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We provide tools to analyze factorization at the amplitude level for processes involving the
entire standard model. We focus in particular on a momentum region, in which the factorization of real
and certain virtual corrections appears in a generalized eikonal approximation in which we expand around a
quasisoft limit for massive gauge bosons, fermions, and scalars. We use the chirality-flow formalism
to express loop exchanges or emissions as operators on chiral structures. This provides key tools for
amplitude evolution with parton exchange and branching in the full Standard Model, including the
electroweak sector.
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I. INTRODUCTION

The measurements and searches for new physics at
current and future colliders operate through observables
which resolve widely different energy scales between the
hard scattering and the details of the observed final state.
Such observables, which we generally refer to as infrared
sensitive, are computable in perturbation theory, however,
the appearance of large logarithms of the scale ratios and
other resolution parameters invalidates the truncation of the
perturbative series at any fixed order in the (small) coupling
parameter. Instead, resummation—which is unavoidably
tied to the description of multiple emissions and properties
of large multiplicity final states—is required to capture the
physical behavior.
Resummation is only possible if factorization takes place,

i.e., when we can build up scattering amplitudes with many
emissions and exchanges of the interacting particles from
repeated simple and universal building blocks. This is well-
understood in the context of the strong interaction (see
e.g., [1]), and has paved the way for the description of jets,
and ultimately the development of versatile simulations of
high energy collisions (see e.g., [2]). While the strong
interaction, described by quantum chromodynamics

(QCD), contributes the bulk of the complexity in hadronic
final states, at high enough energies there is no kinematic
suppression mechanism for electroweak interactions. All
Standard Model degrees of freedom need to be taken into
account to reliably predict the details of the final states in
which we strive to observe deviations from the Standard
Model at colliders.
In this paper, we outline a formalism which

provides key tools and observations for generalizing soft
gluon evolution [3–10] and amplitude level parton
branching [11,12]. Our formalism also accounts for the
exchange and emission of electroweak bosons coupled to
external lines, along with additional effects from the
electroweak interaction of the fermions in the Standard
Model. This is crucial to describe observables which are
sensitive to changes in the isospin composition of emitting
systems, as well as to account for the chiral nature of the
electroweak interactions. Our work will provide some of
the fundamental building blocks to apply and extend
amplitude level evolution to the resummation of electro-
weak effects [13–18]. It will also provide a thorough
framework for the construction of parton branching algo-
rithms which coherently treat electroweak and QCD effects
on equal footing. Our framework will complement existing
approaches of electroweak showers [19–21] which are
based on emission amplitudes only [22] and will provide
input to extend electroweak evolution for strictly high
energies in the quasicollinear limit, e.g., [23,24], by (quasi)
soft effects. It is also in shape to include the effects of
mixing, decays and the projection onto observed states as
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outlined in [25]. The latter can lead to possible miscan-
cellations of logarithmically enhanced contributions [26] or
to mechanisms restoring the cancellation [27].
Two main aspects are addressed in this paper. In the first

part we focus in particular on the underlying kinematic
region in which (quasi)soft factorization from external
lines, including different mass shells and possibly recoils,
take place. The second part focuses on the structure of the
evolving amplitude as a vector in the space of isospin and
chiral structures, similar to how it is typically described as a
vector in color space. This will form the basis of an actual
implementation of an evolution algorithm within amplitude
evolution frameworks such as the CVolver [7,9] library.
We first set the notation in Sec. II. The basis of the

factorization of fully massive amplitudes is described in
Sec. III, with the kinematics facilitating the factorization
detailed in Sec. III A. Self-energy insertions, wave function
renormalization and cutting of unresolved lines is discussed
in Sec. III C, and in Sec. IV the factorization is comple-
mented with a complete flow picture, entailing chiral and
isospin structures. Finally we conclude in Sec. V.

II. NOTATION

Central to our analysis is the formalism of treating
amplitudes as abstract vectors in a space of tensor structures
of (internal) quantum numbers, i.e. color, isospin and
spinor indices. In order to set the notation for this we start
with a simple example. Consider qð1ÞQð2Þ → qð3ÞQð4Þ
scattering via a gluon exchange, then the amplitude would
be written as

M¼Gui1;I1;αðp1Þui2;I2;γðp2Þūi3;I3β ðp3Þūi4;I4δ ðp4Þ
× ðtaÞi1 i3ðtaÞi2 i4δ

I1
I3
δI2I4ðPc1γ

μPc3ÞβαðPc2γμPc4Þδγ; ð1Þ

where i1..4 are the color indices, I1..4 are the isospin indices,
and c1..4 are the chiralities we obtain after applying chiral
projectors Pc to the external quark lines, and α, β, γ, δ are
spinor indices. G collectively denotes all other coupling,
symmetry factors and propagator denominators. The exter-
nal wave functions carry explicit momenta, and will specify
explicit quantum numbers like spin to be measured (which
we have suppressed for readability). We will write this
amplitude as

jMi ¼ GjTi; M ¼ hψ jMi; ð2Þ

such that the tensor structure is contained in jTi, and
explicit color, isospin, and chirality is carried by

hψ j ¼ ui1;I1;αðp1Þui2;I2;γðp2Þūi3;I3β ðp3Þūi4;I4δ ðp4Þ
× hfi1;…g; fI1;…g; fα;…gj; ð3Þ

which signifies an abstract version of the external wave
function. The components of the tensor T in terms of
explicit indices are recovered by

