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One-loop QCD amplitudes in the Feynman-diagram gauge
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Scattering amplitudes for the massless QCD process, gg — ¢'q’, are calculated in the one-loop order in
the Feynman-Diagram (FD) gauge, where gluons are quantized on the light cone with opposite direction
of the three-momenta. We find non-decoupling of the Faddeev-Popov ghosts and nonconventional UV
singularities in dimensional regularization. The known QCD amplitudes with asymptotic freedom are
reproduced only after summing propagator and vertex corrections. By quantizing gluons in the Feynman
gauge on the FD gauge background, we obtain the one-loop improved FD gauge amplitudes.
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I. INTRODUCTION

Reference [1] proposed a new form of the gauge boson
propagator for massless gauge theories like QED and QCD,

o qu(q) +(9)g,
(= + )

G (@) = n(q) - q

L
¢+

where n#(q) is defined as
n(q) = (sgn(q’). —4'/14])- )

We use the notation A* = (A%, A) = (A?, A’) to separate
time and space components of a four-vector. n#(g) is light
cone, i.e., n*(q)n,(q) = 0. Note that the propagator (1) is
not Lorentz covariant.

Using the propagator (1) for the photon and the gluon, it
has been shown in Ref. [1] that we can obtain helicity
amplitudes that are free from subtle gauge cancellation
among interfering Feynman diagrams. This method was
later extended [2] to the electroweak theory, where massive
gauge bosons are combined with associated Nambu-
Goldstone modes forming five-dimensional propagators.
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It has been found in Refs. [1,2] that the absence of subtle
cancellation among interfering Feynman diagrams and the
collinear properties of individual diagram are common in
the massless [1] and in the massive [2] gauge theories.
Because of these common properties,1 Eq. (1) is named
“Feynman-Diagram (FD) gauge” in Ref. [2].

It has later been shown in Ref. [4] that the propagator (1),
as well as its generalization to massive gauge bosons [2],
can be derived from the gauge fixing term similar to that in
the light-cone gauge [7].

In this paper, we study radiative corrections for massless
gauge theories in the FD gauge. The rest of this paper is
organized as follows. In Sec. II, we show the relevant
Feynman rules in the FD gauge for loop calculation.
Section III gives details of the one-loop scattering ampli-
tudes for a massless quark scattering process, ¢gg — ¢'g’, in
the FD gauge. Section IV shows that by quantizing gluons
in the Feynman gauge on the FD gauge background, we can
obtain one-loop corrected FD gauge amplitudes. Section V
summarizes our finding, and some technical details of the
loop integrals are given in Appendices A and B.

II. FEYNMAN RULES IN THE FD GAUGE

We work in QCD with massless quarks. The Lagrangian
takes the form

'The propagator was called “parton shower gauge” in Ref. [1],
because the magnitude of individual Feynman diagram agrees
with parton splitting amplitudes [3] in the collinear limit. It was
later renamed as Feynman-Diagram gauge in Refs. [2,4] because
the term “parton shower gauge” was used in Refs. [5,6] for a
specific light-cone gauge.

Published by the American Physical Society


https://orcid.org/0000-0002-8625-9587
https://orcid.org/0000-0003-2961-5378
https://ror.org/01g5y5k24
https://ror.org/04cd75h10
https://ror.org/04cd75h10
https://ror.org/01dq60k83
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.056021&domain=pdf&date_stamp=2024-09-12
https://doi.org/10.1103/PhysRevD.110.056021
https://doi.org/10.1103/PhysRevD.110.056021
https://doi.org/10.1103/PhysRevD.110.056021
https://doi.org/10.1103/PhysRevD.110.056021
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

HAGIWARA, MAWATARI, YAMADA, and ZHENG

PHYS. REV. D 110, 056021 (2024)

1 . . pa(Ta
L= FLF™+ ign" (9,6, +igA(T);))q;
q
+ Lk + Lep. (3)

In this section, we give the forms of the gauge fixing term
Lgr and the Faddeev-Popov (FP) ghost term Lgp corre-
sponding to the FD gauge propagator (1).

Following Ref. [4], we consider a gauge fixing

1 2
Leor = _2_5(F [A])?, (4)

with

Fe[A] = *(9)Af, (5)
and the gauge parameter £ Here, 1#(0) is a differential
operator that may be Lorentz non-covariant and even

nonlocal, which was not manifestly written in Ref. [4].
The kinetic term for the gluon is

1 a,
Ly = H A% <gm,62 ~ 0,0, —

with ﬁﬂ = —#,,. The equation of motion (EOM) of A, with
the source term J;A% added, is then

2 1 AA av a
90 —6”0,,+Enﬂny AV = —J§. (7)

In moving to the momentum space, we set the momen-
tum space representation of 7#(d) as —in#(q) and the
EOM (7) gives the gluon propagator,

. i5 q,n,(q) +n,(q)q,
5GP (q)], = (—g,w L ]

4P+ i0 n(q) - q
2
& q,lqp2>' (8)
(n(q) - q)
Hereafter, we set £ — 0 and obtain
5 q,n,(q) +n,(q)q
'5abGFD — ! _ KV H v
l Hv (q) qQ + lO gﬂl/ + n(q) . q
i(sab
= PED(gq). 9
e l0) ©)

Equation (9) gives the gluon propagator (1) in the FD
gauge. Note that (9) explicitly breaks Lorentz invariance,
while keeping space rotational invariance for the light-cone
vector of (2).

To calculate loop corrections in the FD gauge, we also
need to determine the Lagrangian for the FP ghosts (¢*, ¢%)

associated with the gauge fixing (4) and (5). In the
coordinate space, the Lagrangian for the FD ghosts is [§]

_ oF%A
Lpp = ic” [b ] (Dyc)?
u
= i (D)

= ic9#9,c — igfeeeiirAbee, (10)

where (D,c)* = 9,c* — gf**Abce is the covariant deriva-
tive of the ghost c. The propagator and ccA,, coupling of the
FP ghosts are then given as

5ab 5ab

ca E‘b _ — ab P = — = — i
(c"(q)”(=q)) = i6°°Grp(q) n(q)-q |14 +4|
(11)

iL(c*(=p)A"(p — q)c(q)) = —igfn*(p). (12)

respectively. Note that unlike in the light-cone gauge in
which n# is common for all gluons, the FP ghosts don’t
decouple from the amplitudes.

