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We study numerically the evolution of an expanding strongly self-coupled real scalar field. We use a
conformally invariant action that gives a traceless energy-momentum tensor and is better suited to model the
early time behavior of a system such as QCD, whose action is also conformally invariant. We consider
asymmetric initial conditions and observe that when the system is initialized with nonzero spatial
eccentricity, the eccentricity decreases and the elliptic flow coefficient increases. This behavior is
characteristic of a hydrodynamic system in which pressure gradients are converted into fluid velocities,
and therefore spatial anisotropy decreases while momentum anisotropy is generated. We look at a measure
of transverse pressure asymmetry that has been shown to behave similarly to the elliptic flow coefficient in
hydrodynamic systems and show that in our system their behavior is strikingly similar. We show that the
derivative of the transverse velocity is proportional to the gradient of the energy in Milne coordinates and
argue that this result means that transverse velocity initially develops in the same way that it does in
hydrodynamic systems. We conclude that some aspects of the early onset of hydrodynamic behavior that has
been observed in quark-gluon plasmas are seen in our numerical simulation of strongly coupled scalar fields.
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I. INTRODUCTION

The quark-gluon plasma (QGP) has been observed
experimentally to be well described by hydrodynamics
at very early times (1 fm=c ∼3 × 10−24 seconds) after
formation. The successes of hydrodynamic modeling in
describing heavy ion collision data motivates the develop-
ment of a qualitative and quantitative understanding of the
microscopic processes that connect an initial state of two
Lorentz-contracted atomic nuclei with a hydrodynamic
droplet of strongly coupled QGP in local thermodynamic
equilibrium. This has been a subject of intense study over
the past decade; for reviews, see Refs. [1–3]. In this work
we take steps towards a full field theoretic approach which
is extremely difficult in full quantum chromodynamics
(QCD). We follow the approach of Refs. [4–6] [Dusling-
Epelbaum-Gelis-Venugopalan (DEGV)] and use a simpler
theory that has some properties in common with QCD but
is nonetheless considerably more tractable. We consider a

real, self-interacting scalar field in four spacetime dimen-
sions. Like QCD, this theory is scale invariant and exhibits
secular divergences in its perturbative solutions. These
secular divergences are due to instabilities in the classical
solutions. This system of scalar fields is therefore in some
ways similar to the system of soft gauge fields produced in
a heavy ion collision and called glasma [7].
DEGV used what is called the classical statistical

approximation to resum the fastest growing divergences
in this theory at each order in perturbation theory and
showed that the scalar field system isotropizes when this
resummation is performed [6]. The only observables
considered were the energy and longitudinal/transverse
pressures of the system, and it was found that the difference
between the resummed longitudinal and transverse pres-
sures tends towards zero. In a previous paper [8] we used
the classical statistical approximation to study angular
momentum in a system of expanding scalar fields. Some
issues with the classical statistical approximation are
discussed in [9,10]. A completely different technique to
resum the dominant contributions based on a two-particle
irreducible effective action approach can be found in [11].
In this paper we study the extent to which an expanding

system of scalar fields behaves hydrodynamically, and how
hydrodynamic behavior develops with time. We start with a
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somewhat different theory than DEGV, one that we claim
more closely models gluon behavior without losing the
inherent simplicity of a real scalar field. Specifically, we
consider a real scalar that is nonminimally coupled to the
background geometry so as to produce a conformally
invariant action, i.e., one that is invariant up to a total
derivative under local scale transformations as well as global
ones. This action produces a classical energy momentum
tensor (EMT) that is manifestly symmetric, conserved, and
traceless on-shell without altering the equations of motion
on a Minkowski background. The theory therefore shares
with QCD its conformal symmetry and the resulting trace-
lessness of the EMT. In the rest of this paper we refer to the
EMT obtained from the nonminimally coupled conformally
invariant action as the conformal EMT. The conformal and
canonical EMTs are almost indistinguishable at late times1

but at early times some components of the canonical EMT
are characterized by rapid fluctuations that are absent in the
conformal EMT.
We use the conformal EMT to study some observables

that are related to the transverse asymmetry of the system of
fields. Transverse asymmetry has been studied for many
years in the context of quark-gluon plasmas. In a relativistic
noncentral collision there is an initial spatial asymmetry
that rapidly decreases with time, which means anisotropic
transverse momentum can develop only at very early times.
Since anisotropic flow is sensitive to the system’s proper-
ties very early in its evolution, it can provide direct
information about the early stages of the system. We find
that if our system of scalar fields is initialized with spatial
asymmetry, the asymmetry is transmitted into the momen-
tum field. This behavior mimics what is seen in heavy ion
collisions and is commonly considered an indication of the
onset of some kind of hydrodynamic behavior. We also
look at a measure of transverse pressure asymmetry that
has been shown to behave similarly to the elliptic flow
coefficient in quark-gluon plasmas. We show that in our
system the behavior of these two quantities is qualitatively
similar. Finally we investigate a proposal [12] that, under
very general conditions, the derivative of the transverse
velocity will be proportional to the gradient of the energy,
and discuss the significance of the result.
This paper is organized as follows. In Sec. II we discuss

the classical theory and the definition of the EMT. In Sec. III
we describe the resummation method and give some details
of the numerical procedure. We explain how the discretiza-
tion of the equations is done, and our choice of boundary
conditions and initial conditions. In Sec. IV we discuss how
the energy density and the transverse and longitudinal
pressures are obtained from the EMT. We derive some
equations that characterize the hydrodynamic behavior of
the system, and we define functions that measure the

eccentricity, elliptic flow, and transverse pressure asymme-
try of the system. In Sec. V we present our results and
Sec. VI concludes with a summary and some observations.
Some useful equations are collected in the Appendix.
Throughout this paper the spacetime is taken to be

Riemannian with signature ðþ;−;−;−Þ. In addition to
Minkowski coordinates ðt; z; x; yÞ we will also use Milne
coordinates ðτ; η; x; yÞ, where τ is the Bjorken time and
η is spacetime rapidity. We choose units such that
c ¼ kB ¼ ℏ ¼ 1, where c is the speed of light in vacuum,
kB is the Boltzmann constant, and ℏ is the Planck constant
divided by 2π.

