors the behavior of the radial pressure, though it
turns slightly negative for larger b values, specifically
beyond 1.0 fm. The pressure anisotropy remains positive
everywhere, implying that the radial pressure consistently
exceeds the tangential one.

Our projections for these energy and pressure distribu-
tions align well with a straightforward multipole model as
proposed in Ref. [4]. An interesting coincidence is that our
results at the scale y> = 4.00 GeV? align more closely
with the multipole model than those at the initial scale
of u3 = 0.195 GeV2.
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FIG. 7.

Plots of the two-dimensional radial pressure (a) 27b o,, (b) tangential pressure 2zb o, (c) isotropic pressure 2zb ¢ and (d) the

pressure anisotropy 2zb I1. The legends are same as mentioned in Fig. 6.

V. CONCLUSION

In this study, we delved into the GFFs and the mechani-
cal attributes of quarks in the proton using the BLFQ
theoretical approach. Utilizing an effective light-front
Hamiltonian, we integrated confinement across both trans-
verse and longitudinal planes, coupled with a one-gluon
exchange interaction tailored for valence quarks, making it
apt for low-resolution applications. By treating the
Hamiltonian as a relativistic three-quark problem within
the BLFQ framework, we deduced the nucleon LFWFs as
its eigenvectors. These LFWFs then served as the founda-
tion to derive the quark GFFs.

We evaluated the four GFFs and studied their Q2
dependence at both the initial scale of u3 = 0.195 GeV?
and final evolved scale of 4?> = 4.00 GeV?. The A(Q?) and
B(Q?) GFFs are comparable with lattice QCD results [103]
although our result for the A(Q?) is slightly lower com-
pared to lattice QCD result. We have observed that our
result for D(Q?) is in qualitative accord with the exper-
imental data extracted from DVCS process at JLab [5] and
lattice QCD predictions [103]. We fitted our GFFs to a
dipole function with two parameters as discussed in
Appendix A. We have compared the values of the GFFs
at Q% = 0 with the existing theoretical predictions and the
data from JLab. Our estimates for A,(0) and J,(0) align
reasonably with multiple references, though they tend to be

slightly lower at a renormalization scale of u> = 4 GeV?.
For the D,(0) form factor, our results are largely in sync
with lattice QCD. Our C%™(0) value is found to be close to
zero such that C%(0) > 0 and C4(0) < 0 since both have
the same shapes, opposite signs and nearly the same
magnitudes.

Using GFFs in the BLFQ framework, we assessed the
proton’s internal pressure, energy density, and mechanical
radius, comparing with other theoretical models. The central
proton pressure, pg, aligns best with Skyrme [31] and
soliton models [113]. Our energy density, &, situates
between LCSM-LO [33] and other predictions like
QCDSR [112]. Despite varying theoretical predictions on
po and &, our mechanical radius, (r2 ), is notably larger
than in Refs. [33,112].

In the BLFQ framework, we analyzed the internal
pressure p(b) and shear force s(b) distributions within
the proton. We observed a positive core and a negative tail
for p(b), while s(b) remained consistently positive, align-
ing with both experimental data and other theoretical
models. Additionally, the normal force F,(b) is uniformly
repulsive, whereas the tangential force F,(b) shows repul-
sion at the center but attraction towards the periphery.
These patterns generally concur with experimental and
theoretical expectations. Moreover, our computations of the
two-dimensional Galilean energy density, various pressure
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metrics, and anisotropy in the BLFQ framework match well
qualitatively with a multipole model, especially for evolved
results at higher scales.