III. FOUR-QUARK SCATTERING AMPLITUDES
IN THE FD GAUGE

To discuss loop corrections in the FD gauge, we use the
massless quark scattering gg — ¢'g’' (¢ # ¢') and calculate
the amplitudes with one-loop corrections by gluons, as
shown in Fig. 1.

The tree-level amplitudes Fig. 1(a) of the process

q:(p1) +4;(p2) = 9°(q) = q)(p3) + @u(ps),  (13)

with color indices for quarks (i, j, [/, m) and gluon (a), are

iM@

Pi(q)
— 1027 T4 .yt Hy
g v(pZ)( )]ly u(pl)q2+lo

i(p3)(T) 1y v(pa)-
(14)

Here, iPED(q)/(g* + i0) is the gluon propagator in the FD
gauge (9).

Relations o(p,)gu(p,) = a(p3)gv(ps) = 0 follow from
the EOM of the quarks. As a consequence, the n,q, + g,n,
parts of P;> do not contribute to the amplitude (14), as
expected from the gauge independence of the on-shell
scattering amplitudes.

We now evaluate the one-loop corrections to the ampli-
tude by gluons. Before showing explicit calculations, we
review the structure of the loop corrections. As shown in
Fig. 1, they consist of the corrections by gluon self-energies
(b, c¢), quark-quark-gluon vertex corrections (d, e) with
wave function corrections of quarks (f), and four-quark
box corrections (g, h).
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FIG. 1. Feynman diagrams contributing to ¢g — ¢'g’ at the tree (a) and the one-loop order (b — h).

The gluon loop corrections to the amplitude (14) are then
iM(corr) = iMB+) 4 pMldrers) 4 jploth), (15)

In terms of the gluon self-energy il1*(q) = ilTPH (q) 4 i1 (g), iM+¢) is expressed as

. Vs P2(q) PfP(q) _
M) = i) (1) 1) 355 T ) A e i) T () (16)

Substituting the explicit form of PE,? (9) and EOMs for quarks, the correction is expressed as

MO = iR Tp) (1) ()| = )+ D (1 0) b () D
_nﬂi(q) A P % i a Yy
Sl (T a) ) (T () (1)

Furthermore, by using the explicit form of n#(q), we have

L

iMPEFe) = —iQZ@(Pz)(Tu)tiMM(Pl) 7 w(p3)(T) 1y v(ps)
sgn(q°) . [
X _H/,w(q) + |ZI>| (tﬂqpnpv(q) + H;m(q)q tu) - tﬂtquﬂq H/)U(q) ’ (18)

where # = (1,0,0,0) is a constant vector. In Eq. (18), the following relation from the quark EOM,

n”(q)ﬂ i =——7 n(q°)y° iiiu
D () = <p2>[sg (@ + gy WJ (p)
1 _ 1
R o(py) {Sgn(qo)ro + ¢%° m} u(py)
0
- géf L 5(p2)ru(py). (19)

and a similar relation for it( p3)y*v(p4) are used. As we will see later, contrary to the case in the covariant gauges, ¢*Tl,,, ()
in the FD gauge does not vanish in general.

Similarly, iM@+e+f) is expressed in terms of the ggg vertex functions i[* and i[", which is the sum of the 1PI vertex
corrections (d + e) and quark wave function corrections (f), as

; pFD
iIMUTER)) = 5(p,)(T9) il (=q, p1, p2)u(py) P”;Z(Q) (=ig)a(p3)(T*) 7" v(ps)
+ (=ig)v(p2)(T*) ;;ir"u(p1) iP”;Z(Q) #(p3)(T) il (g, —pas —P3)v(P4). (20)
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By using (19) again, we have

IMTED = ig?5(p,)(T); T (=q. p1. p2)u(p1)

sgn(q®)
<‘9’” T

ry)mpg)(mlm(m)

sgn(q’)

+ igz@(pz)(T“)ﬂ”u(pl)% (—g,w +1, W%) w(p3)(T*), (g, —psar—p3)v(ps).  (21)

A. UV-divergent parts of the corrections

We now evaluate the UV divergence of each part of the gluon loop correction (15) in the FD gauge.
First, gluon self-energy by gluon loop (b) and by FP ghost loop (c) are

D

s Sa 1 ac C d k
6T (q) = =5 el / yp Lk +0),9u + (2k+ 4),9, + (=24 = k) 9,]

(2m)P

X [(k=q); 905 + (=2k = q),95: + (2q + k) 59,.]

PFDﬁa(k) PFDpr(k + q>
K2 (k+¢q)* (22)
dPk n,(k)n,(k+ q) (23)

iéabn}(ﬁ)(q) — fcadfdbch/

respectively. Here, facdfbed — —feadfdbe — ¢, 50 with
C, = N, = 3. Since we use the dimensional regularization
(D = 4 — 2¢), all tadpole contributions with massless fields
vanish and are not shown.

Here, we comment on the singularity of the FD gauge
propagators (9). As in the covariant gauges, the pole from
1/g* at g*> =0 should be shifted by the replacement
1/¢*> — 1/(g* +i0). There is also a singularity from
1/n(q) - q=1/(1¢°| +|g|). However, this singularity
occurs only at a point ¢* = 0 in the D-dimensional phase

space and does not need the +i0 prescription.
|

(27)? (n(k) - k) (n(k+ q) - (k+q))’

|
For calculation, we split the FD gauge gluon propagators
iPiD(q)/q* in Eq. (22) into two parts, —ig,/q* (“g
Feynman gauge propagator) and i(n,(q)q, + q,n,(q))/
(n(q) - ¢)¢* (“n”). Equation (22) is then divided as

e = 1199 4 11(bo9n) o 1(bonn) (24)

The (gg) part, H,(,l,’,‘gg)(q), is the self-energy in the
Feynman gauge. As is well known, its UV singular term
is [8];

. i Cag® [ 19 11
szwgg) (@)aiv = ) (4;:)26 <—6ngﬂ,, + ?qﬂq,,
i Cad® 1, o (192 11 o 19 o 11
=5 A D s T TS s 61] —q'q’ . 25
2(4”)26[2(q)+6|q| 399 cad T3 dq (25)

In the second line, we show illgy, iIly;, and ill;; for later
convenience.