hfi1;…g; fI1;…g; fα;…gjTi
¼ ðtaÞi1 i3ðtaÞi2 i4δ

I1
I3
δI2I4ðPc1γ

μPc3ÞβαðPc2γμPc4Þδγ: ð4Þ

III. STRATEGY OF FACTORIZATION

We consider a subset of diagrams (which we label by the
symbolic index s) for a certain process in which m lines
with unresolved particles of flavors fgigm carry ‘soft’
momenta fkigm, and are emitted from, or exchanged in-
between, a subset hs of the n other external lines of flavors
ffign, which carry ‘hard’ momenta fqign. The subdia-
grams involving the emissions and exchanges will then
attach to an amplitude with on or off shell lines of flavor
ff0ign, which carry momenta Pi;s ¼ qi þ Ki;s, with Ki;s

being some linear combination of the emitted and
exchanged momenta if i∈ hs, and Pi;s ¼ qi if i ∉ hs is
an external line not connecting to an unresolved line.
Having singled out a certain subgraph from the ampli-

tude as described above, we can write it as

jMffign;fgigmðfqign; fkigmÞi
¼

X
ff0ign

X
s

R
ff0ign
s;ffign;fgigmðfqign; fkigmÞ

×
Y
i∈ hs

Piðqi þ Ki;s;MiÞ
ðqi þ Ki;sÞ2 −M2

i
jMff0ignðfPignÞi þ � � � ð5Þ

in which Pi represents the propagator numerator of the
hard, off shell line i as an operator in the space of the
involved quantum numbers, and Rs encodes the remaining
structure we intend to factor from the hard process
amplitude, i.e., Rs contains all couplings, numerator
structures and gauge structures, except the numerators of
the hard propagators Pi attaching to it. This factorization [in
Eq. (5)]—which has not yet used any approximation—can
be diagrammatically represented as

ð6Þ

where wavy lines denote unresolved particles, Pi;s ¼
qi þ Ki;s and the ellipse withRs refers to topologies which
do not factor separately onto the n-parton amplitude.
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Our aim is to identify when—in a very general setting—
this amplitude factors in a systematically expandable way
onto an on shell hard amplitude after isolating external
subdiagrams as above.
We also discuss how we can construct bases for the space

of chiral structures such that we can express the abstract
operators in a concrete fashion and iterate virtual exchanges
and emissions in the solution to an evolution equation of
the amplitude.

A. Kinematics

Before we address the more complicated electroweak
case, let us recall how soft factorization in QCD works. In
this case we would consider emissions and exchanges
which contribute a total momentum Ki;s to an off shell line
i, carrying a total momentum Pi;s ¼ qi þ Ki;s, where qi is
the on shell external momentum. Thus,

MðPi;sÞ
P2
i;s −M2

i
¼ Mðqi þ Ki;sÞ

2qi · Ki;s þ K2
i;s
; ð7Þ

which follows from q2i ¼ M2
i . In the uniform soft limit,

Ki;s → λKi;s, we differentiate with respect to λ to get the
power expansion in λ,

MðPi;sÞ
P2
i;s −M2

i
→

1

λ

MðqiÞ
2qi · Ki;s

þ 2qi · Ki;sðKμ
i;s∂μMðqiÞÞ − K2

i;sMðqiÞ
4ðqi · Ki;sÞ2

þOðλÞ: ð8Þ

Going back to Eq. (7), we note that we can alternatively
parametrize the hard momentum qi by a different hard
direction pi on the same mass shell,

qμi ¼ pμ
i − Kμ

i;s þ
Ki;s · ðKi;s − 2piÞ
2n · ðKi;s − piÞ

nμ ð9Þ

with a lightlike reference vector n, constrained only by
n · ðKi;s − piÞ ≠ 0. The above expression essentially serves
to obtain q2i ¼ p2

i ¼ M2
i while

qi þ Ki;s ¼ pi þ ðrecoil paramterÞn; ð10Þ

allowing us to expand around a new, on-mass shell, hard
direction pi, irrespective of the mass-shell condition onKi;s

or precisely the way we define a ‘soft’ Ki;s. All that matters
is that the recoil parameter is small,

j2pi · Ki;s − K2
i;sj ≪ jn · ðpi − Ki;sÞj; ð11Þ

such as to obtain an on shell amplitude from expanding

MðPi;sÞ
P2
i;s −M2

i
¼ n · ðpi − Ki;sÞ

n · pi

Mðpi þ ð…ÞnÞ
2pi · Ki;s − K2

i;s
: ð12Þ

In fact, for the soft gluon case above the new parametriza-
tion will lead to a similar leading-power expansion as
Ki;s → λKi;s, λ → 0,

