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In the present paper, we study the properties of ϕ-meson longitudinal leading-twist light-cone

distribution amplitude ϕk
2;ϕðx; μÞ by starting from a light-cone harmonic oscillator model for its wave

function. To fix the input parameters, we derive the first ten order ξ moments of ϕk
2;ϕðx; μÞ by using the

QCD sum rules approach under the background field theory. The curves of ϕk
2;ϕðx; μ ¼ 2 GeVÞ tend to

be a single-peak behavior, which is consistent with the latest lattice QCD result. To show how the
twist-3 light-cone distribution amplitudes (LCDAs) affect the results, we consider two scenarios for
the ϕ-meson chiral twist-3 LCDAs ϕ⊥

3;ϕðxÞ and ψ⊥
3;ϕðxÞ, i.e., the ones using the Wandzura-

Wilczek approximation with ϕk
2;ϕðx; μÞ (S1) and the ones using self-consistent conformal expansion

with second-order Gegenbauer moments a22;ϕ in this work (S2). As an application, we derive

the Dþ
s → ϕ transition form factors (TFFs) by using the QCD light-cone sum rules. The TFFs at large

recoil point for those two scenarios are given separately. As for the two TFF ratios γV and γ2, we obtain

γðS1ÞV ¼ 1.755þ0.008
−0.005 , γ

ðS1Þ
2 ¼ 0.852þ0.135

−0.133 , γ
ðS2Þ
V ¼ 1.723þ0.023

−0.021 , and γðS2Þ2 ¼ 0.785þ0.100
−0.104 . After extrapolating

those TFFs to the physically allowable region, we then obtain the transverse, longitudinal, and
total decay widths for semileptonic decay Dþ

s → ϕlþνl. Then the branching fractions are
BðS1ÞðDþ

s → ϕeþνeÞ ¼ ð2.347þ0.342
−0.191 Þ × 10−3, BðS1ÞðDþ

s → ϕμþνμÞ ¼ ð2.330þ0.341
−0.190 Þ × 10−3, BðS2ÞðDþ

s →

ϕeþνeÞ ¼ ð2.367þ0.256
−0.132 Þ × 10−3, and BðS2ÞðDþ

s → ϕμþνμÞ ¼ ð2.349þ0.255
−0.132 Þ × 10−3, which show good

agreement with the data issued by the BESIII, CLEO, and BABAR Collaborations. We finally calculate
Dþ

s → ϕlþνl polarization and asymmetry parameters, which can be measured and tested in future
experiments.

DOI: 10.1103/PhysRevD.110.056017

I. INTRODUCTION

The heavy-to-light semileptonic decay is an ideal plat-
form for exploring the properties of the involved heavy
quark and the light meson and for testing the standard
model (SM). It also presents a remarkable opportunity to
scrutinize lepton flavor universality (LFU) and to explore

the potential manifestations of new physics beyond the SM.
For the Dþ

s -meson semileptonic decay, Dþ
s → ϕlþνl, it is

important because the ϕ meson with JPC ¼ 1−− is con-
structed by the ðss̄Þ component within the valance quark
model with a narrow resonance that can be well isolated
experimentally. Therefore, accurately determining the
branching fraction for Dþ

s → ϕlþνl is crucial for studying
the properties of ϕ and provides a complementary exami-
nation for LFU.
In the early 1990s, the Fermilab E687, E791, CLEO, and

FOCUS Collaborations explored this channel through
photoproduction processes [1–5]. During the past two
decades, the BABAR Collaboration presented the branching
fraction BðDþ

s → ϕlþνlÞ ¼ ð2.61� 0.03� 0.17Þ% in a
relative measurement using a 10 MeV mass requirement
for ϕ → KþK− and taking Dþ

s → KþK−πþ as their refer-
ence mode [6]. In 2015, CLEO Collaboration used their
measured Dþ

s → f0eþνe branching fraction and Flatté
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model-based Monte Carlo simulations to obtain electron
channel branching fraction of Dþ

s → ϕeþνe [7]. In
2017, the BESIII Collaboration reported the Dþ

s →
ϕlþνl branching fraction for muon channels [8].
However, there is a little gap in the branching fractions
between the electron and muon channels. Recently in
2023, BESIII updated the absolute branching fraction for
Dþ

s → ϕμþνμ [9]. Those data give us good chances for
exploring and testing the nonperturbative properties of Dþ

s
and ϕ mesons.
The Dþ

s → ϕ transition is the key component for study-
ing the decay channel Dþ

s → ϕlþνl, which can be decom-
posed into four transition form factors (TFFs) due to the
Lorentz structure of its hadronic matrix element [10].
These TFFs, which incorporate nonperturbative effects
due to the large QCD coupling constant in the low q2

region and the bound state effects in the large q2 region,
have been treated under various approaches. Specifically,
the Dþ

s → ϕ TFFs have been calculated by using the
traditional three-point sum rules (3PSRs) [10,11], the
light-cone sum rules (LCSRs) in the framework of heavy
quark effective field theory (HQEFT) [12,13], the heavy
meson chiral Lagrangians (HMχT) [14], the covariant
quark model (CQM) [15,16], the covariant confining quark
model (CCQM) [17], the covariant light-front quark model
(CLFQM) [18–20], the light-front quark model (LFQM)
[21], the lattice QCD (LQCD) [22–24], the chiral unitary
approach (χUA) [25,26], the relativistic quark model
(RQM) [27], and the symmetry-preserving regularization
of a vector × vector contact interaction (SCI) [28]. Those
approaches are valid in different q2 regions. For example,
the QCD sum rules (QCD SRs) approach, either the LCSR
or the 3PSR, is applicable for the relatively low and
intermediate q2 regions, while the LQCD and the HMχT
are applicable for the large q2 region. Predictions of
heavy-to-light TFFs under various approaches are comple-
mentary to each other [29]. Moreover, it has been pointed
out that it is better to adopt the LCSR approach, instead of
the QCD sum rules approach [30,31], to deal with the
heavy-to-light TFFs [32–35]. The QCD sum rules deals
with the nonperturbative hadron phenomenology by
expanding the correlation function into the QCD vacuum
condensates. Comparing with the QCD sum rules, a two-
point correlation function (correlator) is introduced in the
LCSR approach for the heavy-to-light TFFs, which can be
expanded near the light cone x2 → 0, whose matrix
elements are then parameterized as the light meson’s
light-cone distribution amplitudes (LCDAs) of increasing
twists. Because the LCSR prediction is applicable in a
wider region and can be adapted for all q2 regions via
proper extrapolations, in this paper, we will adopt the
LCSR approach to calculate TFFs. It is noted that the
previous LCSR predictions of the Dþ

s → ϕ TFFs and
their related ratios r2 and rV [13] exhibit significant

discrepancies with the experimental measurements.
Therefore, it is crucial to recalculate them.
In the LCSR, the notion of the LCDAs refers to matrix

elements of nonlocal operators sandwiched between the
hadron state and the vacuum. The LCDAs have direct
physical significance and provide the underlying links
between the hadronic phenomena at small and large
distances. It is worth noting that the heavy-to-light TFFs
at the large recoil point can be typically affected by
Oð10%Þ by the nonasymptotic terms of LCDAs in the
LCSR approach, cf. Refs. [36–40]. Thus, the s-quark mass
effect need to be taken into consideration for a careful study
on the properties of ϕ mesons. Normally, the twist-2 (or,
equivalently, called the leading-twist) LCDA gives domi-
nant contribution in the pseudoscalar meson. The cases are
different in the vector meson in which the twist-3 LCDA
also has large contributions in the TFFs. So the longitudinal
leading-twist and chiral-odd twist-3 ϕ-meson LCDAs are
the focus in this paper. At present, the ϕ-meson leading-
twist LCDA has been calculated by using the QCD SR
[41,42], Dyson-Schwinger equation (DSE) [43], Bethe-
Salpeter wave functions (BSWFs) [44], and the algebraic
model (AM) [45], etc. In 2022, the LCDAs of the
longitudinally and transversely polarized ϕ meson have
been calculated by using the lattice QCD based on the large
momentum effective theory [46]. At present, various
theoretical predictions for the ϕ meson’s leading-twist
LCDAs still exhibit a discrepancy, which also motivates
this work.
Generally, the LCDA can be obtained by integrating over

the transverse momentum dependence of the light-cone
wave function (LCWF). In this paper, wewill first construct
a light-cone harmonic oscillator (LCHO) model for the
ϕ-meson leading-twist LCWF based on the Brodsky-
Huang-Lepage (BHL) prescription [47–49], which will
then be applied to constrain the behavior of ϕ-meson

longitudinal leading-twist LCDA ϕk
2;ϕðx; μÞ. The BHL

prescription constructs the light meson’s LCWF by con-
necting the equal-time wave function in the rest frame and
the wave function in the infinite momentum frame. We will
take two ways (called model I and model II, respectively) to

fix the input parameters of ϕk
2;ϕðx; μÞ, both of which need to

know the moments of ϕk
2;ϕðx; μÞ. For this purpose, we will

calculate the wanted moments by using the QCD SR within
the framework of background field theory (BFTSR). The
key idea of the background field theory is to describe the
nonperturbative effects with the classical background field
satisfying the equation of motion and to describe the
quantum fluctuation on this basis within the framework
of quantum field theory [50–52]. The BFTSR method
provides a systematic description of the vacuum conden-
sates from the field theory point of view and a viable way to
consider the nonperturbative effects. By taking the QCD
background field as the starting point for the QCD sum
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rules, it not only shows a distinct physical picture but also
greatly simplifies the calculation due to its capability of
adopting different gauge conditions for the quantum fluctu-
ations and backgrounds, respectively. More explicitly, the
vacuum expectation values of the background fields well
describe the nonperturbative effects, while the quantum
fluctuations represent the calculable perturbative effects.
The LCDA can reflect the dynamic information of the

hadron internal structure and is the basic parameter of
the hard exclusive process. Normally, the ϕ-meson longi-
tudinal leading-twist LCDA at scale μ is written as a
Gegenbauer polynomial series, e.g.,

ϕk
2;ϕðx;μÞ ¼ 6xð1− xÞ

�
1þ

Xn
n¼2

an2;ϕðμÞC3=2
n ð2x− 1Þ

�
; ð1Þ

where C3=2
n ð2x − 1Þ is the nth-order Gegenbauer polyno-

mial, and an2;ϕðμÞ is the corresponding Gegenbauer
moment. Because of the conservation of G parity, all the
odd Gegenbauer moments vanish, and only the even
Gegenbauer moments are retained. Normally the LCDA
model based on conformal expansion is truncated after the
first few terms, which, however, is not suitable for all cases,
since the higher-order Gegenbauer moments may also
have considerable contributions. Therefore, understanding
more moments is important for accurately determining the
LCDA. However, with the increasing of n, the stability of
the Gegenbauer moment will decline sharply, and the
obtained LCDA will no longer converge, resulting in
inaccurate predictions. Thus, it is helpful to have an
improved ϕ-meson longitudinal twist-2 LCDA model, as
is the purpose of the present paper.
Model I is followed from the usual idea that the LCDA

can be expanded as a Gegenbauer polynomial series, the
nth-order Gegenbauer moment an2;ϕðμÞ will first be deter-

mined by using the moments of ϕk
2;ϕðx; μÞ, and then the

parameters of ϕk
2;ϕðx; μÞ will be fixed by using the follow-

ing equation:

an2;ϕðμÞ ¼
R
1
0 dxϕ

k
2;ϕðx; μÞC3=2

n ð2x − 1ÞR
1
0 dx6xð1 − xÞ½C3=2

n ð2x − 1Þ�2
: ð2Þ

As for model II, the least squares method will be first

employed to fix the nth-order moment hξk;n2;ϕi, which will be
directly adopted for determining the input parameters of

ϕk
2;ϕðx; μÞ by using the definition

hξk;n2;ϕijμ ¼
Z

1

0

dxð2x − 1Þnϕk
2;ϕðx; μÞ; ð3Þ

where μ represents some initial scale.
Furthermore, the ϕ-meson chiral-odd twist-3 LCDAs

ϕ⊥
3;ϕðxÞ and ψ⊥

3;ϕðxÞ also have significant contributions to
the charmed meson semileptonic decays, since they have

large contributions to the related TFFs. Early in 1998, they
were researched by using the simplest but self-consistent
conformal expansion, which satisfies the QCD equations of
motion suggested by Ball and Braun [53]. Meanwhile, the
ϕ⊥
3;ϕðxÞ and ψ⊥

3;ϕðxÞ can be decomposed into several terms,
the twist-2 distribution amplitudes (Wandzura-Wilczek
part), the three-particle distribution amplitudes, and the
quark-mass correction terms. Normally, the three-particle
distribution amplitudes and the quark-mass correction
terms have smaller contributions. Under the Wandzura-
Wilczek (WW) approximation, they have the following
forms [54,55]1:

ϕ⊥ðWWÞ
3;ϕ ðxÞ ¼ 1

2

�Z
x

0

dv
ϕk
2;ϕðvÞ
v̄

þ
Z

1

x
dv

ϕk
2;ϕðvÞ
v

�
;

ψ⊥ðWWÞ
3;ϕ ðxÞ ¼ 2

�
x̄
Z

x

0

dv
ϕk
2;ϕðvÞ
v̄

þ x
Z

1

x
dv

ϕk
2;ϕðvÞ
v

�
: ð4Þ

Here v̄ ¼ ð1 − vÞ and x̄ ¼ ð1 − xÞ. In this paper, we will
take those two forms into consideration.
The remaining parts of the paper are organized as

follows. In Sec. II, we describe the calculation technology
for deriving the moments of the ϕ-meson longitudinal

leading-twist LCDA ϕk
2;ϕðx; μÞ and for the construction of

the LCHO model and the determination of its input
parameters. Then we given the formulas for the Dþ

s → ϕ
TFFs and the transverse, longitudinal, and total decay
widths for the semileptonic decay Dþ

s → ϕlþνl. In
Sec. III, we present the detailed numerical analysis and
discussion. Section IV is reserved for a brief summary.