(b.gn)

We next evaluate iI1,,”. It contains loop integrals with

a factor of n(k) - k = |K°| + |1€| in the denominator, such as

d’k 1 o). _*
/(2n>D(|k0|+|12’|)(k+q)2<g (5. |1'<’|>' (26)

Here, the momentum integration is to be understood as
dPk = d(k°)dP~'k, namely in (D — 1)-dimensional space
and one-dimensional time.

Since |k + |k| is not a polynomial of the loop
momentum k¥, Feynman’s formula to combine the
denominator of Eq. (26) into the form ((k')>—C)"
does not work. Fortunately, by dimension counting,
we find that all the UV divergences of the integrals
like Eq. (26) are polynomials of the components of
the external momentum ¢*. We therefore differentiate
the integrands in (22) and (23) by ¢ to the second
order and perform integration of the resulting formulas
at g* = 0. Details of the integrations are given in
Appendix A.
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By using the techniques outlined in Appendix A, the (gn) part of the integral (22) is found to give the following
il ()

UV divergence,
— lCAg 20i 76i 161
0, =3 32 07 (25 )= (2 )

201 . 148i . 64i
2 0)\2 sij -2 — =12 Sij 2 J 2
<+9ﬂ>(q)5 +< 45ﬂ)Iqlé +<+45 >qq] (27)

Equation (27) has terms with an extra factor of i /z compared to conventional contributions in the Feynman gauge part (25).
They arise from the UV singular integrals with the 1/(n - k) factor, which has no on-shell pole.

The (nn) part of the gluon self energy iH,(,IZ'"") and the FP ghost contribution in,i) are evaluated in the same manner.
We find

(bam) i Cag [_1 o, (1381 oo (1 81 o ((1 80 o 8i
o = AT | e 117 ey LY (e 57+ (-1 28
00075, 2(4;;)26{ F VG )1 (373, )00 a5, )+ Pl Ja | (28)
and
- i Cag? [ 200 o, 8i o i oo 28i . 56i
I1 =7 |[—— — , J S Sl J 20
Thioo.05451(4) |, 2(4”)26[ R 9”Iq 500 g (0P8 + 12| i3 + 5,94 (29)

respectively. In contrast to the light-cone gauge [7], where n* is a constant vector, the FP ghost contribution iIT1¢) does not
vanish. Because the ghost loop in the FD gauge has no on-shell pole, there is no term without a factor of i/z in (29).
Summing Eqs. (25) and (27)—(29), the gluon self energy in the FD gauge is

 FD(b-tc ng 11 8i\, . 8i (7 8i i o
IH[OO,(O;_ij])(QMdiv: (47;3 [(?—; 13>, - 3—5 g’ §+§ (%67 + q'q’)|. (30)

or, equivalently,

_ iCag® [ (7 8i 2 16i
EPE*) (g)| gy = — =4 - — 1 (q°(quty, + t,q,) — 2¢%1,1,) . 31
iy (q)|d1v (471')26 3 + 5= 3 ( q g;w + qy‘]v) + 3 3 (q (q[l v + yCIz/) q " y) ( )

We observe that ¢*TI;, (q) g, # 0, but ¢*¢*TIEP ()|, = 0. In fact, ¢#¢*II5P (¢) = 0 also holds for the UV finite part.
By substituting the self-energy (31) into the (b + ¢) diagram correction to the amplitude (18), we find

MO, = (C f Fpa) (1) 1) 5 () (7))
X {(—%—38;)( G + 1,1,) + (13—1—%)1‘”2‘”—&- <—§+321> q—||t t}. (32)

Next, we calculate the UV-divergent parts of the vertex corrections (d, e) to the g;(p;)g;(p.) = g°(q) vertex, as well as
the wave function correction (f) of external quarks.
First, the (g, g, q) loop contribution (d) is

_ ay (d)p _ .3 racd (cd de 1
U(pz)(T )jilr (_% pl’pZ)u(pl) =19 f (T T )ji (2”)D kz(k—|- q>2(k+p2)2

X [(=k + q)P g + 2k + q)* ¢ — (k + 2¢)*¢*]
x PEP(k)PEP (k 4+ q)0(p2)y” (=K — #2)r*u(p1). (33)

Here, if*d(T<T?) i= -3C 4(T%) ;- By dimension counting, the UV-divergent part of (33) should be independent of the
external momenta (g, pl,pz)
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13 7’

Again, we split the gluon propagators in Eq. (33) into

[T L)

and “n” parts. The Feynman gauge (gg) part is

) . Cug® 3
iTgn) . = (42)26 <_§},u>‘ (34)

The other parts, (gn) and (nn

e G2 G o9
and

. Cug’ 1 2 20\ .
r(dnm)0d]) — — A - _= 0’ —— 4+ — )y,
: la =1 (4n)’e |[\2 = 4 6 * 3z)"
respectively. Their summation then gives

. Cug® [(1 4i 140\ |
I T s Y (R DY (N T PV 4 37
l ‘le l(47[>2€ 27 1 7 6+3JT 4 ( )

The (g, ¢, g) loop contribution (e) is given by

), are

irdgmod] . —

o(p2)(
= 93(TCT”TC)ﬁ/

x P (k)o(ps)

T“)‘;iir(e)”(—%Pl,Pz)“(Pl)

dPk 1

(2m)P k2 (k+ p1)*(k = p))?

v (k= p)r'(+ p)r u(pr).  (38)
Here, (T“T*T¢);;=(Cp—3Ca)(T*);; with Cr=(Nz—1)/

(2N,.)=4/3. After splitting the gluon propagator into “g
and “n” parts, we have

g3

(47)%€

Note that the “n” part (39b) is Lorentz covariant, unlike the
cases of the corrections (b, ¢, d).