MðPi;sÞ
P2
i;s −M2

i
→

1

λ

MðpiÞ
2pi · Ki;s

þOðλ0Þ; ð13Þ

with qi ¼ pi þOðλÞ, however it will differ at sublead-
ing power.
The aim of our work is thus to make the above procedure

an exact parametrization which we can use for a leading
power expansion, subject to an explicit eikonal propagator,
including a possible change of mass shell between the
emitter momentum before and after the emission, p2

i ≠ q2i ,
and subject only to maintaining momentum conservation of
all momenta attached to the amplitude.
As seen, in general the parametrization of the kinematics

is complicated by the mass-shell conditions. We consider
q2i ¼ m2

i for the external particles, while the particles
propagating along the off shell lines have masses Mi (as
they may well have other flavors). We note that these
masses refer to physical, on shell masses, a choice which
will provide us with a factorization of physical, renormal-
ized S-matrix elements [28].
On top of this, we need to allow for the possibility to

implement recoil to respect overall energy-momentum
conservation.
To understand the kinematic regions where the factori-

zation is applicable, we consider a frame where the off shell
momentum, directly to the right of the big gray blob on the
right-hand side in Eq. (6), is approximated by

pi ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
i þM2

i

q
; 0⃗⊥; EiÞ ð14Þ

with p2
i ¼ M2

i , while P2
i;s ≠ M2

i .
We then introduce a lightlike momentum ni;s with a

direction which maximizes pi · ni;s,

ni;s ¼
ni;s · pi

Ei þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
i þM2

i

p ð1; 0⃗⊥;−1Þ: ð15Þ

Any additional deviation from the four-momentum pi we
write in terms of

Qi;s ¼ ðQðþÞ
i;s þQð−Þ

i;s ; Q⃗
ð⊥Þ
i;s ; Q

ðþÞ
i;s −Qð−Þ

i;s Þ: ð16Þ

With this in mind, we express the external momenta qi and
the Ki;s in a covariant way as
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Kμ
i;s ¼Λμ

νðQν
i;sþδi;snνi;sÞ

qμi ¼Λμ
ν

�
αpν

i þ
ð1−α2ÞM2

i þpi ·Qi;s

2αni;s ·pi
nνi;s

�
−Kμ

i;s; ð17Þ

where the parameter δi;s is determined such that q2i ¼ m2
i ,

giving

δi;s ¼
ðM2

i α
2 −m2

i þ ð1 − 2αÞpi ·Qi;s þQ2
i;sÞ

2ni;s · ðαpi −QiÞ

−
ni;s ·Qi;sðM2

i ð1 − α2Þ þ pi ·Qi;sÞ
2αni;s · pini;s · ðαpi −QiÞ

; ð18Þ

whereas the parameter α, as well as the boost itself, relates
to maintaining energy and momentum conservation, as
discussed below.
For the momenta not involved in the exchange or emis-

sion (i.e., legs not in hs), setting Qi;s ¼ 0 and M2
i ¼ m2

i in
Eq. (17) gives

qμi ¼ Λμ
ν

�
αpν

i þ
ð1 − α2Þm2

i

2αni;s · pi
nμi;s

�
: ð19Þ

Note that, if emissions are involved, the Ki;s are some
combination of emission and exchange momenta, which
satisfy

P
i∈ hs Ki;s ¼

P
I ki where the right-hand sum is

over all emissions. Thus, the total outgoing momentum of
our process, Q, is

Qμ ¼
X
i

kμi þ
X
i

qμi ¼ αΛμ
ν

�X
i

pν
i þ

1 − α2

α2
X
i

M2
i

2ni;s · pi
nνi;s|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

≡Nν
1

þ 1

α2
X
i∈ hs

pi ·Qi;s

2ni;s · pi
nνi;s

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≡Nν

2

�
: ð20Þ

In order to implement four-momentum conservation the
Lorentz transformation and scaling parameter α need to
obey

ðΛ−1ÞνμQμ ¼ αQν þ 1 − α2

α
Nν

1 þ
1

α
Nν

2 ð21Þ

which fixes α by requiring the same invariant mass before
and after the Lorentz transformation.
Demanding that α > 0, and α → 1 if all masses Mi, and

the momenta Qi;s vanish, we find [cf. Eq. (17)] a solution
which in general admits α ¼ 1þOðλÞ as pi;s ·Qi;s →
λpi;s ·Qi;s, λ → 0, irrespective of the kinematic limit
covered by this scaling. Note, however, that we have not
constrained the form of the Lorentz transformation (in
particular it need not be small), and in general only use

qμi ¼ Λμ
νðpν

i − K̃ν
i;s þOðλÞÞ;

Kμ
i;s ¼ Λμ

νðK̃ν
i;s þOðλÞÞ;

K̃ν
i;s ¼

M2
i −m2

i þQ2
i;s

2ðpi · ni;s − ni;s ·Qi;sÞ
nνi;s þQν

i;s: ð22Þ

Phase space factorization can be obtained systematically
at leading power in λ for such kinematic mappings as
shown in [12]. We note that we can uniquely invert the
mapping and obtain an expression of Qi;s if we have fixed
pi and ni;s. This also means that we can use this definition
also when Ki;s and Kj;s are not independent, e.g., for a one-
loop exchange in between two legs i and j we have

Ki;s ¼ −Kj;s ¼ k. Notice that we have chosen a backward
direction ni;s differently per hard momentum pi.
The mapping in Eq. (17) is designed, such that the

denominator of the off shell propagators are directly given
in terms of

ðqi þ Ki;sÞ2 −M2
i ¼ 2pi ·Qi;s; ð23Þ

in analogy with Eq. (8). Our expansion is thus in

pi ·Qi;s ≪ pi · ni;s ≡ Si;s ð24Þ

and λ ∼ pi ·Qi;s=Si;s is our counting parameter which
simultaneously enforces the above hierarchy for all hard
lines i. It is important to stress that we do not consider
different pi for different classes of diagrams s, while we
may want to exploit different parametrizations of unre-
solved momenta if needed.

