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We study junctions between confining strings. We show that the effective theory of such junctions is very
predictive, with only one new parameter, the junction’s mass, controlling the first couple of terms in the
expansion in the system size. By open-closed string duality, these considerations about the baryon junction
map to interaction vertices of closed strings. Therefore, we calculate the interaction vertices of closed
strings in theories such as Yang-Mills theory. We find some surprising selection rules for string interactions
in 3þ 1 dimensions. Requiring perturbative stability and that the string coupling is weak, we suggest
constraints on the junction’s mass.

DOI: 10.1103/PhysRevD.110.056018

I. INTRODUCTION

Many theories admit unbreakable string-like excitations
of nonzero tension T ¼ l−2s . The quintessential example
is the Abrikosov string in superconductors [1] and the
closely related Nielsen-Olesen strings in the Abelian
Higgs model [2]. The string stability is a consequence of
unbroken 1-form symmetries in the system. In the Abelian
Higgs model, it is the magnetic Uð1Þ 1-form symmetry and
magnetic flux is confined in the Abrikosov-Nielsen-Olesen
string. Another model is the SUðNÞYang-Mills theory with
ZN electric 1-form symmetry, where string-like excitations
confine electric flux.
The examples above are gapped theories in the bulk. In

the presence of a long confining string, the only low-energy
modes are the string fluctuations (phonons). The effective
theories of such fluctuations are well studied for both
closed and open strings; see, for instance, [3–18]. Some
results were nicely reviewed in [19]. There is also extensive
literature on simulations of the confining string and the
comparison with theoretical predictions [20–31] (many
more references on this subject can be found therein).
Many papers also explored the subject of quantizing the
string with dynamical end points and made contact with
Regge physics (e.g., [32–40]).
In the open string effective field theory (EFT), a Dirichlet

boundary condition physically represents external static

particles on which the string can end, and a Neumann
boundary condition models branes within which the string
end point can roam freely. In gauge theories, the point
particles on which the strings can end are just quarks. One
physical example of theNeumann condition is in Yang-Mills
theories when the flux tube ends on the “Janus” interface that
is created by changing the theta angle θ → θ þ 2π. The
dynamics of these interfaces and some aspects of the strings
ending on them were discussed in [41].
In theories withZN 1-form symmetry, an interesting string

configuration is the “baryon,” where N strings are tied at a
vertex point. The string-and-junction configuration was first
discussed in [42,43]. This configuration plays an important
role in particle scattering, as it tracks baryon number (see, for
instance, [44–47]) and is also essential for understanding
exotic hadrons (e.g., [48–50]). In this paper, we focus on
confining theories with Z3 1-form symmetry in a (dþ 1)-
dimensional spacetime. Our analysis is independent of the
UV physics and bears easy generalization to other string-
vertex configurations. In particular, our study applies to the
confined phase of SUð3ÞYang-Mills theory in d ¼ 2, 3. The
baryon vertex is clearly observed in simulations [51–55]
where our predictions should be testable.
We investigate the “baryon” from two perspectives. In

the open string channel, we consider three static quarks
positioned at the vertices of a triangle. In this channel,
confining strings meet at the Fermat point, as in Fig. 1, and
the time direction is perpendicular to the triangle.
Equivalently, we can perform a double Wick rotation
and define the closed string channel, in which the time
direction lies on the plane. The vertex is then interpreted as
an interaction vertex where three strings meet. We can call
such a vertex a D-instanton as it is localized in time.
Let L be the length of confining strings. We denote an

EFT operator to be of order k if it scales as Oð1=LkÞ in the
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action and contributes Oð1=Lkþ1Þ corrections to the spec-
trum. We argue that the EFT is uniquely determined by M
and ls up to order 2. Up to order −1, the physics is classical.
The fact that the “baryon” configuration only breaks
Poincaré symmetry spontaneously imposes strong con-
straints on the EFT, which is why the EFT expansion is
robust with no new parameters up to order 2. The two
parameters M and ls can be obtained (for instance) by
measuring the ground-state energy of the junction at zero
temperature, extending [56] (and related calculations in [57])

Egs ¼
3L
l2s

þM−
ðd− 2Þπ
16L

−
ðdþ 2ÞπMl2s

144L2
þOð1=L3Þ: ð1Þ

Note that in (1) the static quark masses mq have been
subtracted. The static quark masses mq are counterterms on
the Dirichlet boundaries corresponding to the external
quarks, and hence they are scheme dependent. In any specific
implementation, they can be measured from the quark-
antiquark pair and then subtracted to obtain (1), which is
scheme independent.
In this paper, we explicitly demonstrate the implications

of open-closed string duality up to order 1. We will see that
the string interaction vertices Cλaλbλc can be obtained, in
some cases completely unambiguously, just from consis-
tency. We find that the coupling constant among generic
closed string states of strings of length 2πR is

Cλaλbλc ∼ e−2πMR: ð2Þ

We see that ifM > 0, long strings are weakly coupled, and
strongly coupled otherwise. We also show that, on top of
the strong coupling catastrophe, there is a classical pertur-
bative instability for sufficiently large negativeM. With the
same framework, many extensions of the calculations we
do are possible, and we comment on some of the open
problems towards the end.