II. THE CLASSICAL THEORY

A. Canonical EMT

The Lagrangian density used by DEGV is that of a
massless real scalar field2:

L ¼ 1

2
∇μφ∇μφ − V with V ¼ g2

4!
φ4: ð1Þ

The equation of motion is

∇μ∇μφþ g2

3!
φ3 ¼ 0 → φ□φþ 4V ¼ 0: ð2Þ

The canonical EMT is

Tμν
can ¼ δL

δð∇μφÞ
∇νφ − gμνL

¼ ∇μϕ∇νϕ − gμν
�
1

2
∇αϕ∇αϕ −

g2

4!
ϕ4

�
: ð3Þ

Its divergence is

∇μT
μν
can¼ð□φÞð∇νφÞþð∇μÞð∇μ∇νφÞ−gμνð∇αφÞð∇μ∇αφÞ

þgμν
g2

3!
φ3∇μφ

¼ð□φÞð∇νφÞþg2

3!
φ3∇νφ¼0 ð4Þ

where we used the equation of motion in the last line. The
conservation law (4) implies the conservation on shell of
the momentum four-vector defined by

Pμ ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
Tμ0 ð5Þ

1Time is measured in units of the transverse coordinate lattice
spacing.

2We write everything covariantly since this will be useful when
we switch to Milne coordinates, which are related to Minkowski
coordinates by a nonlinear coordinate transformation.
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provided the metric does not explicitly depend on
the spacetime coordinates3 and the fields vanish on the
boundaries.
The trace of the canonical EMT is

Tμ
canμ ¼ −∇μφ∇μφþ 4V

¼ −∇μφ∇μφ − φ□φ ¼ −∇μðφ∇μφÞ ð6Þ

using the equation of motion in the last step. The canonical
EMT is therefore not traceless. The QCD canonical EMT is
also not traceless, and additionally it is not symmetric or
gauge invariant. These problems can be remedied using
several different methods (see [13] for a detailed discus-
sion). In this work we define the EMT from a conformally
invariant scalar field action. It is manifestly traceless due to
the conformal invariance of the action. It is also conserved
and symmetric.

B. Covariant EMT

In this section, we derive the conformal EMT for the real
massless scalar field that, like the EMT used for QCD, is
traceless. In Sec. IVAwe explain further why the definition
given in this section is a better choice for our purposes.
The real scalar field Lagrangian (1) is invariant under

constant scale transformations in which the spacetime
metric and scalar field transform as

gμν → Ωgμν and φ → Ω−1
2φ ð7Þ

with constant Ω. It is, however, not invariant under local
scale transformations (i.e., conformal transformations) for
which Ω ¼ ΩðxÞ is an arbitrary function of the spacetime
coordinates that goes to unity on the boundaries. The
Lagrangian density of QCD is conformally invariant and to
incorporate as many of the fundamental properties of QCD
into our theory as possible, we start with a conformally
invariant theory. The Lagrangian density is [14]

Lξ ¼
1

2

ffiffiffiffiffiffi
−g

p ðgμν∇μ∇νφ − ξRφ2 − VÞ ð8Þ

where R is the scalar curvature of the spacetime. The choice
ξ ¼ 0 gives the original Lagrangian (1) and is called the
minimally coupled theory. In four dimensions with ξ ¼ 1=6
the Lagrange density changes by a total derivative under the
transformation (7) with nonconstant ΩðxÞ.
The equation of motion for the scalar field is

�
□þ R

6
þ g2

3!
φ2

�
φ ¼ 0: ð9Þ

The metric is treated as a fixed background field and is
therefore not dynamical. When evaluated on a Minkowski
background (zero curvature), Eq. (9) reduces to the
equation of motion (1) of the original theory.
The fact that the action is invariant under a general

coordinate transformation xμ → x0μ − ϵμðxÞ leads to the
definition of a conserved, symmetric EMT [14]

Tμν ¼ −
2ffiffiffiffiffiffi−gp δL

δgμν
: ð10Þ

One advantage of the definition in (10) is that the tensor Tμν

is always symmetric and preserves the symmetries of the
Lagrangian density. This is not necessarily true for the
definition in Eq. (3). The resulting EMT for the Lagrange
density in (8) is

Tμν ¼ ∇μϕ∇νϕ− gμν
�
1

2
∇αϕ∇αϕ−

g2

4!
ϕ4

�

þ 1

6
½gμν□−∇μ∇ν�φ2 −

1

6

�
Rμν −

1

2
gμνR

�
φ2: ð11Þ

It is straightforward to verify that Tμν is traceless and
divergenceless in four dimensions. In flat spacetime where
R ¼ 0 we can write this result in the form

Tμν ¼ Tμν
can þ Tμν

ex

Tμν
ex ¼ 1

6
½gμν□ −∇μ∇ν�φ2 ð12Þ

where Tμν
can is the canonical EMT (3).

C. Milne coordinates

Milne coordinates are defined as

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and η ¼ 1

2
ln

�
tþ z
t − z

�
ð13Þ

which gives t ¼ τ coshðηÞ and z ¼ τ sinhðηÞ. The metric is

g ¼ ð1;−τ2;−1;−1Þdiag: ð14Þ

The coordinate η is called the rapidity and depends only on
the slope vz ¼ z

t. A change of η corresponds to a boost by
velocity vz. It is therefore also referred to as a boost
coordinate. Surfaces of constant η represent timelike
surfaces moving away from the origin at constant velocity
and a box with boundaries at fixed η expands in the z
direction with time. In this sense Milne coordinates mimic
the kinematics of a high energy collision. In our notation a

“dot” indicates a derivative with respect to τ, and ∇⃗⊥ is the
transverse gradient operator. The Riemann tensor and the
Ricci scalar are both zero and therefore the equation of3This condition is not satisfied in Milne coordinates.
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motion (9) is the same as the one obtained from the
minimally coupled theory (2). In Milne coordinates it takes
the form

ϕ̈ðτ; η; x⃗⊥Þ þ
1

τ
ϕ̇ −

1

τ2
∂
2
ηϕ −∇2⊥ϕþ g2

6
ϕ3 ¼ 0: ð15Þ

In the Appendix we write all components of the two
EMTs (3) and (11) in Milne coordinates.

