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We argue that an ensemble of backgrounds best describes hydrodynamic dispersion relations in a
medium with few degrees of freedom and is therefore subject to strong thermal fluctuations. In the
linearized regime, dispersion relations become describable by polynomials with random coefficients. We
give a short review of this topic and perform a numerical study of the distribution of the roots of
polynomials whose coefficients are of the order of a Knudsen series but fluctuate in accordance with
canonical fluctuations of temperature. We find that, remarkably, the analytic structure of the poles of
fluctuating dispersion relations is very different from deterministic ones, particularly regarding the
distribution of imaginary parts with respect to real components. We argue that this provides evidence that
hydrodynamic behavior persists, and is enhanced, by nonperturbative background fluctuations.
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I. PHYSICAL MOTIVATION

The effect of thermal fluctuations in hydrodynamics is
still not understood fundamentally and is of great phenom-
enological interest due to the seeming applicability of
hydrodynamics in small systems [1], which contradicts
naive fluctuation-dissipation thinking, where the mean free
path lmfp (a function of viscosity η as well as entropy
density s and temperature T, related to the microscopic
relaxation time τπ) is straightforwardly related to the
fluctuation scale lfluct (a function, in the absence of
conserved charges, of only the equilibrium temperature
T, which, for a relativistic system, also reflects the number
of degrees of freedom N per unit volume V via the
degeneracy g [2,3]),

lmfp ∼
η

sT
∼ τπ ∼ lfluct ∼ CVT2 ∼

1

gT|{z}
gT3∼N=V

: ð1Þ

Small system hydrodynamics [1] puts into doubt this
lmfp ∼ lfluct scaling, especially since emergence of
“collective” behavior in systems with very few degrees

of freedom has also been reported in other situations, such
as ultracold atoms [4] and even everyday objects (the
“Brazil nut effect” [5]). These findings, at very different
energy scales, show that perhaps the way we think about
collectivity (where first we take the “many particle limit”
and then the “small mean free path limit” [3,6]) needs to be
rethought.
One way the hierarchy in Eq. (1) could fail [7] is the

realization that hydrodynamic degrees of freedom [flow uμ,
heat current Qμ, temperature T, chemical potentials μ
which go into pressure and energy ðp; εÞ as well as
dissipative tensor Πμν] do not match with the observable
quantities (energy-momentum tensor current Tμν and con-
served current Jμ). Furthermore, while the latter is specific
to each element of the ensemble and extensive, βμ ¼ uμ=T,
μ are considered in the grand canonical limit to be Lagrange
multipliers, intensive in the thermodynamic limit.
This suggests that once one applies statistical mechanics

limits (ergodicity or each microstate is equally likely [8]) to
each cell but allows fluctuations, redundances will appear
where each microstate will have a multiplicity of descrip-
tions, not unlike gauge configurations and ghosts in a
quantum field [7]. What an observer interprets as uμ in
some Landau prescription will be interpreted as heat flow
Qμ by another observer using the Eckart prescription
or Πμν in the Müller-Israel-Stewart (MIS) prescription.
The important fact is that, since these are multiple descrip-
tions of the same system, the dynamics when fluctuations
are included should be invariant with respect to such
choices, just like the dynamics of a gauge theory is gauge
independent. These have the potential to drastically alter
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the applicability of hydrodynamics as a function of the
number of participants.
While a quantitative understanding of this idea is very

involved and elusive, we can make some simple consid-
erations using sound dispersion relations: Let us think of a
sound wave perturbation propagating in a background
subject to thermodynamic fluctuations. If lmfp ≫ lfluct
one can think of the fluctuation as being a localized
random perturbation within the sound wave. We then
recover the usual fluctuation-dissipation relations of [2].
But if lmfp ≤ lfluct then the background properties (viscos-
ity, speed of sound, etc.) fluctuate while the perturbations
propagate. One can then think of the coefficients of that
sound mode to be random numbers, whose distribution is
given by statistical mechanics.
The consequences of this can be nontrivial: We know

that a pole on the real axis, related to the existence of a real
solution, indicates a wave propagating asymptotically. A
pole on the imaginary axis indicates a “nonhydrodynamic
mode,” and a branch cut suggests a violation of (global)
univalence, which transits between these regimes. As we
will show, the relation between the distribution of these
objects to the distribution of coefficients is rich and
nontrivial, indicating that the fluctuating regime is indeed
far from a trivial extrapolation of the deterministic one.
To explain these points further, the best interpretation of

the dispersion relations is the following Gedanken experi-
ment: let an experimentalist have access to a large ensemble
of field configurations of Tμνðx; tÞ [i.e., many “events”
where Tμνðx; tÞ is measured over a fine lattice in (x, t)]. One
can then take the average over a single event (denoted h…i;
this can be done by histogramming in bins of x − x0; t − t0
sampled in a single event) or over the whole ensemble of
events (denoted f…g). This can be done by the usual
technique of defining an event specific system of coor-
dinates around the event’s center of mass and origin x0, t0
and building histograms in bins of x − x0; t − t0 across
events. In the ensemble average limit (where the Boltzmann
equation and molecular chaos apply or, in general, where
the number of degrees of freedom is effectively infinite)
fh…ig ≃ hf…gi but we will look at deviations from that
limit where there is enough statistics to do h…i within a
single event.
Thus, let us measure its two-point function

hTμνðx; tÞTμνðx0; t0Þi event by event, take a fast Fourier
transformation event by event, and infer, still event by
event, a ω ¼ cnkn to the fast Fourier transform, yielding an
ensemble fcng over all events. One can do this via a fitting
process if the event is large enough or by expressing larger
cumulants hTμνðxi; tiÞ…Tμνðx1; t1Þi in terms of two-point
functions hTμνðxi; tiÞTμνðxiþ1; tiþ1Þi, in analogy as to what
is done with azimuthal angles to measure flow in small
systems [9].
In the limit where thermal fluctuations are smaller in