B. Factorization

In order to encode the quantum numbers s of external
particles (spin, color, isospin, etc.) we introduce an operator
corresponding to the on shell wave functions of the
particles we consider,

hsjΨ̄ðq;mÞjs0i ¼ ψ̄ sðq;mÞδss0 ; ð25Þ

iΨðq;mÞΨ̄ðq;mÞ ¼ Pðq;mÞjq2¼m2 : ð26Þ
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In total, this allows us to write, at leading power,

�Y
i∉hs

Ψ̄fiðqi; miÞ
��Y

i∈ hs

Pf0i
ðqi þ Ki;s;MiÞ

ðqi þ Ki;sÞ2 −M2
i

�
jMff0ignðfPignÞi

¼
�Y

i∈ hs

Ψf0iðΛpi;MiÞ
2pi ·Qi;s

�
×

�Y
i

Ψ̄f0i
ðpi;MiÞjMff0ignðfpignÞi

�
þOðλ−#hsþ1Þ; ð27Þ

where #hs is the number of hard off shell legs interacting
with unresolved partons. Here we have used that the
amplitude contracted with external wave functions is a
Lorent invariant. In the light of the kinematics discussion
above, we then find that we can factor the amplitude at
leading power in λ as

jM̃ðfqign; fkigmÞi
≃
X
s

Ssðfqgi∈ hs ; fkigmÞjM̃ðfpignÞi; ð28Þ

in terms of the on shell amplitude with n external hard lines,
jM̃i ¼ Q

i Ψ̄ijMi, carrying momenta fpign (we have
suppressed the flavor labels for the sake of readability).
The factored contribution is given by the operator,

S
ff0ign
s;ffign;fgigmðfqgi∈ hs ; fkigmÞ

¼ i

�Y
j∈ hs

Ψ̄fjðqi; miÞ
�
R

ff0ign
s;ffign;fgigmðfqgi∈ hs ; fkigmÞ

×

�Y
j∈ hs

Ψf0j
ðΛpj;MjÞ

2pj ·Qj;s

�
; ð29Þ

which is to be understood by expressing either qi or pi as a
function of Qi;s, ni;s and pi or qi, respectively. This is
possible because the amplitude contracted with external
wave functions, jM̃i, is Lorentz invariant, hence a function
of momentum invariants, and can thus be Taylor-expanded
around pi ·Qi;s → λpi ·Qi;s in the limit λ → 0. Notice that
also qi and the mapped momentum of the exchanges and
emissions are proportional to the Lorentz transform which
will therefore drop out of the final expression of our
effective matrix elements. In essence we achieve factori-
zation by evaluating different parts of the amplitude in
different frames. Furthermore, the evaluation of the am-
plitude may be performed in different frames for different
sets s, and the phase space integration may be performed in
a third, as long as this difference is not contributing at
leading power.
Further simplifications can only occur if we consider

stronger constraints on the kinematic limits, though our
factorization in this general case serves as a starting point
for a formula which interpolates in-between different limits.
In terms of our scaled momentum Qi;s, the requirement of

Eq. (24) encompasses kinematic configurations, which are
essentially limited by several different regions. They
become apparent when one considers, in a specific frame
for pi and ni;s, the forward (along pi) and backward (along

ni;s) components Qð�Þ
i;s and the hard leg’s kinetic energy Ei

and mass Mi, such that E2
i þM2

i ∼ Si;s.
Our expansion is valid if

pi ·Qi;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
i þM2

i

q
ðQðþÞ

i;s þQð−Þ
i;s Þ þ EiðQð−Þ

i;s −QðþÞ
i;s Þ

≪ pi;s · ni;s ¼ Si;s: ð30Þ

The regions of validity contain a Glauber-type region in
which Qi;s becomes purely transverse, along with a soft, a
hard-collinear, and a threshold region, as depicted in Fig. 1.
One boundary of the available phase space is the hard

(quasi)collinear region in which Qð−Þ
i;s ≪ Si;s but QðþÞ

i;s is
unconstrained and the hard leg is highly energetic,
Ei ≫ Mi. Another limiting region is the threshold region
with Ei ≪ Mi. The regions intersect in the genuine ‘soft’

region where QðþÞ
i;s ∼Qð−Þ

i;s ≪ Si;s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
i þM2

i

p
i.e., Qμ

i;s is
small compared to the hard scales in all of its components.
The ’soft’ region also contains a Glauber-type region in
which Qi;s becomes purely transverse. In both cases, the
exchange or emission momentum Ki;s is then accounting
for the change in mass-shell between Mi and mi in its
respective forward and backward components. Note that
Ki;s will in general not be soft in the usual sense, neither in

FIG. 1. Illustration of the various regions of validity of our
parametrization. As seen from, Eq. (30) the condition pi ·Qi;s ≪
pi · ni;s is fulfilled if either both Qiþ and Qi− are small (the
genuinely soft region) or if Ei ≫ Mi and Qi− → 0 (the hard
collinear region) or if Ei ≪ Mi and Qi− → −Qiþ (the threshold
region).
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its three-momentum, nor in all of its components. In the
quasisoft limit we will find a generalized Eikonal approxi-
mation in which Qi;s is small in all of its components. In
this case we can write

qμi ¼ Λμ
ν

�
pν
i þ

m2
i −M2

i

2pi · ni;s
nνi;s þOðλÞ

�
: ð31Þ

Also note that we do not rely on the hard line being highly
energetic or close to threshold.

