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We develop a method to calculate helicity amplitudes of an arbitrary tree-level process in the
Feynman-diagram (FD) gauge for an arbitrary gauge model with MadGraph5_aMC@NLO. We start from
the ’t Hooft–Feynman gauge Lagrangian in FeynRules and generate scattering amplitudes by identifying the
Goldstone boson as the 5th component of each weak boson. All the vertices of the 5-component weak
bosons are then created automatically by assembling the relevant weak boson and Goldstone boson vertices
in the Feynman gauge. The 5-component weak boson vertices are then connected by the 5 × 5 matrix
propagator in the FD gauge. As a demonstration of the method we calculate the cross section for the process
μ−μþ → νμν̄μtt̄H with complex top Yukawa coupling, which can be obtained by adding a gauge invariant
dimension-6 operator to the Standard Model (SM) Lagrangian. The FD gauge and the unitary (U) gauge
amplitudes give exactly the same cross section, and subtle gauge theory cancellation among diagrams in the
U gauge at high energies is absent in the FD gauge, as has been observed for various SM processes. In
addition, we find that the total cross sections at high energies are dominated by a single, or a set of
nonvanishing Feynman amplitudes with the higher dimensional vertices in the FD gauge.
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I. INTRODUCTION

Recently a new gauge boson propagator has been
proposed for massless gauge bosons [1] and for massive
gauge bosons [2,3]. They can be obtained from the light
cone (LC) gauge [3], where the gauge vector is chosen
along the opposite of the gauge boson three momentum
direction

nðqÞμFD ¼ ðsgnðq0Þ;−q⃗=jq⃗jÞ: ð1Þ

This particular choice of the LC gauge vector has been
named the Feynman-diagram (FD) gauge [2,3], because of
the common feature that subtle cancellation among inter-
fering Feynman diagrams is absent [1,2], that the observ-
able cross sections are dominated by a single Feynman

diagram in the singular kinematical configuration where the
parton shower description holds [1,2,4–6], and that some
interference patterns away from the singular region seem to
allow physical interpretation, such as the angular ordering
of QCD radiations [3,7,8].
Because the subtle cancellation among interfering

Feynman diagrams has been a severe obstacle in numerical
evaluation of the amplitudes [9,10], it is desirable that all
numerical codes for the scattering amplitudes be available
in the FD gauge. In QED and QCD, this is readily available
since the only necessary change is to replace the photon and
gluon propagators, which are given in the Feynman gauge
in Helas [11,12] adopted by the series of MadGraph [13–16],
one of the commonly-used matrix-element event genera-
tors. In the electroweak (EW) sector, we need to introduce
new Feynman rules which treat the Goldstone bosons as the
5th component of the massive weak bosons.
In the paper [2], the 5 × 5 FD gauge propagator of

massive weak bosons [2,5] has been derived from the
unitary gauge propagator by making use of the BRST
identities [17,18], which relates the off-shell amplitudes of
the scalar component of the weak boson ∂μVμ and that of
the corresponding Goldstone boson πV . It has been found in
Ref. [2] that we need to introduce three new vertices,
ZZZZ, WWZH, and WWAH, which do not appear in the
Feynman rules of the Standard Model (SM) in the unitary
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gauge. In Ref. [3], the FD gauge propagator has been
obtained directly as the Green’s function of the equations of
motion (EOM) of the LC gauge quantized EW theory. In
this representation, it is clear that the Goldstone bosons are
the 5th component of the weak boson, since the EOM mix
all the five components.
In Ref. [2], the FD gauge Feynman rules of the SM are

obtained by supplying the above three 4-point vertices to
the standard unitary gauge vertices, and then all the vertex
functions among 5th components of the weak bosons have
been coded manually. In Ref. [3], the Feynman rules are
obtained directly from the Lagrangian, since the Goldstone
bosons are the 5th component of the massive weak bosons.
Therefore, we already have the complete Feynman rules
and the vertex function programs to calculate the tree-level
scattering amplitudes in MadGraph5_aMC@NLO (MG5aMC) [16]
for an arbitrary process in the SM.
In this paper, we would like to extend the coverage to an

arbitrary gauge model, where all the massive gauge bosons
are obtained by the spontaneous breaking of gauge sym-
metries in the scalar (Higgs) potential. We start from the
FeynRules [19] model in the ’t Hooft–Feynman gauge, and
the Feynman rules and the corresponding vertex functions
for numerical calculations of scattering amplitudes are
automatically generated [20–22] in MG5aMC for an arbitrary
gauge model. The key observation of ours is that all the
gauge boson and the Goldstone boson vertices are gauge
invariant, since the gauge dependence appears only in the
propagators, i.e., in the weak boson and the Goldstone
boson propagators in the covariant Rξ gauge [23]. There-
fore, all the vertex functions (the Helas codes) generated in
the Feynman gauge are valid also in the FD gauge. Our task
is hence to combine them into the vertex function among
the 5-component weak bosons, automatically. Once this is
done, the 5 × 5 weak boson propagators connecting two
5-component vertices should be the FD gauge propagators.
The paper is organized as follows: In Sec. II, we explain

how the weak boson and the Goldstone boson vertex func-
tions (the Helas codes) should be combined to make a new
vertex function among the 5-component weak boson, auto-
matically. In Sec. III, we apply the method to a simplest
extension of the SM, the SM effective field theory (SMEFT)
[24–26] with a single dimension-6 operator. We select an
operator which modifies the top quark Yukawa coupling to
the Higgs boson, making it CP violating [27–32]. We show
that the absence of subtle cancellation among interfering
Feynman diagrams persists in the presence of non-SM
interactions. Section IV summarizes our findings.