scale with respect to the mean free path, one should obtain

the Kubo formula [see Sec. II, Eq. (8) for m ¼ 1] where,
because of the limk→0 k−1… limit, only the infrared part of
fluctuations contributes to the dynamics (in other words,
thermal fluctuations are “local” with respect to gradients
and the mean free path, as also argued in [7,8,10]). In the
opposite limit, one can think of the perturbation propagat-
ing inside a thermal fluctuation. As we shall argue toward
the end of Sec. II cn’s fluctuate independently according to
the whole spectral function of hT̃μνðω; kÞT̃μνðω0; k0Þi (non-
hydrodynamic modes and all) [11]. The experimentalist
then uses that information, to understand its further
dynamics, by extracting the hydrodynamic parameters in
each event (fe; pg; fη=sg and so on) and using them as an
effective field theory expansion in the Knudsen number to
predict the subsequent evolution of an initial perturbation in
that given event via a propagator [which we define in
Eq. (6)], constructed for that event (we, of course, assume
the experimentalist can also construct perturbations in that
event and there are enough degrees of freedom to construct
such a perturbation).
It is immediately evident from the mathematics

literature [12,13] how fluctuations affect this conclusion.
As m → ∞ in Eq. (2) and in the limit that η=s ∼ 1 it is a
classic result [14] that the roots converge to a circle in the
complex plane. As a result,

The fraction of real roots approaches 0.
The probability of having at least one root approaches 1.

This means that, in events where Eq. (2) has real roots for
Fourier coefficients corresponding to the initial spacial
distribution, that perturbation will propagate asymptotically
in the linear regime. In events where the root has an
imaginary part, that perturbation will propagate to a scale
proportional to the imaginary part (which is large for that
perturbation to be “hydrodynamic”).
In the next section, we will examine more closely what

the dispersion relation described in this section looks like,
and in the rest of the work, we proceed with a numerical
study of it.

II. DISPERSION RELATIONS
IN A FLUCTUATING MEDIUM

Let us therefore consider a perturbation with a general
dispersion relation. Neglecting chemical potential, dimen-
sionality, and the spacetime structure of the dispersion
relation forces us into [15–17]

ω�ðkÞ ¼ −i
Xm
n¼1

c�n kn; c�n ¼ e�inπ
2 O

�
cns

�
η

s

�
n−1

�
τn−1micro;

τmicro ∼
1

T
; ð2Þ

where cs is the speed of sound in that medium. For
example, the usual Navier-Stokes dispersion relation is
described by
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c1 ¼ cs; c2 ¼ Oð1Þ η
s
τ: ð3Þ

We note that we put together Eqs. (7) and (8) of [15]
because event by event and with a finite space resolution
the “sound” and “diffusion” modes can only be distin-
guished on a Bayesian basis. The “complex phase”
dependence on “n” is then determined by analyticity [16]
where g ∼ N is the microscopic degeneracy and N is the
number of particles. Note that the first real coefficient does
not fluctuate in this simplified model because c2s ¼ 1=3.
It is well known that, for a system with N particles (for a

small system this can be interpreted as the multiplicity),
temperature fluctuations are given by

hðΔTÞ2i ¼ 2T2

Ncv
; ð4Þ

where cv is the heat capacity at constant volume per each
degree of freedom. (see [18] and references therein). Note
that, since the multiplicity is observable, we prefer to write
the fluctuation in terms of the multiplicity rather than the
degeneracy as in Eq. (1), where cv is the heat capacity at
constant volume per each degree of freedom.1

It is therefore natural to assume temperature to fluctuate
with a Gaussian or a Poissonian distribution given by a
width of the order shown in Eq. (4) and cn to fluctuate in
response,

hðΔcnÞ2i ∼
Oðcns ðηsÞn−1Þ

Ncv
hðTÞ−2ðn−1Þi: ð5Þ

Using the terminology prevalent in the literature, if one has
a current correlator defined by

JðΔt;ΔxÞ ¼
Z

d3k
exp ½iðω�ðkÞΔt − kΔxÞ�
ω�ðkÞ þ i

P
m
n¼1 c

�
n kn

; ð6Þ

a hydrodynamic mode propagates to Δx → ∞ and a
nonhydrodynamic mode to a finite Δx (with a long-lived
nonhydrodynamic mode propagating for Δt → ∞). The
existence of nonhydrodynamic poles and branch cuts in
J ¼ hTijðxÞ; Tijðx0Þi has been a topic of recent interest [11]
with recent claims [19–22] using a relaxation Boltzmann
equation (where fluctuations are not included) pointing to
long-lived nonhydrodynamic modes.
Thus, naively, if one neglects fluctuations, nonhydrody-

namic modes dominate. However, as Δx → ∞ in Eq. (6)
isolates real roots a hydrodynamic mode will always
emerge, rendering any nonhydrodynamic mode irrelevant.
Note that according to the ergodic picture of statistical

mechanics [8] fluctuation scaling of cn is independent of the

choice of hydrodynamic frame. Hence, it should not by
default be associated with any “model” of hydrodynamics.
The specific transport coefficients of Landau, Eckart, Israel-
Stewart, and other models will not be random fluctuating
quantities cn themselves but rather will be a Bayesian
inference of the coefficients cn and their relationships [7].
This might prove confusing to someone who develops a

hydrodynamic effective field theory from a thermostatic
frame and an “objective” definition of uμ (that is, most of
the literature). This is an important point as it also leads to
the ansatz assumed here, where cn’s fluctuate independ-
ently rather than follow fluctuations of T and N, as
expected from the fact that the average values of cn would
be functions of these two parameters.
We note that every cn in Eq. (2) comes from a different

degree of freedom, something clear from both effective [3]
and transport [23] theory. The dispersion relation whose
zeros are represented by Eq. (2) is directly derivable from an
eigenvalue equation of a characteristic matrix of correlators

det jHn ×H0m − kInmj ¼ 0; ð7Þ

where the term Hn is given by a generalized Kubo formula

Hn ∝ lim
k→0

1

kn
dn

dkn

Z
eikxdxhTijðxÞTijð0Þi ð8Þ

[in [3] these coefficients are denoted by XI1…In, in [23] by
moments of fðx; pÞ] as well as an initial gradientH0m. Given
that each derivative will be a highly nontrivial function of
microscopic physics and initial conditions, representing
these matrix coefficients by random numbers is a conse-
quence of local equilibrium dynamics being dominated by
fluctuation-dissipation relations. Physically, thermal fluctu-
ations continuously produce sound waves, which interact
and deform the background according to the Feynman rules
developed. For instance, in [24] we now “renormalize the
background”with these soundwaves, usingmethods in [2,6]
and introduce a fluctuation on top of that [the driven
fluctuation in Eq. (6)]. Thus, the independent random
coefficients of the dispersion relation reflect the fact that,
when the sampling is insufficient to reconstruct the phase
space distribution, the problem of thermalization can be
connected to a random matrix problem [10].
In fact, if one thinks of hydrodynamics as a limit of