We further include the contribution from the quark
wave function correction (f) to the vertex iI'T°. The quark
self-energy in the FD gauge is

iF(e’n)”|div =1 (CA - QCF)[—V”]- (39b)

() = £Cr [ it L PR, (40)

Its UV divergence is, after splitting PL> into O(g,,) and
O(nk) terms,

2

G (Pl 0 (Pola) = 15 (=20, (41)

Then
3
irvom| = i(47;)25 Crlr"]. (42)
g3
ir(f’n)'u|div = IWC‘F[—Z}/"] (43)

They exactly cancel the O(Cp) contributions of the
(q.q.g) vertex correction iI'®¥#|, ((39a) and (39b)). In
total, the UV-divergent gqg vertex correction in the FD
gauge is

o Cy [ 4 2 4
raresn) = I=A ] T (2 )il (44
4 |d1V l(477;)2€ ﬂ_}/ 3+37[ Y ( )

ir(eon| . =i g +—(Ca —2Cr) |:1yﬂ:|’ (39a) The correction to the amplitude by iI'¢*¢+/) for the
(4m)%e 2 initial ggg vertex is, by using Eq. (21),
|
Cag* 1
(d+e+f) _ - bag a . a v
Zan div - 1(4”)2€U(p2)(T )jiy”u<p1)?u(p3)(T )lm}/ ’U<p4)
2 4 2 168\ 4" 41

-= 1,1 S t . 45
T N R

The final ¢'q’g vertex correction zMﬁTEH )

|giy 18 identical to Eq. (45).

Finally, the box corrections AM (@) are, as in the covariant gauges, UV finite.
In total, UV-divergent part of the gluon loop corrections to the amplitude is

. Cag* - . 1
ZMFD(COIT)|div =i o(p,)(T )ji?”“(m)_g

an)e q

11 Cyq?
— M@ x (=49
iM% <3 (4;;)%)'

1(ps)(T)*v(pa) {

1 11
3( gﬂy+tr)+3tﬂty

(46)
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This result is identical to the one in the covariant gauges
and consistent with the beta function [9,10] f(g) =
—4.C,g°/(4m)? of the gauge coupling g. This result gives
an evidence that the FD gauge fixing (5) with the gauge
vector (2) in the momentum space gives a consistent
procedure for gauge fixing.

B. Transverse and longitudinal contributions

We have seen that loop corrections in the FD gauge have
unconventional UV divergences whose coefficients differ
from the conventional ones by a factor of O(i/x). For better
understanding of this type of the loop contributions, we
examine the contributions of the transverse and longitudinal
parts of the off-shell gluons separately in this subsection.

The FD gauge polarization tensor PFP#(k) is decom-
posed into the transverse part P7 and the longitudinal
part P/*, as [1]

PFD () = P () + P (k)

— Sty zj_klk] (k)l’l”(k
‘5"51‘(5 |k|2>+k O

This equation can be verified by using the explicit form of
n* (k) (2). The gluon propagator is then decomposed as

. Py (k)
"2 +i0

n* (k)n* (k
(n(k) - k)* -

Since 1/(n(k) - k) = 1/(|k°| + |7é|) diverges only at a point
k* = 0, the longitudinal part of the propagator does not
correspond to physical states.

In this subsection, we separate the UV-divergent one-
loop gluon corrections to the gg — g(p) — ¢'q’ amplitude
into transverse (7') and longitudinal (L) internal gluons. For
simplicity, we work in the center-of-mass frame of ¢g,

where ¢ = (Q6) (0 > 0).2 Note that, in this case, we
have n*(q) = (1,1), where ii = —¢/|q| is a unit 3D vector
whose direction is not determined in the |g| — 0 limit. We
will find, nevertheless, that this ambiguity of n*(g) does not
affect the amplitude (15).

We start from the gluon self-energy. The transverse-
transverse (TT), transverse-longitudinal (TL), and longi-
tudinal-longitudinal (LL) parts are, respectively,

+i (48)

iGFD (k) =

. (bTT) B , 5[ 1
lH[O(JJﬂ (q) div B CAg (4ﬂ)2€ Q _0’ 36 ]:| ’ (493.)
. (bTL) _ , o[ 8
Moo (9], = €9 (g2 27|30 f], (49D)
7(PLL) , i [ 100 220,

1§ 156a _ i | 108 22i g,
Moo (D], = 0T Gyze |73 020 |2 49)

The case of general ¢* is briefly discussed in Appendix B.

while iIly;(¢) = 0 by space rotational invariance. It is
seen that the unconventional O(i/z) term in [P arises
from the (LL) part (49c), where the intermediate propa-
gators (two longitudinal gluons) have no cuts. The FP ghost

contribution for g* = (Q, 6) is, from Eq. (29),

100 2i

— 2 i 2|2 _ T
div N CAg (47T)2€Q |: 5 i ’ (50)

zH( c)
37" 9z

[0011]( q)

In total, the gluon self-energy is

. (b+(,‘) _ 2 l 2 7 8 ij_
lH[oo,ij](Q)\div o (a2 @ {0,( 3 3”)5 |- 6y

This result is consistent with the result (30) for general ¢*,
as it must be. Since ¢# = (Q.0) here, qﬂnfj“) () =0
holds, and the n(q)-dependent contributions in the correc-
tion (17) to the scattering amplitudes vanish.

The vertex correction (d) is, as for the gluon self-energy
(b), decomposed into (TT), (TL), and (LL) parts as

Cyg® 1
Tt — ;AT [~ ou 52
: div l(4ﬂ)2€ 27 ) (52a)
. Cug’ 2 .
r@rnd| = —A2 1 Zyi 52b
! av (@m)e | 37 ] (52b)
‘ Cad 4i 1 4\ |
ranod| — ; Ca =)0 (220,
! div l(47r)2e z )7 373.)7

(52¢)

The unconventional O(i/z) term appears only in the (LL)
part with two unphysical propagators, as in the case of the
gluon self-energy correction (b) given in Eqgs. (492)—(49¢c).