II. FROM FEYNMAN GAUGE
TO FEYNMAN-DIAGRAM GAUGE

In the original FD gauge papers [1–3], the amplitudes in
the FD gauge have been calculated by using an independent
Helas library, which was coded manually and specifically
prepared for all the SM vertices. However, in order to aid

our pursuits for physics beyond the SM, it is necessary to
automatically generate the codes to calculate FD gauge
amplitudes for any processes in arbitrary gauge models. In
this section, we show how this can be achieved in the
framework of MG5aMC.
Since MG5aMC supports calculations in the Feynman

gauge, it includes all the elements needed to incorporate
calculations in the FD gauge. We, therefore, introduce a
new command in MG5aMC in order to let the user change
the gauge;

set gauge ***

where *** can be Feynman, unitary, axial or FD for
the FD gauge.1 Accordingly, we can now study any pro-
cesses of interest in the FD gauge with only a few MG5aMC

commands.2 For instance, for the ZZ → ZZ process:

MG5_aMC>import model sm
MG5_aMC>set gauge FD
MG5_aMC>generate z z > z z
MG5_aMC>output
MG5_aMC>launch

Without “set gauge ***,” MG5aMC employs the
unitary gauge as a default gauge choice for massive gauge
bosons. For the above process, there are three Higgs-
exchanged diagrams in the unitary gauge. On the other
hand, one additional four-point contact diagram exists in the
FD gauge. We refer to Sec. 3.1 in Ref. [2] for more details.
The command “set gauge FD” internally modifies

both the representation of the model within MG5aMC and
the way the Aloha [22] code generates the Helas subroutines.
We describe each modification step-by-step below.

(i) Extend vector boson wave functions from 4 compo-
nents to 5 ones

Since the vector boson wave function (or polari-
zation vector) for massive gauge bosons in the FD
gauge includes the Goldstone boson component, the
usual 4-component wave function ϵμðp; λÞ must be
extended to the 5-component one ϵMðp; λÞ, where p
and λð¼ �1; 0Þ are the momentum and the helicity
of the vector boson, respectively, and the index M
runs from 0 to 4, M ¼ fμ; 4g. The explicit formulas
are given by [2]

ϵMðp;�1Þ ¼ ðϵμðp;�1Þ; 0Þ;
ϵMðp; 0Þ ¼ ðϵ̃μðp; 0Þ; iÞ; ð2Þ

with the reduced polarization vector [1–3]

1The command “set gauge FD” is officially supported from
version 3.6.0 of MG5aMC.

2Note that the present FD gauge option in MG5aMC is restricted
to LO/tree-level processes, both in standalone mode (evaluation
of amplitude only) and in MadEvent mode (computation of cross-
section and generation of unweighted events).
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ϵ̃μðp; 0Þ ¼ ϵμðp; 0Þ − pμ

m
; ð3Þ

where ϵμðp; λÞ is the ordinary polarization vector.
The Helas vector boson wave function is a one-

dimensional array of double complex numbers, with
a four-momentum pμ defined in the first two slots of
the wave function variable, VC:

(VC(1), VC(2)) = NSV (p(0) + i p(3),
p(1) + i p(2))

An integer, NSV, is defined as NSV=+1 if the
vector boson is in the final state and NSV=-1 if it is
in the initial state.
Normally, the following four complex numbers

correspond to the vector boson wave function
ϵμðp; λÞ:

(VC(3), VC(4), VC(5), VC(6))

This must be changed to the 5-component
wave function ϵMðp; λÞ to include the Goldstone

boson component as

(VC(3), VC(4), VC(5), VC(6), VC(7))

Appendix A.2 of Ref. [2] includes the complete
code for defining the vector boson wave function in
the FD gauge.

(ii) Identify Goldstone bosons as their associated gauge
bosons

UFO models [20,21] compatible with the
Feynman gauge contain Goldstone bosons and their
associated interactions. With the command “set
gauge FD,” MG5aMC automatically, based on the
mass, identify which Goldstone boson is associated
with which vector boson, e.g. (π�; π0) as (W�; Z) in
the SM.

In each interaction vertex, all the Goldstone
bosons are replaced by their associated vector
bosons, while the color and Lorentz structures of
the interaction are kept untouched.3 If an interaction
for the same particle content exists, the two inter-
actions are merged into a single one.

For example, the interaction Wþπ−H present below in the UFO format4:

particles: [24,-251,25], # W+ Pi- H
color: [c0 = 1],
lorentz: [VSS1 = P(1,2) - P(1,3)],
couplings: {(c0, VSS1): GC_37=-ee/(2.*sw)},
orders:{QED: 1},

will be merged with the interaction WþW−H:

particles: [-24,24,25], # W- W+H
color: [c0 = 1],
lorentz: [VVS1 = Metric(1,2)],
couplings: {(c0, VVS1): GC_72=(ee**2*complexi*vev)/(2.*sw**2)},
orders: {QED: 1},

One can note that the position of theWþ particle is not the same between the two interactions, and therefore, one
needs to adapt the definition of the Lorentz (and, in principle, color) structure to the new ordering before actually
doing the merge. The permutation of the indices is done automatically, and the new Lorentz and color structures are
defined when/if needed (which, in this case, created the new SVS1 Lorentz structure). This procedure gives the
following merge interaction5:

particles: [-24,24,25], # W- W+H
color: [c0 = 1],
lorentz: [VVS1 = Metric(1,2),

SVS1 = P(2,1) - P(2,3)],

3This can lead to a warning due to the fact that a Lorentz structure for a scalar is attached to a spin-one particle.
4We do not exactly follow the UFO format to make it more readable/understandable for the reader.
5Additional interactions like πþW−H will also be merged into the same interaction, but those are not shown here for clarity. We refer

to Table 4 in Ref. [2] for more details.
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couplings: {(c0, VVS1): GC_72=(ee**2*complexi*vev)/(2.*sw**2),
(c0, SVS1): GC_37=-ee/(2.*sw)},

orders: {QED: 1},

One technical difficulty arises for interactions where, in the Feynman gauge, both the vector boson and its
Goldstone boson counterpart are present. To make the issue clearer, we present an example for the case of the four-
point interaction among two Z bosons and two of their Goldstone bosons in the SM:

particles: [23,23,250,250], # Z Z Pi0 Pi0
color: [c0 = 1],
lorentz: [VVSS1 = Metric(1,2)],
couplings: {(c0, VVSS1): GC_65=ee**2*i + (cw**2*ee**2*i)/(2*sw**2)