the Boltzmann equation, small systems can be thought
of as promoting phase space functions fðx; pÞ to
functionals [10,25,26] then terms of the dispersion relation
ofOðknÞ become related [23] to the probability distribution
of the nth moment of p of the functional distribution of the
perturbation δfðx; pÞ, which leads to the sort of random
polynomial we examine.
In the conformal case, the absence of intrinsic scales

beyond energy/temperature forces the scaling of fluctua-
tions of Eq. (5) when η=ðsTÞ is such that the fluctuation

1In a theory with a varying number of degrees of freedom, this
represents the microscopic degeneracy, e.g., ∼N2

c for a ‘t Hooft
type model.
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domain is of the order of the sound wave propagation
domain.2

A basic question in that context is “Will this disturbance
propagate, far in the IR?” The probability of a disturbance
of Tμν to propagate long distance is therefore represented
by the probability of finding a real root in some element of
the ensemble, rather than some parameter depending on the
choice for the thermostatic frame (something inferred from
the ensemble as much as any other observation).
While the study of random polynomials is a developed

field of pure mathematics (we give a short overview in the
Appendix), as far as we know no analytical results exist
which are directly relevant to the type of polynomials
described in this section. In this work, we shall proceed
numerically. In Sec. III, we review the MIS formalism and
derive the low-lying sound mode equation, which we
compare with the random modes solutions provided in
Sec. IV. Eventually, we give a comprehensive conclusion
with an outlook for future studies.

III. REVIEW OF MIS FORMALISM

By the MIS model, we address an uncharged conformal
system characterized by the following constitutive relation:

Tμν ¼ εuμuν − pΔμν þ Πμν; ð9Þ

where Πμν ¼ −2ησμν with η denoting the shear viscosity
and σμν ¼ 1

2
ð∇μuν þ∇νuμ − 2

3
Δμν∇ · uÞ represents the

shear-stress tensor and ∇μ ¼ Δμν∂
ν. The governing

dynamical equations are given by [27]

∂μTμν ¼ 0;

τuν∂νΠμν þ Πμν ¼ −2ησμν; ð10Þ

where τ is the relaxation time associated with Πμν

approaching its on-shell value, −2ησμν. Πμν is a regulator
field with the lifetime τ, being the first nonconserved
operator in the nonhydrodynamic spectrum. Our analysis
focuses on the sound channel in which, by solving Eq. (10)
for small perturbations, the equation takes the following
form [27]:

ω3 þ iω2

τ
−
�
c2s þ

γs
wτ

�
ωk2z −

ic2sk2z
τ

¼ 0; ð11Þ

where c2s ¼ ∂ε=∂p is the speed of sound, γs ¼ 4η=3, and
w ¼ εþ p is enthalpy. We can make the substitutions

ω¼ i
β

τ
; k2z ≡ z¼ z̃

c2sτ2
; X≡−1þ γs

8c2sτw
; ð12Þ

resulting in the following dispersion relation:

β3 þ β2 þ z̃βð9þ 8XÞ þ z̃ ¼ 0: ð13Þ

In what follows, as a part of the computation, we want to
compare the random modes structure with the infrared (IR)
solutions of Eq. (13).

IV. ALGORITHM TO FIND THE PROBABILITY
OF PROPAGATING MODES

In our calculations, we utilize the assumption of con-
formal symmetry, which implies that ∂p=∂ε ¼ c2s ¼ 1=3.
Furthermore, we scale the frequency “ω” by the temper-
ature, denoted as “T.”We aim to calculate the probability of
propagation for real modes within the IR limit of the MIS
theory. We perform this analysis for two specific sets of
parameters: (i) τ1T ¼ ð2 − ln 2Þ=ð2πÞ, which corresponds
to the N ¼ 4 result [28], and (ii) τ2T ¼ 0.1=ð2πÞ. We
investigate the behavior at both high and low momenta for
each parameter set. We examine each case using series
expansions of order 4 and order 10 in momentum to assess
the influence of series order on our findings. Here, we
outline the steps followed in our analysis.
(1) We generate the modes using the following series

[15–17]:

ωsðkÞ ¼ −i
Xs
n¼1

cnei
nπ
2 kn − i

Xs
2

n¼1

d2nk2n: ð14Þ

The choice of this series is due to the mathematical
properties of dispersion relation at low momenta
which we assume to be free of any singular
characters like branch point, branch cut, etc. Indeed,
the series in Eq. (14) generates the sound and the
diffusive channel because, in an experimental setup,
we cannot separate these channels. Based on the
dimensionality and spacetime structure of each
mode, the cn and dn coefficients must take the
following form:

ðcn; dnÞ ¼ ðan; bnÞ × cns

�
η

s

�
n−1

τn−1: ð15Þ

The coefficients ðai; biÞ are fluctuating numbers
corresponding to the first (second) term on the rhs
of Eq. (14). These fluctuations are essentially
thermal fluctuations because they are dimensionful
quantities. In a conformal theory (which we take

2Actually, a full model would contain not just the Legendre
transform/Lagrange multiplier for energy T but also of
4-momentum, βμ ¼ uμ=T. As argued in the Introduction and [7],
the full fluctuating dynamics will be affected by the redundances
implicit in the freedom to reparametrize the spacetime foliation
whose structure, analogous to Faddeev-Popov ghosts in Gauge
theory, is highly nontrivial. In this work, we concentrate only on
the effect of these redundances on linearized dispersion relations,
parametrized by cn.
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here) with only one scale, such as temperature, any
dimensionful fluctuation can be converted into
thermal fluctuation.