The vertex correction (e) is decomposed by separating
the gluon propagator in the loop, as

. _ , 7 1
ir(eL)[0. 4 = (Ca=2C) ne [—yo, —547 (53b)
giving
g 1
(e L= i(Cy=2Cy) an)e (‘7”)' (54)

There are no O(i/z) terms in Egs. (53a) and (53b).
Likewise, the quark self-energy is decomposed as

2

< (T) 9Cr | 50, 1

bl — -

iZy'(p) a ~ an)e [p Y +3p7], (55a)
2

(L) 7.9F_00gii

=0, =i [ S| s
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Their sum
2

. . g Cr

B (Pla = 1 ot 17 (56)
contributes to the vertex correction term (f) as

.C g3
Tw| . — P 57
l |dlv (47[)26[ 4 ] ( )

Equation (57) cancels the O(Cy) terms of i['(¢) (54). It is

corrections (e) and the quark self-energy correction in (f).
The total vertex correction (d + e + f) is

. 3C,y [ 4i 2 4i\
rldrernod| =i I A o (2 T yil (58
i el 2\ T3 )7 (58)

]|div_

which agrees with the result (44).
In calculating corrections to the scattering amplitude, we
cannot use Eq. (19) since |g| =0. Instead, by using

worth nothing that the sum of 7 and L components of the  #(p,)y°u(p;) = u(p3)y°v(ps) =0 from the quark
FD gauge propagator gives sensible correction to the vertex ~ EOM, ¢*I1,,(¢) = 0, and ¢,I* « ", we find
|
g (bte - Cag* _ o 1 L 7 8i
iMbFe) i 1(4”)2€U(P2)(T )it ”(Pl)@u(m)(T Jim?' v(Pa) X 37 3,) (59)
from the gluon self-energy, and
. . . Cag* o 1 L 4  8i
M) = i e PP T u(p) G aps) (T v(pa) % =3+ 3 ) (60)

from the initial and final vertex corrections, respectively. Both (59) and (60) are independent of n*(q), especially of its
undetermined space components n'(g). The UV-divergent part of the gluon loop corrections to the amplitude is, in total,

Cag

iMPP (corr) g = i WTJ(Pz)(T“)ﬁﬂWé“”””“”’"”(”“) " (_ E>

11 Cud?
— M@ 5 (22 5A9
IM\Y x <3 (4”)2€>.

This result is again identical to the one in the covariant
gauges for ¢* = (Q,0).

C. Equivalence of the amplitudes in the FD
and Feynman gauges

Up to now, we have only considered the UV-divergent
parts of the gluon loop corrections. However, on-shell

amplitudes in gauge theories should be independent of the
|

dPk

3

(61)

gauge fixing methods. In this subsection, we show how all
the n-dependent terms of the loop correction (15) to the
qq — g — q'q process in the FD gauge cancel among each
other, including finite parts, to leave the amplitudes the
same as in the Feynman gauge. Here, we work on the level
of the integrands, without explicit evaluation of loop
integration.

We start from the box diagrams (g, #) in Fig. 1. The
contribution from (g) is

1

IMO) = g(ToT) (TP T, /

Equation (62) is UV finite and has not been discussed in the
previous subsections.

Now we focus on the n-dependent parts of Eq. (62),
which give the difference between the Feynman and the

2m)P k2 (k + q)*(k + p2)*(k + ps)?
X B(p2)r* (=K = p2)r u(py) - (p3)y (=K — pa)y*v(pa) P (k) PI2 (k + q).

(62)

FD gauges. It is seen that the gluon momenta in the
n-dependent parts of the gluon propagators cancel
the attached quark propagators, or “pinch,” reducing the
kinematic structure to that of the vertex or gluon self-energy
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contributions [11,12]. For example, k,n, (k) part of P;P (k) in Eq. (62) reduces the integrand as, by using the EOMs for
external quarks,

2 o) U 00) -0 o)

(k+ 2)
s K- 14

—v(pz)k(,fF ﬂ)ﬂ u(p1) - u(p3)y (

"t pa)? (k)v(p4)

=0(p2)r*u(p) - u(ps)r” ( T H(K)v(ps), (63)

times PP (k + q)/[k*(n(k) - k)(k + g)?]. The last line of Eq. (63) is independent of p,, giving a contribution with the
kinematic structure of the vertex correction to the final ¢’g’g coupling.

After successively applying the “pinch” method, the (gn) and (nn) parts of the box contributions iM ¥+ can be
expressed as

iM(g+h.gn+nn) — l'Mll)ox 4 l'Mgox + iMbox’ (64)
where

dPk 1
27)P I (k+ q)*(k + p))?

M = =5 Cag (1) T ipa)ran(ps) [ -

ol e T s

M = =L Cu (T T8 palra) [ o
L S o

M =L Ca (1) T o) ulp) i olp) [ s b ) s,

Examining the dependence of l./\/lbox in (65a)—(65¢) on the external momenta g and p; (i = 1 to 4), we find that these three
parts kinematically behave as the corrections on the initial ggg vertex, on the final ¢'q’'g, and on the gluon self-energy,
respectively.

Next, we examine the n-dependent parts of the vertex correction contributions M(@+¢+f) coming from the gluon
propagators in the initial ggg and the final ¢’q’g vertex functions I'#, and also the n(g) dependence coming from the FD
gauge propagator iPhP(g) in (20).

The (gn, nn) parts of the vertex function iI'* for the initial ggg vertex are written as, after applying the EOMs for
external quarks,

il—‘(d,gn+nn)/4 — ll—*gd)ll 4 ll—*gd)ﬂ + il—*gd)ﬂ’ (66)
where
iron _ _ 1o s / dk 1 V(k)(k + ) (" K + ¢*r") N (=q"(K+4) + v ) K + Pk + q)
! 2749 | o)P Rk + q)(k+ pa)? n(k) -k n(k+q)- (k+q)
—k'q> + q"(q - k)
e SR G+ ). (672
@u 1 dPk B #(k) (K + po)r* B YK+ po)ik(k + q)
=0 [ G [ Rin) Dk + p2P kT a2kt q) - (k) (kT pa) (670)
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D
T = =300 [ G e [ ) Q4 r = R+ (kg H(R)

1
Tt g Mkt ) (kmapt — ket gk + G+ 20) (K + 9))

1 , » )
e ey (=m0 =Rl 1) + g k) - )k + g)

+ (R +2g - k)n(k + q) = k*(n(k +q) - (k+q)) — ¢"(n(k + q) - k) (k)

+ (n'(k)(k = q) - n(k + q) + n*(k + q)(2q + k) - n(k) = (2k + q)*n(k) - n(k + Q))k}] : (67¢)

Note that the integral (67a) depends on both ¢ and p,, the first term in (67b) depends only on p,, whereas the second term
depends only on p;, after transforming kK — k + ¢. The integrals in (67c) depend only on gq.
The O(n) contribution from the vertex function il for the initial ggg vertex is

I O D S W L e A O A
: (CF CA) (2n>Dk2<n<k>~k>[ k+pm)  (k+p) } (©8)
From the O(n) part of the quark self-energy
o Pk g+ PR — B E + PP,
=)= [ G Btk )
we obtain
ey [ AP U [P R | O )
r Cro <2n>0k2<n<k>~k>[ Cip? ket | 0

for the initial gqg vertex. The O(Cp) part of (68) is exactly canceled by the quark wave function correction (70). The

(d)p

remaining O(C,) part of (68) cancels iI'; " in Eq. (67b), after momentum transformation k — —k — ¢ in some terms.