The results showcased validate the efficacy of our
effective Hamiltonian method in the BLFQ framework,
encouraging its use for other hadrons. Our future plans will
focus on calculating the gluon GFFs within the proton
system by expanding the Fock space to include an addi-
tional dynamical gluon.
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APPENDIX A: GFFS FITTED WITH A DIPOLE
FUNCTION

We fit both the initial and final scale GFFs with the
following function:

ao

2\ —
N e

(A1)

The fit parameters for the form factors A(Q?) and B(Q?)
are listed in Table V. Parameters for D(Q?) and C(Q?) are
provided in Table VI. It should be emphasized that the fit for
C(Q?) is only reliable for Q% > 0.2, as its fitting function
does not faithfully represent C(Q? =~ 0). The efficacy of the
fit is evaluated through the y? values presented for each GFF
in Tables V and VI, calculated using Eq. (A2). In this
equation, N denotes the number of data points, N p= 2
represents the count of parameters, O; are the calculated
GFF values according to the BLFQ framework, and C; are
the values obtained from the fitting procedure. The sum-
mation in Eq. (A2) encompasses all data points for which
0 < Q? <2 for the GFFs, except for C(Q?), where the
condition is 0.2 < Q% < 2,

2 1 (Oi_Ci)2
(N-N,-1) |Cil

P (A2)

i

TABLE V. Fit parameters for A(Q?) and B(Q?) for u and d quark flavor. The unprimed parameters (a;) are for the initial scale of
u3 = 0.195 GeV? and the primed parameters (a}) for the final scale of 4> = 2 GeV?. The upper and lower bounds denote the error bands
around the main value. The y? values indicate the goodness of fit calculated using Eq. (A2). For the calculation of each y? value, we

made use of 29 distinct points across the interval 0 < 0% < 2.

2 2

GFF Bound ay a; X ag ) b
A*(Q?) Central 0.6731 0.7762 0.00010378 0.2837 0.7764 0.00005875
A"(Q?) Upper 0.6787 0.6116 0.00015951 0.3034 0.6924 0.00011753
A*(Q?) Lower 0.6703 0.9167 0.00012235 0.2643 0.8863 6.5513 x 10~¢
A4(Q?) Central 0.3188 0.9112 0.00001585 0.1338 0.9134 0.00001145
A4(Q?) Upper 0.3099 0.7733 0.00003394 0.1435 0.8714 0.00003479
A4(Q?) Lower 0.3220 1.0310 0.00002023 0.1241 0.9640 3.9597 x 1077
B“(Q?) Central 0.3289 1.1102 2.1633 x 107° 0.1398 1.1169 3.0792 x 1077
B"(Q?%) Upper 0.3195 0.9266 9.8522 x 107° 0.1494 1.0434 9.6802 x 107°
B"(Q?) Lower 0.3285 1.2743 5.0886 x 107° 0.1303 1.2067 0.00002466
BY(Q?) Central -0.3279 1.0171 6.2102 x 107° —0.1393 1.0227 3.8685 x 107°
BY(Q?%) Upper —-0.3185 0.8624 0.00003352 —-0.1296 1.0929 3.5263 x 107°
B4(Q?) Lower —-0.3274 1.1574 3.7700 x 107° —0.1489 0.9649 0.00002398
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TABLE VL.  Fit parameters for D(Q?) and C(Q?) for both u and d quark flavor. The unprimed parameters (a;) are for the initial scale
of u3 = 0.195 GeV? and the primed parameter (a}) are for the final scale of 4> = 2 GeV?. The upper and lower bounds denote the error
bands around the main value. The y? values indicate the goodness of fit calculated using Eq. (A2). To determine the y> values for the
GFF D(Q?), we utilized a set of 29 discrete data points spanning the range 0 < Q? < 2. For the GFF C(Q?), we calculated using 20
discrete data points within the interval 0.2 < Q? < 2.