(2) For our later purpose, we need the fourth and tenth
expansion of Eq. (14). In fourth order, this series
takes the following form:

ω4ðkÞ ¼ a1cskþ iða2 − b2Þ
η

s
τc2sk2 − a3

�η
s

�
2
τ2c3sk3

− iða4 þ b4Þ
�η
s

�
3
τ3c4sk4 þOðk5Þ: ð16Þ

For order 10, it becomes

ω10ðkÞ ¼ a1cskþ iða2 − b2Þ
η

s
τc2sk2 − a3

�η
s

�
2
τ2c3sk3

− iða4þ b4Þ
�η
s

�
3
τ3c4sk4 þ a5

�η
s

�
4
τ4c5sk5

þ iða6 − b6Þ
�η
s

�
5
τ5c6sk6 − a7

�η
s

�
6
τ6c7sk7

− iða8þ b8Þ
�η
s

�
7
τ7c8sk8 þ a9

�η
s

�
8
τ8c9sk9

þ iða10 − b10Þ
�η
s

�
9
τ9c10s k10: ð17Þ

It is worth mentioning that each term in the series
mentioned above fluctuates independently, as they
originate from the corresponding n-point functions
of Tμν. We take η=s ¼ 1=ð4πÞ in our numerical
setup.

(3) We employ a discretization of k ¼ 4πTm=1000 for
our analysis. For low-momentum (LM) results, the
algorithm is applied tom¼½1;2;…;100�, and for high-
momentum (HM) it runs for m¼½300;301;…;500�.
We take each momentum bin independent of its
neighbors, similar to a random walk.

(4) The only parameter characterizing the background is
temperature (no conserved charges) whose extensive
lagrange multiplier is the temperature. The variation
of other thermodynamic quantities therefore de-
pends on the variation of temperature [29] as well
as the number of degrees of freedom of the system
N. The temperature distribution follows a Gaussian
distribution with the deviation provided in Eq. (4).
We assume cv ¼ g, where g represents the degrees
of freedom. We set g ¼ 6, accounting for three
momentum directions and three for spatial displace-
ments. Given that all terms are proportional to T
and are positive, we can adopt the following

distribution for random and dimensionless ðan; bnÞ
numbers:

DðN; xÞ ¼ 1

2

ffiffiffiffiffiffi
gN
π

r
e−

gN
4
ðx−1Þ2

1 −
Erf
� ffiffiffi

gN
p
2

�
2

; x ≥ 0; ð18Þ

where N counts the number of particles, and
ErfðxÞ ¼ 2ffiffi

π
p

R
x
0 e

−t2dt is the error function used to

normalize the distribution.
(5) In each momentum bin, we generate 105 results,

with the random coefficients selected according to
the distribution equation (18). After generating the
series as given in Eq. (16) or Eq. (17), we obtain
their real and imaginary parts, enabling us to analyze
them in various ways.

(6) After obtaining the distribution of roots in each
momentum bin, we fit the distribution of either the
real or imaginary parts to a Gaussian distribution of
the form

DGðx0m; σm; xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2m

p e
−
ðx−x0m Þ2

2σ2m ; ð19Þ

to get the optimal mean x0m and standard deviation
σ2m. The quality of the propagating modes is evalu-
ated by the ratio xIm0m=x

Re
0m
. Modes with a smaller ratio

deserve to be better propagating modes.
(7) Some parts of our results are devoted to comparing

the generated series with hydrosolutions or the low
momentum expansion of solutions of Eq. (13). For
η=s ¼ 1=ð4πÞ and c2s ¼ 1=3, the order 4 series
becomes

Ωð4Þ
1;2ðkÞ ¼ �

�
kffiffiffi
3

p þ k3

24
ffiffiffi
3

p
π2T2

ð−1þ 4πTτÞ
�

−
ik2

6πT
−

ik4τ
18π2T2

ð1 − πTτÞ;

Ωð4Þ
3 ðkÞ ¼ −

i
τ
þ ik2

3πT
−

ik4τ
9π2T2

ð−1þ πTτÞ: ð20Þ

Here, Ωð4Þ
3 ðkÞ is a purely imaginary, damped mode,

while Ωð4Þ
1;2ðkÞ modes are propagating modes with

some attenuation. For order 10 expansion, the
hydroseries takes the following form:
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FIG. 2. Plot of ωð4Þ
Im =ωð4Þ

Real in terms of particle numbers for specific momentum bins. The results are shown for the τ1 case in the fourth-
order expansion, utilizing Eq. (16).

FIG. 1. The ratio ωð4Þ
Im =ωð4Þ

Real for various particle numbers in the fourth-order series expansion. The top plots display the results for τ1,
and the bottom plots show the results for τ2. The left column corresponds to LM bins, and the right column represents HM bins.
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Ωð10Þ
1;2 ðkÞ ¼ �

�
kffiffiffi
3

p þ k3

24
ffiffiffi
3

p
π2T2

ð−1þ 4πTτÞ − k5ð8πτTð2πτTð4πτT − 9Þ þ 3Þ þ 1Þ
1152

ffiffiffi
3

p
π4T4

þ k7ð4πτTð4πτTð8πτTðπτT − 5Þð4πτT − 5Þ − 25Þ − 5Þ − 1Þ
27648

ffiffiffi
3

p
π6T6

−
k9ð16πτTð2πτTð4πτTð2πτTð8πτTð2πτT − 7Þð4πτT − 35Þ − 1225Þ þ 245Þ þ 49Þ þ 7Þ þ 5Þ

2654208
ffiffiffi
3

p
π8T8

�
;

−
ik2

6πT
−

ik4τ
18π2T2

ð1 − πTτÞ − ik6τ2ðπτTðπτT − 4Þ þ 2Þ
54π3T3

þ ik8τ3ðπτTðπτTðπτT − 9Þ þ 15Þ − 5Þ
162π4T4

−
ik10τ4ðπτTðπτT − 2ÞðπτTðπτT − 14Þ þ 28Þ þ 14Þ

486π5T5
;