III. RESUMMATION OF QUANTUM
FLUCTUATIONS

Observables in the scalar theory exhibit secular diver-
gences at next-to-leading order if they are calculated in a
loop expansion. These divergences originate from insta-
bilities of the classical solutions. The problem can be
cured using the classical statistical approximation, which
amounts to averaging over a Gaussian ensemble of initial
conditions [4,6]. This procedure implements a resumma-
tion scheme that collects the leading secular terms at each
order of an expansion in the coupling constant.4 We briefly
describe the structure of the calculation. Further details
can be found in [6,8].

A. Fluctuations

We define an ensemble of initial fields at some small but
nonzero5 τ ¼ τ0 as the sum of a background field con-
tribution, φðτ0; x⃗⊥Þ, and a fluctuation, αðγÞðτ0; η; x⃗⊥Þ

ϕðγÞðτ0; η; x⃗⊥Þ ¼ φðτ0; x⃗⊥Þ þ αðγÞðτ0; η; x⃗⊥Þ: ð16Þ

The field ϕðγÞðτ; η; x⃗⊥Þ at finite proper time is obtained by
solving Eq. (15) with the initial condition (16). We then
obtain resummed values of observable quantities by aver-
aging over the ensemble:

hOðτ; η; x⊥Þi ¼
1

Nγ

XNγ

γ¼1

O½ϕðγÞðτ; η; x⊥Þ�:

We explain below how the two terms in (16) are calculated
and the meaning of the index γ.
The field φðτ0; x⃗⊥Þ is constructed from solutions of the

classical equation of motion (15) at τ0. It is assumed
independent of the spatial rapidity η. The motivation behind

this assumption is the physical picture of a heavy ion
collision in which the nuclei pass through each other without
significant slowing. The resulting velocity distribution has a
property called Bjorken boost invariance—which is that the
longitudinal velocity vz of frames locally comoving with the
fluid is related to their spacetime position by vz ¼ z=t. A
fluid with this velocity distribution will look the same in all
longitudinally comoving fluid elements. We also assume
that at very early times the dynamics of the system is
dominated by expansion and we therefore drop the inter-
action term in the equation of motion for the purposes of
determining φðτ0; x⃗⊥Þ. The resulting equation is linear in φ
and separating variables we have that at fixed τ0 the
background field can be written as a sum over plane wave
mode functions. The specific combinations of plane waves
that we use are discussed in Sec. III C.
The fluctuation α that is added to the background field in

Eq. (16) carries an index γ that indicates a Gaussian
ensemble of Nγ initial fluctuations defined as

αðγÞðτ0; η; x⃗⊥Þ ¼
Z

dK½cðγÞK aK þ cðγÞ�K a�K� ð17Þ

where the index K labels the momentum variables ðν; k⃗⊥Þ
that are conjugate to the coordinate-space variables ðη; x⃗⊥Þ,
respectively. The notation cðγÞK denotes an element in a
Gaussian distributed ensemble of Nγ random numbers,
with variance

hc�KcLi ≔
XNγ

γ¼1

cðγÞ�K cðγÞL ¼ 1

2
δKL: ð18Þ

The momentum space integration measure is dK ¼
dνdk⃗⊥=ð2πÞ3 and the delta function in Eq. (18) is defined
so that

R
dKδKL ¼ 1. The initial mode functions aK ≡

aνk⃗⊥ðτ0; η; x⃗⊥Þ are obtained from the linearized equations of
motion

äK þ 1

τ
ȧK −

1

τ2
∂
2
ηaK −Δ⊥aK þ g2

2
φ2ðτ0; x⃗⊥ÞaK ¼ 0 ð19Þ

and normalized so that
R
dKðaK; aLÞ ¼ 1 with

ðaK; aLÞ ¼ iτ
Z

dη
Z

d2x⃗⊥ða�K∂τaL − ð∂τa�KÞaLÞ: ð20Þ

Separating variables and performing the normalization one
finds6

4The resulting EMT has an ultraviolet divergence correspond-
ing to a vacuum contribution but this can be removed by repeating
the calculation with the background field set to zero and
subtracting the results. This vacuum subtraction has been done
for all the calculations presented in this paper.

5The initial time τ0 must be small in order to describe a system
expanding from essentially zero volume (z ¼ 0 at t ¼ 0) but it
cannot be exactly zero due to the coordinate singularity at τ ¼ 0.
One can check that the value chosen for this small initial time
does not change the results at finite times.

6The time dependent part of the equation is second order and
has two independent solutions. We use only the one that has
positive frequency behavior at large times which is called the
second Hankel function.
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aK ≡ aνk⃗⊥ðτ0; η; x⃗⊥Þ ¼
1

2

ffiffiffi
π

p
eπν=2eiνηχk⃗⊥ðx⃗⊥ÞHiνðλk⃗⊥τ0Þ

ð21Þ

where the functions χ k⃗⊥ðx⃗⊥Þ are solutions of the eigenvalue
equation

�
−Δ⊥ þ g2

2
φ2ðτ0; x⃗⊥Þ

�
χk⃗⊥ðx⃗⊥Þ ¼ λ2

k⃗⊥
χ k⃗⊥ðx⃗⊥Þ ð22Þ

and the notation Hiν indicates a Hankel function of the
second kind (we omit the superscript (2) to simplify the
notation). When τ → 0 the Hankel function oscillates like
e�iτν and the derivative diverges. As explained at the
beginning of this section, we start the evolution at a small
positive time τ0 ¼ 10−2. To calculate the Hankel function at
this initial time we use an asymptotic series to find it at the
smallest time for which the series converges to the desired
accuracy (numerically we truncate the series when succes-
sive terms are less than 10−9), and then use adaptive fifth
order Runge-Kutta to evolve it to the initial time τ0.