II. CALCULATION TECHNOLOGY

A. The ξ moments of ϕ-meson longitudinal
leading-twist LCDA

The calculation of the form factors for the heavy-to-light
transition is primarily influenced by the leading-twist
LCDAsof the final state lightmesons. To ensure a reasonable
distribution amplitude, it is necessary to compute the
moments of the corresponding distribution amplitude. The
two-particle distribution amplitudes are defined as matrix
elements of quark-antiquark gauge-invariant nonlocal oper-
ators at lightlike separations. The quark composition of theϕ
meson is ss̄, and its corresponding longitudinal leading-twist

LCDA ϕk
2;ϕðx; μÞ can be defined as [37,38]

h0js̄ðzÞγμsð−zÞjϕðq; λÞi ¼ mϕf
k
ϕ

Z
1

0

dxeiðxz·q−x̄z·qÞqμ

×
e�ðλÞ · z
q · z

ϕk
2;ϕðx; μÞ: ð5Þ

1The WW approximation can be found in Eqs. (4.15) and
(4.16) of Ref. [53].
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The fkϕ is the ϕ-meson longitudinal decay constant. In the

above definitions, q and e�ðλÞ are the momentum and
polarization vector of the ϕ meson, respectively. The
integration variable x corresponds to the momentum fraction
carried by the quark. The polarization vector satisfies the
relationship ðe�ðλÞ · zÞ=ðq · zÞ → 1=mϕ [37]. Performing a
series expansion on both sides of Eq. (5) at the lightlike
separation zμ with z ¼ 0, we obtain

h0js̄ð0Þ=zðiz ·D↔Þnsð0Þjϕðq; λÞi ¼ ðz · qÞnþ1fkϕhξn;k2;ϕijμ; ð6Þ

where the covariant derivative satisfies the relation

ðiz ·D↔Þn ¼ ðiz · D⃗ − iz · D⃖Þn.
In order to determine the sum rules for the moments of

ϕ-meson longitudinal distribution amplitude, we adopt the
following correlator:

Πðn;0Þ
2;ϕ ðz; qÞ ¼ i

Z
d4xeiq·xh0jTfJnðxÞ; J†0ð0Þgj0i

¼ ðz · qÞnþ2Iðn;0Þ2;ϕ ðq2Þ; ð7Þ

where JnðxÞ ¼ s̄ðxÞ=zðiz ·D↔ÞnsðxÞ and J†0ð0Þ ¼ s̄ð0Þ=zsð0Þ
are interpolating currents. Because of the conservation ofG

parity, only even moments of ϕk
2;ϕðx; μÞ are nonzero, i.e.,

n ¼ ð0; 2; 4; 6;…Þ. By combining Feynman rules within

the framework of BFTSR, one can apply the operator
product expansion (OPE) for the correlator (7) in the deep
Euclidean region q2 ≪ 0. Then, the correlator can be
expanded into three terms, including the quark propagators

SsFð0; xÞ, SsFðx; 0Þ and the vertex operators ðiz ·D↔Þn, which
have been given in our previous work [56]. The SsFð0; xÞ
and SsFðx; 0Þ represent s-quark propagators from 0 to x and
x to 0, respectively. When dealing with the Lorentz-

invariant scalar function Πðn;0Þ
2;ϕ ðz; qÞ, the OPE yields a

series of local operators of increasing dimension. The
expectation values of these operators in the nonperturbative
(physical) vacuum are known as vacuum condensates,
whose detailed expression can be found in Refs. [56,57].
On the other hand, one can insert a complete set of hadronic
states intermediated by the ϕ meson with the same JP

quantum number into the correlator and consequently
obtain

ImIðn;0Þ2;ϕ;Hadðq2Þ ¼ πδðq2 −m2
ϕÞðfkϕÞ2hξk;n2;ϕijμhξk;02;ϕi

þ ImIpert2;ϕ ðsÞθðs − sϕÞ; ð8Þ
where sϕ is the continuum threshold. Finally, the explicit
expression for the moments of the distribution amplitudes
can be obtained by equating the OPE results with the
hadronic representation using the dispersion relation and
then performing a Borel transformation. The sum rules for
the moment of the ϕ-meson leading-twist LCDA is given by

ðfkϕÞ2hξk;n2;ϕijμhξk;02;ϕijμ
M2em

2
ϕ=M

2 ¼ 1

π

1

M2

Z
sϕ

4m2
s

dse−s=M
2

ImIpert2;ϕ ðsÞ þ
2mshs̄si
M4

þ hαsG2i
12πM4

1þ nθðn − 2Þ
nþ 1

−
8nþ 1

9

mshgss̄σTGsi
M6

þ hgss̄si
81M6

4ð2nþ 1Þ − hg3sfG3i
48π2M6

nθðn − 2Þ þ
Phg2s q̄qi2
486π2M6

�
−2ð51nþ 25Þ

�
− ln

M2

μ2

�

þ 3ð17nþ 35Þ þ θðn − 2Þ
�
2n

�
− ln

M2

μ2

�
− 25ð2nþ 1Þψ̃ðnÞ þ 1

n
ð49n2 þ 100nþ 56Þ

��

þm2
s

�
−
hαsG2i
6πM6

�
θðn − 2Þðnψ̃ðnÞ − 2Þ − n − 2þ 2n

�
− ln

M2

μ2

��

þ hg3sfG3i
288π2M8

�
−10δn0 þ θðn − 2Þ

�
4nð2n − 1Þ

�
− ln

M2

μ2

�
− 4nψ̃ðnÞ þ 8ðn2 − nþ 1Þ

�

þ θðn − 4Þ½2nð8n − 1Þψ̃ðnÞ − ð19n2 þ 19nþ 6Þ� þ 8nð3n − 1Þ
�
− ln

M2

μ2

�
− ð21n2 þ 53n − 6Þ

�

−
Phg2sqq̄i2
972π2M8

�
6δn0

�
16

�
− ln

M2

μ2

�
− 3

�
þ θðn − 2Þ

�
8ðn2 þ 12n − 12Þ

�
− ln

M2

μ2

�

− 2ð29nþ 22Þψ̃ðnÞ þ 4

�
5n2 − 2n − 33þ 46

n

��
þ θðn − 4Þ½2ð56n2 − 25nþ 24Þψ̃ðnÞ

× ð139n2 þ 91nþ 54Þ� þ 8ð27n2 − 15n − 11Þ
�
− ln

M2

μ2

�
− 3ð63n2 þ 159n − 50Þ

�

þ 4ðn − 1Þ
3

mshs̄si
M6

þ 8n − 3

9

mshgss̄σTGsi
M8

−
4ð2nþ 1Þ

81

hgss̄si2
M8

�
; ð9Þ
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where M is the Borel parameter, which is an important
parameter for determining the LCDA. The QCD SR can
be derived accordingly, and its related vacuum conden-
sates are arranged by their mass dimensions. For example,
the vacuum condensates hs̄si, hαsG2i, hgss̄σTGsi, and
hg3sfG3i represent the dimension-three s quark and s̄-quark
condensate, the dimension-four double-gluon condensate,
the dimension-five quark-gluon mixed condensate, and
the dimension-six triple-gluon condensate, respectively.
hgss̄si2 and hg2s q̄qi2 are two types of dimension-six
four-quark condensates. The imaginary part of the pertur-
bative contribution is

ImIpert2;ϕ ðsÞ ¼
3vnþ1

8πðnþ 1Þðnþ 3Þ
�
½1þ ð−1Þn�ðnþ 1Þ

×
1 − v2

2
þ ½1þ ð−1Þn�

�
; ð10Þ

where v2 ¼ 1–4m2
s=s and ψ̃ðnÞ ¼ ψðnþ1

2
Þ − ψðn

2
Þ þ ln 4.

The zeroth-order derivative of the digamma function is given
by ψðnþ 1Þ ¼ P

n
k¼1 1=k − γE with the Euler constant

γE ¼ 0.577216. Equation (9) indicates that the zeroth-order

ξ moment hξk;02;ϕijμ cannot be normalized in the entire Borel
parameter region due to the truncation of contributions from
the vacuum condensates with dimensions greater than 6. The
following equation is employed to enhance the precision and

rationality of the calculation of the result hξk;n2;ϕijμ [57]:

hξk;n2;ϕijμ ¼
hξk;n2;ϕijμhξk;02;ϕijμjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhξk;02;ϕijμÞ2
q : ð11Þ

Here the squared zeroth-order moment hξk;n2;ϕijμ in the
denominator is obtained by taking n → 0 in Eq. (9), and
its detailed expression is given by

ðhξk;02;ϕijμÞ2 ¼
em

2
ϕ=M

2

ðfkϕÞ2
Z

sϕ

4m2
s

dse−s=M
2 v
8π2

ð3 − v2Þ þ 2mshs̄si
M4

þ hαsG2i
12πM4

−
mshgss̄σTGsi

9M6
þ 4hgss̄si

81M6
þ
Phg2s q̄qi2
486π2M6

×

�
−50

�
− ln

M2

μ2

�
þ 105

�
þm2

s

�hαsG2i
3πM6

−
hg3sfG3i
72π2M8

−
Phg2sqq̄i2
972π2M8

�
8

�
− ln

M2

μ2

�
þ 132

�
−
4

3

mshs̄si
M6

−
mshgss̄σTGsi

3M8
−

4

81

hgss̄si2
M8

�
: ð12Þ

The moments hξk;n2;ϕijμ and the Gegenbauer moments
an2;ϕðμÞ can be related via the following equations [58]:

hξk;22;ϕijμ ¼
1

5
þ 12

35
a22;ϕðμÞ; ð13Þ

hξk;42;ϕijμ ¼
3

35
þ 8

35
a22;ϕðμÞ þ

8

77
a42;ϕðμÞ; ð14Þ

hξk;62;ϕijμ ¼
1

21
þ 12

77
a22;ϕðμÞ þ

120

1001
a42;ϕðμÞ þ

64

2145
a62;ϕðμÞ;

…: ð15Þ

B. The ϕ-meson longitudinal leading-twist LCDA
from the LCHO model

The LCHO model is based on the BHL prescription and
the Melosh-Wigner transformation, where the Melosh-
Wigner transformation relates the light-cone spin state to
the ordinary instant-form spin state wave functions and is
one of the most important ingredients of the light-cone
formalism [59]. In this context, we can construct a light-
cone wave function for the quark-antiquark Fock state in
the light-cone quark model by using the Melosh-Wigner
rotation [60]. The complete light-front wave function is

accomplished by appraising the spin and momentum space
wave functions χΛλ1;λ2ðx;k⊥Þ and ψR

2;ϕðx;k⊥Þ, e.g.,

Ψk
2;ϕðx;k⊥Þ ¼ χΛλ1;λ2ðx;k⊥ÞψR

2;ϕðx;k⊥Þ; ð16Þ

where χΛλ1;λ2ðx;k⊥Þ depends on the ϕ-meson spin projec-
tion. The Fock expansion of the two-particle Fock state for
the ϕ-meson includes two different types of spin configu-
rations: longitudinal (L) and transverse (T), each with
distinct λ1 and λ2. Here λ1 and λ2 represent the helicities
of the quark and antiquark, respectively. Within the light-
front holographic model, the Lorentz-invariant spin struc-
ture of vector mesons is expressed as [61]

χLðTÞλ1;λ2
ðx;k⊥Þ ¼

ūλ1ðkþ;k⊥Þffiffiffi
x

p ðϵΛ · γÞ νλ2ðk
0þ;k0⊥Þffiffiffiffiffiffiffiffiffiffiffi
1 − x

p ; ð17Þ

where ϵΛ is the polarization vector, and k and k0 stand for
the 4-momenta of the quark and the antiquark, respectively.
The longitudinal and transverse polarizations of vector
mesons are given by