FIG. 3. The ratio ωð4Þ
Real=Ω

ð4Þ
Real for various particle numbers. The top row and the very bottom plot correspond to τ1 and the middle plots

belong to the order 4 expansion calculated with τ2.
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Ωð10Þ
3 ðkÞ ¼ −

i
τ
þ ik2

3πT
−

ik4τ
9π2T2

ð−1þ πTτÞ þ ik6τ2ðπτTðπτT − 4Þ þ 2Þ
27π3T3

þ ik8τ3ð5 − πτTðπτTðπτT − 9Þ þ 15ÞÞ
81π4T4

þ ik10τ4ðπτTðπτT − 2ÞðπτTðπτT − 14Þ þ 28Þ þ 14Þ
243π5T5

: ð21Þ

After setting all the stages, we are now exploring
different cases. In Fig. 1, we illustrate the average ratio

ωð4Þ
Im =ω

ð4Þ
Real for various particle numbers in both LM and

HM bins, with τ1 ¼ ð2 − ln 2Þ=ð2πTÞ and τ2 ¼ 0.1=ð2πTÞ.
The top panel corresponds to τ1, while the bottom panel
represents τ2. Also, the left column displays the LM

results, and the right column shows the HM results. To
calculate this ratio, we generated roots based on Eq. (16)
for LM bins with m ¼ ð1;…; 100Þ and HM bins with
m ¼ ð300;…; 500Þ. We then extracted the imaginary and
real parts and fitted them to the optimal Gaussian distri-
bution as shown in Eq. (19). Afterward, we divided the

FIG. 4. The ratio ωð4Þ
Im =Ωð4Þ

Im for various particle numbers. The top row and the very bottom plot correspond to τ1 and the middle plots
belong to the order 4 expansion calculated with τ2.
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mean values of each part and organized them according to
the value of “m” for different particle numbers. The results
indicate a mild increase with respect to momentum, while
the number of particles has a negligible impact. For τ1,
there is a significant difference between the LM and HM
results. In contrast, for τ2, the results for both LM and HM
fall within the same range. We shall elaborate on this fact in
the next few lines.
From Fig. 1, we observe an oscillatory pattern in the ratio

ωð4Þ
Im =ω

ð4Þ
Real as a function ofN. In Fig. 2, we present this ratio

across the full range of particle numbers for specific
momentum bins at τ1. The horizontal dashed line represents
the average value of this ratio. The results of τ2 behave
similarly.
In Fig. 3, we examine the ratio between the real parts of

the randomly generated modes, as described in Eq. (16),
and their counterparts in the hydrodynamic modes, pre-
sented in Eq. (20), for various particle numbers in either
LM or HM bins. Each plot represents a specific case of τ
with the HM or LM bin, as indicated. In the top row for τ1,

we see that as momentum increases, the ratio ωð4Þ
Real=Ω

ð4Þ
Real

decreases and even higher-order expansions yield smaller

values, as shown in the very bottom plot. The results for τ2
in the middle row demonstrate that going to HM yields
larger values, and the expansion order 10 gives no sizable
difference with the order 4. For τ1, this ratio is less than one,
while for τ2, the ratio is greater than one. Comparing the
very top right panel with the very bottom one in Fig. 3 has
shown that at HM our ability to predict propagating modes
diminishes because different orders produce different
results for τ1. Its message is that we can no longer rely
on ansatz (14) in this region. This is because, intuitively, at
high momenta, we pass the radius of the convergence of the
sound hydroseries which invalidates the use of ansatz (14).
More interestingly, for the MIS model, the regions of
convergence and analyticity are identical [30], and moving
beyond convergence means entering a nonanalytic region.
This fact does not matter to thermal fluctuations and only
the momentum running pushes us into the nonanalytic,
divergence zone. The size of this region depends on τ=T.
For instance, when τ ¼ τ1 the points beyond m⪆300 lie
within the nonanalytic zone, whereas for τ ¼ τ2 the
points beyond m⪆1000 are inside the nonanalytic zone.
That is why we do not include the “order 10, HM, τ2 part
in Fig. 3.

FIG. 5. Comparing the imaginary to real parts for the hydromodes and the randomly generated modes. The top (bottom) row
corresponds to τ1 (τ2). The left (right) panels address the LM (HM) results.
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In Fig. 4, we display the findings for the imaginary
components. In comparison to the real components, the
values are considerably smaller. At τ1, the results exhibit a
greater sensitivity to the momentum bin, whereas this
sensitivity is smaller in the τ2 plots. Furthermore, for the
tenth-order expansion at τ1 in the HM bin, there is a
noticeable bump around a certain value, which arises from

the zero value of Ωð10Þ
Im .

Another intriguing aspect to consider is the comparison
between the ratio of imaginary to real parts for both
randomly generated modes and hydrodynamic modes.
This comparison is depicted in Fig. 5. The top row
corresponds to τ1, while the bottom row represents τ2.
Similarly, the left plots show LM results and the right plots
display HM results. The ratio for hydrodynamic modes is
consistently greater than that for random modes. For other
scenarios, such as the tenth-order expansion, the results do
not exhibit significant differences from those shown
in Fig. 5.
As mentioned above, moving to the HM region would

lose our predictive power, since the structure of solutions
alters in the HM due to the presence of branch cuts [27,30].
This phenomenon is observed in Fig. 6, where we illustrate
the evolution of the real and imaginary parts of the

hydrodynamic modes in both of the LM and HM regions
for τ1 in the top row and τ2 in the bottom row. The red
(blue) color traces the path of the fourth- (tenth-) order
series corresponding to Eqs. (20) and (21), respectively. In
the LM region, the order of expansion does not signifi-
cantly affect the results. However, in the HM region, the
series order does impact the real and imaginary parts,
particularly for τ1. This is because, around m ∼ 300, the
solutions ωðkÞ transit from exhibiting two propagating and
one dispersive mode to three propagating modes, a change
attributed to the alteration in branch cuts. For τ2, this shift
point moves approximately to m ∼ 1000, where the modes
undergo a similar change. Since the latter point is too
distant to be displayed in Fig. 6, the colors in the bottom
plots are so close to each other.
Concluding this discussion should emphasize again that

convergence and analyticity are somewhat distinct con-
cepts. In works such as [19,20] it was argued that
deterministic transport models generally have nonanalytic
cuts in the IR which do not impact the convergence of the
Knudsen series. In [31,32], on the other hand, perturbative
fluctuations are shown to introduce both nonanalyticity and
lack of convergence cascading from the UV to the IR
(“long-time tails”). As argued in the Introduction, soft