C. Self-energy insertions, wave function
renormalization, and cutting of unresolved lines

Within our factorization, one would also be tempted to
consider the factorization of self-energy insertions which
appear as iterations of

Pf0i
ðqi þ Ki;s;M0

iÞ
ðqi þ Ki;sÞ2 −M02

i
Σf0ifiðqi þ Ki;sÞ

on the leg with momentum qi;s þ Ki;s in the figure in
Eq. (6), or on a corresponding emission process. Note that
the self-energy Σf0ifi

is an operator in the space of quantum
numbers, as well. Multiple insertions, however, are not
separated in scale, but contribute equally at leading
power with the same propagator attached and therefore
show no hierarchy. Contributing propagators from differ-
ent intermediate particles would appear to be suppressed
if the masses of the mixing particles are different,
ðqiþKi;sÞ2−M02

i ¼2pi ·Qi;sþM2
i −M02

i , however propaga-
tors which resum these effects develop poles at the mass
shells of all particles involved in the mixing. This neces-
sarily leads us to consider resummed propagators and a
proper relation to physical masses. In fact, as highlighted
above, we parametrize the kinematics in terms of the
physical masses mi and Mi. In this case, the propagator
denominators, for a complex mass scheme [29,30], are
expressed in terms of the renormalized (complex) mass
parameters M2

i;R and renormalized self-energy contribu-
tions Σi;R, where the physical mass is a solution to
M2

i ¼ M2
i;R þ Σi;RðM2

i Þ. Our mapping has the virtue that

1

ðqi þ Ki;sÞ2 −M2
i;R − Σi;Rððqi þ Ki;sÞ2Þ

¼ 1

λ

1

2pi ·Qi;s

1

1 − Σ0
i;RðM2

i Þ
þOð1Þ ð32Þ

as pi ·Qi;s → λpi ·Qi;s, λ → 0, thus providing the proper
wave function renormalization to the hard amplitude we
factor to, and the legs involved in the contributions we do
intend to factor from the amplitude. Residues of mixing
propagators can then be accounted for in the exchange or
emission kernels together with the elementary vertex.

Beyond the leading order, the S operator will thus be
provided with the relevant wave function renormalization
constants and as such is defined beyond the lowest order.
This holds for all internal lines we consider here (scalar,
fermion, vector), as well as for unstable particles when
using a complex mass scheme.
Another consequence is that the program of casting

virtual corrections into phase space type integrals to locally
cancel infrared enhancements from the real emission (as
e.g., systematized in [10]) thus faces an important modi-
fication; instead of an on shell cut through the unresolved,
‘soft’, exchanges we will need to use a cutting rule

1

k2−m2− imΓsignðT ·kÞ
¼ 1

k2−m2þ imΓ
þ2i

mΓ
ðk2−m2Þ2þm2Γ2

θðT ·kÞ: ð33Þ

This identity has a straightforward physical interpretation:
while it clearly yields the standard cut result for Γ ≪ m, it
instructs us for the finite-width case to replace the cut with a
Breit-Wigner factor, and cuts through the decay products of
the exchanged unstable particle, noting that 2mΓ is the
exchanged particle’s decay matrix element integrated
over phase space. Unitarity as a building block of parton
branching and resummation algorithms thus appears in a
different form, though this poses no conceptual problem if
one treats subtraction terms for real and virtual correc-
tions separately, and performs a careful analysis of
measurements [25]. The latter also will project onto decays
of the unstable physical bosons after their high energy
evolution.

IV. A COMPLETE FLOW PICTURE

In this section, we discuss (flow) versions of the bases for
color, chirality and isospin, to be used in Eq. (1).
For the color structure, it is well-known how to employ

the Fierz identity to decompose all color structure into
flows, see for example [7,9,10,31,32]. We remark, that
while this paper focuses on flow representations, one can of
course also use other decompositions. In particular for
color structure, orthogonal bases can be used [33–35], a
context in which there has recently been significant
development [36,37].
For isospin, we note that the chiral states allow us to

work directly with eigenstates of the isospin operator. At
high energies, in the unbroken phase, one could treat
SUð2ÞL in terms of flows, as for any SUðNÞ. However,
as we want to treat the weak bosons as mass eigenstates, we
instead propose to simply work with explicit weak isospin
eigenstates. Hypercharge comes from an Abelian Uð1Þ and
therefore does not come with any flow representation.
Also the chiral structures from spin and momenta can be

decomposed into flows by employing the Fierz identity on
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the spinors, a simplification which is built into the Feynman
rules of chirality flow. We note however, that for a complete
reduction in terms of tensor structures we need more flows
than just the direct contraction between external spinors. As
we will see, this means that the tensor flow basis for chiral
structures comes with more terms than the flow basis
for color.
Overall, Fierz rearrangements will thus allow us to

obtain a basis of (tensor) structures for quantities like
ðtaÞi1 i3ðtaÞi2 i4δ

I1
I3
δI2I4ðPc1γ

μPc3ÞβαðPc2γμPc4Þδγ such that we
can express the amplitude in a basis of flows, jσi,

jTi ¼
X
σ

cσjσi; ð34Þ

jMi ¼
X
σ

Mσjσi; ð35Þ

with Mσ ¼ Gcσ in our simple example from the intro-
duction, Sec. II, though more general and nontrivial
mixtures of kinematic dependence will multiply each flow
vector in the case of general amplitudes.