+ (ee**2*i*sw**2)/(2*cw**2)},
orders: {QED: 2},

As described above, the interaction will be mapped into a new interaction with four Z bosons, which is not present
neither in the Feynman gauge nor in the unitary gauge. The issue is that any pair of Z bosons needs to be associated
with a new Lorentz structure where they correspond to a Goldstone boson, leading to the final interaction containing
six Lorentz structures. Five of those Lorentz structures are new and are generated automatically, given that they are
identical to the original one up to the permutation of the indices. The new interaction is then given by6:

particles: [23,23,23,23], # Z Z Z Z
color: [c0 = 1],
lorentz: [VVSS1 = Metric(1,2), VSVS1 = Metric(1,3),

VSSV1 = Metric(1,4), SVVS1 = Metric(2,3),
SVSV1 = Metric(2,4), SSVV1 = Metric(3,4)],

couplings: {(c0, VVSS1): GC_65, (c0, VSVS1): GC_65,
(c0, VSSV1): GC_65, (c0, SVVS1): GC_65,
(c0, SVSV1): GC_65, (c0, SSVV1): GC_65},

orders: {QED: 2},

(iii) Multiply propagator factor
Each of the Lorentz structures of the new interactions will be passed to Aloha to generate the standard Helas

subroutines. For the subroutines associated with a propagator for a gauge boson, we apply the following
transformation to obtain the 5-component FD gauge current from the Feynman gauge current. Using the gauge
vector in Eq. (1) in the FD gauge, where qμ is the four-momentum of the propagating boson with the mass m, we
convert the output current, wf(0∶3) for the gauge boson and wf(4) for the associated Goldstone boson, to the
current defined in the FD gauge, wfd(0∶4), as:

ci = (0.d0,1.d0)
q(4) = -ci * m
nq = n(0)*q(0) - n(1)*q(1) - n(2)*q(2) - n(3)*q(3)
js1 = (n(0)*wf(0)-n(1)*wf(1)-n(2)*wf(2)-n(3)*wf(3)) / nq
js2 = (q(0)*wf(0)-q(1)*wf(1)-q(2)*wf(2)-q(3)*wf(3)
& - dconjg(q(4))*wf(4)) / nq
wfd(0∶4) = wf(0∶4)-q(0∶4)*js1-n(0∶4)*js2

Here, the four vector, nμ in Eq. (1), is expanded to nM with n4 ¼ 0. This implementation corresponds to the 5 × 5
FD-gauge propagator [2]7:

6In the SM, a 7th Lorentz structure, not included here for clarity is associated with the ZZZZ interaction due to the presence in the
Feynman gauge of another interaction with four Goldstone bosons. We refer to Table 5 in Ref. [2] for more details.

7Note that the direct implementation of the 5-dimensional propagator in the UFO model is not possible since the current UFO format
relies on 4-dimensional index.
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GMNðqÞ ¼
i

q2 −m2 þ iϵ

 
−gμν þ qμnνþnμqν

n·q i mnμ
n·q

−i mnν
n·q 1

!
: ð4Þ

See Sec. 2.2 as well as Appendix A in Ref. [2] for
details.

III. AN EXAMPLE IN SMEFT

As a demonstration and a test of the above procedure,
we apply the method in SMEFT with a dimension-6
operator [27–32]

L ¼ LSM þ
�
C
Λ2

Q†
3tRϕ̃

�
ϕ̃†ϕ̃ −

v2

2

�
þ H:c:

�
; ð5Þ

where Q3 ¼ ðtL; bLÞT and8

ϕ̃ ¼
�
vþH − iπ0ffiffiffi

2
p ;−iπ−

�
: ð6Þ

When we take the coefficient as [31]

C
Λ2

¼
ffiffiffi
2

p ðgSM − geiξÞ
v2

; ð7Þ

the phenomenological Lagrangian

LttH ¼ −gt̄ðcos ξþ i sin ξγ5ÞtH; ð8Þ

for CP violating top quark Yukawa coupling is obtained.
Throughout this section, we take

g ¼ gSM ¼ mt

v
; ð9Þ

so that the only non-SM parameter is the CP phase, ξ. In
the following, ξ ¼ 0 stands for the SM.
By using the method described in Sec. II, we generate the

amplitudes for the process

μ−μþ → νμν̄μtt̄H; ð10Þ

in the tree-level by using MG5aMC. We find 118 Feynman
diagrams in the FD gauge, compared to 89 diagrams in the
unitary (U) gauge. The number of diagrams reduce to 89
in the FD gauge and 87 in the U gauge, respectively, in the
SM. In order to study the interference patterns among
the Feynman diagrams, we classify the diagrams into the
following 6 subgroups:

WWF∶ W−Wþ fusion; ð11aÞ

μ−Wþ∶ μ−Wþ fusion; ð11bÞ

W−μþ∶ W−μþ fusion; ð11cÞ

anni-Z∶ μ−μþannihilation with s-channelZ exchange;

ð11dÞ

anni-γ∶ μ−μþannihilation with s-channel γ exchange;

ð11eÞ

anni-μ∶ μ−μþannihilation with t-channel μ exchange;