B. Discretization

We discretize in both directions in the transverse plane
with L grid points and lattice spacing set to one, which
means we define all dimensionful quantities in terms of the
transverse lattice grid spacing. This is made possible by the
scale invariance of the theory, i.e., the only physical scale is
set by the initial conditions. The rapidity variable η is
discretized with N grid points and lattice spacing h. We
consider a unit slice of rapidity with η∈ ð−1=2; 1=2Þ and
h ¼ 1=N. The discretized version of Eq. (22) is

Dij;klχkl ¼ λ2χij ð23Þ

with

Dij;kl ¼ ð4þ V 00
ijÞδikδjl − ðδiþ1 k þ δi−1 kÞδjl

− δikðδjþ1 l þ δj−1 lÞ: ð24Þ

SinceD is a rank 4 tensor with L4 components, we obtain L
eigenvalues λe with e∈ ð1; L2Þ and L2 eigenfunctions χeij
which are normalized

P
ij χ

�e
ij χ

ē
ij ¼ L2δeē. To discretize the

longitudinal variables we note that the constraint ∂2ηeiνη ¼
−ν2eiνη gives

εv ≔ ν ¼ 2

h

���� sin
�
πv
N

����� ð25Þ

and we replace ν → εv in every factor eπν=2. For the
complex exponential we use eiνη → e

2πivn
N and the integral

over ν becomes a sum over v using
R
dν=ð2πÞ →

1=ðNhÞPN
v .

Combining these results we find the discretized versions
of Eqs. (16), (18), and (21):

αnijðτÞ ¼
1

NL2h

XN
v¼1

XL2

p¼1

½cvpavpnijðτÞ þ c:c:�

avpnijðτÞ ¼
1

2

ffiffiffi
π

p
e
2πivn
N χpije

πν=2Hiνðλk⃗⊥τÞ

hcvec�uẽi ¼
1

2
NL2hδvuδeẽ: ð26Þ

To verify that the discretization is done correctly we have
checked the discretized version of the normalization con-
dition (20).
We use periodic boundary conditions which means that

the indices ði; jÞ that correspond to the transverse spatial
coordinates are defined modulo L, and the index n for the
rapidity is modulo N. The boundary conditions satisfy the
self-adjointness condition

∇FϕðxÞ≡ ϕðiþ 1Þ − ϕðiÞ
∇BϕðxÞ≡ ϕðiÞ − ϕði − 1ÞX

i

fðiÞð∇FgðiÞÞ ¼ −
X
i

ð∇BfðiÞÞgðiÞ:

We use forward derivatives, defined as ∂xfðxÞ →
fðiþ 1Þ − fðiÞ, so that the integral of a total derivative
term like the last term in Eq. (6) will be zero.

C. Initialization

As explained in Sec. III A, the initial background field
φðτ0; x⃗⊥Þ can be written as a sum of plane wave mode
functions of the form cosðk⃗⊥ · x⃗⊥Þ. In this section we
discuss how to choose these functions and construct the
sum. Ideally we would like to consider initializations that
correspond to collisions of sources with a specified radius
colliding with a specified impact parameter, and we could
do this by constructing a wave packet of transverse plane
waves that corresponds to a collision with some specific
geometry.7 This calculation is considerably more difficult
than what has been done so far with the method of DEGV.
For the purposes of studying the isotropization of the
longitudinal and transverse pressures, it is sufficient to
consider a classical background field that consists of only
one mode, which corresponds to sources with constant

7Since the sources that describe the colliding projectiles have
support only on the light cone (15), they do not directly drive the
field evolution, but instead provide information on how to
construct this wave-packet. In a color glass condensate (CGC)
description of a heavy ion collision, the background field would
contain a distribution of momentum modes up to the saturation
momentum.
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surface charge densities with infinite spatial extent.8 In this
paper we restrict ourselves to the consideration of several
different initializations involving asymmetric combinations
of two transverse plane waves.
The initial condition that we use for the background

field is

φðτ0; x⃗⊥Þ ¼ φ0ðcosðkxxþ kyyÞ þ A cosðkyyÞÞ ð27Þ

and the time derivative of the background field at τ ¼ τ0 is
set to zero (numerically 10−3). The momenta kx and ky are
chosen to take a range of values below the largest lattice
eigenvalue, which is

ffiffiffi
8

p
. The reader will note that our initial

classical field is not always periodic and therefore does not
respect our boundary conditions. The reason is that we want
to avoid problems that may arise when resonant modes are
considered, which in the present model would correspond to
the normal modes of the finite spatial lattice. For a large
enough lattice all modes are effectively periodic and it is
therefore expected that the precise form of the initial
boundary conditions is not important.

IV. PHYSICAL OBSERVABLES

A. Canonical and conformal EMTs in Minkowski
and Milne coordinates

The EMT is conserved

∇μTμν ¼ ∂μTμν þ Γμ
μσTσν þ Γν

μσTμσ ¼ 0 ð28Þ

which means that there is a momentum four-vector

Pν ¼
Z

dσμTμν; ð29Þ

where dσμ is an element of a spacelike surface σ, whose
components are conserved by the time evolution provided
that the metric contains no explicit dependence on the
coordinates xμ and the fields vanish on the boundaries of σ.
This can be seen by noting that in Minkowski coordinates
the integral of the ν ¼ 0 component of the conservation law
(28) takes the formZ

d3x
∂

∂t
T00 ¼ −

Z
d3xð∂xTx0 þ ∂yTy0 þ ∂zTz0Þ: ð30Þ

The right side is the integral of a total derivative so
assuming the fields vanish at spatial infinity one finds
that the energy defined as E ¼ R

d3xT00 is conserved
(dE=dt ¼ 0).
In Milne coordinates the situation is more complicated

due to the τ dependence of the metric so that
R
d3x

ffiffiffiffiffiffi−gp
T00

integrated along a surface of constant τ is not, in general,
conserved, even for an isolated system. In Milne coordi-
nates the only nonzero components of the connection are
Γ0
ηη ¼ τ and Γη

0η ¼ Γη
η0 ¼ 1=τ. The ν ¼ 0 component of the

divergence equation (28) gives

∂T00

∂τ
¼ −∂ηTη0 −

1

τ
T00 − τTηη − ∂xTx0 − ∂yTy0: ð31Þ

We define the energy density and longitudinal and trans-
verse pressures in terms of the EMT in Milne coordinates as

E ¼ hT00i
pL ¼ τ2hTηηi

pT ¼ 1

2
hTxx þ Tyyi ð32Þ

where the angle brackets indicate an average over rapidity
and the transverse coordinates. Since the average of a total
derivative vanishes, Eq. (31) gives