GFF Bound ag a; s ag da} 7’

D"(Q?) Central —2.8330 3.1549 0.00008020 —1.1460 2.9875 0.00011587
D"(Q?) Upper —-3.4741 3.1525 0.00106679 —0.9571 3.0757 0.00054817
D"(Q?) Lower —2.5569 3.2365 0.00034558 —1.3347 2.9243 0.00010448
D4(Q?) Central -1.9610 3.5540 0.00011851 —-0.7822 3.3392 0.00017370
D4(Q?) Upper —2.6775 3.687 0.00020343 —0.5869 3.2820 0.00041175
D4(Q?) Lower —1.6696 3.5211 0.00040762 —0.9776 3.3753 0.00010373
C"(Q*>0.2) Central 0.4924 0.7259 0.00016296 0.2126 0.7298 0.00023901
C"(Q*>0.2) Upper 0.5856 0.6157 0.00006947 0.2393 0.6349 0.00023820
C"(Q*>0.2) Lower 0.4732 0.8198 0.00013749 0.1892 0.8969 0.00029638
C(Q*>0.2) Central —0.4257 0.6935 0.00011733 —0.1839 0.7011 0.00015369
CY(Q?>0.2) Upper —0.5426 0.6545 0.00003208 —0.1531 0.7846 0.00017627
C(0% > 0.2) Lower ~0.3988 0.7485 0.00010404 —0.2154 0.6509 0.00014935

APPENDIX B: HO INTEGRALS USED FOR CALCULATING C,(Q*) AND C,(Q?)

The recurrence relation for the HO wave function is as follows [71]:

k(L) = b{ ]+ 1y (K) = H(n = 1)/, (k) im >0 (B1)
nm\"L) — - N
mkbn,m-‘rl(kL) —Vn+ 1¢n+1,m+1(kl_) ym < Oa
k*¢n,m(l_€i) _ b{ V1 + |m| +1 n,ri—l(kl) - H(” - 1)ﬁ¢iﬂ—1,m—l(kl) ;m <0 (BZ)
VAL + |m| nm—1 (kJ_) —Vn+ 1¢n+1,m—1(kj_) ym 2> 07

where k is the complex representation of k 1 such that k = 121” + ilzi2> and the HO wave function is as defined in Eq. (3).
H(n) is the unit step function. The following integrals were utilized when evaluating the GFFs C,(Q?) and C,(Q?) and they
are derived form the recurrence relation shown above:

& 2 <1> * 7 —/>
7, = / Pk KD X (R by ) (K1 52)

(o]

1
=3 (OII (x,by,n,m, by, n',m', gV, q®)) + OT;(x, by, n,m, by, n',m’, g\, q(z))>, (B3)

I, = / K2 x (R by ) (K1)

—% (OII (x,by,n,m,by,n', m’, g, q(2>) — OZ;(x,by,n,m, by, n',m’, g, q(2>)) , (B4)
—

Iin= / KUK X (R by) b (K 1 )

—i <(’)I2(x, by,n,m,by,n',m',q"), q?) — OT5(x,by,n,m, by, n',m’, q), q(z)))’ (BS)
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T —/°°k<‘>k“>x¢* (KL b1) b (K 1, By)
11 — 1 R nm\"M 1> Y1)Pn' m’ 1,02

1
=2 (OIz(x, by,n,m,by,n',m', gV, q?) + OT5(x, by, n,m, by, n',m’, gV, g'?))

+20-’Z.12<x7 blanymv b27 n/7m/7 q(1)9 q(z)))’ (B6)

© - —
I, = / KR s g (R by ) b (K1)

(OIZ(x, by,n,m, by, n',m', g, q®) + OT5(x, by, n,m, by, n',m', gV, g'))

1
4
—ZOflz(x,bl,n,m,bz,n’,m’,q(l),q(z))>, (B7)

where k| =k, + (1 —x)q, and k(Lj) with j = (1,2) are the transverse components of k, such that (k(ll))2 + (k(z))2 =
(k. )*. We take b; = b, = b. The functions OZ are defined as follows:

OI] (x’ bl,n,m, bz,n/, ml’ q(1>’ q(2>)

'+ |m |+ 1% (’)EZ('{)qum(n,m,n’,m’Jr 1)—H(n =1)x \/WXOEZ(';)}’Z(Z)(n,m,n’— L,m'+1) ifm >0