In the remaining parts of Eq. (66), only ing”’ (67a) has p, dependence. Its contribution to the amplitude is, from Eq. (20),

M = 00 (T (1) (=g + 22D (i) (7))
= M+ Mo M)
where
M = =5 Cad (T T p)0 () [ S e oo
it [ AP G0 MO M0 ], -
Tk kg e ) Rk g) et g
M 12 ==y g T T p0) [ 5 Sty PP ZHPIE D]

IMyS | in (72a) cancels iMB8°% in (65a), while iMi5t, in Eq. (72b) has no p, dependence in the loops and behaves as the
gluon self-energy correction.
In the same manner, the n-dependent part of the correction to the final ¢’q’g vertex cancels i./\/lgOx in (65b), leaving only

the gluon self-energy-like correction, which we denote as iM5] |, Also, il“gd)” (67¢) on the initial and final ggg vertices
give self-energy-like contributions to the amplitude, which we denote as iMY".
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Note that the Feynman gauge part of the vertex function,
ir@+e+f.9k  does not give n(q)-dependent contribution
because of the relation g, I"¢+¢*/-9#(g) =0 for the on-shell
external quarks.

Therefore, all the remaining n-dependent box/vertex
correction parts of the amplitude, iM3™ (65¢), IMS,,
(72b), iME,, and iM5™ show momentum dependence
of that of the gluon self-energy contributions. By lengthy
but straightforward calculation, it can be explicitly checked
that they exactly cancel the n-dependent part of iM(?) and
the difference of the FP ghost loop contribution iM(¢)
between the FD and Feynman gauges.

Summing up, all the n-dependent terms in the scattering
amplitudes for the process gg — ¢'q’ cancel out exactly,
and hence, the FD gauge amplitudes agree exactly with
those of the Feynman gauge in the one-loop order.

IV. USE OF BACKGROUND-FIELD
GAUGE FIXING

In the preceding section, we have seen that loop integrals
in the FD gauge have UV-divergent parts including
terms with an unconventional i/z factor. These terms
eventually cancel out in the total amplitudes. Moreover,
the calculation of the UV-finite parts is even more difficult.
These observations suggest that the FD gauge might be,
although very useful at the tree level, not suitable for loop
calculation.

Here, we introduce an alternative method to include loop
correction to the FD gauge amplitudes: the background-
field gauge fixing method [13-16], which may avoid the
difficulties of the FD gauge loops while keeping its
advantages at the tree level, as explained below.

In the background-field gauge, the gluon field Ay is

expressed as a sum of the classical field Al‘j and the quantum
field Al‘j asAAl‘j - A; + AZ and perform Izath integrals over
quantum Ay around the background Aj. The effective

action ['[A]=TJ[A =0,A] is then calculated from 1PI
diagrams where all internal propagators are those of
quantum fields, while all external fields are classical ones.

In the calculation of F[A], we need to fix the gauge only
for quantum gauge fields. On the other hand, the gauge
fixing for A is only necessary to give the propagator for A
in constructing scattering amplitudes from the effective
action. Therefore, no theoretical problem arises by adopting
different gauge fixing methods for classical and quantum
gauge fields.

The background-field gauge method adopts the follow-

ing function to fix the gauge for the quantum field A:
F[A,A] = (DMA,)* = Al — g fPeAPRAL,  (73)

with the gauge fixing term

1 .

EGF,BFG[A’A] = _%(FG[A’ADZ’ (74)

and the corresponding FP ghost Lagrangian

~

EFP,BFG[A’A] = iE”(D”D#c)”. (75)

This gauge fixing preserves invariance under the “classical”
gauge transformation,

SAZ = —gf“””a)b;\c, SAZ = —gf“”"a)”Af, —0,0°, (76)

where @ (x) are infinitesimal phases, but breaks invariance
under the “quantum” gauge transformation,

SA; = —gf“bca)b(;\; +A;) —0,0%,

’ SAe=0. (77)

As a result, the effective action ['[A] is manifestly invariant
under the classical gauge transformation (76). In particular,
the gluon self-energy I1,,(q) and ggg vertex function
[*(q. py. pa) for on-shell quarks satisfy ¢*I1,(g) =0
and qﬂf“ “(q, p1, p2) = 0 for general ¢. Furthermore, since

calculation of I'[A] is manifestly Lorentz covariant, for an
arbitrary £y, we may express the self-energy as

ﬁ;w(q) = <_g/,w + q;?) ﬁT(qz)' (78)

It is then clear that, if f[,w and I are used in place of I,
and I'*, Egs. (18) and (21) do not depend on whether the
Feynman gauge or FD gauge is used for the propagator
iP,,(q)/q* connecting the 1PI amplitudes.

The one-loop gluon contributions to the gluon self-
energy I:[,w and the gqg vertex function I'** in the back-
ground-field gauge are given in Refs. [13—15]. Their UV
divergences are

= (b . Cud? 10
20|, =i <+ ) () (09
() N 1
Ly (q)] =i (rye (~4°9 + 9,4.){ =5 )+ (80)
and
" . Cag’ &
(Du|  — A w22 ]1
l div l (47[)26}, < 2 )7 ( )
.  Cag® &
[letHu|  — A ul 429 o)
! div 1(471')267/ + 2 ) (82)

respectively. Note that the UV divergence (79) is indepen-
dent of the gauge parameter £,. We also note that the total
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qqg vertex function is UV finite and that the renormaliza-
tion of the gauge coupling is entirely given by the gluon
self-energy [15].