ϵL ¼
�
Pþ

MV
;−

MV

Pþ ; 0; 0

�
ϵ∓T ¼ ∓ 1ffiffiffi

2
p ð0; 0; 1;�iÞ; ð18Þ
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where P is the meson momentum andMV is the mass of the
vector meson. The spin wave functions of the pseudoscalar
meson and vector meson are derived from the light-front
holographic model [61] and the light-cone quark model
[62,63]. The spin part of the wave function is determined by
theMelosh-Wigner method, which establishes a connection
between spin states transforming from the instanton form to
the light-front form. For the case of Λ ¼ L, the spin part of
the wave function for the ϕ-meson reads [61]

χLþ;þðx;k⊥Þ ¼ þ ð1 − 2xÞMðkx − ikyÞ
ðMþ 2msÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk2⊥ þms

p
Þ ; ð19Þ

χLþ;−ðx;k⊥Þ ¼ þ msðMþ 2msÞ þ 2k2⊥
ðMþ 2msÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk2⊥ þms

p
Þ ; ð20Þ

χL−;þðx;k⊥Þ ¼ þ msðMþ 2msÞ þ 2k2⊥
ðMþ 2msÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk2⊥ þms

p
Þ ; ð21Þ

χL−;−ðx;k⊥Þ ¼ −
ð1 − 2xÞMðkx þ ikyÞ

ðMþ 2msÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk2⊥ þms

p
Þ ; ð22Þ

where ms is the mass of the constitute s quark in the ϕ
meson and the abbreviation x̄ ¼ ð1 − xÞ is used. This
treatment agrees with the cases of ρ meson due to the
same vector meson spin projection [64]. In the present
paper, our main concern is the longitudinal distribution
amplitude of the vector meson. Thus, we only need to
consider the following spin part of the wave function that
gives sizable contribution to the present case:

χ2;ϕðx;k⊥Þ ¼
msðMþ 2msÞ þ 2k2⊥

ðMþ 2msÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk2⊥ þmsÞ

p ; ð23Þ

whereM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2⊥ þm2

sÞ=ðxx̄Þ
p

is the invariant mass of the
composite system. According to the BHL prescription, the
momentum space wave function of the ϕ meson is [65]

ψR
2;ϕðx;k⊥Þ ¼ Ak

2;ϕφ
k
2;ϕðxÞ exp

�
−

1

8β22;ϕ

�
k2⊥ þm2

s

xx̄

��
;

ð24Þ

where Ak
2;ϕ is the normalization constant, whose value is

primarily calculated by normalizing the wave function. β2;ϕ
is the harmonic parameter and determines the LCWF

transverse behavior. The function φk
2;ϕðxÞ dominates the

longitudinal distribution of the LCDA, which can be
expressed in the following two formulations [66]:

φkðIÞ
2;ϕ ðxÞ ¼ 1þ b22;ϕC

3=2
2 ð2x − 1Þ þ b42;ϕC

3=2
4 ð2x − 1Þ; ð25Þ

φkðIIÞ
2;ϕ ðxÞ ¼ ðxx̄Þα2;ϕ ½1þ B2

2;ϕC
3=2
2 ð2x − 1Þ�: ð26Þ

The first one, denoted as φkðIÞ
2;ϕ ðxÞ, adopts the usual

Gegenbauer expansion. Its model parameters b22;ϕ and
b42;ϕ can be fixed by using the nth-order Gegenbauer
moments an2;ϕðμÞ that have been defined in Eq. (2). To

derive a more accurate representation of ϕk
2;ϕðx; μÞ, it is

necessary to increase the precision of the higher-order
Gegenbauer polynomial. This treatment is discussed in
detail in Ref. [67]. However, due to large coefficients that

exist between hξn;k2;ϕijμ and an2;ϕðμÞ, the reliability of
calculating an2;ϕðμÞ using the QCD SR will decrease with
the increment of the nth-order. Thus, we will also adopt

another model, namely, φkðIIÞ
2;ϕ ðxÞ, to enhance the form of

ϕk
2;ϕðx; μÞ, whose longitudinal part explicitly contains a

factor ðxx̄Þα2;ϕ that is close to the asymptotic form

ϕk
2;ϕðx; μ → ∞Þ ¼ 6xx̄ [68].
By combining the spin and space wave functions, one

can obtain the comprehensive wave function of the ϕ
meson, i.e.,

Ψk
2;ϕðx;k⊥Þ ¼ Ak

2;ϕφ
k
2;ϕðxÞ

msðMþ 2msÞ þ 2k2⊥
ðMþ 2msÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk2⊥ þms

p
Þ

× exp

�
−

1

8β22;ϕ

�
k2⊥ þm2

s

xx̄

��
: ð27Þ

By utilizing the relationship between the ϕ-meson leading-
twist LCDA and the wave function, one can then derive the
expression for the ϕ-meson longitudinal leading-twist
LCDA,

ϕk
2;ϕðx; μÞ ¼

2
ffiffiffi
6

p

fkϕ

Z
jk2⊥j≤μ2

d2k⊥
16π3

Ak
2;ϕφ

k
2;ϕðxÞ

×
msðMþ 2msÞ þ 2k2⊥

ðMþ 2msÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk2⊥ þms

p
Þ

× exp

�
−

1

8β22;ϕ

�
k2⊥ þm2

s

xx̄

��
: ð28Þ

The next step is to determine the four model-dependent

parameters. For Ak
2;ϕ and β2;ϕ, they can be constrained by

the following two conditions:
(i) The normalization of the wave function,

Z
1

0

dx
Z

d2k⊥
16π3

Ψk
2;ϕðx;k⊥Þ ¼

fkϕ
2

ffiffiffi
6

p : ð29Þ

(ii) The probability of finding the lowest Fock state jss̄i
in the ϕ-meson expansion,

Pϕ ¼
Z

1

0

dx
Z

d2k⊥
16π3

jΨk
2;ϕðx;k⊥Þj2: ð30Þ
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In this paper, the probability value is chosen as Pϕ ≈ 0.6,
mainly relying on the prediction for theK mesonPK ≈ 0.52
as proposed by Guo and Huang [65]. Subsequently, the

remaining two parameters, α2;ϕ and B2
2;ϕ for φkðIIÞ

2;ϕ ðxÞ, can
be fitted by equating its ξ moments hξk;n2;ϕijμ to the derived
values give by the QCD sum rules (9). To make their values
more accurately, we shall adopt the ξ moments up to tenth-
order level.

C. The D+
s → ϕl+ νl semileptonic decay width

In the standard model, the matrix element for the
semileptonic decay Dþ

s → ϕlþνl can be written as

MðDþ
s → ϕlþνlÞ ¼

GFffiffiffi
2

p VcsHμLμ; ð31Þ

where GF ¼ 1.1663787ð6Þ × 10−5 GeV−2 is the Fermi
constant and Vcs is the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element for the weak transition c → s.
Hμ and Lμ represent the hadronic transition matrix element
and the leptonic current, respectively, which are defined as
follows:

Hμ ¼ hϕjVμ − AμjDþ
s i;

Lμ ¼ ν̄lγμð1 − γ5Þlþ; ð32Þ

where Vμ ¼ ðq̄γμcÞ and Aμ ¼ ðq̄γμγ5cÞ stand for the flavor-
changing vector and axial-vector currents, respectively. The
leptonic part has a simple structure that can be easily
calculated using the lepton spinors. The transition between
different hadrons is related to bound state effects and
hadronization, which has nonperturbation mechanical char-
acteristics. So the hadronic part is much more complicated
and requires proper nonperturbative treatment within the
QCD theory.
The hadronic matrix element comprises four vectors

involved in the transition, namely, the four momentum and
polarization vectors of the meson, which can be commonly
expressed as various parameterized TFFs. More explicitly,
the hadronic matrix element for Dþ

s → ϕ can be para-
meterized in terms of five TFFs as follows [69]:

hϕðp; λÞjs̄γμð1 − γ5ÞcjDþ
s ðpþ qÞi

¼ −ie�ðλÞμ ðmDþ
s
þmϕÞA1ðq2Þ

þ ið2pþ qÞμ
e�ðλÞ · q

mDþ
s
þmϕ

A2ðq2Þ

þ iqμðe�ðλÞ · qÞ
2mϕ

q2
½A3ðq2Þ − A0ðq2Þ�

− ϵμναβe�ðλÞν qαpβ
2Vðq2Þ

mDþ
s
þmϕ

; ð33Þ

where mDþ
s
and mϕ are masses of Dþ

s and ϕ, respectively,
p ¼ pϕ is the ϕ-meson momentum, q ¼ ðpDþ

s
− pϕÞ is the

momentum transfer, and e�ðλÞ stands for the polarization
vector of the ϕ meson with λ ¼ ð⊥; kÞ, representing its
transverse or longitudinal component, respectively. The
TFFs A1ðq2Þ and A2ðq2Þ are associated with the exchange
of a particle with quantum state JP ¼ 1þ, while the TFF
Vðq2Þ is associated with JP ¼ 1− [70,71]. The TFF A3ðq2Þ
is not independent, which can be expressed as a linear
relation of A1ðq2Þ and A2ðq2Þ, i.e.,

A3ðq2Þ ¼
ðmDþ

s
þmϕÞ

2mϕ
A1ðq2Þ−

ðmDþ
s
−mϕÞ

2mϕ
A2ðq2Þ: ð34Þ

The problem of calculating the decay distribution aside,
the obtained Dþ

s → ϕ TFFs are also linked to the crucial
angle variables and provide helpful information to deter-
mine their magnitudes. All the final state particles, exclud-
ing the neutrino, can be reconstructed with relatively high
efficiency. Four independent kinematic variables character-
ize the semileptonic decay Dþ

s → ϕlþνl, wherein the ϕ
meson will subsequently decay into two pseudoscalar
mesons such as KþK−. The common choices of the four
variables are q2 and the three angles θl, θK , and χ shown in
Fig. 1, respectively. The polar angle θl stands for the angle
between the momentum of the charged lepton in the rest
frame of the intermediate Wþ boson and the direction
opposite to the momentum of the final ϕ meson in the rest
frame of the Dþ

s meson. θK is the angle between the
momentum of the Kþ meson and the center-of-mass
momentum of the KþK− pair. χ is the angle between
the two planes defined by the ðlþνlÞ and ðKþK−Þ pairs,
respectively.
To calculate the differential decay rate for the channel

Dþ
s → ϕlþνl, it is convenient to express the hadronic

matrix element by the helicity amplitudes H�;0;t. Those
helicity amplitudes are Lorentz-invariant functions which
can be formally expressed as the linear combination of the
TFFs as follows:

FIG. 1. The diagram that illustrates the angular configurations
utilized in the calculation of the differential rate for the process
Dþ

s → ϕlþνl. The momenta of lþνl are depicted in the rest
frame of the virtual Wþ boson, while those of KþK− are
represented in the rest frame of the ϕ meson.
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H�ðq2Þ ¼
λ1=2ðm2

Dþ
s
;m2

ϕ; q
2Þ

mDþ
s
þmϕ

� ðmDþ
s
þmϕÞ2

λ1=2ðm2
Dþ

s
;m2

ϕ; q
2ÞA1ðq2Þ

∓Vðq2Þ
�
;

H0ðq2Þ ¼
1

2mϕ

ffiffiffiffiffi
q2

p
�
ðmDþ

s
þmϕÞðm2

Dþ
s
−m2

ϕ − q2ÞA1ðq2Þ

−
λðm2

Dþ
s
;m2

ϕ; q
2Þ

mDþ
s
þmϕ

A2ðq2Þ
�
;