∂E
∂τ

¼ −
1

τ
ðE þ pLÞ: ð33Þ

We note that when the EMT is written in Milne coordinates,
T00 does not correspond to the physical energy density as
measured in the lab frame except at zero rapidity. In our
calculation we include only a narrow slice of rapidity
centered around midrapidity (η ¼ 0). The motivation is that
we are trying to model the gluon fields produced in a
relativistic collision of heavy ions for which the system
of fields is largely rapidity independent at midrapidity. The
definitions in (32) also involve an average over this thin
slice of rapidity. We therefore take the energy density and
pressures as defined in (32) as the physically relevant ones.
Now we address the fact that the canonical and conformal

EMTs are not the same even when they are calculated in the
same coordinate system. Equation (A4) shows that the
difference between the two EMTs, for all components, is a
sum of terms that are either a total derivative in transverse
coordinates, a total derivative in rapidity, or contain the
product of the field and its time derivative (below we call the
product ϕϕ̇ a decoherence factor). As explained previously,
the total derivative terms do not affect the bulk properties of
the medium because they give zero when they are averaged.
The important point to understand when comparing the two
EMTs is that the decoherence factor goes rapidly to zero at
very early times. At τ ¼ τ0 we start with a fairly narrow
Gaussian distribution of initial conditions centered on the
chosen initial values φðτ0; x⃗⊥Þ and φ̇ðτ0; x⃗⊥Þ. Each initial
condition evolves independently using the equation of
motion so that after some characteristic decoherence time
the ensemble average of the product ϕϕ̇ goes to zero. This
means that the integrated EMT in (3) is the same as the
conformal form (10) except at very early times. If we only

8In the CGC approach this is called the McLerran-
Venugopalan model.
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wanted to study late time properties of the system, like
transverse-longitudinal pressure isotropization, both EMTs
would be equally good. Since we are particularly interested
in early time behavior however, it is important to know
which formalism is better for our purposes.
To understand this we consider the trace of the two

EMTs. The trace of the conformal EMT is zero by
construction. The trace of the canonical EMT is

Tμ
μ ¼−∇μðϕ∂μϕÞ ¼−

d
dτ

ðφφ̇Þ−φφ̇

τ
þ ∇⃗⊥ · ðφ∇⃗⊥φÞ: ð34Þ

This expression has terms that are proportional to the
decoherence factor and its derivative, in addition to total
derivatives, which means that the trace of the averaged
canonical EMT is not zero at early times. We are interested
in assessing the extent to which our system of fields behaves
hydrodynamically, and the traditional formulation of hydro-
dynamics based on the assumption of local equilibrium
assumes a traceless EMT (see Sec. IV C). This suggests that
we want to work with the conformal definition of the EMT.
Furthermore, in Sec. V we present some results that show
that at early times the time dependence of the canonical
EMT is characterized by rapid oscillations created by
decoherence terms. These oscillations disappear at larger
times but make it impossible to study early time dynamics.
They are not present when the conformal EMT is used.
Finally we make the formal argument that we should

work with a conformally invariant theory since we hope to
use the scalar system to understand some properties of
glasma.

B. Spatial and momentum asymmetries

A correlation between initial spatial transverse asym-
metry and azimuthal asymmetry in the momentum field is
generally considered characteristic of the onset of hydro-
dynamic behavior. Physically the idea is that if pressure
gradients are converted into fluid velocities, then momen-
tum anisotropy will grow as the spatial anisotropy
decreases. Spatial deviations from azimuthal symmetry
can be characterized with the quantity

ε ¼ −

R
d2x⊥

�
x2−y2ffiffiffiffiffiffiffiffiffi
x2þy2

p
	
T00

R
d2x⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
T00

ð35Þ

where we have used x⃗⊥ ¼ ðx; yÞ. We note that several
definitions of the spatial eccentricity are in common use;
see the reviews [15,16]. Our definition is similar to that of
Refs. [17,18] but slightly modified to make comparison
with the elliptic flow coefficient more direct [see Eq. (36)].
In a system of fields, momentum anisotropy can be

described by an elliptic flow coefficient defined as [19]

v2 ¼
R
d2x⊥

�
ðpxÞ2−ðpyÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpxÞ2þðpyÞ2

p
	

R
d2x⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpxÞ2 þ ðpyÞ2

p ð36Þ

where px ¼ T0x and py ¼ T0y. A different quantity that is
commonly calculated in heavy ion physics is the transverse
pressure anisotropy defined

Axy ¼
R
d2x⃗⊥ðTxx − TyyÞR
d2x⃗⊥ðTyy þ TxxÞ : ð37Þ

Hydrodynamic calculations show that Axy is closely related
to the elliptic flow coefficient of produced particles [17]
and the transverse pressure anisotropy has been used
extensively in the literature to characterize momentum
anisotropy [20,21].
We caution the reader that the definitions of v2 and Axy

that we use are not directly related to what is normally
measured in heavy ion collisions, where one looks at the
momentum distribution of produced particles. We consider
a system of fields only. In a physical theory (if we had done
a QCD calculation instead of using ϕ4 theory) we expect
the fields to convert into particles (hadrons) as the system
expands and cools. However, the asymmetry of the initial
system of fields could be significantly washed out by the
thermal motion of the final state particles. For this reason
the field definitions of v2 and Axy that we use are certainly
not equivalent to the experimentally relevant definitions
that measure the asymmetry in the momenta of produced
particles. Our goal is only to investigate if a similar
correlation between the two quantities is found for a system
of fields.

C. Universal flow

The authors of Ref. [12] derived an equation that
describes the way transverse flow develops for any system
for which the longitudinal flow is boost invariant, the EMT
is traceless, and the anisotropy of the spatial components of
the EMT depends more strongly on τ than on the transverse
coordinates at early times. They showed that the equation is
well satisfied for three different models that have very
different asymmetries between the transverse and longi-
tudinal pressures. In our calculation the condition of boost
invariance is satisfied by construction, the EMT is always
traceless using the conformal definition, and the third
condition of [12] is well satisfied for the initializations
we use.
We define the x component of a velocity and an effective

acceleration
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Vx ¼
T0x

T00

α ¼ ∂Vx

∂τ
¼ ∂

∂τ

�
T0x

T00

�
¼ ∂τT0x

T00
−
T0x

T00

∂τT00

T00
: ð38Þ

We can rewrite this in a more convenient form as follows.
The zeroth component of the equation ∇μTμν in Milne
coordinates is given in Eq. (31). The x component is