ð11fÞ

which are illustrated in Fig. 1.
In short, the WWF diagrams (a) have two t-channel W

propagators, one from the μ− → νμ leg, the other from the
μþ → ν̄μ leg. The μ−Wþ diagrams (b) have one t-channel
W propagator emitted from the μþ → ν̄μ leg, whereas the
W−μþ diagrams (c) have one t-channel W propagator
emitted from the μ− → νμ leg. The anni-Z (d) and anni-γ
(e) diagrams have s-channel Z and γ exchange, respec-
tively, while the anni-μ (f) diagrams contain t-channel μ
exchange.
In Table I, we summarize the numbers of Feynman

diagrams given by MG5aMC for each group. The left column
is for the SM, whereas the right column is for the SMEFT
Lagrangian of Eq. (5). In each column, the left-hand-side
gives the diagram numbers in the U gauge, whereas the
right-hand-side is for the FD gauge. In Fig. 2, we show the
total cross section of the process Eq. (10) as a function of
the total colliding energy

ffiffiffi
s

p
in the range 0.5 TeV <

ffiffiffi
s

p
<

100 TeV in the SM (ξ ¼ 0). For simplicity, we assume
unpolarized muon beams. The left panel, Fig. 2(a) is for the
U gauge, whereas the right panel, Fig. 2(b) is for the FD
gauge. The total cross sections, given by the black solid
curves, are identical between the two panels, showing the
gauge invariance of the total sum of all the Feynman
amplitudes,

P
all
k Mk, and hence their absolute value

square,

����Xall
k

Mk

����2; ð12Þ

which gives the observable cross section

σ ¼ 1

2s
1

2

1

2

X
helicities

Z ����Xall
k

Mk

����2dΦνμν̄μtt̄H; ð13Þ

for unpolarized μ beams, where Φνμν̄μtt̄H stands for the final
states phase space. Shown by the red solid curves are the

8We adopt the FeynRules notation for the Higgs doublet
with hypercharge 1=2 which differs from the Higgs Lagrangian
given in Ref. [2] by the overall sign of the three Goldstone
bosons.
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total sum of the absolute square of each diagram, which is
obtained by replacing the term (12) by

Xall
k

jMkj2; ð14Þ

in the cross section formula (13). Both in Eqs. (12) and
(14), Mk stands for the amplitude of the diagram k, which
runs from k ¼ 1 to 87 in the U gauge, from k ¼ 1 to 89 in

the FD gauge in the SM, as given in the left bottom row of
Table I. Helicity sum and average, as well as the phase
space integrals are done exactly as for the total cross
section.
The ratio of the red solid curve (14) obtained from the

sum of the squared amplitudes and the total cross section
given by the black solid curve obtained from the square of
the total sum of the amplitudes (12)

R ¼
P

helicities

R
dΦ
P

kjMkj2P
helicities

R
dΦjPkMkj2

; ð15Þ

is a measure of subtle cancellation among interfering
amplitudes. As is well known, the red solid curve grows
rapidly with energy in the U gauge, making the ratio R from
92 at 1 TeV to 1.8 × 106 and 6.3 × 109 at 10 and 100 TeV,
respectively. In the FD gauge, in contrast, the red solid
curve has the same order of magnitude with the total cross
section given by the black solid curve. The rate R is found
to be 0.37, 2.8 and 4.9 at

ffiffiffi
s

p ¼ 1, 10 and 100 TeV,
respectively. R > 1 at

ffiffiffi
s

p ≳ 2 TeV tells destructive inter-
ference among amplitudes. We note that, although we show
only the total cross sections integrated over the phase space
points in this paper, the R ratio Eq. (15) is a useful measure
of the degree of cancellation among amplitudes for various
kinematical distributions; see Refs. [1–3].

FIG. 1. The Feynman diagrams for the process μ−μþ → νμν̄μtt̄H are classified into six groups. (a) WWF: W−Wþ fusion; (b) μ−Wþ:
μ−Wþ fusion; (c) W−μþ: W−μþ fusion; (d) anni-Z: μ−μþ annihilation with s-channel Z exchange; (e) anni-γ: μ−μþ annihilation with
s-channel γ exchange; (f1)–(f4) anni-μ: μ−μþ annihilation with t-channel μ exchange.

TABLE I. The number of Feynman diagrams given by MG5aMC

for the process μ−μþ → νμν̄μtt̄H, with the six types of diagrams.
The four columns give, from left to right, the SM in the U gauge,
the SM in the FD gauge, the SMEFT model of Eq. (5) in the
U gauge, and in the FD gauge. The numbers represent the number
of diagrams in each category.

No. of diagrams

SM SMEFT

U FD U FD

(a) WWF 19 21 20 30
(b) μ−Wþ 11 11 11 13
(c) W−μþ 11 11 11 13
(d) anni-Z 24 24 25 36
(e) anni-γ 8 8 8 10
(f) anni-μ 14 14 14 16

Total 87 89 89 118
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Also shown in Fig. 2 are the partial contribution of the
subsets of diagrams identified in Eq. (11) and in Fig. 1,
while the number of diagrams in each subset is given in
Table I. The cyan dotted lines with solid circle show the
contribution of all the diagrams in the WWF category
subgroup (a);

���� XWWF

k

Mk

����2; ð16Þ

the magenta dashed curves stand for the contribution of
single W exchange diagrams of the groups (b) and (c);

���� X
WμþμW

k

Mk

����2; ð17Þ

and finally the blue dashed curves give the total contribu-
tion of all the annihilation diagrams k in the groups (d)–(f);

����Xanni.
k

Mk

����2: ð18Þ

We first note that the blue dashed curves are identical
between the U and FD gauges, because the total sum of
(d)–(f) diagrams are identical to the full amplitudes for the
processes,