Htðq2Þ ¼
λ1=2ðm2

Dþ
s
;m2

ϕ; q
2Þffiffiffiffiffi

q2
p A0ðq2Þ: ð35Þ

The main difference between the helicity amplitudes and
the usual TFFs lies in the method of decomposition. The γ
structures of the hadronic matrix elements can be decom-
posed into Lorentz-invariant structures by using covariant
decomposition for the TFFs decomposition method, while

the helicity amplitude decomposition method uses the
polarization vector of the off-shell Wþ boson to obtain a
newly combined Lorentz-invariant structure. The use of
helicity amplitudes have some advantages in comparison
to the usual treatment of TFFs [72–75]: (I) Dispersive
bounds on the helicity amplitudes parameterization can be
achieved via the diagonalizable unitarity relations. (II) The
polarized decay widths of Dþ

s → ϕ can be well studied
by using the helicity amplitudes. (III) Since the helicity
amplitudes have a definite spin-parity quantum number, it
is convenient to consider the contribution of the excited
state of the meson in the transition process. (IV) The
polarization and asymmetry parameters of Dþ

s → ϕ can be
accurately determined through the utilization of helicity
amplitudes.
By using the helicity amplitudes, the differential decay

rate for Dþ
s → ϕlþνl with the cascade decay ϕ → KþK−

can be expressed in terms of the above suggested four
kinematic variables as q2, θl, θK , and χ [24], e.g.,

dΓðDþ
s → ϕlþνl;ϕ → KþK−Þ
dq2d cos θKd cos θldχ

¼ 3

8ð4πÞ4G
2
FjVcsj2

jp2jm2
l

m2
Dþ

s

Bðϕ → KþK−Þfsin2θKsin2θljHþðq2Þj2

þ sin2θKsin2θljH−ðq2Þj2 þ 4cos2θKcos2θljH0ðq2Þj2 þ 4cos2θKjHtðq2Þj2
þ sin2θKsin2θl cos 2χHþðq2ÞH−ðq2Þ þ sin 2θK sin 2θl cos 2χHþðq2ÞH0ðq2Þ
þ sin 2θK sin 2θl cos 2χH−ðq2ÞH0ðq2Þ þ 2 sin 2θK sin θl cos χHþðq2ÞHtðq2Þ
þ 2 sin 2θK sin θl cos χH−ðq2ÞHtðq2Þ þ 8cos2θK cos θlH0ðq2ÞHtðq2Þg; ð36Þ

where jp2j ¼ λ1=2ðm2
Dþ

s
; m2

ϕ; q
2Þ=ð2mDþ

s
Þ represents the magnitude of the 3-momentum of the daughter meson in the rest

frame of Dþ
s , and λðx; y; zÞ ¼ ðxþ y − zÞ2 − 4xy is the Källen function. The helicities of the vector meson ϕ and the Wþ

boson must be identical due to the spin-zero nature of the parent meson. The amplitudes for the helicities 0,þ1, and −1 are
proportional to H0ðq2Þ, Hþðq2Þ, and H−ðq2Þ, respectively. Additionally, Htðq2Þ is proportional to 1=

ffiffiffiffiffi
q2

p
and is most

significant at the low q2 region. The detailed dynamics of the hadronic current is described by the variation of these helicity
amplitudes with q2. To obtain the distribution of the polar angle θl, one can integrate Eq. (36) over the angle θK and the
azimuthal angle χ. Detailed processes for the integration can be found in Ref. [17]. The resultant differential decay width
over q2 and cos θl can be expressed as [27]

dΓðDþ
s → ϕlþνlÞ

dq2d cos θl
¼ G2

FjVcsj2
64ð2πÞ3m3

Dþ
s

λ1=2ðm2
Dþ

s
; m2

ϕ; q
2Þ ðq

2 −m2
lÞ2

q2

�
ð1þ cos θlÞHU þ 2sin2θlHL þ 2 cos θlHP

þm2
l

q2
ðsin2θlHU þ 2cos2θlHL þ 2HS − 4 cos θlHSLÞ

�
; ð37Þ

where the ml with l ¼ ðe; μÞ is the lepton mass and the
helicity structure functions Hi are defined as

HU ¼ jHþj2þjH−j2; HL ¼ jH0j2; HP ¼ jHþj2− jH−j2;
HSL¼ReðH0H

†
t Þ; HS ¼ jHtj2: ð38Þ

Based on the helicity amplitudes described above, the
forward-backward asymmetry Al

FBðq2Þ, lepton-side

convexity parameter Cl
Fðq2Þ, and the longitudinal (trans-

verse) polarization of the final charged lepton Pl
LðTÞðq2Þ, as

well as the longitudinal (transverse) polarization fraction of
the final ϕ-meson Fl

LðTÞðq2Þ in the semileptonic decay

Dþ
s → ϕlþνl, are expressed as follows [27]:

Al
FBðq2Þ ¼

3

4

HP − 2δHSL

Htotal
; ð39Þ
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Cl
Fðq2Þ ¼

3

4
ð1 − δÞHU − 2HL

Htotal
; ð40Þ

Pl
Lðq2Þ ¼

ðHU þHLÞð1 − δ
2
Þ − 3δ

2
HS

Htotal
; ð41Þ

Pl
Tðq2Þ ¼ −

3πml

8
ffiffiffiffiffi
q2

p HP þ 2HSL

Htotal
; ð42Þ

Fl
Lðq2Þ ¼

HLð1þ δ
2
Þ þ 3δ

2
HS

Htotal
: ð43Þ

Here, the total helicity amplitude takes the form Htotal ¼
ðHU þHLÞð1þ δ=2Þ þ 3δHS=2 with δ ¼ m2

l=q
2 and

Fl
Tðq2Þ ¼ 1 − Fl

Lðq2Þ. In this paper, the lepton is consid-
ered as l ¼ ðe; μÞ and thus the leptonic mass can be
neglected due to chiral suppression. Subsequently, the
differential decay width for Dþ

s → ϕlþνl can be written
as [13,76,77]

dΓðDþ
s → ϕlþνlÞ
dq2

¼ G2
FjVcsj2

192π3m3
Dþ

s

λ1=2ðm2
Dþ

s
; m2

ϕ; q
2Þq2

× ½jHþj2 þ jH−j2 þ jH0j2�

¼ dΓL

dq2
þ dΓþ

T

dq2
þ dΓ−

T

dq2
: ð44Þ

The above formula indicates that there are three polariza-
tion states for the ϕ meson: one longitudinal state and two
transverse polarization states (right- and left-handed). The
differential decay width for the longitudinally polarized ϕ
meson has the form

dΓL

dq2
¼ G2

FjVcsj2
192π2m3

Dþ
s

λ1=2ðm2
Dþ

s
; m2

ϕ; q
2Þq2

				 1

2mϕ

ffiffiffiffiffi
q2

p

×

�
ðm2

Dþ
s
−m2

ϕ − q2Þðm2
Dþ

s
þmϕÞA1ðq2Þ

−
λðm2

Dþ
s
; m2

ϕ; q
2Þ

m2
Dþ

s
þmϕ

A2ðq2Þ
�				

2

; ð45Þ

and for the transverse differential decay width, we have

dΓ�
T

dq2
¼ G2

FjVcsj2
192π2m3

Dþ
s

λ1=2ðm2
Dþ

s
; m2

ϕ; q
2Þq2

				ðmDþ
s
þmϕÞ

× A1ðq2Þ∓
λ1=2ðm2

Dþ
s
; m2

ϕ; q
2Þ

ðmDþ
s
þmϕÞ

Vðq2Þ
				
2

: ð46Þ

Here the symbols “þ” and “−” denote the right- and left-
handed states, respectively. The combined transverse and
total decay widths are ΓT ¼ Γþ

T þ Γ−
T and Γ ¼ ΓL þ ΓT.

After considering the Dþ
s -meson lifetime and integration

about the differential decay width, we can get the total
branching fractions for Dþ

s → ϕlþνl.

D. The D+
s → ϕ TFFs within the LCSR approach

In this subsection, we adopt the LCSR approach to
calculate the TFFs A0ðq2Þ, A1ðq2Þ, A2ðq2Þ, and Vðq2Þ,
which are associated with the current s̄ðxÞγμð1 − γ5ÞcðxÞ
and have been defined in Eq. (33). We adopt the following
correlation function (correlator) to derive the Dþ

s → ϕ
TFFs:

Πμðp; qÞ ¼ −i
Z

d4xeiq·xhϕðp; λÞjTfjμðxÞ; j†Dþ
s
ð0Þgj0i

¼ Π1e
�ðλÞ
μ − Π2ðe�ðλÞ · qÞð2pþ qÞμ

− Π3ðe�ðλÞ · qÞqμ − iΠVϵ
αβγ
μ e�ðλÞα qβpγ; ð47Þ

where jμðxÞ ¼ s̄ðxÞγμð1 − γ5ÞcðxÞ and j†Dþ
s
ðxÞ ¼ c̄ðxÞ×

ð1 − γ5ÞsðxÞ. To derive the LCSRs of the TFFs, we need
to deal with the above correlator from two aspects. On the
one hand, to deal with the correlator in the spacelike q2

region, we can apply the operator product expansion to
the right-hand side of Eq. (47) near the light cone x2 → 0.
The contributions to OPE can be obtained by contrac-
ting the quark fields to a full c-quark propagator. Processes
for dealing with the OPE part is similar to the case of
B → K� TFFs, which have been given in Ref. [74]. The
interested readers may turn to this reference for detailed
calculation technology. Mainly, the matrix elements of
the nonlocal operators between the vector ϕ meson and
vacuum states can be arranged as the LCDAs with
increasing twists, e.g., leading-twist, twist-3, twist-4
LCDAs, and so on. Contributions from the higher-twist
LCDAs are generally power suppressed from the leading-
twist one, which, however, may have sizable contributions
in certain cases. In our present calculation, we will derive
the LCSRs for the TFFs up to twist-4 accuracy, and up to
twist-4 accuracy, we have

h0js̄ð0ÞγμsðxÞjϕðp; λÞi ¼ mϕf
k
ϕ

�
e�ðλÞ · x
p · x

pμ

Z
1

0

dueiup·x

×

�
ϕk
2;ϕðuÞ þ

m2
ϕx

2

16
ϕk
4;ϕðuÞ

�

−
1

2
xμ

e�ðλÞ · x
ðp · xÞ2m

2
ϕ

×
Z

1

0

dueiup·xḡ3ðuÞ

þ e�ðλÞ⊥μ

Z
1

0

dueiup·xϕ⊥
3;ϕðuÞ

�
;

ð48Þ
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h0js̄ð0Þγμγ5sðxÞjϕðp; λÞi ¼ −
1

4
mϕf

k
ϕεμναβe

�ðλÞ
ν pαxβ

×
Z

1

0

dueiup·xψ⊥
3;ϕðuÞ; ð49Þ

where ḡ3ðuÞ is the combined function for short, e.g.,

ḡ3ðuÞ ¼ ½ψk
4;ϕðuÞ þ ϕk

2;ϕðuÞ − 2ϕ⊥
3;ϕðuÞ�. ϕk

2;ϕðuÞ is the
longitudinal leading-twist LCDA, ϕ⊥

3;ϕðuÞ and ψ⊥
3;ϕðuÞ

are twist-3 LCDAs, and ϕk
4;ϕðuÞ and ψk

4;ϕðuÞ are twist-4
LCDAs, respectively. Contributions from those higher-
twist LCDAs are generally power suppressed and we
directly take the ones suggested in Refs. [37,78].
On the other hand, the correlator (47) in the timelike q2

region can be treated with the hadronic representation,
which is achieved by inserting a complete set of the
intermediate states with the same quantum numbers in
the correlator. By isolating the pole term of the lowest
pseudoscalar Dþ

s meson, we obtain the following repre-
sentation of the correlator from the hadron side:

Πμðp; qÞ ¼
hϕjs̄γμð1 − γ5ÞcjDþ

s ihDþ
s jc̄γ5sj0i

m2
Dþ

s
− ðpþ qÞ2

þ
X
H

hϕjs̄γμð1 − γ5ÞcjDH
s ihDH

s jc̄ð1 − γ5Þsj0i
m2

DH
s
− ðpþ qÞ2 ;

ð50Þ

where hDþ
s jc̄γ5qj0i ¼ im2

Dþ
s
fDþ

s
=ðmc þmsÞ, and fDþ

s
is the

decay constant of the Dþ
s meson. To derive the invariant

amplitudes Π0;1;2;V required in hadronic representation,
we adopt the standard sum rule processes. By substituting
the parameterization of the matrix elements (33) into (50),
we obtain

Πhad
0;1;2;V ½q2; ðpþ qÞ2� ¼

m2
Dþ

s
fDþ

s

mc þms

1

m2
Dþ

s
− ðpþ qÞ2

× C0;1;2;VA0;1;2;Vðq2Þ þ � � � ; ð51Þ

where the symbol “� � �” represents the invariant ampli-
tudes of the high resonance states and the continuum
states. The coefficients C0;1;2;V take the values: C0¼
−2mϕm2

Dþ
s
fDþ

s
=q2, C1¼mDþ

s
þmϕ, C2¼−1=ðmDþ

s
þmϕÞ,

and CV ¼ −2i=ðmDþ
s
þmϕÞ. Then we can write the

invariant amplitudes Πhad
0;1;2;V using the general dispersion

relation [35]

Πhad
0;1;2;V ½q2; ðpþ qÞ2� ¼

Z
∞

tmin

ρ0;1;2;Vðq2; sÞ
s − ðpþ qÞ2 ds; ð52Þ

where possible subtractions have been neglected, and the
concrete expressions of the spectral density ρ0;1;2;Vðq2; sÞ
are given as follows:

ρ0;1;2;Vðq2; sÞ ¼ δðs −m2
Dþ

s
Þ

m2
Dþ

s
fDþ

s

ðmc þmsÞ
C0;1;2;V

× A0;1;2;Vðq2Þ þ ρH0;1;2;Vðq2; sÞ: ð53Þ

The second term in Eq. (53) corresponds to the spectral
density of higher resonances and continuum states, which
can be approximated by invoking the conventional quark-
hadron duality ansatz [31]