= by/xx byb by.b .
v+ |m'| x (’)[,q(‘,‘) ;(2)(71, m,n',m' +1)—v/n' +1x (’)Eqé,’) 2(2) (n,m,n' +1,m +1) otherwise

(’)IT(x,bl,n,m,bz,n/’m/’q(l)’q(Z))

'+ m |+ 1 xOEZ}l’f’Z(2>(n,m,n’,m’— 1)—H(n =1)x ﬁx@ﬁi{l‘f’z(z)(n,m,n’— I,m'—1) if m <0

= by/xx byb by.b .
'+ |m | x Oﬁq('{) Z“) (n,m,n’,m'—1)—+vn' +1x C’)Eq;,’) 2(2) (n,m,n +1,m' —1), otherwise
/ / 1 2)\ _ 12 / /
2 3 s Ly ) ) 3 3 5 — 3 ) 3 )
OL,(x,by,n,m, by, n',m', ¢V, ¢?) = b>xf(n,m,n',m') (B8)
n,m,n',m') = /n +|m'|+1 n +|m 41 —i—l(’)ﬁb‘{bzz n,m,n ,m +2 ifm' >0
q.g®
—-H(n' — I)WO£Z(]"Z(2) (n,m,n —1,m' + 2))
—H(n' - 1)\/W<\/n’ -1+ |m+ 1|+ IOEZé,’ﬁZ(Z) (n,m,n' —1,m' +2)
by.b
_H(n/ — 2)\/ n — 10[’421);(2) (l’l, m,n' =2, m + 2)) ) (B9)
fnymn',m'") = \/n’ + || <\/n’ + |m' + 1] + 1O£Z(]"Z(Z) (n,m,n',m" +2) if m' = -1

—-H(n' — 1)\/WO£ZEI’f;(2)(n,m,n’ -1,m + 2)>

—n' F 1<\/n’ + 14 [ 1+ 1OL) 2 (nmn + 1om' +2)

[T L 1) bibe
—H(n/) n/ + ]O‘Cq(l),q(z)(nsm’n/’ml +2)>’ (BIO)
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by.b .
fnymn',m') = \/n’ + |m'| <\/n’ + |m' + 1|O£q§,)’2q(2> (n,m,n',m" +2) otherwise

—vn' +1 Oﬁb‘bz [(n,m,n" +1,m +2)>

—Vn' +1 <\/n’ + 1+ |m + 1|O£Z('{)bzq(2)(n,m,n’ +1,m'+2)

—vn' 42 Oﬁb‘bz [(n,m,n' +2,m +2))

OZL5(x,by,n,m, by, n',m’', gV, q?)) = b2xf*(n,m,n',m’),

f(nymon',m') = /n' +|m'| + 1<\/n' +|m' — 1| + 1(’)£z(‘;f72<2)(n,m,n’,m’ -2) ifm <0
—-H(n' — 1)\/_(’)Eb‘ b2 o (n,m,n 1,m’—2)>
—-H(n' — 1)\/r7<\/n’ + |m' - 1|O£Z<l">bji<2> (n,m,n —1,m' =2)
—H(n' =2)vn' - IOEb‘,’bz y(nymon' =2,m' -2) ),
PO

fr(nymn',m) =/n +|m’|<\/n + |m' —1|+1(9£b‘b2 (n,m,n',m' —2) ifm =1

—H(n' —1)\/_(’)£b‘b2 J(n,m,n' =1, m —2))

-’ —|—1<\/n —|—1—|—\m—1|—|—1(9£b‘b2 (n,m,n +1,m' =2)

—H(n'")vn' +1 Oﬁb hz o (n,m, 1, m—2)>,

fr(nymn' m) =\/n' +|m’|<\/n + |m’ —1|(9£'7 (n m,n',m' —2) otherwise

—vn' +1 (’)Eb‘bz J(n,m,n" +1,m —2))

_\/n+1<\/n+l+|m—1|(9£b D2 (nymon’ +1,m' = 2)

—/n' +2 Oﬁb‘bz [(n,m,n" +2,m —2)),

OZ 5 (x,by,n,m, by, n',m’, g, q(z)) = b*xg(n,m,n',m’),
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g(n,m,n',m') = \/n’ + |m'| + 1<\/n’ + |m' + 1|O£lq’(’l')b;(2) (n,m,n',m") if m>0

—vn' + IOCZ(‘;)}Z(Z) (n,m,n’ +1, m’))

—H(n' - 1)\/77<\/n’ -1+ |m + 1’(9522{%(2)(”»"1,"/ —1,m')

roglt nmrt).