μ−μþ → νeν̄ett̄H; ð19Þ

(or μ−μþ → ντν̄τtt̄H) provided that the model satisfies the
μ − eðτÞ universality. The breakdown of the annihilation
amplitudes will be studied at the end of this section.
In the U gauge, Fig. 2(a), both the magenta and cyan

curves are far larger than the total cross section, and that
they are degenerate in the entire energy range. The two
curves are about 1.0 × 106 (4.4 × 109) times larger than the
total cross section curve at

ffiffiffi
s

p ¼ 10ð100Þ TeV. These
numbers are of the same order of magnitude of the ratio
R as defined in Eq. (15) This tells that the subtle
cancellation takes place between the WWF type diagrams
(a) and the single W exchange diagrams (b) and (c) in the
U gauge.
In the FD gauge, shown in Fig. 2(b), in contrast, the cyan

dotted curve for the WWF amplitudes saturates the total
cross section at

ffiffiffi
s

p ≳ 3 TeV. This agrees with the expect-
ation that the 5-component weak boson representation
gives the weak boson fusion amplitudes with the physical
weak boson PDF, as pointed out first by Kunszt and Soper
in the axial gauge [33]. It has been shown in Ref. [3] that
the FD gauge propagator of the weak bosons is identical to
the axial gauge propagator of Ref. [33] by taking the LC
gauge limit. The singleW exchange diagram contributions,
depicted by the magenta dashed curve, are about a factor of
5 below the total cross section at the highest energy offfiffiffi
s

p
∼ 100 TeV. The absence of subtle cancellation, the

FIG. 2. Total cross section of μ−μþ → νμν̄μtt̄H at ξ ¼ 0 (SM). The black solid line denotes the total cross section jPall
k Mkj2 with 87

diagrams in the U gauge (a) and with the 89 diagrams in the FD gauge (b). The red solid curve denoted as
P

all
k jMkj2 gives the

contribution of the total sum of the squares of each diagram. The cyan dotted line with circle denoted as jPWWF
k Mkj2 gives the

contribution of W boson fusion diagrams. The magenta dashed line denoted as jPWμþμW
k Mkj2, gives the contribution of all single W

exchange diagrams. The blue dotted line denoted as jPanni.
k Mkj2 gives the contribution of all the annihilation type diagrams.
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saturation of the total cross section by the WWF type
contributions, and the dominance of the annihilation con-
tributions at low energies (

ffiffiffi
s

p ≲ 1 TeV) are all consistent
with a physical picture based on the weak boson PDF
approximation [10,33,34]. From Fig. 2(b), we can tell that
the total cross section is slightly below the WWF con-
tribution at highest energies (

ffiffiffi
s

p ≳ 50 TeV), where the red
and black solid curve ratio of R ∼ 3.6 suggests destructive
interference among WWF and single W exchange ampli-
tudes. Studying further details of the interference patterns
among the FD gauge amplitudes is beyond the scope of the
present paper, whose aim is mainly to demonstrate the
validity of the prescription given in Sec. II.
In Figs. 3(a) and 3(b), we show the same set of curves in

the presence of the non-SM phase, ξ ¼ 0.1π. Both the black
solid curve for the total cross section and the blue dashed
curve for the annihilation contribution are identical
between the U gauge (a) and the FD gauge (b), as expected.
The total cross section (black solid curve) is not sensitive to
the non-SM phase of jξj ¼ 0.1π at low energies
(
ffiffiffi
s

p ≲ 1.2 TeV), while it becomes about a factor of 3
times larger than the SM cross section at

ffiffiffi
s

p
∼ 10 TeV,

about a factor of 20 times larger at
ffiffiffi
s

p
∼ 100 TeV. This has

been observed first in Ref. [31] in the U gauge, and our
results in Fig. 3(b) confirms that we obtain the same results
in the FD gauge, following the prescription given in Sec. II.
Subtle gauge theory cancellation between the contribu-

tion of the W−Wþ fusion diagrams (cyan dotted curve
dabbed WWF) and that of the single weak boson exchange
diagrams (magenta dashed curve dabbed W−μþ þ μ−Wþ)
in the U gauge remains similar as in the SM case, shown in
Fig. 2(a). This has been expected, since there is only one

additional diagram in the U gauge for the W−Wþ fusion
amplitudes, whose contribution has been evaluated in terms
of the W−

LW
þ
L → tt̄H amplitudes in Ref. [31]. Therefore,

subtle cancellation in the U gauge takes place between the
WWF and single W exchange (W−μþ þ μ−Wþ) diagrams,
just as in the SM. In fact, we cannot observe significant ξ
dependence in the three rapidly growing curves between
Figs. 2(a) and 3(a). The ξ dependence of the total cross
section, where the black solid curve in Fig. 3 grows more
rapidly with the colliding energy

ffiffiffi
s

p
than the SM pre-

diction in Fig. 2, is obtained in the U gauge only after subtle
cancellation among amplitudes of huge magnitude.
In a sharp contrast, we can make the following obser-

vation by comparing the ξ ¼ 0.1π results in Fig. 3(b) and
the ξ ¼ 0 (SM) results in Fig. 2(b) in the FD gauge: the
total cross section is dominated by the WWF contribution
at high energies, both in the SM and for ξ ¼ 0.1π, and the
rising total cross section at high energies for ξ ¼ 0.1π is
due to the rise of the WWF contribution. We do not observe
significant ξ dependence in the single W exchange con-
tribution (W−μþ þ μ−Wþ), shown by the magenta dashed
curve both in the Figs. 2(b) and 3(b).
In Ref. [31], the high energy behavior of the total cross

section has been calculated by assuming the dominance of
the longitudinally polarized weak boson fusion subprocess,

W−
LW

þ
L → tt̄H; ð20Þ

and then by approximating its cross section by that of the
corresponding Goldstone collision process,

π−πþ → tt̄H: ð21Þ

FIG. 3. Cross section of μ−μþ → νμν̄μtt̄H with ξ ¼ 0.1π. The line types are the same as in Fig. 2.
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The Goldstone boson equivalence theorem [35,36] tells that
the helicity amplitudes for the above two processes satisfy

M
�
W−

LW
þ
L → tht̄h̄H

	 ¼ M
�
π−πþ → tht̄h̄H

	
×

�
1þO

�
m2

W

E2
W

��
; ð22Þ

where h and h̄ are t and t̄ helicities, respectively. In
particular, the high energy limit of the helicity amplitudes
for the Goldstone boson collision process (21) have been
calculated analytically [31] by using the dimension-6
vertex in the effective Lagrangian (5):