ρH0;1;2;Vðq2; sÞ ¼
1

π
ImΠOPE

0;1;2;Vðq2; sÞθðs − s0Þ; ð54Þ

where s0 is the threshold parameter and ImΠOPE
0;1;2;Vðq2; sÞ is

obtained from the imaginary part of the correlator (47)
calculated in the OPE. To suppress the contributions from
the higher excited states and the continuum states, we
apply the usual Borel transformation with respect to the
dispersion integration (52),

Π0;1;2;V ½q2;M2� ¼
Z

∞

tmin

ρ0;1;2;Vðq2; sÞe−s=M2

ds; ð55Þ

where tmin ¼ ðmc þmsÞ2. With the help of Eqs. (53) and
(54), we then obtain

Π0;1;2;V ½q2;M2� ¼
m2

Dþ
s
fDþ

s

ðmc þmsÞ
e
−m2

Dþ
s
=M2

C0;1;2;VA0;1;2;Vðq2Þ

þ 1

π

Z
∞

s0

ImΠOPE
0;1;2;Vðq2; sÞe−s=M

2

ds: ð56Þ

Finally, by equating the correlators within different
q2 regions yield the desired LCSRs for the Dþ

s → ϕ
TFFs, e.g.,

A1ðq2Þ ¼
2mcðmc þmsÞmϕf

k
ϕ

m2
Dþ

s
ðmDþ

s
þmϕÞfDþ

s

�Z
1

u0

du exp

�m2
Dþ

s
− sðuÞ
M2

��
1

u
ϕ⊥
3;ϕðuÞ −

m2
ϕ

u2M2
Ḡ3ðuÞ

�
þm2

ϕ

× exp

�m2
Dþ

s
− sðuÞ
M2

�
Ḡ3ðuÞ

q2 −m2
c − u2m2

ϕ

				
u→u0

�
; ð57Þ
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A2ðq2Þ ¼
2mcðmc þmsÞðmDþ

s
þmϕÞmϕf

k
ϕ

m2
Dþ

s
fDþ

s

�Z
1

u0

du
M2

exp

�m2
Dþ

s
− sðuÞ
M2

��
1

u2
Φk

2;ϕðuÞ þ
m2

cm2
ϕ

4u4M4
Φk

4;ϕðuÞ

−
Φ⊥

3;ϕðuÞ
u2

þ m2
ϕ

u2M2
Ḡ3ðuÞ

�
þ exp

�m2
Dþ

s
− sðuÞ
M2

�� Φk
2;ϕðuÞ

q2 −m2
c − u2m2

ϕ

m2
cm2

ϕ

þ
�

m2
c − q2

ðq2 −m2
c − u2m2

ϕÞ5
ðm2

c − 2u2m2
ϕ − q2ÞΦk

4;ϕðuÞ þ
u3m2

cm4
ϕ

ðq2 −m2
c − u2m2

ϕÞ4
d
du

Φk
4;ϕðuÞ

−
u2m2

cm2
ϕ

4ðq2 −m2
c − u2m2

ϕÞ3
d2

d2u
Φk

4;ϕðuÞ
�
−
�

2u3m2
ϕ

ðq2 −m2
c − u2m2

ϕÞ3
Ḡ3ðuÞ þ

u2

ðq2 −m2
c − u2m2

ϕÞ2
d
du

Ḡ3ðuÞ
�

þ Φ⊥
3;ϕðuÞ

q2 −m2
c − u2m2

ϕ

�				
u→u0

�
; ð58Þ

A0ðq2Þ ¼ A3ðq2Þ þ
q2mcðmc þmsÞmϕf

k
ϕ

m2
Dþ

s
fDþ

s

�Z
1

u0

du
M2

exp

�m2
Dþ

s
− sðuÞ
M2

��
1

u2
Φk

2;ϕðuÞ −
m2

cm2
ϕ

4u4M4
Φk

4;ϕðuÞ

−
Φ⊥

3;ϕðuÞ
u2

−
ð2 − uÞm2

ϕ

u2M2
Ḡ3ðuÞ

�
þ exp

�m2
Dþ

s
− sðuÞ
M2

��
1

q2 −m2
c − u2m2

ϕ

Φk
2;ϕðuÞ

þ
�

m2
c − q2

ðq2 −m2
c − u2m2

ϕÞ5
m2

cm2
ϕðm2

c − 2u2m2
ϕ − q2ÞΦk

4;ϕðuÞ þ
u3m2

cm4
ϕ

ðq2 −m2
c − u2m2

ϕÞ4
d
du

Φk
4;ϕðuÞ

−
u2m2

cm2
ϕ

4ðq2 −m2
c − u2m2

ϕÞ3
d2

d2u
Φk

4;ϕðuÞ
�
þ
�
2
ðm2

c þ 3u2m2
ϕ − q2Þ − u3m2

ϕ

ðq2 −m2
c − u2m2

ϕÞ3
Ḡ3ðuÞ þ uð2 − uÞ

×
1

ðq2 −m2
c − u2m2

ϕÞ2
d
du

Ḡ3ðuÞ
�
þ Φ⊥

3;ϕðuÞ
q2 −m2

c − u2m2
ϕ

�				
u→u0

�
; ð59Þ

Vðq2Þ ¼ mcðmc þmsÞðmDþ
s
þmϕÞmϕf

k
ϕ

2m2
Dþ

s
fDþ

s

�Z
1

u0

du exp

�m2
Dþ

s
− sðuÞ
M2

�
ψ⊥
3;ϕðuÞ
u2M2

− exp

�m2
Dþ

s
− sðuÞ
M2

�

×
1

q2 −m2
c − u2m2

ϕ

ψ⊥
3;ϕðuÞ

				
u→u0

�
; ð60Þ

where sðuÞ ¼ ½m2
c − ūðq2 − um2

ϕÞ�=u and u0 ¼ ðq2 − s0 þ
m2

ϕ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2 − s0 þm2

ϕÞ2 − 4m2
ϕðq2 −m2

cÞ
q

Þ=ð2m2
ϕÞ with

ū ¼ 1 − u. Here, two simplified distribution amplitudes
(DAs) are defined as

Φk
2;ϕðuÞ ¼

Z
u

0

dvϕk
2;ϕðuÞ; ð61Þ

Ḡ3ðuÞ ¼
Z

u

0

dv
Z

v

0

dwḡ3ðwÞ: ð62Þ

The helicity amplitudes H�;0;t and the total and differential
decay widths can be calculated once the above TFFs have
been determined.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Input parameters

To do the numerical analysis on the properties of
ϕ-meson longitudinal leading-twist LCDA and Dþ

s → ϕ
TFFs, the values of parameters are taken as follows.
The ϕ-meson mass and decay constant are mϕ ¼ 1.019

and fkϕ ¼ 0.231� 0.004 GeV [37], respectively. The
charm-quark current mass mcðm̄cÞ ¼ 1.27� 0.02 GeV,
the s-quark current mass msð2 GeVÞ ¼ 0.093þ0.011

−0.005 GeV,
and the Dþ

s -meson mass and decay constant are
mDþ

s
¼ 1.968 [79] and fDþ

s
¼ 0.256� 0.004 GeV [80].

When calculating the moments of the distributed ampli-
tude, we also need to know the values of nonperturbative
vacuum condensates up to six dimensions, which can be
read from Ref. [66]. The renormalization scale is set
as μk ¼ ðm2

Dþ
s
− m̄2

cÞ1=2 ≈ 1.5 GeV.
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Furthermore, we also need to know the values of
the nonperturbative vacuum condensates up to dimension
six [66],

hss̄i ¼ ð−1.789þ0.168
−0.084Þ × 10−2 GeV3;

hgsq̄qi2 ¼ ð2.082þ0.734
−0.697Þ × 10−3 GeV6;

hgss̄σTGsi ¼ ð−1.431þ0.139
−0.076Þ × 10−2 GeV5;

hg2s q̄qi2 ¼ ð7.420þ2.614
−2.483Þ × 10−3 GeV6;

hαsG2i ¼ 0.038� 0.011 GeV4;

hg3sfG3i ≈ 0.045 GeV6;X
hg2s q̄qi2 ¼ ð1.891þ0.665

−0.633Þ × 10−2 GeV6: ð63Þ

The ratio κ ¼ hss̄i=hqq̄i ¼ 0.74� 0.03 is given in
Ref. [81]. To ensure the consistency of the calculation,
all vacuum condensates and quark masses should be
evolved from some hadronic scale μ0 that is of order
Oð1 GeVÞ to the required renormalization scale by using
the renormalization group equation, e.g., [82–85],

m̄sðμÞ ¼ m̄sðμ0Þ
�
αsðμ0Þ
αsðμÞ

�
4=β0

;

hqq̄iðμÞ ¼ hqq̄iðμ0Þ
�
αsðμ0Þ
αsðμÞ

�
−4=β0

;

hgsq̄qi2ðμÞ ¼ hgsq̄qi2
�
αsðμ0Þ
αsðμÞ

�
−2=ð3β0Þ

;

hgsq̄σTGqiðμÞ ¼ hgsq̄σTGqiðμ0Þ
�
αsðμ0Þ
αsðμÞ

�
−2=ð3β0Þ

;

hg2s q̄qi2ðμÞ ¼ hg2s q̄qi2ðμ0Þ;
hαsG2iðμÞ ¼ hαsG2iðμ0Þ;

hg3sfG3iðμÞ ¼ hg3sfG3iðμ0Þ: ð64Þ

Additionally, the evolution equation of the Gegenbauer
moments is

an2;ϕðμÞ ¼ an2;ϕðμ0Þ
�
αsðμÞ
αsðμ0Þ

�
γn=2β0

; ð65Þ

where β0 ¼ 11 − 2=3nf, with nf being the number of
active flavors. The one-loop anomalous dimension γn
can be expressed in two ways: longitudinal γkn and trans-
verse γ⊥n . In the context, we primarily utilize the longi-
tudinal one-loop anomalous dimension to satisfy the
following equation [37]:

γkn ¼ 8CF

�
ψðnþ 2Þ þ γE −

3

4
−

1

2ðnþ 1Þðnþ 2Þ
�
; ð66Þ

where CF ¼ 4=3. Using Eq. (65) and the linear relation-

ship among the ξ moments hξk;n2;ϕijμ and the Gegenbauer

moments an2;ϕðμÞ, one can derive the ξ moments at any
scale μ.

B. Determination of ϕ-meson leading-twist LCDA

Two crucial parameters need to be established when
determining the moments of LCDA within the framework
of BFTSR. Within an appropriate Borel window, the
zeroth-order Gegenbauer moment is normalized to deter-
mine the continuum threshold, namely, sϕ ¼ 2.1 GeV2.
When determining the Borel parameters, it is necessary
for the contributions from the continuum states and the
six-dimensional condensates to be sufficiently small.
Numerically, we have found that reasonable Borel windows
can be achieved by constraining the contributions from the
continuous states for the first five moments as 20%, 25%,
30%, 35%, and 40%, respectively; and the contributions
from the six-dimensional condensation for all moments are
no more than 5%.
As a conservative prediction, we stipulate that the

variations of hξk;n2;ϕijμ within the Borel window should be
less than 10%. Figure 2 shows how the first five nonzero
moments of ϕ-meson longitudinal leading-twist LCDA at
μ ¼

ffiffiffiffiffiffiffi
M2

p
GeV change with the Borel parameter M2. The

shaded bands represent the corresponding Borel windows,
each falling within the region of ½1.0; 5.0� GeV2. At the
scale μ0 ¼ 1 GeV, we have

hξk;22;ϕijμ0 ¼ 0.199� 0.010; ð67Þ

hξk;24;ϕijμ0 ¼ 0.086� 0.006; ð68Þ

hξk;26;ϕijμ0 ¼ 0.049� 0.004; ð69Þ

1 2 3 4 5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

FIG. 2. Moments of the leading-twist LCDA hξk;n2;ϕijμ¼ ffiffiffiffiffi
M2

p up to
n ¼ ð2; 4; 6; 8; 10Þ-order level versus the Borel parameter M2.
The shaded bands stand for the corresponding Borel windows.
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hξk;28;ϕijμ0 ¼ 0.032� 0.003; ð70Þ

hξk;210;ϕijμ0 ¼ 0.022� 0.003: ð71Þ

Using the relationships (13)–(15), … among hξk;n2;ϕijμ and
an2;ϕðμÞ, the values of an2;ϕðμÞ at the scale μ0 ¼ 1 GeV can
be obtained accordingly. By applying the evolution equa-

tion, the values of hξk;n2;ϕijμ and an2;ϕðμÞ can be obtained at
any scale. Using those values together with the constraints
listed in previous section, we are ready to fix the ϕ-meson
longitudinal leading-twist LCDA at any scales.
We then present the ϕ-meson leading-twist LCDA in