FIG. 6. The evolution of the real and imaginary parts of the hydrodynamic modes in terms of momentum bin. The top row displays the
results for τ1, and the bottom row shows the results for τ2. Different colors correspond to different orders of expansion as provided in
Eqs. (20) and (21).
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nonanalyticity is in principle indistinguishable from hydro-
dynamic modes when fluctuations are included, so our
random coefficients include any soft modes in the hTαβTγμi
correlator, which are by definition called hydrodynamic
modes. Our random coefficients ansatz is based on thermal
fluctuations being treated as “large” with respect to the
Knudsen series, so the regime of validity is different from
that discussed in [31,32]. However, the correlation between
convergence and analyticity as argued in [30] suggests that
provided convergence holds analyticity becomes a moot
point since any nonhydrodynamic modes can be accounted
for by fluctuating coefficients. In this case, the effect of
fluctuations on the distribution of imaginary to real poles
can alter the impact of long-lived hydrodynamic modes
considerably with respect to perturbative expectations.

V. CONCLUSION

As can be seen, the introduction of fluctuations con-
sistently lowers the ratio of imaginary to real parts of the
roots at all ω=T and makes the distribution of the roots
“scale invariant” with respect to ω=T. Since, as far as we
know, the type of series shown here has not been studied
beyond numerics (exact mathematical results [12–14,33]
concern polynomials where all coefficients are of the same
order), we are not aware of a mathematical justification for
this, beyond a naive appeal to the Kac formula (where the
fraction of real roots goes to zero but the probability of
finding at least a real root goes to unitary as order
increases).
The calculations here are certainly naive, only involving

sound and shear modes rather than vorticity. Nevertheless,
if they capture the essential physics, the results are
remarkable. They provide evidence for the conjecture
made in [7,10,34] that hydrodynamic behavior does not
necessarily go down with the number of constituents:
Because the background fluctuates, and because the
condition for long-range propagation is a delicate correla-
tion of all coefficients in the dispersion relation, it might be
that fluctuations allow asymptotic propagation to be
“selected out.”
There is certainly quite a lot of work to be done in this

direction. It will be interesting to see if the results are
maintained as the order of the polynomial goes to infinity,
connected to studied by other methods in [35]. Likewise, it
will be interesting to see the probability structure of the
analytical features (critical points, real vs imaginary roots)
of fluctuating polynomials and to relate this to the gap
problem [11,19–21]. It would also be interesting to see
whether dispersion relations with fluctuating coefficients
can be used to quantitatively model collective systems with
few degrees of freedom obtainable in more controlled
laboratory conditions, such as [4,5].
The larger point here is that we do not know exactly how

the hydrodynamic limit is approached when both the
microscopic scale and the mean free path are varied [3].

It is commonly assumed that even in the strongly coupled
limit one gets closer to ideal hydrodynamics when one
increases the number of degrees of freedom. This is a
reasonable assumption but there is no solid evidence for it
and in fact the evidence in [1,4,5] pushes us to question it.
The indications, discussed here, that adding background
fluctuations to hydrodynamic dispersion relations non-
trivially changes long-distance propagation could therefore
profoundly affect our understanding of the onset of
collectivity in small systems.
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APPENDIX: RANDOM POLYNOMIALS:
A BRIEF REVIEW

A random function is defined as a probability measure on
the space of functions that map from a set of parameters [12].
By establishing a basis ðf0ðtÞ; f1ðtÞ;…; fNðtÞÞ (which does
not necessarily have to be orthonormal) and selecting a
randomcomplexvector, such asX ¼ ðx0; x1;…; xNÞ,we can
construct a random function fðtÞ as follows:

f∶T → R; fðtÞ ¼
XN
i¼0

xifiðtÞ: ðA1Þ

This random function is characterized by the probability
distribution that describes the likelihood of each event

P ¼ pðx0; x1;…; xNÞdx0dx1…dxN;

xi ∈ ðx̄i; x̄i þ dxiÞ; ðA2Þ

where the probabilities are normalized to sum to one,Z
All X

pðx0; x1;…; xNÞdx0dx1…dxN ¼ 1: ðA3Þ

The elements of the set X can be generated from various
random distributions, including uniform and Gaussian dis-
tributions. When using a uniform distribution, the elements
are generated randomly and independently without any
correlation. In contrast, other distributions, such as the
Gaussian distribution, produce numbers that are correlated
with each other.
The fundamental theorem of algebra tells us that, for any

polynomial fðtÞ of degree n with coefficients in C, there
exist n roots, counting multiplicity, such that fðtÞ ¼ 0. This
theorem leads to several intriguing questions:
(1) Given the distribution of coefficients X, what is the

distribution of the roots of fðtÞ ¼ 0? More specifi-
cally, what can we say about the distribution of the
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absolute values of the roots and their phases,
assuming a certain distribution of coefficients?.

(2) How many real roots can we expect for fðtÞ ¼ 0?.
(3) What is the distribution of the real roots of fðtÞ ¼ 0?.
These questions have sparked extensive research in the

field of pure mathematics [12–14,33]. For lower-degree
polynomials, it is relatively straightforward to compute
probabilities using closed-form solutions. However, the
lack of general analytical solutions makes the task signifi-
cantly more complex for higher-degree polynomials
(specifically, those of degree 5 or greater).
The Kac-Rice formula provides a general solution to this

problem. Consider a random function fðtÞ, as defined in
Eq. (A1), with a distribution given by

pfðtÞðXÞdX ¼ pfðtÞðx0;…; xNÞdx0…dxN; ðA4Þ

where the density pfðtÞðXÞ is continuous at zero, and the
coefficients X are drawn from the set of real numbers. The
expected number of real roots, denoted by Ẑðf; TÞ, can be
expressed as

Ẑðf; TÞ ¼
XN
k¼0

kPRðkÞ; ðA5Þ

where PRðkÞ is the probability of having k real roots. The
Kac-Rice formula offers an alternative expression

Ẑðf; TÞ ¼
Z
T
dtCðtÞ;