A. A flow basis for chiral structures

The chiral nature of the electroweak interaction, and the
relevance of spin correlations, call for a flow concept which
we will introduce now. In analogy with performing resum-
mation in color space using a spanning set of color flows,
we will prove that the resummation evolution in Lorentz
space can be described using ‘chirality flows’. We thus
build on the chirality-flow formalism [38–42], which
allows the immediate translation of Feynman diagrams
to spinor inner products.
We therefore describe particles in terms of their chirality,

and expect a decomposition of the full amplitude (with
both left and right helicity) to chirality to have been
performed before the start of the evolution. To be precise
we want to choose a basis for the amplitude vector
written as a vector in our abstract formalism above,�fi1;…g; fI1;…g; fα;…gjM�

, where jMi is the ampli-
tude without the external wave functions (cf. a color flow
without assigned external colors) and we will work out the
action of the factored diagrams using Eq. (26). In this way,
we will gain full analytic control of the Lorentz structure.
Denoting a left-chiral fermion with momentum pi with

(or ) and a right-chiral

fermion with (or ) we
want to consider the effect of (say) a photon exchange
between two—for now massless—fermions. The effect of
mass will be considered below.
Representing the Lorentz structure pμσ

μ with a

‘momentum dot’ , and similarly

, we have, for an exchange between

two legs, the chiral structure (drawn in black on top of a
gray Feynman diagram) to the left below for two left-chiral
fermions and the structure to the right if i is left-chiral, and
j is right-chiral

ð36Þ

Here, to the left, the dashed line connecting the outgoing
particles i and j is the graphical representation of the spinor
inner product ½ji�. After the exchange, the particles i and j
are thus connected by a ‘chirality flow’. The momentum
dots connect somewhere within the blob and (naively)
complicates the chirality structure of the rest of the
diagram. However, as we will show below, a complete
set of chirality-flow structures connecting the external
spinors can be given by considering the contractions

ð37Þ

for some four-vector p contracted with σ=σ̄, and some
antisymmetric rank two tensor Aμν contracted with
1
2
ðσμσ̄ν − σνσ̄μÞ, and for connections between all pairs of

external particles. Before the exchange, the particles i and j
to the left in eq. (36) were thus contracted to some (other)
external particles via these structures.
After the exchange, the chirality flows [of the type in

Eq. (37)] to which i and j were contracted, will be
connected to each other via the double momentum-dot
structure in the left diagram. This gives rise to structures
with up to 2þ 2þ 2 Lorentz index contractions (in case i
and j connected to two different chirality-flow structures of
type ).
In case the external particles have opposite chirality, we

will have a chirality flow of the type to the right in Eq. (36),
giving rise to two momentum dot structures of up to 2þ 1
Lorentz indices (if i and j were originally chirality-flow
connected to say i0 and j0 respectively via ,

, or connected to each other via ).
We will now argue that in both cases, the structures can

be simplified back to the cases in Eq. (37). We also
schematically derive the decomposition of structures with
up to six momentum dots which can appear in intermedi-
ate steps.
First, we note that the usage of hiji; ½ij�; pμ½ijσμjji,

pμhijσ̄μjj� and Aμνhijσ̄½μσν�jji, Aμνhijσ½μσ̄ν�jj� for some
antisymmetric tensor Aμν, is equivalent to the decomposi-
tion of products of γ-matrices into 1 and γ5 (via the
decomposition into left- and right-chiral states); γμ; γ5γμ

and ½γμ; γν�, respectively.
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In principle this is in itself a proof that these are the
structures to anticipate. Nevertheless we will explicitly
prove that the action of gauge boson exchange, starting
from any of these structures, will result in linear combi-
nations of the same spanning structures. That this holds for
exchange of fermions and scalars then follows trivially. We
start with considering the simplest case when two momen-
tum dots, for example coming from the fermion propa-
gators (slashed momenta) arising by photon exchange, are
attached to the same chirality-flow line. Using the chirality-
flow Feynman rules from [38], we obtain

ð38Þ

i.e., the partners i0 and j0 (originally connected to i and j,
respectively) become chirality-flow connected, whereas i
and j instead become connected to each other. To decompose
the two momentum dots into our basis, we use the identity

σμσ̄ν ¼ gμν þ 1

2
ðσμσ̄ν − σνσ̄μÞ: ð39Þ

Contracting with external momenta p1 and p2, and sand-
wiching between external spinors this gives

ð40Þ

(applied to i0 and j0). We remark that it is the antisymmetric
part of p1μp2ν,

1
2
ðp1μp2ν − p1νp2μÞ, that survives the con-

traction in the second term; more generally, we find an
antisymmetric rank-2 tensor contractedwith 1

2
ðσμσ̄ν − σνσ̄μÞ.

Exploring the effect on the basis vector we obtain

ð41Þ

with

ðA12Þμν ¼
1

2
ðp1μp2ν − p1νp2μÞ; ð42Þ

in the typical case that i and j are not chirality-flow
connected to each other. If they are, we find for example

ð43Þ

i.e., we get back the chirality flow that we start with.
When describing the effect of spin-1 exchange, we

also encounter structures with three momentum dots, for
example while exchanging a photon between two fermions
(i and j) which are chirality-flow connected with partners
(i0 and j0), in one case directly and in the other with a single
momentum-dot in-between,

ð44Þ

The line with three bullets represents the contraction
p1μp2νp3ρ½i0jσμσ̄νσρjj0i for the four-vectors p1, p2, and
p3 associated with the momentum-dots. To decompose this
structure, we contract σμσ̄νσρ with gμν; gμρ; gνρ, and ϵμνρα,
giving a system of four equations and four unknowns with
solution