Fig. 3. As a comparison, we have displayed the results
derived from the QCD SR [41], DSE [43], BSWF [44], AM
[45], and lattice QCD [46] approaches in Fig. 3. For easy
comparison, all the curves are for μ ¼ 2 GeV. When
μ ¼ 2 GeV, the corresponding input parameters for our
present models I and II are shown in Table I. For example,
when μ ¼ 2 GeV, the corresponding input parameters for

our present models I and II are AkðIÞ
2;ϕ ¼ 11.508 GeV−1,

βðIÞ2;ϕ ¼ 1.212 GeV, b22;ϕ ¼ 0.061, b42;ϕ ¼ 0.020, and

AkðIIÞ
2;ϕ ¼ 2.515 GeV−1, α2;ϕ ¼ −0.940, B2

2;ϕ ¼ −0.149,

βðIIÞ2;ϕ ¼ 1.207 GeV, respectively. For convenience, Table I
displays the model parameters under three typical scales,
e.g., μ ¼ 1, 1.5, and 2 GeV, respectively. The usual
asymptotic behavior has also been presented in Fig. 3.
Previous QCD SR calculation prefers a double humped
behavior [41]. In previous QCD sum rule analysis [41], the
leading-twist LCDA of the ϕ meson was fixed by its

analogy with the K� meson, in which the light quark q was
simply replaced by the strange quark s as an approxima-
tion. Using this approximation, Ref. [41] yielded a LCDA
with a double-peak behavior; it had limitations in terms of
accuracy. At present, we adopt a more rigorous treatment
and take into account the s-quark mass effects throughout
the calculations. Figure 3 shows that our present model I
and model II are close in shape and both prefer the
asymptotic form, but with different end point behaviors;
since model II shows better end point behavior and is more
precise, we adopt model II to do the calculation. Generally,
the heavy-to-light TFFs can be dealt with by using the kT
factorization approach [86,87], according to previous
experiences on the B → π or B → ρ TFFs [29,73]; by
using this way to construct the light meson’s LCDA, the
end point singularity for the heavy-to-light meson tran-
sitions can also be greatly improved. Numerically, we have
found that theDþ

s → ϕ TFFs and hence the related physical
observables are almost the same for those two models. Such
single-peak behavior is also consistent with the predictions
of the lattice QCD, DSE, BSWF, AM approaches. Thus, in
the following discussions, we will adopt model II for our
discussion.
As mentioned above, the typical scale for the Dþ

s → ϕ
TFFs is μk ≈ 1.5 GeV. For later convenience, we give

the fitting parameters for ϕk
2;ϕðx; μÞ at the scale μk in

Table I, which gives AkðIIÞ
2;ϕ ¼ 5.808 GeV−1, α2;ϕ ¼ −0.650,

B2
2;ϕ ¼ −0.110, and βðIIÞ2;ϕ ¼ 0.989 GeV, etc. Here we have

implicitly set the s-quark constituent quark mass
ms ¼ 370 MeV, which is given under the invariant meson
mass scheme [88,89]. Under the spin-averaged meson
mass scheme, Refs. [90,91] suggest that ms ¼ 450 MeV.
If using this value, we observe that the input parameters
will be changed accordingly, which, however, slightly

changes the shape of ϕk
2;ϕðx; μÞ and negligibly affects

the magnitude of the Dþ
s → ϕ TFFs. So we will adopt

ms ¼ 370 MeV to do our calculations, which also results
in a higher goodness of fit up to 99.6%. Practically, the
probability magnitude Pχ2ðPχ2 ∈ ½0; 1�Þ is employed to

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.4

0.8

1.2

1.6

FIG. 3. Model I and II ϕ-meson longitudinal leading-twist

LCDA ϕk
2;ϕðx; μÞ at the scale μ ¼ 2 GeV. As a comparison, the

results derived from the QCD SR [41], DSE [43], BSWF [44],
AM [45], lattice QCD [46] approaches have been presented. The
usual asymptotic behavior [68] for μ → ∞ is also presented.

TABLE I. Model I and II LCHO parameters for ϕ-meson
longitudinal twist-2 LCDA with the factorization scale μ ¼
ð1.0; 1.5; 2.0Þ GeV for ms ¼ 370 MeV, respectively.

μ (GeV) AkðIÞ
2;ϕ ðGeV−1Þ βðIÞ2;ϕ (GeV) b22;ϕ b42;ϕ

1.0 27.509 0.814 0.020 0.044
1.5 16.768 0.992 0.051 0.033
2.0 11.508 1.212 0.061 0.020

μ (GeV) AkðIIÞ
2;ϕ ðGeV−1Þ βðIIÞ2;ϕ (GeV) α2;ϕ B2

2;ϕ

1.0 10.469 0.813 −0.590 −0.110
1.5 5.808 0.989 −0.650 −0.110
2.0 2.515 1.207 −0.940 −0.149
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judge the goodness of fit [79]; when its value is closer to 1,
a better fit is assumed to be achieved. To illustrate the
relationship more clearly for the combined magnitudes
of α2;ϕ and B2

2;ϕ with the goodness-of-fit Pχ2 , we present
the allowable regions for the combined parameters α2;ϕ
and B2

2;ϕ versus the goodness-of-fit Pχ2 in Fig. 4. In Fig. 4,
the darker shaded band represents a better goodness of fit.
It can be observed that, as the goodness of fit goes up,
the allowable range for the combined parameters
goes down.
With the resultant ϕ-meson longitudinal leading-twist

LCDA, we can get the two ϕ-meson twist-3 LCDA ϕ⊥
3;ϕðxÞ

and ψ⊥
3;ϕðxÞ through the WW approximate relationship

from Eq. (4). For convenience, we call it scenario 1 (S1).
Meanwhile, there are also classical conformal expressions
for the twist-3 LCDAs that correspond to the simplest self-
consistent approximation suggested by Refs. [53,92].2 In
the two expressions, the second-order Gegenbauer moment
a22;ϕ is one of the important parameters. So for scenario 2
(S2), we will consider the newly a22;ϕ ¼ −0.002 calculated
within BFTSR in this paper. In order to have a clear look at
the forms of twist-3 LCDAwith S1 and S2, we present the

curves in Fig. 5(a). We have found that both ϕ⊥ðS1Þ
3;ϕ ðxÞ and

ϕ⊥ðS2Þ
3;ϕ ðxÞ exhibit single-peak behavior, and ψ⊥ðS2Þ

3;ϕ ðxÞ is
consistent with the behavior predicted in Ref. [42].

Although the curves of ψ⊥ðS1Þ
3;ϕ ðxÞ and ψ⊥ðS2Þ

3;ϕ ðxÞ differ
significantly, their impacts on the final TFFs are consistent
with each other.

Furthermore, the detailed expressions of twist-4 LCDAs

ϕk
4;ϕðxÞ, ψk

4;ϕðxÞ and related parameter values we used are
coming from Ref. [53]. The curves are given in Fig. 5(b).

C. The D +
s → ϕ TFFs

The continuum threshold s0 and the Borel parameterM2

are two important input parameters for the LCSR analysis
of the Dþ

s → ϕ TFFs. Usually, the continuum threshold s0
is taken as the value that is close to the squared mass of the
first excited state of Dþ

s . As a conservative prediction, we
set sA0

0 ¼ sA1

0 ¼ sA2

0 ¼ sV0 ¼ 6.70ð25Þ GeV2 to do our dis-
cussion, whose central value is set by Dþ

s0ð2590Þ [79].
The Borel parameter has to be chosen within the certain
“window” to ensure the best stability of the physical results.
The requirement for selecting stable window is as follows:
the Borel parameter can not be excessively large, as higher
resonance and continuum state contributions cannot be
effectively suppressed; simultaneously, they should not be

–0.2 –0.1 0 0.1 0.2 0.3

–2.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

FIG. 4. The allowable regions for the combined parameters α2;ϕ
and B2

2;ϕ versus the goodness-of-fit Pχ2 for the case of s-quark
constituent quark mass ms ¼ 370 MeV.

FIG. 5. (a) The behavior of ϕ-meson chiral-odd twist-3 LCDAs
ϕ⊥
3;ϕðxÞ and ψ⊥

3;ϕðxÞ with S1 and S2 cases. (b) Curves for

ϕ-meson chiral-odd twist-4 LCDAs ψk
4;ϕðxÞ and ϕk

4;ϕðxÞ.

2The detailed expressions can be seen in Eqs. (39) and (40) of
Ref. [92].
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too small, as the truncated OPE would fail [38]. Therefore,
we chose a slightly flatter section of the Borel window and

the determined Borel parameters are M2ðS1Þ
V ¼M2ðS2Þ

V ¼
2.7ð1Þ,M2ðS1Þ

A0
¼M2ðS2Þ

A0
¼2.5ð2Þ,M2ðS1Þ

A1
¼2.0ð2Þ,M2ðS2Þ

A1
¼

2.2ð2Þ, M2ðS1Þ
A2

¼ 2.15ð1Þ, and M2ðS2Þ
A2

¼ 2.2ð1Þ GeV2,
respectively. Using those parameters and the LCSRs (57)–
(60), we calculate theDþ

s → ϕ TFFs and give their values at
the large recoil point, i.e., q2 ¼ 0 GeV2 in Table II, in which
the results given by several groups have also been presented.
The error of the TFFs end point value for S1 and S2 is
between 2% and 9%. The predicted TFFs Vð0Þ, A0ð0Þ,
A1ð0Þ, andA2ð0Þ show variations across different theoretical
groups. Our predictions indicate a high level of consistency
between the TFFs Vð0Þ and the results from LQCD(2011),
whereasA1ð0Þ andA0ð0Þ exhibit smaller values compared to
those obtained in LQCD(2011), and A2ð0Þ is large.
Then, two ratios of theDs → ϕ TFFs are usually studied,

which are defined as

γV ¼ Vð0Þ
A1ð0Þ

; γ2 ¼
A2ð0Þ
A1ð0Þ

: ð72Þ

Our predicted values of γV and γ2 are given in Table III.
Additionally, we have included results from other theo-
retical groups for comparison, including LQCD [22–24],
LCSR [13], HQEFT [12], HMχT [14], CQM [15], 3PSR
[10], CLFQM [18,19], LFQM [21], CCQM [17], RQM
[27], and SCI [28]. We have also included results from
different experimental collaboration groups: PDG [79],
BESIII(2023) [9], BABAR [6], and FOCUS [5]. Table III

also shows that our numerical results of the two ratios fall
within the error range of LQCD(2013), BESIII(2023),
and PDG.
We present the Dþ

s → ϕ TFFs at the large recoil region
q2 ¼ 0 in Table IV, in which the contribution from the

TABLE II. The predictions for the Dþ
s → ϕ TFFs Vð0Þ, A0ð0Þ,

A1ð0Þ, and A2ð0Þ at the large recoil point q2 ¼ 0 within
uncertainties coming from each input parameter for S1 and S2
cases. Meanwhile, we also listed the theoretical predictions as a
comparison.

Vð0Þ A0ð0Þ A1ð0Þ A2ð0Þ
This work (S1) 0.902þ0.040

−0.024 0.560þ0.025
−0.021 0.514þ0.024

−0.016 0.438þ0.093
−0.080

This work (S2) 0.882þ0.040
−0.036 0.596þ0.025

−0.020 0.512þ0.030
−0.020 0.402þ0.078

−0.067

LQCD(2001) [22] 0.85(14) 0.63(2) 0.63(2) 0.62(78)
LQCD(2011) [23] 0.903(67) 0.686(17) 0.594(22) 0.401(80)
LQCD(2013) [24] 1.059(124) 0.706(37) 0.615(24) 0.457(78)
HQEFT [12] 0.778þ0.057

−0.062 −0.757þ0.029
−0.039 0.569þ0.046

−0.049 0.304þ0.021
−0.017

HMχT [14] 1.10 1.02 0.61 0.32
CQM [15] 1.10 0.73 0.64 0.47
3PSR [10] 1.21(33) 0.53(12) 0.55(15) 0.59(11)
CLFQM(2008) [18] 0.91 0.62 0.61 0.58
CLFQM(2011) [19] 0.98 0.72 0.69 0.57
LFQM [21] 1.24 0.71 0.77 0.66
LCSR [13] 0.70(10) 0.53(9) 0.54(9) 0.57(9)
CCQM [17] 0.91 0.68 0.68 0.67
RQM [27] 0.999 0.713 0.643 0.492
SCI [28] 1.00 0.66 0.61 0.44

TABLE III. Predictions for the ratio γV and γ2 of Dþ
s → ϕ

transition within uncertainties for S1 and S2 cases. Meanwhile,
theoretical and experimental results are also listed here as a
comparison.