CðtÞ ¼ Eðf0ðtÞjfðtÞ ¼ 0ÞpfðtÞð0Þ; ðA6Þ

where Eðf0ðtÞjfðtÞ ¼ 0Þ is the conditional expectation of
the derivative f0ðtÞ ¼ dfðtÞ=dt given that fðtÞ ¼ 0, and the
integral is taken over the range of the random variable “t.”
The conditional expectation is defined as

Eðf0ðtÞjfðtÞ ¼ 0Þ ¼
Z
R
dyjyjqtðyÞ;

qtðyÞ ¼
ptð0; yÞ
pfðtÞð0Þ

;

pfðtÞðXÞ ¼
Z
R
dyptðX; yÞ: ðA7Þ

Equations (A6) and (A7) can be seen as the continuous
analogs to the discrete formulation in Eq. (A5).
If we assume a Gaussian distribution for fðtÞ, the

analysis becomes significantly simpler. The random vector
ðf0ðtÞ; fðtÞÞ∈R2 follows a Gaussian distribution, which is
characterized by its covariance matrix

Ct ¼
�
at bt
bt ct

�
; ðA8Þ

where

at ¼ Eðf0ðtÞ2Þ ¼ ∂
2Kðs; tÞ
∂s∂t

				
s¼t

;

bt ¼ EðfðtÞf0ðtÞÞ ¼ ∂Kðs; tÞ
∂t

				
s¼t

;

ct ¼ EðfðtÞ2Þ ¼ Kðt; tÞ; ðA9Þ
and Eð:Þ denotes the expectation of the term within the
parentheses. Here, Kðs; tÞ ¼ EðfðsÞfðtÞÞ is the covariance
kernel. Defining F⃗≡ ðy; xÞ ¼ ðf0ðtÞ; fðtÞÞ, the joint dis-
tribution is given by

ΓCt
dxdy ¼ 1

2π
ffiffiffiffiffi
Δt

p e−
F⃗T ·Ct ·F⃗

2Δt dxdy; ðA10Þ

with Δt ¼ detðCtÞ ¼ atct − b2t . Substituting this joint dis-
tribution into Eq. (A6) and performing some calculations,
we obtain [12]

Ẑðf; TÞ ¼ 1

π

Z
T
dtρt; ðA11Þ

where

ρt ¼
ffiffiffiffiffi
Δt

p
at

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂
2 lnKðs; tÞ

∂s∂t

				
s¼t

s
: ðA12Þ

For example, consider the degree N polynomial

fNðtÞ ¼
XN
k¼0

xktk; ðA13Þ

with a uniform distribution such that hxixji ¼ δij. The
covariance kernel for this polynomial is

KNðs; tÞ ¼ EðfðsÞfðtÞÞ ¼ 1 − ðstÞNþ1

1 − st
; ðA14Þ

and Eq. (A11) yields

ẐðfN; TÞ ¼
4

π

Z
∞

1

dt
ffiffiffiffiffiffiffiffiffiffiffiffi
FNðtÞ

p
; ðA15Þ

where

FNðtÞ ¼
1

ð1 − t2Þ2 −
ðN þ 1Þ2t2N
ð1 − t2Nþ2Þ2 : ðA16Þ

For N ¼ 2, this gives Ẑðf2Þ ≃ 1.279, which is close to
1.256. For N ¼ 3, it gives Ẑðf3Þ ≃ 1.492, which agrees
well with numerical computations. For higher values
of N, Eq. (A15) provides results close to those obtained
numerically. It has been argued that the large N
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asymptotic behavior of the expected number of real roots in
a random real function with a uniform distribution is given
by [13]

ẐðfNÞjN→∞ ≃
2 ln ðeNÞ

π
: ðA17Þ

It is important to note that Eq. (A11) can be applied to many
random functions with different distributions, provided
that the covariance kernel can be derived analytically.
However, the Kac-Rice formula does not provide informa-
tion about the distribution of real roots or the distribution of
roots in general.

[1] J. L. Nagle and W. A. Zajc, Small system collectivity in
relativistic hadronic and nuclear collisions, Annu. Rev.
Nucl. Part. Sci. 68, 211 (2018).

[2] P. Kovtun, Lectures on hydrodynamic fluctuations in
relativistic theories, J. Phys. A 45, 473001 (2012).

[3] D. Montenegro, R. Ryblewski, and G. Torrieri, Relativistic
fluid dynamics and its extensions as an effective field theory,
Acta Phys. Pol. B 50, 1275 (2019).

[4] S. Brandstetter et al., Emergent hydrodynamic behaviour of
few strongly interacting fermions, arXiv:2308.09699.

[5] C. Güttler, I. von Borstel, R. Schräpler, and J. Blum,
Granular convection and the Brazil nut effect in reduced
gravity, Phys. Rev. E 87, 044201 (2013).

[6] P. Kovtun, G. D. Moore, and P. Romatschke, The stickiness
of sound: An absolute lower limit on viscosity and the
breakdown of second order relativistic hydrodynamics,
Phys. Rev. D 84, 025006 (2011).

[7] T. Dore, L. Gavassino, D. Montenegro, M. Shokri, and G.
Torrieri, Fluctuating relativistic dissipative hydrodynamics
as a gauge theory, Ann. Phys. (Amsterdam) 442, 168902
(2022).

[8] G. Torrieri, Emergent symmetries of relativistic fluid dy-
namics from local ergodicity, Phys. Rev. D 109, L051903
(2024).

[9] V. Khachatryan et al. (CMS Collaboration), Evidence for
collectivity in pp collisions at the LHC, Phys. Lett. B 765,
193 (2017).

[10] G. Torrieri, The functional generalization of the Boltzmann-
Vlasov equation and its Gauge-like symmetry, SciPost Phys.
16, 070 (2024).

[11] G. D. Moore, Stress-stress correlator in ϕ4 theory: Poles or a
cut?, J. High Energy Phys. 05 (2018) 084.

[12] L. I. Nicolaescu, Counting zeroes of random functions, Am.
Math. Mon. 130, 625 (2022).

[13] H. Nguyen, O. Nguyen, and V. Vu, On the number of real
roots of random polynomials, Commun. Contemp. Math.
18, 1550052 (2016).