(B17)
gn,m,n',m') = /0’ + || (\/n’ +|m' + 1| + 1(9[,2(‘,')172(2) (n,m,n’,m') otherwise
—H(n' - 1)\/’—170’6221.?;(2) (n,m,n' =1, m/))
—vn' +1 (\/n’ +14+|m+ 1|+ 10£2g,'f;(2)(n,m,n’ + 1,m')
_ / 7 by.by 1ot
H(n')v/n' + 10L 1% (n,m,n',m )) (B18)
|
. 252
The function OCS(‘I‘)I” Z@ represents the overlap of the HO I, = g x sin(26) x Vi b12+ b3 (i=1,2), (B21)

wave function and its approximate analytic expression is
shown in the following subsection.

I=/B+E, (B22)

1. The HO overlap

~ 1 ifblzbzandZ]:O
C(b1.by,q) = { 1280) otherwi (B23)
H(n): unit step function, (B19) cos?(26) otherwise.

We represent by Oﬁz(ll}b;(z) (nl, my, ny, mz) the integral of

0 — tan~! (@) ’ (B20) the overlap between the harmonic oscillator wave function

1 such that
|
OEZ(II.)IJ’Z(Z) (nl , My, Ny, mZ) - / d2kL¢:1,ml (kl, bl)¢n2,m2 (k/l’ bz), (B24)

where K| =k, + (1 -x)q,.
The approximate analytic expression for the above overlap can be represented in the following form:

bb
Oﬁzgfﬁaz)(’il»ml,nzvmz) = H(ny)H(ny) x (bz ;;) X /21y + [my [)!12n5(ny + ma )1 x (= 1)t
1+ 0
(1 ! H
x OL'—.ny,my,—,ny,my, gV, g ). (B25)
b, b,
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For the case [ # 0 we have

OL (by,ny,my, by, ny,my, g, ¢?)) = exp (

g

(_l)q—qut . ls+t . i

p!

EVo(r,v,w, z) =

Tmin = 0,
[my| + m,

Umin — Max (—I’lz - 3

+n®,

Wiin = max (0, r — my — 2v),

{max(m2+211—r,0,rmax—r—w) if by =b,
Zmin — )
e max (m, + 2v —r,0) otherwise
s=m; +2v+2w—r,
5 my| —m my| +m
el s

p=g+r+s+t

For the case [ = 0 we have

Oﬁl(blv ny,my, b27 ny, my, 4](1), C](2>)

where

g+r+s+t
q.r.s.t
-C(by, by, g) - sin”(20) - sin*(0) - cos!(

12 "max Uimax Wmnax Zmax
_§> ( (Z ( (r. v,w,z)))), (B26)
r= rmm U=Umin W=Wmin  “=Zmin

N t

)(Z ()G

—i-(s—2w+1-22)- tan’l(lz/l)

)

[my| + m,
2 b

2
_,j),

[my| —my
—r—l—v),

w <

(B27)

|m1|—m1
2
|m1|—m1

2

I’l1+l’l2+

Fmax =

_|_

Vmax = Min <n1 +

Whax = Min (rmax —-r,n + >

[my| + m,

Zmax = Min (rmax —r—w,n, + 5

t

my —20+2z+r,
Imy| —m,

u:n1—|— )

—v—=w,

p=q+r,
qg=n;+n, =20,
r=|m| +2wv,

u=n;—vo,

. ny + ny
Upax — NN | ————
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