II. REVIEW OF EFFECTIVE STRING THEORIES

Here we review the EFT of a long confining string,
which physically describes small fluctuations of the
string. In the low-energy limit, we assume all massive
modes have been integrated out, leaving an effective
action of massless modes. A long string configuration
spontaneously breaks spacetime Poincaré symmetry as
ISOð1; dÞ → ISOð1; 1Þ × SOðd − 1Þ, leading to (d − 1)
Nambu-Goldstone bosons (NGBs) [58] as the only mass-
less degrees of freedom in the string interior.
To be concrete, we study a closed string wrapped on S1

R,
whose world-sheet embedding in spacetime is XμðΣÞ and
Σα ¼ ðt; σÞ. The effective action is constrained by Poincaré
symmetry and diffeomorphism invariance on the world
sheet. An important action compatible with these require-
ments is the Nambu-Goto action [59,60],

SNG ¼ −
1

l2s

Z
dtdσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ∂αXμ

∂βXμ

q
; ð3Þ

where we chose a mostly negative signature. Without loss
of generality, we choose a static gauge where X0 ¼ t,
X1 ¼ σ ∈S1

R, and Xi ¼ lsxiðt; σÞ for 2 ≤ i ≤ d. The
Nambu-Goto action admits an expansion in transverse
fluctuations xi, and in this gauge it reads

SNG ¼
Z

dtdσ
�
−
1

l2s
þ 1

2
½ð∂txiÞ2 − ð∂σxiÞ2�

þ l2s
8
½ð∂txi − ∂σxiÞ2ð∂txi0 þ ∂σxi0 Þ2�

�
þO

�
1

R4

�
:

ð4Þ

Equation (4) is the unique effective action of NGBs xi to
order 2 [6,9,12]. There are corrections to (3) and (4) with
new Wilson coefficients, which start at order 6 for d ¼ 2
and order 4 for d ≥ 3; we will not be concerned with such
high-order contributions here.
From the order −2 term in (4), we interpret T ¼ l−2s as

the classical string tension. The order 0 term consists of
(d − 1) free NGBs, whose modes are left- or right-moving.
The left and right mode occupation numbers nL;Rλ ∈N
determine the order 0 energy level of a closed string
state λ:

Ec
λ ¼

2πR
l2s

−
ðd − 1Þ
12R

þ nLλ þ nRλ
R

þOð1=R3Þ: ð5Þ

The order 2 term is a TT̄ deformation of the free action and
hence preserves integrability [61–63], and it leads to
Oð1=R3Þ energy corrections in (5). For later convenience,
we denote the ground state by 0; it has nL0 ¼ nR0 ¼ 0 and the
lowest-lying nonchiralOðd − 1Þ symmetric state is denoted
by 1—it has nL1 ¼ nR1 ¼ 1.

FIG. 1. The “baryon” configuration. In the open string channel
(left), three strings are tied at the Fermat point at σ ¼ 0 and end at
the Dirichlet boundaries (quarks) at σ ¼ L. In the closed string
channel (right), three closed string states λa;b;c have an interaction
vertex Cλaλbλc .
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The analysis is similar for open strings, except we need
to consider boundary conditions and boundary operators.
We take an open string of length L. At order 0, two
canonical choices for the boundary condition at σ ¼ 0 are
as follows:
(1) Dirichlet: ∂txi ¼ 0. Among all boundary operators,

we note that
R
σ¼0 dtð∂σxiÞ2 is forbidden by the

spontaneously broken Poincaré symmetry [4,8].
The leading operator is

R
σ¼0 dtð∂t∂σxiÞ2 and it is

of order 3. It represents the moment of inertia of the
boundary end point.

(2) Neumann: ∂σxi ¼ 0. The leading boundary operator
is

R
σ¼0 dtð∂txiÞ2 and it is of order 1. The Poincaré

symmetry requires this operator to be accompanied
by an order −1 constant term, such that

SN ¼ −M0
Z
σ¼0

dt

�
1 −

l2s
2
ð∂txiÞ2

�
þOð1=L3Þ: ð6Þ

We interpret M0 as the classical mass of the end
point, which is free to roam on the brane at the
boundary. The next-order operators, such asR
σ¼0 dt½ð∂txiÞ2�2, are order 3.

Finally, it is important to remark that the EFT expansion
means that the frequency cannot exceed l−1s ; otherwise, the
expansion in the inverse string size breaks down.

A. Open-closed string duality for a “meson”

As a warm-up, we review the “meson,” which is the
configuration of an open string connecting a static quark-
antiquark pair (qq̄ pair). We denote the string spatial length
to be L and let boundary conditions be Dirichlet at σ ¼ 0
and σ ¼ L. Furthermore, we compactify the time direction
on S1

R so as to put the open string at finite temperature.
From (4) we learn that up to order 1 the unique meson

action reads Sm ¼ Sð−2Þm þ Sð0Þm þOð1=L2Þ, where the order
−2 constant Sð−2Þm ¼ 2πRL

l2s
and the order 0 fluctuations read

Sð0Þm ¼ 1

2

Z
dτdσ½ð∂τxiÞ2 þ ð∂σxiÞ2�: ð7Þ

In the long-string limit, higher operators are suppressed.
For the meson case, the EFT partition function can be
obtained as

Zm ¼ e−S
ð−2Þ
m

Z
Dxie−S

ð0Þ
m ½1þOð1=L2Þ�

¼ e−μL

½ηðqÞ�ðd−1Þ ½1þOð1=L2Þ�; ð8Þ

where the modular parameter q≡ e−
2π2R
L and ηðqÞ is the

Dedekind eta function. e−μL represents the contribution
from the classical energy of the string, where μ≡ 2πR

l2s
.