∂T0x

∂τ
¼ −

1

τ
T0x − ∂xTxx − ∂yTyx ð39Þ

where we have dropped the derivative with respect to η
since we are interested in a system that is at least
approximately boost invariant. We will assume that Tyx

is small and set it to zero. We rewrite α using Eqs. (31)
and (39) to obtain

T00α ¼ ∂τT0x −
T0x

T00
∂τT00

¼ −
�
1

τ
T0x þ ∂xTxx

�

þ T0x

T00

�
1

τ
T00 þ τTηη þ ∂xTx0 þ ∂yTy0

�
: ð40Þ

We assume that at early times the field ϕ has a power
series expansion in τ and define

ϕ ¼
X
i¼0

ϕ2iτ
2i ð41Þ

where only even powers of τ are included because the
equation of motion does not allow solutions with odd
powers with our initial conditions. From the explicit
expressions for the components of the EMT (A3), (A4)
we see that the diagonal components are series with only
even powers of τ and both Tx0 and Ty0 have only odd
powers. We define T00 ¼ T00

0 þ T00
2 τ2 þ � � � where the

subscript indicates the power of τ associated with each
coefficient and similarly for each component of the EMT.
We write α ¼ α0 þ � � � where α0 ¼ T0x

1 =T00
0 and keep

terms in (40) to order τ0 which gives

T0x
1 ¼ −∂xTxx

0 − T0x
1 þ T0x

1

T00
0

ðT00
0 þ Tηη

−2Þ: ð42Þ

Rearranging we have

T0x
1 ðT00

0 − Tηη
−2Þ ¼ −T00

0 ∂xTxx
0 : ð43Þ

The condition that the trace is zero, to zeroth order in τ, is
T00
0 − Tηη

−2 − Txx − Tyy ¼ 0. Equation (43) therefore takes
the form

T0x
1 ¼ −

T00
0

Txx
0 þ Tyy

0

∂xTxx
0 : ð44Þ

We assume that at early times Txx ≈ Tyy and that T00=Txx is
approximately independent of x⃗⊥. Using these assumptions
and multiplying by τ, Eq. (44) gives

T0x ¼ −
τ

2
∂xT00 þOðτ2Þ ð45Þ

or equivalently

∂vx
∂τ

¼ −
1

2

∂xT00

T00
þOðτ2Þ: ð46Þ

This result tells us that at early times the impulse to the
transverse collective flow is connected to the gradient of the
energy density. It means that different systems with the
same energy density but very different pressures, ranging
from hydrodynamic pT ¼ pL ¼ E=3 to systems with highly
asymmetric initial pressures like ours, will develop trans-
verse flow in the same way. In Sec. V we show that (45) is
well satisfied in our calculation, at early times.
For comparison we discuss how (45) can be derived for a

system governed by hydrodynamics. The hydrodynamic
definition of the EMT in Minkowski coordinates is

Tμν
hydro ¼ ðϵþ pÞuμuν − pgμν ð47Þ

where ϵ is the energy density, p is the thermodynamic
pressure, and uμ ¼ γð1; v⃗Þ is the fluid velocity. The trace-
lessness of the EMT gives the equation of state p ¼ ϵ=3. If
we assume that each velocity component can be written as a
power series in t

vi ¼ vi0 þ vi1tþ vi2t
2 þ… ð48Þ

then at leading order we find

T0x ¼ −t
∂Txx

∂x
þOðt2Þ ð49Þ

and since Txx ¼ p ¼ ϵ=3 we have

T0x ¼ −
t
3

∂T00

∂x
þOðt2Þ: ð50Þ

The same calculation in two spatial dimensions gives

Tx0 ¼ −
t
2

∂T00

∂x
þOðt2Þ ð51Þ

which agrees with (45) at midrapidity.
The derivation of the flow equation in the first part of

this section, and the two-dimensional hydrodynamic cal-
culation presented above appear to be very different from
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each other. One starts from an EMT derived from a field
theory that describes the system on a microscopic level,
and the other from a hydrodynamic model for the energy-
momentum tensor. The assumptions used to derive
Eq. (45) (tracelessness of the EMT, boost invariance,
and weak transverse isotropy) are not obviously related
to the existence of local thermal equilibrium. The fact that
the flow equation obtained from our EMT has the same
structure as a hydrodynamic flow equation is interesting
and might be connected to the fact that other aspects of the
behavior of the scalar system of fields that we study are
hydrodynamiclike.

V. RESULTS

Our goal is to study how the system isotropizes. We are
particularly interested in understanding the extent to which
the system behaves hydrodynamically, and how hydrody-
namic behavior develops with time. Unless stated otherwise,
all calculations are done with ðN;L;NγÞ ¼ ð121; 41; 256Þ.
We have checked that results are not sensitive to these
numbers. The initialization is specified by giving the values
of ðφ0; A; kx; kyÞ that are used in Eq. (27). The coupling is
g ¼ 4 in all calculations. Because of computational con-
straints, we have not explored the dependence of our results
on the value of g, but we mention that in [6] it was shown
that the isotropization of longitudinal and transverse pres-
sures is qualitatively similar for a wide range of couplings.

A. Trace of the canonical EMT and the energy
conservation equation

The trace of the averaged canonical EMT is not zero, as
shown in Eq. (6), but it goes rapidly to very small values as
the system evolves because the decoherence factor goes to
zero. In Fig. 1 we show the energy and the sum of the
pressures for the canonical EMT. The blue curve, which
shows the sum of the pressures, oscillates around the red

curve, which shows the energy, until τ ≈ 20. At larger times
the trace (the difference between the blue and red lines) is
numerically very close to zero. For the conformal EMT the
sum of the pressures and the energy are right on top of the
canonical energy curve. The oscillations in the pressures
from the canonical EMT are typical of the early time
behavior and caused by the decoherence terms.
The energy conservation condition in Milne coordinates

is given in Eq. (31). For a boost invariant system, and
dropping the derivatives with respect to the transverse
coordinates which average to zero using periodic boundary
conditions, this equation has the form

∂E
∂τ

¼ −
E þ pL

τ
: ð52Þ

Equation (52) shows that the time evolution of the energy
density is related to the longitudinal pressure. Physically it
means that the energy decreases due to longitudinal
expansion. The equation comes from the conservation of
energy and momentum and is not related to hydrodynam-
ics. We have checked that it is satisfied numerically to very
high accuracy in our calculation (see Fig. 2).