We finally comment on the resummation of the gluon
self-energy contribution. In the case where the gluon self-
energy takes the form (78), we may resum its contributions
to the gluon propagator in the FD gauge by the replacement

PFD PFD
P 2((1)_) : W~(cz)2 ' (83)
q q- +1r(q”)
This is proved by using the relation
Py (q) 79\ .5 2. Peld
P8 (g T i i P
P () =
= —i ’q4 M7 (q?). (84)

Because the self-energy correction Il;(g?) is the only
UV divergent 1PI amplitudes at one-loop, giving the beta
function of g, the identity (83) may pave the way to improve
the tree-level amplitudes in the FD gauge, given, e.g., in
Ref. [1], simply by replacing the gauge couplings by the
running couplings.

V. SUMMARY

We have studied radiative corrections in the Feynman-
Diagram (FD) gauge [1,2,4], where the gauge boson is
quantized along the light cone facing the opposite of its
three momentum, Eq. (2). We have calculated the QCD
scattering amplitudes for the process ¢g — ¢'g’ at one-loop
level, and obtained the following results:

(1) The FP ghosts do not decouple from the scattering
amplitudes because the light-cone vector in the FD
gauge depends on the three momentum of gluons.

(i) Loop integrals cannot be done by conventional meth-
ods because of the nonanalyticity of the integrand.

(iii) UV singularities with a factor of i/z times the

conventional ones appear from the 1/(n(k)- k)
factor, which does not have a pole in the FD gauge.

(iv) When the FD gauge propagators are expressed as the
sum of the transverse (7)) and the longitudinal (L)
components, all the nonconventional UV singular-
ities appear in the LL combinations of the two virtual
gluons in the gg rest frame.

(v) All the nonconventional UV singularities cancel in
the scattering amplitudes when we sum over terms in
the gluon and ghost loop contribution to the propa-
gator corrections, as well as those in the initial ggg
and the final ¢'q’g vertex corrections, reproducing
the known QCD beta function.

(vi) We have shown that the finite part of the radiative
corrections is identical to that of the Feynman gauge

because all the terms which depend on the light-cone
vector n*(g) cancel out among two-, three-, and
four-point corrections.

Summing up, we have reproduced the known QCD
scattering amplitudes for the process gg — ¢'g’ at the one-
loop level in the FD gauge. This has been proven
by showing cancellation of all UV singularities and the
finite correction terms, which depend on the light-cone
vector n#(q).

Although our findings suggest that the FD gauge is a
consistent gauge fixing for quantizing gluons, the lack of
covariance and analyticity in the regularized loop integrals
does not allow us to take advantage of the standard loop
integral tools. Instead, we propose that all the 1PI loop
integrals should be done in the Feynman gauge on the FD
gauge gluon background. We obtain the same two- and
three-point loop functions as those of the conventional
background-field gauge, in which both the quantum and
background gluons are in the Feynman gauge. Schwinger-
Dyson summation of all the one-loop propagator correc-
tions connected by FD gauge gluons gives the one-loop
corrected FD gauge propagator. The results may be useful
in obtaining improved Born approximation to the tree-level
FD gauge amplitudes.
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APPENDIX A: CALCULATION OF LOOP
INTEGRALS IN THE FD GAUGE

In this appendix, we explain how we evaluate the UV
singular parts of loop integrals with factors n(k)-k =

|k°| 4 |k| in the denominator.

We first note that the UV divergences of loop integrals
in our self-energy and vertex corrections should be
polynomials of external momenta to appropriate order.
For a gluon self-energy loops in I1,,(g), for example, we
differentiate the integrands two times by g¢* = (¢°, ¢")
and take g — 0, after regularizing the integrands to avoid
infrared divergences generated by these operations. We
may then perform loop integrations, which are not
Lorentz covariant in general, by known techniques.
The UV-divergent parts of the original loops are then
easily obtained.
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For illustration, we calculate the UV divergence of the 0
component of the integral Eq. (26),

0\ _ dPk sgn (k%)
@) /(Zﬂ)D(|k0| + k) ((k + q)* + i0)

(A1)

By dimension counting and the (D — 1) space dimensional
rotational invariance, we can tell that its UV divergent
part should take the form ayq” with a g-independent
coefficient a,.

We first differentiate 1°(g) by ¢° to obtain

oI’ @) / dPk  =2(k° + ¢°)sgn(k°) (A2)
—_— q p— - .
9q" (2m) (K] + &) ((k + g)? + i0)?
By using the factorization
(k+q)*+i0
= (K2+¢°)2 = |k+q|>+i0
= (K0 +q°|+ [k+ ) (1K +¢°| = |k +4] +i0),  (A3)

the denominators of the integrands become products of
(1] + (1)) and (|{°] - |I| + i0) (I: a momentum of the
propagator). After introducing a fictitious mass parameter

m>0as (|I°| £ [1]) = (|I° £ (|I| + m)) to avoid infrared|

The space integration in (A4) then takes the form

divergences, we take g — 0 limit to obtain

or° ) _/ dPk —2|k9|
oq° 27)P (1K0] + |k| + m)3(|K°| = |k| = m + i0)?

(A4)

We then perform (D — 1)-dimensional space integration by
using

aP-1k 1 2
—
CaP T (an) 5 (251)

K[P2dlk|,  (AS5)

after decomposing Eq. (A4) into sum of fractions
1/(|k| + A)", where A = [k°] + m or —|k°| + m — i0. For
example, the integration of 1/([k| 4+ A) is

/dD“l_é L1 2 er g,
(2m)P-1 |]€| 1A (4;;)0771 F(DT_I) sin(Dr)

_ @ G n o<eO)>AD—2,

where D = 4 — 2¢. Integration of 1/(|k| + A)" for n > 2 is
then obtained by differentiating Eq. (A6) by A.

(A6)

1 4 o d|k0
o (2 0@} [ 401 )+ 102 4 1280 ) o = 8] 10)°4, (A7)
(471') € 0 T
where f, are rational functions of |k°| and m:
1
F1(&°, m) = TR [(=2D* + 14D — 23)|k°)> + 2(2D — T)m|K°| — 3m?], (A8)
1

for the integral (A4). Note that the term of order |k°|‘l in Egs. (A8) and (A9) cancel in Eq. (A7) in the D = 4 limit, and
hence, the |k°| integral in (A7) is UV finite. The factor (m — |k°| —i0)°~* for |k°| > m should be interpreted as
(|k°) = m)P=* exp(—i(D — 4)x). The |k°| integration in Eq. (A7) can then be performed analytically by splitting the
integration region into (0, m) and (m, o0), remembering that D is a general complex number.