γV γ2

This work (S1) 1.755þ0.008
−0.005 0.852þ0.135

−0.133

This work (S2) 1.723þ0.023
−0.021 0.785þ0.100

−0.104

PDG [79] 1.80� 0.08 0.84� 0.11
BESIII(2023) [9] 1.58� 0.17� 0.02 0.71� 0.14� 0.02
BABAR [6] 1.807� 0.046� 0.065 0.816� 0.036� 0.030
FOCUS [5] 1.549� 0.250� 0.148 0.713� 0.202� 0.284
LQCD(2001) [22] 1.37(7) 0.98(8)
LQCD(2011) [23] 1.52(12) 0.68(12)
LQCD(2013) [24] 1.72(21) 0.74(12)
HQEFT [12] 1.37þ0.024

−0.021 0.53−0.010−0.006

HMχT [14] 1.80 0.52
CQM [15] 1.72 0.73
3PSR [10] 2.20(85) 1.07(43)
CLFQM(2008) [18] 1.49 0.95
CLFQM(2011) [19] 1.42 0.83
LFQM [21] 1.61 0.86
LCSR [13] 1.19(23) 1.06(24)
CCQM [17] 1.34(27) 0.99(20)
RQM [27] 1.56 0.77
SCI [28] 1.64 0.72

TABLE IV. Dþ
s → ϕ TFFs at the large recoil region q2 ¼ 0 for

S1 and S2 cases, in which the twist-2, 3, 4 LCDA contributions
are presented separately.

VðS1Þðq2Þ AðS1Þ
0 ðq2Þ AðS1Þ

1 ðq2Þ AðS1Þ
2 ðq2Þ

Φk
2;ϕðxÞ � � � −0.785 � � � 2.075

ϕ⊥ðS1Þ
3;ϕ ðxÞ � � � 1.409 0.473 −2.049

ψ⊥ðS1Þ
3;ϕ ðxÞ 0.902 � � � � � � � � �

Φk
4;ϕðxÞ � � � −0.159 � � � 0.550

Ḡ3ðxÞ � � � 0.095 0.041 −0.138
Total 0.902 0.560 0.514 0.438

VðS2Þðq2Þ AðS2Þ
0 ðq2Þ AðS2Þ

1 ðq2Þ AðS2Þ
2 ðq2Þ

Φk
2;ϕðxÞ � � � −0.785 � � � 2.007

ϕ⊥ðS2Þ
3;ϕ ðxÞ � � � 1.445 0.475 −1.986

ψ⊥ðS2Þ
3;ϕ ðxÞ 0.882 � � � � � � � � �

Φk
4;ϕðxÞ � � � −0.159 � � � 0.512

Ḡ3ðxÞ � � � 0.095 0.037 −0.131
Total 0.882 0.596 0.512 0.402
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LCDAs with various twist structures are presented.
Table IV shows that the contribution of Vðq2Þ is entirely
derived from the twist-3 LCDA, and the contribution of
A1ðq2Þ mainly comes from the twist-3 LCDA and Ḡ3ðxÞ,

while the main contributions of A2ðq2Þ and A0ðq2Þ are from
the twist-2 and twist-3 LCDAs. In comparison, the con-
tributions of twist-4 LCDA and Ḡ3ðxÞ are relatively small.
From this, it can be observed that the twist-3 LCDA is also
quite significant.
The LCSR approach is applicable in low and intermedi-

ate q2 regions, e.g., q2 ∈ ½0; 0.54 GeV2�, and we need to
extrapolate the TFFs to all allowable physical regions so as
to derive the wanted values for the physical observables
such as the decay widths and so on. In the present paper, we
adopt the approach of simplified series expansion (SSE)
[72,93] to do the extrapolation. One of the advantages of
this parametrization is the simplicity to translate the near-
threshold behavior of the form factors into a useful
constraint on the expansion coefficients.
So the TFFs take the following form:

Fiðq2Þ ¼
1

1 − q2=m2
R�;i

X2
k¼1

αk;izkðt; t0Þ: ð73Þ

TABLE V. The masses of low-lyingDs resonances, coefficients
α1;i, α2;i, and Δi of TFFs Vðq2Þ, A0ðq2Þ, A1ðq2Þ, and A2ðq2Þ for
S1 and S2 cases, respectively. All the input parameters have been
set to be their central values.

VðS1Þð0Þ AðS1Þ
0 ð0Þ AðS1Þ

1 ð0Þ AðS1Þ
2 ð0Þ

mR�;i 2.1121 2.4595 2.4595 2.4595
α1;i −11.272 −3.395 −0.605 −5.136
α2;i 301.760 111.495 53.470 166.585
Δi 0.064% 0.045% 0.039% 0.063%

VðS2Þð0Þ AðS2Þ
0 ð0Þ AðS2Þ

1 ð0Þ AðS2Þ
2 ð0Þ

α1;i −11.852 −5.031 −4.034 −2.562
α2;i 354.663 125.030 87.102 11.467
Δi 0.076% 0.045% 0.033% 0.009%
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FIG. 6. The extrapolated TFFs (a) A1ðq2Þ, (b) A2ðq2Þ, (c) A0ðq2Þ, and (d) Vðq2Þ in the whole q2 region for S1 and S2 cases, where the
solid lines are central values and the shaded bands are corresponding uncertainties for S1. The thicker shaded band shows the LCSR
prediction. The HMχT [14], CQM [15], CCQM [17], CLFQM(2011) [19], LQCD(2013) [24] predictions are also presented.
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Here Fiðq2Þ with i ¼ ð1;…; 4Þ represents the four
TFFs Vðq2Þ and A0;1;2ðq2Þ, respectively. The function
zðt ¼ q2; t0Þ, which incorporates the parameters t�, t0,
and t, is defined as

zðt; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p ; ð74Þ

where

t� ¼ ðmDþ
s
�mϕÞ2; t0 ¼ tþð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t−=tþ

p
Þ: ð75Þ

In this approach, the simple pole ð1 − q2=m2
R�;iÞ is used

to account for the low-lying resonances, and mR�;i are Dþ
s -

meson resonances. The masses of the low-lying Dþ
s

resonances are mainly determined by their JP states, whose
values can be found in Refs. [79,94]. The free parameters
α1;i and α2;i are fixed to make the Δi as small as possible,
such as Δi < 1%, where Δi is used to measure the quality
of extrapolation and is defined as

Δi ¼
P

t jFiðtÞ − Ffit
i ðtÞjP

t jFiðtÞj
× 100; ð76Þ

where t∈ ½0; 1=40;…; 40=40� × 0.54 GeV2. We present
the masses of the low-lying Dþ

s resonances, the fitting
parameters αi for each TFF, and the quality-of-fit Δ in
Table V. It shows that, under those choices of parameters,
all the Δi values of Dþ

s → ϕ TFFs are no more than
0.076%, indicating a good agreement of the extrapolated
curves with the LCSRs within the same q2 region
of q2 ∈ ½0; 0.54 GeV2�.
Figure 6 displays the extrapolated Dþ

s → ϕ TFFs across
the entire q2 region, where the results under the HMχT
[14], CQM [15], CCQM [17], CLFQM(2011) [19], and
LQCD(2013) [24] predictions are also presented. Here, for
convenience, we only present the uncertainties for the S1
case shown in Fig. 6, while the uncertainties for the S2 case
are listed in the numerical values in the following tables.
The situations are same for Figs. 7 and 8. The shaded bands
of our predictions are caused by the input parameters, and
the results of other groups are their central predictions.
Within the entire physical region, the TFFs predicted by the
two distinct twist-3 LCDAs exhibit an overall consistent
trend, with minor discrepancies observed at the end points.
The slope of the obtained TFFs in Fig. 6 is generally larger
than other theoretical groups, which is coursed by the
following reasons:

(i) We have used the SSE parameterizations for
extrapolation, while other theoretical groups have
adopted the double-pole parameterization method.
Different parameterization methods will have a
certain impact on the slope. The reason why we
chose SSE parameterizations is that they effectively

transform the near-threshold behavior of TFFs into a
constraint on the expansion coefficients.

(ii) The TFFs at large recoil region, i.e., A0ð0Þ, A1ð0Þ,
and Vð0Þ, which are slightly smaller than other
groups, are possibly due to our selection of a flatter
Borel parameter.

(iii) In this calculation, we will take the correlator
with left-handed chiral current. The vector meson
LCDAs have many complex structures, and it is
convenient to arrange them via the parameter
δ ≃mϕ=mc ∼ 0.68. At the twist-4 accuracy, vector
mesons have 15 DAs [95]. The advantage of the left-
handed chiral current is that it can highlight the
contributions of the δ1- and δ3-order DAs, while the
contributions of the δ0- and δ2-order DAs are
neglected, resulting in a different overall trend.
The corresponding DAs of δ0;1;2;3 order are shown

in Table VI. In this table,Φk
3;ϕ and Φ̃

k
3;ϕ represent the

contributions from the three-particle part accord-
ingly, which we have neglected in our calculations
due to negligible contributions.

Using those TFFs together with the formula (44), we
calculate the differential decay width 1=jVcsj2dΓðDþ

s →
ϕlþνlÞ=dq2, and the results are presented in Fig. 7.
Throughout the entire q2 region, the predicted decay widths
based on the two distinct twist-3 LCDAs demonstrate a
coherent overall trend, with the decay width predicted
under the S1 cases being notably smaller at the end points.
It shows that our differential decay width exhibits a
significant deviation from other results in the low q2

region. This is reasonable, since the decay width is
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0

10

20

30

40

50

60

FIG. 7. The differential decay width 1=jVcsj2dΓðDþ
s →

ϕlþνlÞ=dq2 as a function of q2 for S1 and S2 cases, where
the solid lines are central values and the shaded bands are
corresponding uncertainties for S1. The HMχT [14], CQM [15],
CCQM [17], CLFQM(2011) [19], LQCD(2013) [24] predictions
are also presented.
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dominated by the TFF A1ðq2Þ and we have a smaller A1ðq2Þ
in q2 ¼ 0 as shown by Table II. Integrating them over q2 in
the entire physical q2 region from m2

l to ðmDþ
s
−mϕÞ2, we

then obtain (in GeV)

ΓðS1Þ
L ¼ ð16.683þ1.989

−0.984Þ × 10−15; ð77Þ

ΓðS1Þ
T ¼ ð15.565þ2.711

−1.630Þ × 10−15; ð78Þ

ΓðS1Þ
total ¼ ð32.248þ4.701

−2.618Þ × 10−15; ð79Þ

ΓðS2Þ
L ¼ ð16.914þ1.382

−0.532Þ × 10−15; ð80Þ

ΓðS2Þ
T ¼ ð15.605þ2.133

−1.276Þ × 10−15; ð81Þ

ΓðS2Þ
total ¼ ð32.519þ3.515

−1.808Þ × 10−15: ð82Þ
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FIG. 8. The polarization and asymmetry parameters (a)Al
FB, (b)C

l
F, (c)P

l
L, (d)P

l
T, (e)F

l
L for the semileptonic decayDþ

s → ϕlþνl for S1
and S2 cases. The solid, dashed, and dot-dashed lines show the central values, and the shaded bands show the uncertainties for the S1 case.
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It indicates ΓL=ΓTðS2Þ ¼ 1.084þ0.059
−0.052 and ΓL=ΓTðS1Þ ¼

1.072þ0.055
−0.050 , which are consistent with the CLEO data

ðΓL=ΓTÞexp ¼ 1.0� 0.3� 0.2 [3] within errors.
By using the lifetime τDþ

s
¼ 0.504 ps and the CKM

matrix element Vcs ¼ 0.975 [79], we obtain the branching
fractions for Dþ

s → ϕlþνl with l ¼ ðe; μÞ, which are
presented in Table VII. For BðDþ

s → ϕeþνeÞ, our result
agrees well with the PDG-averaged value [79] and is
consistent with other data within errors. For
BðDþ

s → ϕeþνeÞ, our prediction falls within the error
range reported by the recent more precise BESIII(2023)
data [9]. The branching fraction calculated using the S1
case turns out to be closer to experimental predictions,
demonstrating the effectiveness of this method in address-
ing such issues. By using the world average of
BðDþ

s → ϕeþνeÞ, the BESIII group then issued the ratio
of those two branching fractions, e.g., Rμ=e ¼ BðDþ

s →
ϕμþνμÞ=BðDþ

s → ϕeþνeÞ ¼ 0.94� 0.08 [9]. Our pre-
dicted value ≃0.99 falls within this margin of error,
aligning with the lepton universality.

D. Polarization and asymmetry parameters
of D+

s → ϕl+ νl
In this subsection, we give our prediction for the

polarization and asymmetry parameters of Dþ
s → ϕlþνl.