LttHππ ¼
gSM − geiξ

v2
t†LtRHπþπ− þ H:c:: ð23Þ

The above term gives the only dimension-6 vertex which
contributes to the process (21), and the corresponding
amplitudes should dictate the high energy behavior. This
has been confirmed in Ref. [31] by comparing the analytic
Goldstone boson amplitudes and the helicity amplitudes of
the WWF subprocess (20) evaluated numerically by using
MG5aMC in the U gauge.
In Fig. 4, we show the total cross section for the μ−μþ

collision process (10) for ξ ¼ 0.2π by the black solid curve.
As a reference, the SM prediction (ξ ¼ 0) is given by the
gray solid curve. In addition to the red solid curve for the
sum of squares of each amplitude and the cyan dotted curve
for the WWF contribution, in Fig. 4(b) we show by green

dashed curve the contribution of the dimension-6 vertex
(23) in the FD gauge, jMttHWW j2, depicted as the Feynman
diagram Fig. 5(b). It is clearly seen from Fig. 4(b) that the
total cross section is dominated by the WWF contribution
at

ffiffiffi
s

p ≳ 3 TeV, and then it is dominated by jMttHWW j2 atffiffiffi
s

p ≳ 100 TeV, in the FD gauge. This is an example of the
property of the FD gauge amplitudes, where the Goldstone
boson equivalence is manifest [5,6].

FIG. 4. Cross section of μ−μþ → νμν̄μtt̄H with ξ ¼ 0.2π in the U gauge (a) and in the FD gauge (b). The black solid curve denotes the
total cross section. The red solid curve gives the contribution of the total sum of the squares of each diagram. The cyan dotted curve gives
the contribution of theW boson fusion diagrams. The green dashed curve shows the contribution of the single diagram with the contact
ttHH vertex,MttHH in the U gauge (a) and that of the diagramMttHWW in the FD gauge (b) with the contact ttHWW vertex. The SM
cross section (ξ ¼ 0) is given by the gray solid line as a reference.

FIG. 5. Feynman diagram with the contact ttHH vertex (a) in
both the U and FD gauges and the ttHWW vertex (b) in the FD
gauge only.
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Shown in Fig. 4(a) are the results for the U gauge. As in
Figs. 2(a) and 3(a), both the sum of squares of each
amplitude (red solid) and the WWF contribution (cyan
dotted) grow rapidly with energy, while the physical cross
section (black solid) is exactly the same as the FD gauge. In
the figure, we show by green dashed curve the contribution
of the single Feynman diagram of Fig. 5(a), which has the
ttHH vertex,

LttHH ¼ 3ðgSM − geiξÞ
2v

t†LtRH
2 þ H:c:; ð24Þ

whose mass dimension is 5. In the U gauge, the above
ttHH vertex is the only interactions whose mass dimension
is larger than 4. The green dashed curve grows with energy
faster than the total cross section shown by the black solid
curve, and is about a factor of 8 larger than the total cross
section at

ffiffiffi
s

p
∼ 100 TeV. At this energy, the red solid

curve gives 3.9 × 109 fb, or about 8.0 × 107 times larger
than the total cross section. This again confirms the
findings of Ref. [31], where the amplitudes of the diagram
Fig. 5(a), or its WWF subamplitudes have been evaluated
analytically.
Summing up, the FD gauge amplitudes are free from

subtle gauge cancellation among interfering diagrams, and
the total cross section for the process (10) is dominated by
the weak boson fusion (WWF) subamplitudes at high
energies, both in the SM, and with nonzero CP phase ξ.
The Goldstone boson equivalence between the longitudi-
nally polarized weak boson and its associated Goldstone

boson is manifestly realized in the FD gauge amplitudes. In
addition, we find that the high energy behavior of the FD
gauge amplitudes are dictated by the amplitudes with the
highest dimensional vertex.
In the rest of this section, we examine the annihilation

amplitudes, whose contribution given by blue dashed
curves in Figs. 2 and 3 are identical between the U gauge
and the FD gauge. This simply reflects the fact that the
annihilation diagrams consist of a gauge invariant subset
of the amplitudes, which corresponds to the full set of
Feynman diagrams for a certain physical process such as
the process in Eq. (14), where the final neutrino flavor in
the process (10) is changed from νμ to νe (or ντ). All the
nonannihilation diagrams are then forbidden by the muon
number conservation in the SM.
In Fig. 6, we show the total cross section of the process

μ−μþ → νeν̄ett̄H, Eq. (19) as a function of the colliding
muon pair energy, in the U gauge (a) and in the FD
gauge (b). In addition to the total cross section given by the
black solid line, we show the contributions of the three
subgroups, those of the t-channel muon exchange diagrams
in blue dashed curves, those of the s-channel γ exchange
diagrams in magenta dashed curves, and the s-channel Z
exchange diagrams by cyan dashed curves. We find that not
only the total cross section given by the black solid curves,
but also all the three subgroups of the amplitudes give
exactly the same cross section in Figs. 6(a) and 6(b).
Although there is no physical process in the SM which is
given by the diagrams of the three annihilation subgroups,
we can retain the s-channel γ or Z exchange diagrams only

FIG. 6. Cross section of μ−μþ → νeν̄ett̄H for ξ ¼ 0 (SM) for (a) U gauge, and (b) for FD gauge. The black solid line is the total cross
section. The red solid line is for the