[14] M. Kac, On the average number of real roots of a random
algebraic equation, Bull. Am. Math. Soc. 49, 314 (1943).

[15] S. Grozdanov, Bounds on transport from univalence and
pole-skipping, Phys. Rev. Lett. 126, 051601 (2021).

[16] S. Grozdanov, P. K. Kovtun, A. O. Starinets, and P. Tadić,
Convergence of the gradient expansion in hydrodynamics,
Phys. Rev. Lett. 122, 251601 (2019).

[17] S. Grozdanov, P. K. Kovtun, A. O. Starinets, and P. Tadić,
The complex life of hydrodynamic modes, J. High Energy
Phys. 11 (2019) 097.

[18] J. Hickman and Y. Mishin, Temperature fluctuations in
canonical systems: Insights from molecular dynamics sim-
ulations, Phys. Rev. B 94, 184311 (2016).

[19] L. Gavassino, Gapless non-hydrodynamic modes in rela-
tivistic kinetic theory, arXiv:2404.12327.

[20] G. S. Rocha, I. Danhoni, K. Ingles, G. S. Denicol, and J.
Noronha, Branch-cut in the shear-stress response function of
massless λφ4 with Boltzmann statistics, arXiv:2404.04679.

[21] R. Gangadharan and V. Roy, The convergence problem of
gradient expansion in the relaxation time approximation,
arXiv:2405.10846.

[22] M. McNelis and U. Heinz, Hydrodynamic generators in
relativistic kinetic theory, Phys. Rev. C 101, 054901 (2020).

[23] G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke,
Derivation of transient relativistic fluid dynamics from the
Boltzmann equation, Phys. Rev. D 85, 114047 (2012); 91,
039902(E) (2015).

[24] S. Endlich, A. Nicolis, R. Rattazzi, and J. Wang, The
quantum mechanics of perfect fluids, J. High Energy Phys.
04 (2011) 102.

[25] G. Soares Rocha, L. Gavassino, and N. Mullins, Modeling
stochastic fluctuations in relativistic kinetic theory, Phys.
Rev. D 110, 016020 (2024).

[26] R. F. Fox and G. E. Uhlenbeck, Contributions to nonequili-
brium thermodynamics. II. Fluctuation theory for the
Boltzmann equation, Phys. Fluids 13, 2881 (1970).

[27] S. Grozdanov, A. Lucas, and N. Poovuttikul, Holography
and hydrodynamics with weakly broken symmetries, Phys.
Rev. D 99, 086012 (2019).

[28] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and
M. A. Stephanov, Relativistic viscous hydrodynamics, con-
formal invariance, and holography, J. High Energy Phys. 04
(2008) 100.

[29] L. Landau and E. Lifshitz, Statistical Physics (Elsevier
Science, New York, 2013), Vol. 5.

[30] R.Heydari andF.Taghinavaz,Local univalenceversus stability
and causality in hydrodynamic models, arXiv:2404.14091.

[31] L. V. Delacretaz, Heavy operators and hydrodynamic tails,
SciPost Phys. 9, 034 (2020).

[32] S. Grozdanov, T. Lemut, J. Pelaič, and A. Soloviev, Analytic
structure of diffusive correlation functions, arXiv:2407.13550.

[33] C. Berzin, A. Latour, and J. León, Kac-rice formula: A
contemporary overview of the main results and applications,
arXiv:2205.08742.

[34] D. Zubarev, Nonequilibrium Statistical Thermodynamics
(Springer US, 1974).

[35] S. Grozdanov (private communication).

LINEARIZED FLUCTUATING HYDRODYNAMICS VIA RANDOM … PHYS. REV. D 110, 056019 (2024)

056019-13

https://doi.org/10.1146/annurev-nucl-101916-123209
https://doi.org/10.1146/annurev-nucl-101916-123209
https://doi.org/10.1088/1751-8113/45/47/473001
https://doi.org/10.5506/APhysPolB.50.1275
https://arXiv.org/abs/2308.09699
https://doi.org/10.1103/PhysRevE.87.044201
https://doi.org/10.1103/PhysRevD.84.025006
https://doi.org/10.1016/j.aop.2022.168902
https://doi.org/10.1016/j.aop.2022.168902
https://doi.org/10.1103/PhysRevD.109.L051903
https://doi.org/10.1103/PhysRevD.109.L051903
https://doi.org/10.1016/j.physletb.2016.12.009
https://doi.org/10.1016/j.physletb.2016.12.009
https://doi.org/10.21468/SciPostPhys.16.3.070
https://doi.org/10.21468/SciPostPhys.16.3.070
https://doi.org/10.1007/JHEP05(2018)084
https://doi.org/10.1080/00029890.2023.2206321
https://doi.org/10.1080/00029890.2023.2206321
https://doi.org/10.1142/S0219199715500522
https://doi.org/10.1142/S0219199715500522
https://doi.org/10.1090/S0002-9904-1943-07912-8
https://doi.org/10.1103/PhysRevLett.126.051601
https://doi.org/10.1103/PhysRevLett.122.251601
https://doi.org/10.1007/JHEP11(2019)097
https://doi.org/10.1007/JHEP11(2019)097
https://doi.org/10.1103/PhysRevB.94.184311
https://arXiv.org/abs/2404.12327
https://arXiv.org/abs/2404.04679
https://arXiv.org/abs/2405.10846
https://doi.org/10.1103/PhysRevC.101.054901
https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1103/PhysRevD.91.039902
https://doi.org/10.1103/PhysRevD.91.039902
https://doi.org/10.1007/JHEP04(2011)102
https://doi.org/10.1007/JHEP04(2011)102
https://doi.org/10.1103/PhysRevD.110.016020
https://doi.org/10.1103/PhysRevD.110.016020
https://doi.org/10.1063/1.1692878
https://doi.org/10.1103/PhysRevD.99.086012
https://doi.org/10.1103/PhysRevD.99.086012
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/1126-6708/2008/04/100
https://arXiv.org/abs/2404.14091
https://doi.org/10.21468/SciPostPhys.9.3.034
https://arXiv.org/abs/2407.13550
https://arXiv.org/abs/2205.08742