B. Transverse-Longitudinal isotropization

A simple way to study how the system comes to
equilibrium is to see how closely it satisfies the isotropic
equation of state: pL ¼ pT ¼ E=3. This was studied by
DEGV who showed that ðpT − pLÞ=E decreases as a
function of time. The result is important because it proves
that the resummation method developed by DEGV is
successful in capturing the dominant physics of the expand-
ing plasma.
Figure 3 shows the transverse and longitudinal pressures

normalized by the energy from the canonical EMT for two
initializations that have the same initial field amplitude. The
figure shows that the isotropization of the transverse and
longitudinal pressures is not significantly affected when the
second cosine is included in the initialization.
In Fig. 4 we show the transverse and longitudinal

pressures normalized by the energy for the canonical

FIG. 1. The energy (red) and the sum pL þ 2pT (blue) for the
canonical EMT. For the conformal EMT the sum of the pressures
and the energy are right on top of the canonical energy curve. The
calculation is done with ðφ0; AÞ ¼ ð15; 0Þ and kx ¼ ky ¼ 0.41.

FIG. 2. The left and right sides of Eq. (52).
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and conformal EMTs. The blue curves show the oscilla-
tions that are characteristic of the canonical EMT, which die
off at larger times when the decoherence terms ∼ϕϕ̇ go to
zero. The red curves are the results from the conformal
EMT and are much smoother at early times. At τ ≳ 40 the
results from the two EMTs are indistinguishable.
We comment that if the curves in Figs. 3 and 4 were

extended to longer times the transverse and longitudinal
pressures would start to move away from each other. This
happens because we work numerically with a box of finite
size in coordinate space. The calculation breaks down at
large times because there will be highly occupied momen-
tum modes that are not supported. It has been shown that
the transverse and longitudinal pressures become equal to
each other at τ ≈ 250 if the number of grid points in the
rapidity dimension is greater than about 160 [6].

C. Azimuthal asymmetry

When we use an initialization with A ≠ 0 the initial
fields are azimuthally asymmetric. We want to study how
the azimuthal asymmetry of the energy density and
momentum distribution develop in time, and how they
are related to each other. Asymmetries in the transverse
plane are orders of magnitude smaller than the transverse-
longitudinal asymmetry discussed in the previous sub-
section, and they die out at very short times. As explained
in Sec. I, the fact that these asymmetries disappear at very
early times is part of the reason they are interesting. The
maximum time that can be considered is limited by the
value of N, as explained in Sec. V B. In all other
calculations we have used N ¼ 121 which allows us to
consider times as large as 140 (lattice units). In the study of
azimuthal symmetries, large times are not interesting and
we therefore reduce the size of the lattice. In this section
we use ðN;L;NγÞ ¼ ð81; 31; 256Þ.
In Fig. 5 we show the eccentricity (left panel) and elliptic

flow coefficient (right panel) as functions of τ for initializa-
tions ðφ0; A; kxÞ ¼ ð15; 1; 1.47Þ and ky ∈ ð1.12; 1.30; 1.47Þ.

FIG. 4. The normalized transverse and longitudinal pressures
for the canonical EMT (blue) and the conformal EMT (red). The
initialization is ðφ0; AÞ ¼ ð15; 0Þ and kx ¼ ky ¼ 0.41. The upper
and lower lines are respectively pT=E and pL=E.

FIG. 5. The left panel shows the eccentricity as a function of τ and the right panel is the elliptic flow coefficient v2. The initialization is
ðφ0; A; kxÞ ¼ ð15; 1; 1.47Þ and from bottom to top ky ¼ ð1.12 ðredÞ; 1.30 ðgreenÞ; 1.47 ðblueÞÞ.

FIG. 3. The transverse and longitudinal pressures normalized
by the energy from the canonical EMT for the initializations
ðφ0; AÞ ¼ ð15; 0Þ and ðφ0; AÞ ¼ ð15= ffiffiffi

2
p

; 1Þ. Both calculations
are done with kx ¼ ky ¼ 0.41. In both cases the upper curves are
pT=E and the lower lines are pL=E.
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One sees that the initial spatial eccentricity decreases with
time, and that the size of the initial eccentricity is
correlated with the size of the momentum anisotropy
that is produced. The elliptic flow coefficient initially
increases and eventually decays. This behavior is char-
acteristic of a hydrodynamic system in which pressure
gradients are converted into fluid velocities, so that spatial
anisotropy decreases and momentum anisotropy is gen-
erated. In Fig. 6 we show the similarity in the shape of the
two measures v2 and Axy defined in Eqs. (36) and (37).
The left panel shows Axy for the same three initializations
as in Fig. 5. The right panel shows the elliptic flow
coefficient, and the transverse pressure asymmetry is
shifted left by 1.7 time units and multiplied by 2.4 to
help the reader to visually compare the two quantities.
The similarity between the two graphs is another example
of hydrodynamiclike features that emerge at very
early times.

D. Universal flow

We can check how well Eq. (45) is satisfied for our
system of scalar fields. The calculation is numerically
difficult because the functions on both sides of the equation

fluctuate in the transverse position at early times and decay
rapidly as time increases. To compare them we calculate the
root of the average of the squares of both sides of the
equation. We define

h1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

τ

2

∂T00

∂x

�
2
�s

and h2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðT0xÞ2i

q
ð53Þ

where the angle brackets indicate an average over spatial
rapidity and the transverse coordinates.9 Figure 7 shows
there is good agreement of the two quantities in (53) at
early times.

VI. CONCLUSIONS

In this paper we have studied the dynamics of a self-
interacting real scalar field. We work with a conformally
invariant action and calculate the energy-momentum tensor
using the classical statistical approximation. We have

FIG. 6. The left panel is the transverse pressure asymmetry in Eq. (37) for the same initializations as in Fig. 5. The right panel is v2
superimposed on a plot of Axy that has been shifted left 1.7 time units and multiplied by a factor of 2.4. The lighter colored lines show the
shifted results for Axy.

FIG. 7. The two quantities in Eq. (53) at early times. The left panel is a linear plot and the right is a log-log graph that shows the
differences at later times more clearly. The calculation is done with ðφ0; AÞ ¼ ð15; 0Þ and kx ¼ ky ¼ 0.41.