In the open string channel, each time slice of the world
sheet is an open string, as in Fig. 2, and (8) is interpreted as
the thermal partition function

Zm ¼
X
λ

e−2πRE
o
λ : ð9Þ

Indeed, (9) from the open string spectrum agrees with (8).
On the other hand, we may perform a Wick rotation and
take the time to be horizontal in Fig. 2. In this case, (8) is
interpreted as the two-point function of Polyakov loops Ω
andΩ�, separated by X⃗ ¼ ðL; 0;…; 0Þ. When Ω acts on the
vacuum it creates a certain combination of closed string
energy eigenstates, each of which behaves as a massive
particle in Rd:

jΩi ¼
X
λ

vλjλi; such that

hλ0ðX⃗Þjλð0Þi ¼ δλ;λ0
ðEc

λÞ
d
2ld−1sffiffiffi

π
p ð2LÞd−22 Kd−2

2
ðEc

λLÞ; ð10Þ

where we have used the massive propagator in Rd [4,8].
Therefore, the closed string channel representation of (8)
reads [64]

Zm ¼ hΩ�ðX⃗ÞΩð0Þi

¼
X
λ

jvλj2
ðEc

λÞ
d
2ld−1sffiffiffi

π
p ð2LÞd−22 Kd−2

2
ðEc

λLÞ: ð11Þ

Consistency requires that there exists a set of the vλ ∈C
such that, together with the closed string energies Ec

λ, we
can match (8) with (11). This is in general a highly
nontrivial condition that constrains the effective action
and relates the closed string spectrum with the open string
spectrum. However, to the order we are working, we can
see that an appropriate vλ exists by performing a modular
transformation using the identity in (B3),

FIG. 2. The “meson” configuration. In the open string channel
(left), a single string is connected to Dirichlet boundaries (quark-
antiquark pair) at σ ¼ 0 and σ ¼ L. In the closed string channel
(right), closed string states propagate in spacetime.
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Zm ¼ ðπR=LÞd−12 e−μL
½ηðq̃Þ�ðd−1Þ þOð1=R2Þ; ð12Þ

where q̃ ¼ e−
2L
R is the dual modular parameter. Note that the

closed string states that can be created from Ω acting on
vacuum have nLλ ¼ nRλ ¼ nλ, as they do not carry longi-
tudinal momentum. Additionally, they are singlets under
the rotations in the transverse plane. We take L; R ≫ ls and
the fixed ratio L=R. The ratio L=R could be large or small,
which is convenient for series expansion in the closed or
open string channel, respectively. In this limit, the closed
string channel representation (11) admits the following
expansion:

Zm ¼ ðπR=LÞd−12 e−μL
q̃

d−1
24

X
λ

jvλj2q̃nλ þ ð1=R2Þ: ð13Þ

We can choose the convention such that vλ > 0, and by
comparing (12) with (13) we obtain

v0 ¼ 1þOð1=R2Þ;
v1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
½1þOð1=R2Þ�; ð14Þ

etc., where the order 0 result is also known from the CFT
literature [65] as the Dirichlet boundary state.

III. “BARYON” IN THE OPEN STRING CHANNEL

In this section, we study the three strings tied at a
junction, as in Fig. 1. The string end points in Rd are

positioned at X⃗ ¼ ðL; 0;…; 0Þ, Y⃗ ¼ ð− L
2
;−

ffiffi
3

p
L

2
;…; 0Þ,

and Z⃗ ¼ ð− L
2
;

ffiffi
3

p
L

2
;…; 0Þ, with Dirichlet boundary con-

ditions on the vertices of the equilateral triangle (see [66]
for a discussion of the collinear case.). Classically, strings
are straight lines meeting at the origin, which is the Fermat-
Torricelli point that minimizes the sum of distances to the
vertices. Unlike the EFT boundaries we reviewed above,
the vertex’s location oscillates along the longitudinal
directions X1, Y1, and Z1 of the strings. For instance, let
X1 ¼ lsx1ðtÞ be the fluctuating position of the vertex in the
longitudinal direction of the first string; then, the Nambu-
Goto action (3) in static gauge (see Appendix A) reads

SX ¼
Z

dt
Z

L

lsx1ðtÞ
dσ

�
−
1

l2s
þ 1

2
ð∂txiÞ2 −

1

2
ð∂σxiÞ2

þOð1=L4Þ
�
; ð15Þ

and similarly for the Y and Z world sheets. We see that
to the leading order, one only has to modify the inte-
gration domain in the action by the time-dependent
function lsx1ðtÞ.