The integration of (A7) in 0 < |k°| < m is, using |k°| = mx,

e (e

It is seen that there is no singularity in (A10), including the boundaries at x = 0 and x = 1, for D ~ 4. On the other hand,
substitution of D = 4 into the integrand of (A10) just gives 0. So, the integral should be O(¢), irrelevant in our calculation.

0(60)> 1mD—4/1 dx[fy (e 1)(1 + x)P* 4 fo(x, 1)(1 = x)P4]. (A10)

T 0
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The integration for the other part, m < |[k°| < oo, is written as

(4;)2 <z+ 0(60)> %mD—4 /oo dx[f(x, D) (x+ DP™* 4 fo(x, 1) (x = 1)D—4e—i(D—4)7z]‘

1

(Al1)

Since f1,(x, 1) = O(1/x) for x — oo, the integral (A11) is apparently divergent for D ~ 4, but again the integrand vanishes

at D = 4. We therefore expect that integral of (A11) gives a finite result as (D —4) x =L

(D-4)
Let us calculate (x + 1)P=* part of the integral in (A11),
h= [T enes e, (A12)
1

first. By decomposing f;(x,1) as C/(x + 1) + O(1/(x + 1)?), where C is a function of D, the integrand is written as

—2D? + 14D - 23 —2D? + 18D —37)x* + (4D — 17)x =3
+ (x4 )05 4 5207 )x + =3 41y, (A13)
8 8x
|
The first term gives a divergence. By using -2D +7 (x = 1)D-5
D-4 8
®© 20~ 2
D=5 _ _ (4D —17)x* + (-2D + 13)x -3 _
[ dx(x+1) D4’ (Al4) + e (x = 1)P=5. (A20)
it is The first term gives
! + ! 11 2+0(D-4). (Al5) 1 1
———+-——log —4).
8(D—-4) 4 8 —+-4+0(D -4 A21
(D—-4) sp—2) Tzt oL (A21)
The second term behaves as 1/x>. One can therefore
evaluate its finite term by substituting D = 4. The resultis by using
L hoen st O(D - 4) (A16) ® 1
16 8 g : L dx(x - I)D_S = —m (A22)
By adding (A15) and (A16), we obtain
The second term can be calculated in D — 4, giving
1 5
Iy =———+—+0(D-4). Al7
: 8(D—4)+16+ ( ) (A17) 5 1
—a+§log2+0(D—4). (A23)
Next, we calculate (x—1)P~* part of the integral in (A11),
- Summation of Egs. (A19), (A21), and (A23) gives
L :/ dxfy(e D(x =12, (AI8)
! 1 3
_ Lh=c——+—-+0(D-4). (A24)
where the factor e~(P~47 will be put in later. Although we 8(D—4) 16

are going to remove O(1/(x — 1)) part from f5(x, 1) as was
done for f;, we have to avoid generating a singularity at
x =1 by this subtraction. For this purpose, we split the
integration region into 1 <x <2 and 2 <x < . The
former integral gives

1 1

For the latter integral, we split the C/(x — 1) part from
f2(x,1). The integrand is then written as

By inserting (A17) and (A24) in the integral (A7), we obtain

oI’ 1 4
€

a0~ Gy

1 4 1 1 in
_ - 0 o
N (471')2 <€ + 0 )> ﬂm (2 8 +

1 )
0(60)> _m—Ze(Il + Ize—l(D—4)7z)
T

O(e)>
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The integral 1°(g) of Eq. (Al) is hence

ﬁ C ;)‘1 +0(e%).  (A26)

All of the UV singular parts of the loop integrals
involving n#, which appear in Sec. IIl, can be evaluated
in the same manner. As another example, we calculate
the UV singular part of the space components of the
integral (26),

. d’k ! —K
Ia) = / (2m)P (1K0] + [R|) (k + ) [k]

I°(q) =

(A27)

Its UV-singular part should take the form a,¢’ with a g-
independent coefficient a;. In this case, we differentiate

I'(q) by ¢',
or - [ d°%k —2(k" + q')k/
og " / (27)" (K] + [RDIKI (K + )2 + 10)*

(A28)

Again, by introducing an IR regulator mass m and
factorization (A3), and taking the limit ¢ — 0, we obtain

(bTT) _ ! L
ZH[OO,OJ‘JJ‘](Q) div CAgzm {? at
1 (bTL) . 100 g, (297, 2 4o
ey = v e 3 31
! [00,01-11](61) div Cag (477)26[ 3 a ’<3 +3” !

. (bLL)
Moo g4 (4)

= Cyg
div (47;)

1 10 74
2 2
@)

—— O.i; 28t
3qq,3() +2

9ﬂ'q

or [ d’k —2kik

0_‘1"( )_/(2”>D(lk°+|l€]+m>3(|k°l—|l?|—m+i0)zll€]
1 [ dPk —2|k|8i
_D—l/(2ﬂ)D(|k0|+|1€|+m)3<|k0|—|1€|—m+i0)2'

(A29)

In the second line of Eq. (A29), we replaced k'k/ by
kP /(D
invariance.

The UV singular part of Eq. (A29) can be calculated in
the same manner as that of I°. The final result is

=W—1)2€(—%—§)qf+o< 0)

— 1) by using the (D — 1) dimensional rotational

I'(q) (A30)

APPENDIX B: TRANSVERSE AND
LONGITUDINAL CONTRIBUTIONS TO I, (q)
FOR GENERAL ¢*

The UV divergence of the gluon self-energy iIl,, (¢) for
general ¢* is separated into TT, TL, and LL parts as

i I T
S — igh,
|| 15qq]

. 8i - 8 16 - 4i 8 o
Jj (0 251] _ "251] _ i.Jj
7.~ +<15 15ﬂ)lql +< TRET )qq],

8 2 86
7°q’. == (q")*6" - 158

68 . .
2 u (9]
927 9z gl +45ﬂqq]

In contrast to the ¢ = (Q,0) case (49b), the TL contribution (B2) has both O(i) and O(1/x) terms.
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