σμσ̄νσρ ¼ gμνσρ − gμρσν þ gνρσμ þ iϵμνρα σα; ð45Þ
corresponding to

p1μp2νp3ρ½kjσμσ̄νσρjji
¼ p1 · p2p3ρ½kjσρjji − p1 · p3p2ρ½kjσρjji
þ p2 · p3p1ρ½kjσρjji þ ip1μp2νp3ρϵ

μνρ
α|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

p123α

½kjσαjji; ð46Þ

or in the momentum-dot notation (for general ½kj and jji)

ð47Þ
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for

P123 ≡ p1 · p2p3 − p1 · p3p2 þ p2 · p3p1 þ ip123: ð48Þ
This means that we retrieve the structure of a single
momentum-dot for some ‘momentum’ P123.
For the action of a momentum-dot on our basic building

blocks, the basis vectors, Eq. (37) in the main text, we find
by antisymmetrizing

ð49Þ

In the general case, the contraction to the left is with a
general antisymmetric rank-2 tensor ðA12Þμ1μ2. In this case,
defining

P½½1;2�;3�μ ¼ 2ðA12Þμνpν
3 þ iðA12Þμ1μ2p3μ3ϵ

μ1μ2μ3
μ ð50Þ

the decomposition reads

ð51Þ

The next structures to consider are those with a total of four
contractions, either of form (where
the middle two dots come from a fermion propagator, and
the outermost dots from the initial chirality flows contain-
ing one momentum dot each), of form
[from one initial chirality flow of type , one or
two momentum dots from a propagator, and (if one) the
other from the initial chirality flow of the other involved
fermion], or of form (from an initial state of
two boxes contracted with the mass term in the propagator).
For this decomposition, we first explore the antisym-

metric part . Exploiting symmetries and
fixing constants, this can be decomposed into

ð52Þ

where

A0
½½1;2�;½3;4��μν ¼ 2ððA12ÞμηðA34Þην − ðA12ÞνηðA34ÞημÞ ð53Þ

is made manifestly antisymmetric since only the antisym-
metric part survives the contraction. The result in Eq. (52),
along with Eq. (41) and (and versions where dotted and
undotted lines switch role) completes the set of basic

calculation rules needed to decompose any number of
momentum dots and boxes in a sequence.
For example, using Eq. (41) along with Eq. (52)

the decompositions of as well as
are straightforwardly obtained,

where the double box structure may be expanded out using
Eqs. (52) and (53).
Similarly structures with in total five index contractions

( , , as well as
versions with dotted and undotted lines interchanged,
and versions with arrows swapped) and six contractions
(only and a versions with dotted
and undotted lines interchanged) can be obtained.
In this way, the chirality-flow state obtained after several

exchanges can iteratively be built up, and we obtain a
chirality-flow decomposition analogous to the color-flow
decomposition, but with the difference that there are three
types of ‘flows’ connecting partons, and that particles and
antiparticles enter on equal footing.
To illustrate this we consider an example of intermediate

complexity,

ð54Þ

which, at the level of the basis vectors has the effect,

ð55Þ

ð56Þ
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with

A34μν ¼
1

2
ðp3μp4ν − p3νp4μÞ ð57Þ

and

A0
μν ¼ p3 · p4A12μν þ 2ððA12ÞμηðA34Þην − ðA12ÞνηðA34ÞημÞ

as seen by expanding out Eqs. (52) and (53) in Eq. (54).
In the light of the above description, combined with the

chirality-flow standard model Feynman rules [39], it is clear
that scalar exchange, involving no chirality-flow line, does
not change the chirality flow (but alters the involved
momenta). Fermion exchange adds one (from the slashed
momentum in the propagator) or zero (from a potential
mass term) momentum dots to existing chirality-flow
structures [39]. For the mass term, expressed as a
Kronecker delta in spinor indices, the line type of the
fermion line is left unchanged, but the chirality-flow
structure will change since (for example) chirality-flow
lines which are not originally connected may become
connected. External massive fermions have to be decom-
posed into left- and right-chiral states, as for example in [39].
For the non-Abelian vertices, we recall that they may be

decomposed into momentum-dot structures [38,39], and
therefore do not add to the number of possible chirality-
flow structures. (If aW�, instead of a photon, is exchanged,
the chiral structure is rather simplified.) For external gauge
bosons, we note that positive and negative helicity spin-1
particles appear as one dotted and one undotted line with
opposite directions, whereas the longitudinal polarization
of a massive vector boson can be expressed in terms of a
momentum dot [39]. External gauge bosons do, however,
somewhat complicate the description, since they may add a
dependence on a reference gauge vector (which is unphys-
ical in the massless case, and related to the direction in
which spin is measured in the massive).
The conclusion is that none of the above pose a problem

in principle. Decomposing the original amplitude into the
chirality-flow objects in Eq. (37), it is therefore possible to
resum the effect of soft interactions, much as the resum-
mation is done in color space using soft anomalous
dimension matrices, with the basis vectors being the
structures in Eq. (37), and the coefficients being the vectors
and tensors assigned to the momentum dots and the
antisymmetric rank two tensors.
In conclusion we thus find that the flow basis in Eq. (37)

is applicable to resummation of all chiral structures
following after exchange of any known particle. In this
sense, this is the analog of the color-flow basis.