P
all
k jMkj2, summing up the squared of each amplitude. The blue dashed line is summing up the t-

channel μ exchange diagram. The magenta dashed line is summing up the photon exchange diagram. The cyan dashed line is summing
up the s-channel Z exchange diagrams.
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by changing the SUð2Þ ×Uð1Þ quantum numbers of the
muon. We can hence regard the subgroups of Feynman
diagrams as the full set of diagrams for the annihilation of
such exotic leptons.
The total sum of the squares of each Feynman amplitude

is shown by red solid curves. We observe rapid growth of
the red curve in the U gauge, as shown in Fig. 2(b) for the
process (10). The ratio R of the red and black solid curves
in Fig. 6(a), is about 60 at

ffiffiffi
s

p ¼ 1 TeV, which grows
rapidly to about 1.0 × 108 at

ffiffiffi
s

p ¼ 10 TeV, and 5.9 × 1013

at
ffiffiffi
s

p ¼ 100 TeV, which grows even faster with energy
than what we find for the process (10) in Fig. 2(a).
In Fig. 6(b), we find that the red solid curve is

consistently below the black solid curve for the total cross
section, where the ratio R of Eq. (15) is about 0.24, 0.60,
and 0.79, at

ffiffiffi
s

p ¼ 1, 10, and 100 TeV, respectively. The R
value below unity is indicative of an overall constructive
interference among Feynman amplitudes. We find that the
total cross section (black solid curve) is approximately the
sum of the three subamplitude contributions.
Finally, in Figs. 7(a) and 7(b), we show the results for our

effective Lagrangian model (5), when the CP phase value is
ξ ¼ 0.2π. The total cross section is given by the black solid
curves, while we also show the SM (ξ ¼ 0) results from
Fig. 6 by gray solid curves, which are both exactly the same
between in the U gauge (a) and the FD gauge (b). The ratio
R of the red and black solid curves, Eq. (15), grows rapidly
with energy in the U gauge, from 77 at 1 TeV, to 6.1 × 107

at 10 TeV and 2.3 × 1012 at 100 TeV, respectively.
These values are similar to the SM case reported above

for Fig. 6(a), and hence the interference pattern in the
U gauge is not affected significantly by the presence of the
non-SM interactions in our effective Lagrangian model
of Eq. (5).
The ξ dependence of the total cross section has been

reported systematically in Ref. [31]. It can also be learned
from comparing the black and gray solid curves, which are
common between Figs. 7(a) and 7(b). The total cross
section for ξ ¼ 0.2π is slightly smaller than the SM cross
section at ξ ¼ 0 below

ffiffiffi
s

p
∼ 3 TeV, which confirms the

trend observed in Refs. [37–43] for the process

e−eþ → tt̄H; ð25Þ

since the process (19) can be regarded as a Z boson
emission correction to the process (25), and hence the ξ
dependence should be similar at low energies. At high
energies,

ffiffiffi
s

p ≳ 5 TeV, the black curve stays above the gray
curve for the SM cross section, and decreases very slowly
with energy, reaching about 5 × 10−4 fb at 100 TeV.
Because the total cross section decreases with energy in
the SM, the cross section is about 1.7 and 26 larger than the
SM at

ffiffiffi
s

p ¼ 10 and 100 TeV, respectively. The asymp-
totically constant behavior of the total cross section
suggests contribution of higher dimensional interactions
in the effective Lagrangian model (5). Shown in Fig. 8(a) is
the Feynman diagram with the ttHH vertex, whose mass
dimension is 5. In the U gauge, where all the Goldstone
boson vertices are inactive, this is the only diagram with
higher dimensional vertex. We show by green dashed curve

FIG. 7. Cross section of μ−μþ → νeν̄ett̄H for the ξ ¼ 0.2π in the U gauge (a), and in the FD gauge(b). The line types are the same as
Fig. 4, where the green dashed curve shows the contribution of the diagram with the dimension-5ttHH vertex in the U gauge (a), while it
shows the contribution of all the diagrams with dimension-5 vertices ttHH, ttHZ and ttZZ in the FD gauge (b).
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the contribution of the diagram Fig. 8(a) in the U gauge,
labeled as jMttHHj2. The single diagram contribution
given by the green curve grows with energy and has
similar energy dependence with the black curve at highest
energies, reaching about 40% of the total cross section atffiffiffi
s

p ¼ 100 TeV. The red solid curve for the total sum of
squares of each amplitude grows rapidly with energy just as
in Fig. 6(a) for the SM. Therefore, subtle gauge cancella-
tion in the U gauge is not affected significantly by the
presence of the non-SM interactions in the effective
Lagrangian (5).
From Table I, we have 47 Feynman diagrams for the

process (19) in the U gauge. One of these 47 diagrams is the
one given by Fig. 8(a), MttHH, and the remaining
46 diagrams do not contain higher dimensional vertices.
The results shown in Fig. 7(a) for the U gauge tell us, e.g.,
at

ffiffiffi
s

p ¼ 100 TeV, the total sum of the 46 Feynman
diagrams gives, after subtle gauge cancellation, the ampli-
tudes whose magnitude is similar to jMttHHj. The results
shown in Fig. 7(a) for the U gauge tell us, e.g. atffiffiffi
s

p ¼ 100 TeV, the total cross section given by black
solid curve is about 4 times larger than the contribution of
the single diagram jMttHHj2, given by the green dashed
curve. This confirms the observation of Ref. [31] that the
amplitude MttHH and the total sum of the remaining 46
diagrams are identical at all kinematical configurations, and
that they interfere constructively to give twice MttHH for
the total amplitudes. Although the energy and the kin-
ematical dependences of jMttHHj2 can be understood
from the analytic expression of the diagram Fig. 8(a), it
is still not straightforward to see how the total sum of the
remaining 46 amplitudes makes the MttHH amplitude at
high energies.
In Fig. 8(b), we show the Feynman diagram with the

ttHZZ vertex, which is the only dimension-6 vertex in the
effective Lagrangian of Eq. (5). Because the corresponding

diagram with the dimension-6ttHWW vertex in Fig. 5(b)
has been found to dominate the total cross section of the
process (10) at high energies, as shown by green dashed
curve in Fig. 4(b), we first study the contribution of the
diagram Fig. 8(b), whose amplitude can be denoted as
MttHZZ. We find that