The vertex is point-like in the IR, and the geometric
condition that three strings are tied at the same point in
space is rigid. At the vertex σ ¼ 0, by solving linear
geometric equations we find that x1 ¼ ðz2 − y2Þ=

ffiffiffi
3

p
,

y1 ¼ ðx2 − z2Þ=
ffiffiffi
3

p
, z1 ¼ ðy2 − x2Þ=

ffiffiffi
3

p
, and for the trans-

verse fluctuations

�
x2 þ y2 þ z2 ¼ 0;

xj ¼ yj ¼ zj; for 3 ≤ j ≤ d:
ð16Þ

Since the longitudinal fluctuations x1, y1, and z1 are related
to the transverse fluctuations, we can easily find the normal
modes and perform a perturbative expansion.
The string bulk action includes an order −2 classical part

Sð−2Þb ¼ − 3L
l2s

R
dt, and an order 0 quadratic part

Sð0Þb ¼ 1

2

Z
R×½0;L�

dtdσ½ð∂txiÞ2 − ð∂σxiÞ2 þ cyclic�

¼ 1

2

X3
a¼1

Z
R×½0;L�

dtdσ½ð∂tξ½a�i Þ2 − ð∂σξ½a�i Þ2�; ð17Þ

where we have applied a field redefinition ξ½1�i ¼
ðxi þ yi þ ziÞ=

ffiffiffi
3

p
, ξ½2�i ¼ ðxi − yiÞ=

ffiffiffi
2

p
, and ξ½3�i ¼

ðxi þ yi − 2ziÞ=
ffiffiffi
6

p
to diagonalize the system. At order

0, (16) is the Neumann boundary condition for ξ½2;3�2 , ξ½1�j≥3

and the Dirichlet boundary condition for ξ½1�2 , ξ½2;3�j≥3 . In
summary, the junction in the equilateral case behaves as a
tensor product of Neumann and Dirichlet boundaries to the
leading order,

ðNeumannÞ⊗d ⊗ ðDirichletÞ⊗ð2d−3Þ: ð18Þ

Note that when d ¼ 3, Neumann and Dirichlet conditions
are assigned to an equal number of polarizations, which

will have some consequences below. Physically, ξ½2;3�2 and

ξ½1�j≥3 are the spatial displacement, while ∂σξ
½1�
2 and ∂σξ

½2;3�
j≥3

are small rotation angles of the vertex.
At the vertex, we can write down an order −1 constant

action Sð−1Þb ¼ −M
R
σ¼0 dt, where M is interpreted as the

vertex mass as in (1). The nonlinear realization of the

Lorentz group requires Sð−1Þb to be accompanied by an order
1 quadratic term,

Sð1Þb ¼ Ml2s
3

Z
σ¼0

dt½ð∂tξ½2�2 Þ2 þ ð∂tξ½3�2 Þ2�

þMl2s
6

Z
σ¼0

dtð∂tξ½1�j Þ2; ð19Þ

which is unique and agrees with the expansion of a standard
world-line action. Note that expanding (15) with respect to
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the longitudinal fluctuation yields another order 1 term,
which is cubic in the fluctuations,

S̃ð1Þb ¼ −
ls
2

Z
σ¼0

dtfx1½ð∂txiÞ2 − ð∂σxiÞ2� þ cyclicg

¼ −
ls

2
ffiffiffi
6

p
Z
σ¼0

dtfξ½2�2 ½ð∂tξ½3�2 Þ2 − ð∂tξ½2�2 Þ2 − ð∂σξ½3�j Þ2

þ ð∂σξ½2�j Þ2� þ 2ξ½3�2 ð∂tξ½2�2 ∂tξ
½3�
2 − ∂σξ

½2�
j ∂σξ

½3�
j Þg: ð20Þ

We remark that (20) has important implications at higher
orders, but here it will not play any further role.
To obtain how (18) is modified due to the mass of the

junction (19), we recompute the dispersion relation of the

polarizations ξ½2;3�2 , ξ½1�j≥3 to find

cosðωLÞ ¼ ck;⊥ω sinðωLÞ; ð21Þ

where ck ¼ 2Ml2s
3

for planar modes ξ½2;3�2 , c⊥ ¼ Ml2s
3

for

vertical modes ξ½1�j , and ω is the frequency. Depending
on the scale and sign ofM, there are essential differences in
solutions to (21).
(1) M < 0: When jMj ≪ L

l2s
, (21) admits an imaginary

solution ω ≈ ijck;⊥j−1. Such a tachyon is out of
the EFT regime as long as jMj≲ 1

ls
, where the

stability needs to be examined in the full nonlinear
theory. However, if the junction mass is negative
and parametrically large jMj ≫ 1

ls
, the instability is

perturbative and within the EFT. We do not discuss
the end point of such an instability, but we will get
back to the question of whether slightly negative
mass− 1

ls
≲M < 0 is indeed allowed. Interestingly, a

negative baryon vertex mass is also found in certain
large-N gauge theories [67], with the property jMj ≲
1
ls
[68]. Anecdotally, a remote analogue is that soap

films form plateau borders with a negative tension
[70]; of course, one need not worry about zero-
temperature instabilities in that setup.

(2) M ∼ 1
ls
: In this case, solutions to (21) are Neumann-

like with small corrections:

ωr ¼ r
π

L

�
1 −

ck;⊥
L

þOð1=L2Þ
�
; ð22Þ

where r∈Nþ 1
2
. This is the most relevant regime to

Yang-Mills theory, where we do not expect a
hierarchy between the baryon junction mass and
the string tension.