V. CONCLUSION AND OUTLOOK

In this paper we have laid out the basis for performing
amplitude evolution within the electroweak standard model
in order to account for infrared enhanced contributions in a
way similar to the soft gluon resummation program in

QCD. To achieve this, we build on the chirality-flow
formalism for treating the spin structure. Kinematic expan-
sions are performed around the physical mass shells of
particles carrying a hard momentum, and include quasisoft
as well as other soft enhanced kinematic regions. We
anticipate that this formalism will allow us to demonstrate
factorization of physical, renormalized S-matrix elements
in the soft limit, which accounts for color, isospin and spin
correlations, as well as the proper wave function renorm-
alization constants. Results of our formalism, together with
suitable mappings which implement energy-momentum
conservation, can directly be implemented in the
CVolver evolution library [7,9] and will serve as a basis
to design parton branching algorithms which include
electroweak effects beyond the quasicollinear limit.
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APPENDIX: PROPAGATORS AND EXTERNAL
WAVE FUNCTIONS

An important ingredient to our factorization formula is
to demonstrate, subject to the kinematic parametrization
above, that

X∞
n¼0

�
PðqiþKi;s;MiÞ

ðqiþKi;sÞ2− M̃2
R;i

ΣðqiþKi;sÞ
�

n PðqiþKi;s;MiÞ
ðqiþKi;sÞ2− M̃2

R;i

¼ 1

2pi ·Qi;s

ΨðΛpi;MiÞΨ̄ðΛpi;MiÞ
1−Σ0ðM2

i Þ
þOðλÞ; ðA1Þ

where the derivative of the (physical part of the) self-energy
Σðp2Þ (or, accordingly the transverse self-energy at vanish-
ing k2 for a massless boson) provides the proper wave
function renormalization for the amplitude we factor to.
To illustrate this let us first consider Goldstone bosons in an
Rξ gauge, with a free propagator i=ðk2 − ξM̃2

R;iÞ, where
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M̃2
R;i¼M2

R;iþiMR;iΓR;i in a complex mass scheme [29,30],
and the introduction of ΓR;i needs to be added back as
additional insertions of two-point functions. This does not
provide any change to our main argument. The propagators
of the physical scalar can be obtained by putting ξ ¼ 1. If
the scalar has a one-particle irreducible two-point function
−iΣSðk2Þ, the resummed propagator is

1

ðqi þ Ki;sÞ2 − ξM̃2
R;i − ΣSððqi þ Ki;sÞ2Þ

¼
� 1

2pi·Qi;s

1
1−Σ0ðM2

i Þ
þOðλÞ ξ ¼ 1 and ΣSðk2Þ ¼ Σðk2Þ

OðλÞ otherwise;

ðA2Þ
where the physical and renormalized (complex) mass relate
as M2

i ¼ M̃2
R;i þ ΣðM2

i Þ for the boson in question. Thus
depending on how the unphysical scalar’s self-energy and
the gauge parameter relate to each other, the scalars will
contribute at leading power along with their related vector
bosons, or not. We will investigate this in more detail in the
future. The simplest nonscalar case to consider is that of a
massive gauge boson. In an Rξ gauge their numerator reads

Vμνðqi þ Ki;s;MiÞ

¼ −ημν þ ð1 − ξÞ ðqi þ Ki;sÞμðqi þ Ki;sÞν
ðqi þ Ki;sÞ2 − ξM2

i
: ðA3Þ

Using the momentum parametrization, Eq. (9), we have

VμνðqiþKi;s;MiÞ ¼−ημν−α2ð1− ξÞ ðΛpiÞμðΛpiÞν
2pi ·Qi;sþð1− ξÞM2

i

¼
X
λ

ϵμλ;MðΛpi;MiÞϵ�;νλ;MðΛpi;MiÞ

þOðλÞ ðA4Þ

where the physical polarization sum is
P

λ ϵ
μ
λ;Mðpi;MiÞ×

ϵ�;νλ;Mðpi;MiÞ ¼ −ημν þ pμ
i p

ν
i =M

2
i . At tree level and ξ ¼ 1

this would not hold, but in this case the Goldstones would
contribute, as shown above. For ξ ≠ 1 we obtain the
physical polarization sum, and the Goldstones would
not contribute. The summed propagator is more compli-
cated, however we still find that the above relation holds
with the expected additional factor of the (complex)
transverse self-energy of the respective boson, as claimed
at the beginning of this section. For Fermions the
propagator numerator is linear in the momentum and thus
they trivially satisfy our constraints at leading power. The
last complicated case is that of a massless gauge boson in
physical gauge, for which we observe that

dμνðq; nÞ ¼ −ημν þ qμnν þ nμqν

n · q
ðA5Þ

which clearly satisfies

dμνðqi þ Ki;s; nÞ ¼ dμνðΛpiÞ þOðλÞ
¼

X
λ

ϵμλðΛpi; nÞϵ�;νλ ðΛpi; nÞ

þOðλÞ; ðA6Þ

where ϵðq; nÞ are the physical transverse polari-
zation vectors satisfying ϵðq; nÞ · q ¼ ϵ · n ¼ 0 and
ϵλðq; nÞ · ϵσðq; nÞ ¼ −δλσ. For a full propagator we get
the usual renormalization factor 1=ð1 − ΣTð0ÞÞ where ΣT
is the transverse part of the self-energy, and the part which
is longitudinal to the gauge vector is again only contrib-
uting at subleading power.
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