MttHZZ ¼ 0; ð26Þ

for all helicities at all energies. We attribute the cause of the
vanishing amplitudes as a consequence of the fact that the
virtual Z boson produced from massless lepton pair is
purely transverse, and have no longitudinally polarized
component. As a support of this observation, we find that
all the amplitudes with higher dimensional operators whose
Goldstone boson leg is connected directly to the initial state
lepton pair are zero. In Table I, we have in total 62 diagrams
contributing to the process (19), among which 16 diagrams
have higher dimensional vertices, 1 at dimension-6, that of
Fig. 8(b), and the remaining 15 diagrams with dimension-5
vertices. There are 3 types of dimension-5 vertices, ttHH in
Fig. 8(a), ttHZ, and ttZZ. Feynman diagrams with ttHZ
and ttZZ vertices where the vertex is connected by the
FD gauge propagator directly to the initial μ−μþ current
give zero amplitudes. The remaining 10 diagrams with
dimension-5 vertices give nonzero amplitudes, 1 with
ttHH, 8 with ttHZ, and 1 with ttZZ vertices. Since all
these amplitudes with one dimension-5 vertex are expected
to obey the same energy scaling law, we study the total sum
of all the nonvanishing amplitudes with the dimension-5
vertices:

����XD5

k

Mk

����2; ð27Þ

whose contribution is shown by the green dashed curve in
Fig. 7(b). As expected, the green dashed curve merges with
the black solid curve at high energies,

ffiffiffi
s

p ≳ 50 TeV. The
total amplitudes in the FD gauge are dominated by the
amplitudes with higher dimensional vertices as in the case
of the amplitudes for the process (10) shown in Fig. 4(b).
The red curve remains slightly below the black and green
curves, giving the ratio R ∼ 0.83 at

ffiffiffi
s

p
∼ 100 TeV in

Fig. 7(b). The constructive interference is observed among
the 10 nonvanishing diagrams with dimension-5 vertices.
This is in contrast to the case of the total cross section of the
process (10) shown in Fig. 4(b), where the ratio R ∼ 1 at
high energies, reflecting the single diagram dominance.

IV. SUMMARY

In this paper, we show how tree-level scattering ampli-
tudes in the Feynman-Diagram (FD) gauge [2,3] can be
generated automatically in gauge models with non-
Standard Model (SM) interactions.

FIG. 8. Feynman diagram with the contact ttHH vertex (a) in
both gauges and the that with ttHZZ vertex in the FD gauge (b).
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(i) We start from the toolbox FeynRules [19], which can
generate Feynman rules in the ’t Hooft–Feynman
gauge automatically for an arbitrary gauge model
with spontaneous symmetry breaking.

(ii) Based on the universal FeynRules output (UFO) [20,21]
in the Feynman gauge, we introduce 5-component
representation of the weak bosons and their 5 × 5
propagators automatically in MG5aMC [16].

(iii) External 5-component weak boson polarization
vectors and the 5 × 5 weak boson propagators are
common for all the gauge models, and we adopt the
representations given in the original FD gauge
papers [2,3].

(iv) Feynman diagrams for an arbitrary tree-level scat-
tering amplitude with the 5-component weak bosons
and their propagators can be generated on the flight
by MG5aMC.

(v) All the vertex functions with and among
5-component weak bosons are obtained by assem-
bling those of the 4-component weak bosons and
the Goldstone bosons, which are generated auto-
matically by using Aloha [22] for an arbitrary
gauge model.

The numerical codes for each Feynman diagram generated
by the above procedure give helicity amplitudes in the
FD gauge.
The above procedure has been explained in detail in

Sec. II. In Sec. III, we demonstrate its validity by generat-
ing the helicity amplitudes for the muon collider process
μ−μþ → νμν̄μtt̄H in an SMEFT [24–26] model with just
one dimension-6 operator giving complex top Yukawa
coupling [31]. 118 Feynman diagrams are generated in
the FD gauge, as compared to the 89 diagrams in the
unitary gauge. After summing over all the diagrams, we
find exact agreement between the FD and the unitary
gauges.
As in the case of the SM processes reported in Refs. [1–3],

the FD gauge amplitudes are free from subtle gauge
cancellation among Feynman diagrams at high energies,
thus providing an efficient basis for numerical evaluation of
the amplitudes.

A new finding in this paper is that in the FD gauge, the
high energy behavior of individual Feynman amplitude is
dictated by the mass dimension of the contributing new
physics vertex. In the weak boson fusion (WWF) ampli-
tudes, the single diagram with a dimension-6ttHWW
vertex dominates the total cross section at extreme high
energies

ffiffiffi
s

p
∼ 100 TeV. Among the μ−μþ annhilation

amplitudes, the corresponding amplitude with a dimension-
6ttHZZ vertex is found to vanish, and the 10 nonvanishing
amplitudes with a dimension-5 vertex (ttHH, ttHZ, ttZZ)
jointly dictate the high energy amplitudes at

ffiffiffi
s

p ≳ 50 TeV.
The above example tells that the FD gauge amplitudes

are useful in identifying the subamplitudes with non-SM
interactions, because individual Feynman amplitude sat-
isfies the naive scaling law; n-point amplitudes scale as
En−4 when all the vertices have mass dimension 4. The
amplitude scales like En−3 with one dimension-5 vertex, or
En−2 with one dimension-6 vertex, in the example studied
in Sec. III. This is an additional merit of the FD gauge,
because the scaling law of the tree-level amplitudes is not
manifest in covariant gauges, including the unitary gauge.
In this report we study an SMEFT model with a single

dimension-six operator as a proof of concept. In models
with a more complex Higgs sector and new particles, the
Goldstone bosons are mixtures of many scalar bosons. We
expect that our algorithm should give the right vertices
among the 5-component weak bosons as long as the model
is correctly implemented in the Feynman gauge in the UFO

format.9
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