(3) 1
ls
≪ M ≪ L

l2s
: The spectrum of polarizations ξ½2;3�2 and

ξ½1�j≥3 is divided into two regimes: low-energy modes
with ω ≪ 1

Ml2s
follow the dispersion (22), while

high-energy modes with 1
Ml2s

≪ ω ≪ 1
ls
admit another

expansion,

ωn ¼ n
π

L
þ 1

nπck;⊥
þOð1=n3Þ; ð23Þ

where n∈N ≫ L
Ml2s

. For those ω ≫ 1
Ml2s

modes, the

vertex condition becomes approximatelyDirichlet for

ξ½2;3�2 and ξ½1�j≥3.
(4) M ≫ L

l2s
: In addition to the Dirichlet-Dirichlet

modes as in (23), there exist low-frequency semi-
classical modes with ω ≈ ðck;⊥LÞ−1=2. These modes
correspond to a heavy vertex oscillating in the
classical potential without creating waves on the
string.

These regimes are summarized in Fig. 3. In the following,
we focus on the regime M ∼ l−1s where the string fluctua-
tions dominate the physics. We expect M ∼ l−1s to be the
case in Yang-Mills theory. Let us mention that M ≫ l−1s
might be interesting as well for other applications; a
physical example of a heavy junction could be in a variant
of the Abelian Higgs model, where the 1-form symmetry is
broken to Z3 via a heavy charge 3 monopole.

A. Partition function

Applying the method of Sec. II A, we calculate the
thermal partition function of the junction by compacti-
fying time on S1

R. We first consider the classical action

Sð−2Þb ¼ 6πRL
l2s

¼ 3μL, Sð−1Þb ¼ 2πRM, and the quadratic

fluctuations (17):

Zð0Þ
b ¼ e−S

ð−2Þ
b −Sð−1Þb

Z
DxiDyiDzie−S

ð0Þ
b

¼ e−3μL−2πRM

½ηð ffiffiffi
q

p Þ�d½ηðqÞ�d−3 ; ð24Þ

where q ¼ e−
2π2R
L . This is the thermal partition function to

the order 0, where the junction can be treated by the tensor
product of Neumann and Dirichlet boundaries (18).
In the long-string limit, the order 1 action can be treated

perturbatively. We have at this order a contribution from
(19) and (20):

Zb ¼ Zð0Þ
b ½1 − hSð1Þb i − hS̃ð1Þb i þOð1=L2Þ�; ð25Þ

FIG. 3. Spectrum as a function of the vertex mass and system
size.
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where h…i is the vacuum expectation value in the order 0

theory. Note that the cubic term hS̃ð1Þb i ¼ 0 as it is odd under

parity. Furthermore, we remark that the cubic operator S̃ð1Þb
does not perturb the open string channel spectrum at
order 1.

To work out hSð1Þb i, we denote by G̃ðΣ;Σ0Þ the free-
field world-sheet propagator with Dirichlet condition at
σ ¼ 0 and Neumann condition at σ ¼ L, and by G̃αβ ≡
limΣ→Σ0∂Σα

∂Σ0
β
G̃ðΣ;Σ0Þ its coincident point function. By the

Wick theorem, we obtain the one-loop result

hSð1Þb i ¼ ðdþ 2ÞMl2s
6

Z
σ¼0

dτG̃ττ

¼ ðdþ 2ÞMl2s
144L

log q½2E2ðqÞ − E2ð ffiffiffi
q

p Þ�; ð26Þ

where E2ðqÞ is the Eisenstein series; see also Appendix B.
As a consistency check, (26) agrees with the ground-state
energy (1) and perturbed frequencies (22).
For what comes next, we remark that the open string

channel partition function also admits a dual representation,

Zð0Þ
b ¼ ðπR=LÞd−3

2e−3μL−2πRM

2d=2½ηðq̃2Þ�d½ηðq̃Þ�d−3 ;

hSð1Þb i ¼ −
ðdþ 2ÞMl2s

36R
½2E2ðq̃2Þ − E2ðq̃Þ�; ð27Þ

following from (B3) and q̃ ¼ e−
2L
R .

IV. STRING INTERACTION VERTEX

In this section, we discuss the closed string channel
interpretation of (27) as a correlation function of Polyakov
loops Ω in Rd × S1

R. From the point of view of the
noncompact Rd, the Polyakov loops are point operators
and the 1-form Z3 is reduced to a 0-form Z3, with the
fundamental loop carrying charge 1 mod 3. Symmetry-
preserving three-point functions are hΩΩΩi and
hΩ�Ω�Ω�i. We now explain how to reinterpret the junction
partition function in terms of the three-point function

Zb ¼ hΩðX⃗ÞΩðY⃗ÞΩðZ⃗Þi: ð28Þ

If we take the time direction to be along Rd, then
hΩðX⃗ÞΩðY⃗ÞΩðZ⃗Þi describes an interaction vertex of three
closed strings. As in (10), we start from the idea that the Ω
operator creates a superposition of energy eigenstates when
acting on the vacuum. The coefficients of the energy
eigenstates are (14). When R;L ≫ ls, the closed string
states are heavy particles, which travel for a long distance.
Therefore, we assume that in the limit L; R ≫ ls, (28) can
be interpreted as strings scattering via a local interaction.
We further show that, to the order we compute, such an

interaction is purely a contact interaction and the inter-
action strength Cλxλyλz between the energy eigenstates λx,
λy, and λz can be determined unambiguously.
We remark that the nonlocality of the scattering,

which we expect to be on the scale ls modulo logarithmic
corrections, leads to higher contact couplings between the
states’ λ’s. From Lorentz invariance, it follows that these
non-s-wave scatterings contribute at least at order 2 and
hence can be neglected for the analysis here. We conclude
that we expect the partition function to be reproduced by a
simple contact interaction between the string states:

Zb ¼ Zs-wave þOð1=R2Þ: ð29Þ

Let W⃗ ∈Rd be the location of the contact interaction vertex
and Lxw ¼ jX⃗ − W⃗j; the s-wave amplitude is an integration
against the propagators (10) that reads

Zs-wave ¼
X
λx;y;z

Z
ddW⃗
lds

Cλxλyλz

×
Y

a¼x;y;z

�
vλaðEc

λa
Þd2ld−1sffiffiffi

π
p ð2LwaÞd−22

Kd−2
2
ðEc

λa
LwaÞ

�
: ð30Þ

This is just the tree-level diagram in a theory in Rd with
cubic interactions

∼
X
λx;y;z

Z
ddW⃗
lds

CλxλyλzΦλxΦλyΦλz : ð31Þ

The fields Φλa are the string fields in Rd that create the
energy eigenstates jλai wrapped on S1

R. These fields have
mass Ec

λa
and hence the propagators as in (10) and (30).

The integral (30) is heavily dominated by a saddle point
near the origin, similar to [71,72]. To the order we are
concerned, the saddle point solves a generalization of the
Fermat-Torricelli problem where each edge is weighted by
Ec
λa

given in (5). The saddle-point value reads

Fλxλyλz ¼ max
W⃗

�Y
a

ðEc
λa
Þd2ld−1sffiffiffi

π
p ð2LwaÞd−22

Kd−2
2
ðEc

λa
LwaÞ

�

¼
�
πR
L

�3ðd−1Þ
2 e−3μL

q̃
d−1
8

q̃nxþnyþnz ½1þOð1=R2Þ�: ð32Þ

Around the saddle point, we take the Gaussian integral; this
is crucial to the order we compute, but corrections to the
Gaussian integral are of order 2 and higher.
We find that the s-wave amplitude agrees with the

open string channel partition function in its leading L
dependence:
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Zs-wave ¼ ðπR=LÞd−3
2
2πde−3μL

3
d
2q̃

d−1
8

×
X
λx;y;z

Cλxλyλzvλxvλyvλz q̃
nxþnyþnz ½1þOð1=R2Þ�:

ð33Þ
By comparing (33) with (25) and (27), we find the cubic
coupling between the three lowest-lying string states 0:

C000 ¼
e−2πMR

2ð2π2=3Þd2
�
1þ ðdþ 2ÞMl2s

36R
þOð1=R2Þ

�
: ð34Þ

We can also identify the coupling between the two lowest-
lying ones and the second-lowest string 1:

C001 ¼
e−2πMR

2ð2π2=3Þd2
�

d − 3

3
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p þ ðdþ 2Þðdþ 21ÞMl2s
108

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
R

þOð1=R2Þ
�
: ð35Þ

At the order we are computing, among the higher string
states there are degeneracies and one cannot distill the
interaction vertices of each state. Instead, one can obtain
average predictions from (27) and (30). At the next order,
which we do not elaborate on here, it is possible to go
further.
One immediate lesson is that the overall strength of the

interaction among closed strings is Cλaλbλc ∼ e−2πMR, which
is essentially the string coupling constant among strings of
length 2πR. It can be interpreted that the cubic interaction
among segments of size ls is e−2πMls , and such a probability
is raised to the power of the number of segments, 2πR=ls.
These estimates should be general and applicable to other
cases, such as excited glueballs [73]. We remark that in
QCD, where strings (flux tubes) are breakable, the EFT
predictions are still reliable as far as the string is con-
cerned [75].
ForM > 0, we see that the interaction is extremely weak

for long closed strings, while for − 1
ls
≲M < 0, the inter-

action becomes strong when R ≫ 1
jMj. We comment that a

negativeM that is parametrically larger than l−1s is ruled out
by perturbative stability and − 1

ls
≲M < 0 leads to strong

couplings between long strings and hence requires further
analysis of unitarity. This is schematically summarized
in Fig. 4.
A central assumption is that when we act with the

Polyakov loop Ω on the vacuum, we create single-string
eigenstates. This assumption appears to be jeopardized
when the cubic coupling is strong. As far as we are aware,
lattice simulations, including the extensive simulations we
referred to in the Introduction, showed no sign that the
Polyakov loop mixes single-string and two-(anti)string
states. Therefore, it follows that − 1

ls
≲M < 0 is strongly

disfavored by unitarity arguments and one is compelled to
suggest M ≥ 0. It remains puzzling that in some large-N
gauge theories negative values of M were reported in [67].
When d ¼ 3 and M ¼ 0, we notice that (27) contains