9The factor τ in h1 is multiplied by the length scale 1=L
because we have set the lattice spacing in the transverse direction
to one.
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studied the time evolution of the azimuthal asymmetry of
the energy density and the momentum field and shown that
the two quantities are correlated. The eccentricity decreases
and the momentum elliptic flow coefficient initially
increases and then later decays. We have studied the
asymmetry of the transverse pressures and shown that its
behavior is strikingly similar to that of the elliptic flow
coefficient. Both of these behaviors are seen in hydro-
dynamic calculations that describe the physics of a rela-
tivistic heavy ion collision at much later times. We have
compared the derivative of the transverse velocity and the
gradient of the energy density and shown that the character-
istics of universal flow are present in our system.
Our results provide further support for the use of the

classical statistical approximation to describe a system of
strongly coupled fields and suggest that the method is
worthy of further investigation using more realistic initial
configurations, and physical theories that involve addi-
tional fields. Such calculations could lead to a deeper
understanding of the early onset of hydrodynamic behavior
that is seen in heavy ion collisions.
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APPENDIX: USEFUL EQUATIONS

In Milne coordinates the only nonzero components of
the connection are Γ0

ηη ¼ τ and Γη
0η ¼ Γη

η0 ¼ 1=τ. The

transformation from Minkowski to Milne coordinates is

Aμ
ν ≡ ∂xμ

∂xν
¼

2
66664

cosh η − sinhðηÞ 0 0

− 1
τ sinhðηÞ 1

τ coshðηÞ 0 0

0 0 −1 0

0 0 0 −1

3
77775: ðA1Þ

Some results for the gradient operator are

∂μ ¼ ð∂τ; ∂η; ∇⃗Þ
∂
μ ¼

�
∂τ;−

1

τ2
∂η;−∇⃗

�

ð∂μφÞð∂μφÞ ¼ φ̇2 −
1

τ2
ð∂ηφÞ2 − ð∇⃗φÞ2

□ ¼ ∂
2
τ þ

1

τ
∂τ −

1

τ2
∂
2
η − ∇⃗2: ðA2Þ

In Eqs. (A3) and (A4) we give the components of the
canonical EMT (3) and the additional piece that appears in
the conformal EMT (12). For the diagonal terms we give
two ways to write the components of Tμν

ex. The label “alt”
indicates that the equation of motion has been used. These
expressions are easier to calculate numerically. The com-
ponents of the canonical EMT are

T00
can ¼

1

2

�
ðϕ̇Þ2 þ ð∂ηϕÞ2

τ2
þ ð∂xϕÞ2 þ ð∂yϕÞ2

�
þ g2

4!
ϕ4

Tηη
can ¼ 1

2
τ−4ð∂ηϕÞ2 þ

1

τ2

�
1

2
ððϕ̇Þ2 − ð∂xϕÞ2 − ð∂yϕÞ2Þ −

g2

4!
ϕ4

�

Txx
can ¼

�
1

2

�
ðϕ̇Þ2 − ð∂ηϕÞ2

τ2
þ ð∂xϕÞ2 − ð∂yϕÞ2

�
−
g2

4!
ϕ4

�

Tyy
can ¼

�
1

2

�
ðϕ̇Þ2 − ð∂ηϕÞ2

τ2
− ð∂xϕÞ2 þ ð∂yϕÞ2

�
−

λ

4!
ϕ4

�
Txy
can ¼ ð∂xϕÞð∂yϕÞ

T0η
can ¼ −

1

τ2
ϕ̇ð∂ηϕÞ

T0y
can ¼ −ϕ̇ð∂yϕÞ

T0x
can ¼ −ϕ̇ð∂xϕÞ: ðA3Þ

The components of Tμν
ex are
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T00
ex ¼ 1

3

1

τ
ðφφ̇Þ − 1

3

1

τ2
ðð∂ηφÞ2 þ φ∂2ηφÞ −

1

3
∇⃗⊥ · ðφ∇⃗⊥φÞ

T00
ex−alt ¼ −

1

3

�
ϕϕ̈þ g2

6
ϕ4 þ ð∂ηϕÞ2

τ2
þ j∇⊥ϕj2

�

Tηη
ex ¼ −

1

3τ2
∂

∂τ
ðφφ̇Þ þ 1

3τ2
∇⃗⊥ · ðφ∇⃗⊥φÞ

Tηη
ex−alt ¼ −

1

3τ4

�
ϕ∂2ηϕ − τϕϕ̇ −

g2

6
ϕ4τ2 þ τ2ðϕ̇2 − j∇⊥ϕj2Þ

�

Txx
ex ¼ −

1

3

�
∂

∂τ
ðφφ̇Þ þ 1

τ
ðφφ̇Þ − 1

τ2
∂ηðφ∂ηφÞ

�
þ 1

3

∂

∂y

�
ϕ
∂ϕ

∂y

�

Txx
ex−alt ¼ −

1

3

�
ϕ∂2xϕ −

g2

6
ϕ4 þ ðϕ̇Þ2 − ð∂ηϕÞ2

τ2
− ð∂yϕÞ2

�

Tyy
ex ¼ −

1

3

�
∂

∂τ
ðφφ̇Þ þ 1

τ
ðφφ̇Þ − 1

τ2
∂ηðφ∂ηφÞ

�
þ 1

3

∂

∂x

�
ϕ
∂ϕ

∂x

�

Tyy
ex−alt ¼ −

1

3

�
ϕ∂2yϕ −

g2

6
ϕ4 þ ðϕ̇Þ2 − ð∂ηϕÞ2

τ2
− ð∂xϕÞ2

�

T0η
ex ¼ 1

3τ2

�
ϕ∂ηϕ̇þ ϕ̇∂ηϕ −

1

τ
ϕ∂ηϕ

�

T0x
ex ¼ 1

3
ðϕ∂xϕ̇þ ϕ̇∂xϕÞ

T0y
ex ¼ 1

3
ðϕ∂yϕ̇þ ϕ̇∂yϕÞ

Txy
ex ¼ −

1

3
½ϕð∂x∂yϕÞ þ ð∂xϕÞð∂yϕÞ�: ðA4Þ
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