Those observables provide some more detailed information
for the semileptonic decays of hadrons. Substituting the
extrapolated TFFs Vðq2Þ and A0;1;2ðq2Þ into Eqs. (39)–(43),
we can obtain the polarization and asymmetry parameters
for Dþ

s → ϕlþνl. We present the polarization and asym-
metry parameters Al

FB, C
l
F, P

l
L, P

l
T, and Fl

L versus the q2 in
Fig. 8, whose errors caused by different choices of input
parameters are shown by shaded bands. In Fig. 8, we
observe that the polarization and asymmetry parameters of
electrons and muons exhibit distinct behavior patterns in

the low q2 region, which is mainly due to their unique
physical properties and differences in interaction mecha-
nisms. Specifically, because of its small mass, the polari-
zation effect of electrons is not particularly significant in
interactions. However, muons, due to their larger mass,
experience more complex interaction mechanisms, leading
to unique behaviors in their polarization and asymmetry
parameters. This difference provides us with valuable clues
to further explore the behavior of fundamental particles and
their interactions. Figure 8 shows that all the uncertainties
are small, especially for the case of longitudinal (trans-
verse) polarization of the final charged lepton Pl

LðTÞðq2Þ,
whose uncertainties are about a thousandth and are
negligible.
After integrating the formulas, e.g., Eqs. (39)–(43), over

the squared momentum transfer q2, we get the integrated
values for those observables. The main source of uncer-
tainty in polarization and asymmetry parameters lies in the
TFFs. We have decided to conduct a detailed analysis of
these parameters to clearly understand the specific uncer-
tainty caused by different TFFs. Below are the presentation
results of polarization and asymmetry parameters:

AeðS1Þ
FB ¼ −0.191þ ðþ0.005

−0.009ÞV þ ðþ0.000
−0.000ÞA0

þ ðþ0.016
−0.012ÞA1

þ ðþ0.007
−0.008ÞA2

¼ −0.191þ0.000
−0.000 ;

AμðS1Þ
FB ¼ −0.220þ ðþ0.005

−0.008ÞV þ ðþ0.001
−0.001ÞA0

þ ðþ0.017
−0.013ÞA1

þ ðþ0.007
−0.008ÞA2

¼ −0.220þ0.001
−0.001 ;

CeðS1Þ
F ¼ −0.418þ ðþ0.006

−0.003ÞV þ ðþ0.000
−0.000ÞA0

þ ðþ0.011
−0.015ÞA1

þ ðþ0.028
−0.025ÞA2

¼ −0.418þ0.015
−0.016 ;

CμðS1Þ
F ¼ −0.320þ ðþ0.006

−0.003ÞV þ ðþ0.002
−0.001ÞA0

þ ðþ0.017
−0.021ÞA1

þ ðþ0.033
−0.026ÞA2

¼ −0.320þ0.015
−0.018 ;

TABLE VI. The ϕ-meson DAs with different twist structures
up to δ3, where δ ≃mϕ=mc.

Twist δ0 δ1 δ2 δ3

2 ϕ⊥
2;ϕ ϕk

2;ϕ
� � � � � �

3 � � � ϕ⊥
3;ϕψ

⊥
3;ϕΦ

k
3;ϕΦ̃

k
3;ϕ ϕk

3;ϕψ
k
3;ϕΦ⊥

3;ϕ
� � �

4 � � � � � � ϕ⊥
4;ϕψ

⊥
4;ϕΨ⊥

4;ϕΨ̃
⊥
4;ϕ ϕk

4;ϕψ
k
4;ϕ

TABLE VII. Typical experimental and theoretical predictions
on the Dþ

s → ϕlþνl branching fractions and their corresponding
errors (in unit 10−2).

BðDþ
s → ϕeþνeÞ BðDþ

s → ϕμþνμÞ
This work (S1) 2.347þ0.342

−0.191 2.330þ0.341
−0.190

This work (S2) 2.367þ0.256
−0.132 2.349þ0.255

−0.132
BABAR [6] 2.61� 0.11� 0.15 � � �
CLEO [7] 2.14� 0.17� 0.08 � � �
BESIII(2017) [8] 2.26� 0.45� 0.09 1.94� 0.54
BESIII(2023) [9] � � � 2.25� 0.09� 0.07
PDG [79] 2.39� 0.16 1.90� 0.5
CLFQM(2017) [20] 3.1� 0.3 2.9� 0.3
3PSR(2004) [10] 1.80� 0.50 � � �
CLFQM(2008) [18] 2.30 � � �
LCSR [13] 2.15þ0.27

−0.31 � � �
HQEFT [12] 2.53þ0.37

−0.40 2.40þ0.35
−0.40

CCQM [17] 3.01 2.85
CQM [15] 2.57 2.57
χUA [26] 2.12 1.94
RQM [27] 2.69 � � �
SCI [28] 2.45 2.30
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PeðS1Þ
L ¼ 0.900þ ðþ0.000

−0.000ÞV þ ðþ0.000
−0.000ÞA0

þ ðþ0.000
−0.000ÞA1

þ ðþ0.000
−0.000ÞA2

¼ 0.900þ0.000
−0.000 ;

PμðS1Þ
L ¼ 0.784þ ðþ0.000

−0.000ÞV þ ðþ0.005
−0.004ÞA0

þ ðþ0.009
−0.007ÞA1

þ ðþ0.004
−0.005ÞA2

¼ 0.784þ0.001
−0.000 ;

PeðS1Þ
T ¼ −0.001þ ðþ0.000

−0.000ÞV þ ðþ0.001
−0.001ÞA0

þ ðþ0.000
−0.000ÞA1

þ ðþ0.000
−0.000ÞA2

¼ −0.001þ0.000
−0.000 ;

PμðS1Þ
T ¼ −0.132þ ðþ0.003

−0.002ÞV þ ðþ0.006
−0.007ÞA0

þ ðþ0.007
−0.005ÞA1

þ ðþ0.001
−0.000ÞA2

¼ −0.132þ0.002
−0.000 ;

FeðS1Þ
L ¼ 0.486þ ðþ0.001

−0.003ÞV þ ðþ0.000
−0.000ÞA0

þ ðþ0.008
−0.007ÞA1

þ ðþ0.012
−0.015ÞA2

¼ 0.486þ0.008
−0.007 ;

FμðS1Þ
L ¼ −0.482þ ðþ0.001

−0.003ÞV þ ðþ0.001
−0.001ÞA0

þ ðþ0.007
−0.006ÞA1

þ ðþ0.011
−0.014ÞA2

¼ 0.482þ0.008
−0.007 ; ð83Þ

AeðS2Þ
FB ¼ −0.190þ ðþ0.005

−0.009ÞV þ ðþ0.000
−0.000ÞA0

þ ðþ0.012
−0.009ÞA1

þ ðþ0.006
−0.007ÞA2

¼ −0.190þ0.002
−0.003 ;

AμðS2Þ
FB ¼ −0.220þ ðþ0.005

−0.009ÞV þ ðþ0.001
−0.001ÞA0

þ ðþ0.013
−0.009ÞA1

þ ðþ0.006
−0.007ÞA2

¼ −0.220þ0.002
−0.002 ;

CeðS2Þ
F ¼ −0.421þ ðþ0.006

−0.003ÞV þ ðþ0.000
−0.000ÞA0

þ ðþ0.011
−0.015ÞA1

þ ðþ0.028
−0.025ÞA2

¼ −0.421þ0.016
−0.019 ;

CμðS2Þ
F ¼ −0.320þ ðþ0.006

−0.003ÞV þ ðþ0.002
−0.001ÞA0

þ ðþ0.012
−0.015ÞA1

þ ðþ0.026
−0.024ÞA2

¼ −0.320þ0.015
−0.018 ;

PeðS2Þ
L ¼ 0.900þ ðþ0.000

−0.000ÞV þ ðþ0.000
−0.000ÞA0

þ ðþ0.000
−0.000ÞA1

þ ðþ0.000
−0.000ÞA2

¼ 0.900þ0.000
−0.000 ;

PμðS2Þ
L ¼ 0.780þ ðþ0.000

−0.000ÞV þ ðþ0.004
−0.004ÞA0

;þðþ0.007
−0.005ÞA1

þ ðþ0.004
−0.005ÞA2

¼ 0.780þ0.002
−0.001

PeðS2Þ
T ¼ −0.001þ ðþ0.000

−0.000ÞV þ ðþ0.001
−0.001ÞA0

þ ðþ0.000
−0.000ÞA1

þ ðþ0.000
−0.000ÞA2

¼ −0.001þ0.000
−0.000 ;

PμðS2Þ
T ¼ −0.139þ ðþ0.003

−0.002ÞV þ ðþ0.005
−0.007ÞA0

þ ðþ0.006
−0.004ÞA1

þ ðþ0.000
−0.000ÞA2

¼ −0.139þ0.001
−0.000 ;

FeðS2Þ
L ¼ 0.487þ ðþ0.001

−0.003ÞV þ ðþ0.000
−0.000ÞA0

þ ðþ0.007
−0.005ÞA1

þ ðþ0.011
−0.012ÞA2

¼ 0.487þ0.008
−0.007 ;

FμðS2Þ
L ¼ −0.483þ ðþ0.001

−0.003ÞV þ ðþ0.006
−0.004ÞA0

þ ðþ0.006
−0.004ÞA1

þ ðþ0.010
−0.011ÞA2

¼ 0.483þ0.008
−0.007 : ð84Þ

After analyzing the uncertainty of polarization parameter
Pl
TðLÞðl ¼ e or μÞ, we have concluded that the error bars

displayed in Fig. 8(c), and especially Fig. 8(d), shows
they are exceptionally narrow due to less uncertainty
stemming from the input parameters. We present their
central values in Table VIII, where the results derived
from the RQM [27] and the CCQM [17] approaches have
also been presented. The polarization and asymmetry
parameters exhibit variations across different lepton
masses. Our predicted Al

FB, C
l
F, and Pμ

T fall within the
range of RQM and CCQM predictions, while both Pl

L
and Fl

L exhibit smaller values compared to the predic-
tions from RQM and CCQM.

IV. SUMMARY

In this paper, we have calculated the TFFs for the
semileptonic decay Dþ

s → ϕlþνl by using the QCD
LCSR approach. Numerical results for those TFFs and
two typical ratios γV and γ2 at the large recoil point q2 ¼ 0
have been given in Tables II and III, respectively. In doing
the calculation, we have suggested an improved LCHO
model for the leading-twist LCDA of the ϕmeson, whose ξ

moments hξk;n2;ϕijμ can be determined by using the QCD SR
approach within the background field theory. To improve
its accuracy, these moments have been calculated up to
tenth-order accuracy. A comparison of various LCDA

TABLE VIII. The polarization and asymmetry parameters for the semileptonic decayDþ
s → ϕlþνl. All the input parameters are set to

be their central values.

Ae
FB Aμ

FB Ce
F Cμ

F Pe
L Pμ

L Pe
T Pμ

T Fe
L Fμ

L

This work (S1) −0.191 −0.220 −0.418 −0.320 0.900 0.784 −0.001 −0.132 0.486 0.482
This work (S2) −0.190 −0.220 −0.421 −0.320 0.900 0.780 −0.001 −0.139 0.487 0.483
RQM [27] −0.21 −0.24 −0.49 −0.35 1.00 0.90 0.00 −0.15 0.54 0.54
CCQM [17] −0.18 −0.21 −0.43 −0.34 1.00 0.91 −0.11 −0.14 0.53 0.50
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models at 2 GeV has been shown in Fig. 3. Our model
exhibits a single-peak behavior, closely resembling the
conventional asymptotic form for the light mesons and the
one suggested from the lattice QCD calculation.
In our investigation of the Ds → ϕ transition, we have

taken two types of chiral-odd twist-3 LCDAs as input
parameters to do our analyses. We have accurately calcu-
lated various physical quantities pertinent to this process,
including the relevant TFFs, the ratios between TFFs, the
branching fractions, the decay widths, and the polarization
and asymmetry parameters. Despite the notable differences
in the graphical representations of those two twist-3
LCDAs, they yield highly consistent impacts on the final
predicted physical quantities. This observation suggests
that, within a certain range, the specific form of the
distribution amplitude chosen to describe the dynamical
characteristics of this decay process exhibits a degree of
equivalence.
We have presented the differential decay width of the

semileptonic decay Dþ
s → ϕlþνl with l ¼ ðe; μÞ in Fig. 7

and the branching fractions in Table VII. For both the
electron and muon channels, our predicted branching
fractions are consistent with the experimental data within
errors. Additionally, we have calculated its longitudinal,

transverse, and total decay widths, which are shown
by Eqs. (77)–(82). They indicate that ΓL=ΓTðS2Þ ¼
1.084þ0.059

−0.052 and ΓL=ΓTðS1Þ ¼ 1.072þ0.055
−0.050 , which are con-

sistent with the CLEO data [3] within errors. Using those
results, we have also estimated the forward-backward
asymmetries and the lepton-side convexity parameters,
as well as the lepton and vector meson longitudinal and
transverse polarization parameters, which have been col-
lected in Table VIII and Fig. 8. Those values can be
measured and tested in future experiments, which could
be inversely adopted for testing the various ϕ-meson
LCDA models.
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