only even powers of q̃. This is a consequence of a chiral Z2

symmetry of the NGBs. Explicitly, in the open string
channel, this chiral Z2 is a combination of the trans-
formation ∂txi → i∂σxi, ∂σxi → −i∂txi, which is T-duality-
like, and the spatial reflection x2 → x3, x3 → x2. Such a
chiral Z2 symmetry is preserved by the string bulk action
(4) on X, Y, and Z world sheets up to order 2, and at higher
orders it is possible to write an EFT term that violates it.
Note that the chiral Z2 exchanges the Neumann (Dirichlet)
boundary condition in the X2 direction with that of
Dirichlet (Neumann) in the X3 direction. Therefore, from
(18) we find that this chiral Z2 is preserved by the vertex
only when d ¼ 3.
In the closed string channel, the Polyakov operators Ω

create R3 scalars that are charged under the chiral Z2. Let
αi−n (α̃i−n) be the closed string left (right) moving modes’
creation operators at order 0, where n∈Nþ and i ¼ 2, 3.
A generic scalar state is created by acting with ðα−n · α−n0 Þ,
ðα−n · α̃−n0 Þ, and ðα̃−n · α̃−n0 Þ on the ground state.
Obviously, a scalar state is not charged under the reflection,
and the number of αi−n and α̃i−n operators satisfies
m ¼ m̃ mod 2. The transformation ∂txi → i∂σxi, ∂σxi →
−i∂txi when acting on mode operators reads

�
αi−n → −αi−n;
α̃i−n → α̃i−n:

ð36Þ

Therefore, each scalar state under the chiral Z2 acquires
ð−1Þm ¼ ð−1Þm̃, which depends on the number of left
(right) moving mode operators. We conclude that the
s-wave coupling Cλaλbλc vanishes up to order 2 if

mλa þmλb þmλc ¼ 1 mod 2: ð37Þ

FIG. 4. Contact interaction with various M and R. The EFT
breaks down when R≲ ls (left dashed lines) and the perturbative
description fails for long strings if M < 0 (upper dashed line).
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This explains the selection rule we found when d ¼ 3 and
M ¼ 0, where m0 ¼ 0 and m1 ¼ 1. We remark that this
suggests that M is potentially a symmetry-breaking param-
eter in (3þ 1) dimensions.

V. CONCLUSION AND OUTLOOK

In this paper, we demonstrated the open-closed string
duality for a “baryon” configuration, as in Fig. 1. We
claimed that up to order 1, the effective theory has two
parameters: the string tension l−2s and the vertex mass M.
We specified the action and boundary conditions in (16),
(17), (19), and (20).
We showed that in the closed string channel the “baryon”

is mapped to s-wave scattering of closed strings, and we
extracted the universal s-wave couplings (34) and (35).
These couplings have important implications for IR phys-
ics. We found that M < 0 suggests strong coupling and
possible unitarity violation, while M > 0 implies weak
coupling and is stable. Intriguingly, in (3þ 1) dimensions
the interaction is subject to a selection rule, which we argue
is a consequence of a world-sheet chiral Z2 symmetry. We
pointed out that M ≠ 0 in (3þ 1) dimensions breaks this
symmetry and violates the selection rule.
Finally, we list a few important questions.
(1) Nonequilateral configurations: The interaction ver-

tex (31) is independent of the location from which
the closed strings are propagating. This is a trivial
consequence of locality. To test this simple fact, we
must consider the case where the end-point quarks of
the baryon junction are positioned on a nonequi-
lateral triangle, i.e., such that X⃗ ¼ ðLx; 0; 0…; 0Þ,
Y⃗¼ð−Ly

2
;
ffiffi
3

p
Ly

2
;0…;0Þ, and Z⃗¼ð−Lz

2
;−

ffiffi
3

p
Lz
2

;0…;0Þ.
At order 0 and when M ¼ 0, the quantization con-
dition follows from (17) and the rigid condition (16).
For a planar mode it reads

cosðωLxÞ sinðωLyÞ sinðωLzÞ þ cyclic ¼ 0; ð38Þ

while for a vertical mode it reads

sinðωLxÞ cosðωLyÞ cosðωLzÞ þ cyclic ¼ 0: ð39Þ

In the open string channel interpretation (i.e., the
baryon junction channel), the partition function is
evaluated as

Zb ¼
X
ω

e−2πRω; ð40Þ

which is a function of modular parameters

qx;y;z ¼ e−
2π2R
Lx;y;z . On the other hand, in the closed string

channel, all we have to do in (30) is change the points
from which we propagate the closed strings. The
amplitudes vλa andCλaλbλc are insensitive towhere the

strings are coming from, by locality.Hence, the closed
string channel prediction is

Zs-wave ¼
�

3πR
Lx þ Ly þ Lz

�
d−3

2 2πde−3μL

3
d
2ðq̃xq̃yq̃zÞd−124

×

� ðLx þ Ly þ LzÞ2
3ðLxLy þ LyLz þ LzLxÞ

�d
2
−1

×
X
λx;y;z

Cλxλyλzvλxvλyvλz q̃
nλx
x q̃

nλy
y q̃

nλz
z ; ð41Þ

as a function of the dual variables q̃x;y;z ¼ e−
2Lx;y;z

R . We
expect (41) to be identified with (40) following (38)
and (39) through a multivariable modular transforma-
tion. It would be nice to carry this out. On the other
hand, if the X⃗ Y⃗ Z⃗ triangle has an inner angle greater
than 120°, then the Fermat point coincides with the
obtuse vertex, as in [66], and a separate discussion of
the junction condition and operators is necessary.

(2) Chiral Z2 symmetry: It would be interesting to
understand how exactly this symmetry is broken
ifM ¼ 0. In [67] it was suggested thatM ¼ 0 in the
large-N Maldacena-Nunez solution. It would be nice
to understand if the chiral Z2 symmetry we dis-
cussed is always an IR accidental symmetry or if it
could be related to some microscopic symmetry.

(3) Instability: We encountered a perturbative instability
when M ≲ −l−1s . From an renormalization-group
consideration, the end point of the instability cannot
be a point-like junction. It would be interesting to
find if there is a fat junction solution to the full
nonlinear Nambu-Goto theory.

(4) Higher orders and non-s-wave scattering: It is
straightforward to push the precision of this paper
to order 2 and higher. Up to (and including) order 2,
ls andM are the only two parameters of the EFT. We
would like to know if at this order non-s-wave
contact interactions appear.

(5) It would be nice to know the junction mass in Yang-
Mills theories and other similar theories and to test
the theory we have discussed.
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APPENDIX A: GAUGE FIXING

We briefly explain the gauge we use in (15), as it is not
completely standard. First, we notice that diffeomorphism
invariance allows us to choose
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8<
:

X0 ¼ t̃;

X1 ¼ σ̃ þ lsfðσ̃Þx1ðt̃Þ;
Xi ¼ lsxiðt̃; σ̃Þ; for 2 ≤ i ≤ d;

ðA1Þ

where σ̃ ∈ ½0; L�, x1ðt̃Þ is the longitudinal displacement, and
fðσ̃Þ is a smooth monotonic function such that fð0Þ ¼ 1
and fðLÞ ¼ 0.
As in the static gauge, we would like to pick a new

coordinate t ¼ X0 ¼ t̃ and σ ¼ X1 ¼ σ̃ þ lsfðσ̃Þx1ðt̃Þ.
Following the chain rule

∂txi ¼ ∂t̃xi − lsf∂tx1∂σ̃xi;

∂σxi ¼ ð1þ ls∂σ̃fx1Þ−1∂σ̃xi; ðA2Þ
one can verify that the bulk action is as in (4), yet the
domain of integration becomes dynamical, σ ∈ ½lsxðtÞ; L�.

APPENDIX B: GREEN’S FUNCTION
AND REGULARIZATION

The Dedekind η function is defined as

ηðqÞ≡ q
1
24

Y
n∈Nþ

ð1 − qnÞ: ðB1Þ

The Eisenstein series is defined as

E2kðqÞ≡ 1þ 2

ζð1 − 2kÞ
X
n∈Nþ

n2k−1qn

1 − qn
; k∈Nþ: ðB2Þ

Let q ¼ e2πiτ and τ̃ ¼ − 1
τ; we use the following modular

transformation of these functions:

ηðqÞ ¼ ffiffiffiffiffiffiffi
−iτ̃

p
ηðq̃Þ;

E2ðqÞ ¼ −
6i
π
τ̃ þ τ̃2E2ðq̃Þ;

E2kðqÞ ¼ τ̃2kE2kðq̃Þ: ðB3Þ

More practically, we need

logqE2ðqÞ ¼ −12 − log q̃E2ðq̃Þ;
logqE2ð

ffiffiffi
q

p Þ ¼ −24 − 4 log q̃E2ðq̃2Þ: ðB4Þ
We denote the modular parameter as q ¼ e−

2π2R
L , and a

useful infinite sum reads

X
r∈Nþ1

2

X
m∈Z

π2r2

L2

π2r2

L2 þ m2

R2

¼ −
log q
2

X
r∈Nþ1

2

r
1þ qr

1 − qr

¼ −
log q
48

½2E2ðqÞ − E2ð ffiffiffi
q

p Þ�;
X

r∈Nþ1
2

X
m∈Z

m2

R2

π2r2

L2 þ m2

R2

¼ −
X

r∈Nþ1
2

X
m∈Z

π2r2

L2

π2r2

L2 þ m2

R2

¼ log q
48

½2E2ðqÞ − E2ð ffiffiffi
q

p Þ�; ðB5Þ

where we used
P

m∈Z 1 ¼ 1þ 2ζð0Þ ¼ 0.
For the Neumann-Dirichlet boundary condition on

S1
R × ½0; L�, Green’s function reads

G̃ðσ; σ0; τ − τ0Þ ¼ 1

πRL

X
r∈Nþ1

2

X
m∈Z

ei
m
Rðτ−τ0Þ

π2r2

L2 þ m2

R2

× cos

�
rπσ
L

�
cos

�
rπσ0

L

�
: ðB6Þ

The coincident point derivatives of (B6) are

G̃ττðσÞ ¼
1

πRL

X
r∈Nþ1

2

X
m∈Z

m2

R2

π2r2

L2 þ m2

R2

cos2
�
rπσ
L

�
: ðB7Þ

Using (B5), we obtain

Z
σ¼0

dτG̃ττ ¼
2

L

X
r∈Nþ1

2

X
m∈Z

m2

R2

π2r2

L2 þ m2

R2

¼ log q
24L

½2E2ðqÞ − E2ð ffiffiffi
q

p Þ�: ðB8Þ
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