
Classical Casimir pressure in the presence of axion dark matter

Philippe Brax1 and Pierre Brun 2
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We study the effects of an oscillating axion field on the pressure between two metallic plates.
We consider the situation where a magnetic field parallel to the plates is present and show that the electric
field induced by the coupling of the axion to photons leads to resonances. When the boundary plates are
perfect conductors, the resonances are infinitely thin whilst they are broadened when the conductivity of the
boundary plates is taken into account. The resonances take place at the tower of distances close to

dn ¼ ð2nþ1Þπ
m , where m is the axion mass and have a finite width and height depending on the conductivity.

The resulting resonant pressure on the plate depends on the induced polarization at the surface of the plates.
We investigate the reach of future Casimir experiments in terms of the axion mass and the conductivity of
the boundary plates. We find that for large enough conductivities, the axion-induced pressure could be
larger than the quantum Casimir effect between the plates.
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I. INTRODUCTION

The standard model contains a few naturalness issues,
one of them being the so-called strong-CP problem. This is
an archetypical fine-tuning problem: QCD (quantum
chromodynamics) is observed to respect the CP symmetry,
as verified at the 10−10 level by the nonobservation of the
neutron electric dipole moment [1]. In the strict context of
the standard model, QCD contains a CP-violating θGG̃
term, whereGμν is the gluon field strength and no degree of
freedom allows for the θ term to relax to zero. The Peccei-
Quinn mechanism consists in introducing a new U(1)
symmetry that is broken spontaneously at some high
energy M, making the θ term dynamical and solving the
above puzzle [2,3]. This is done at the expense of
introducing new fields, e.g. new heavy fermions [4,5], or
extending the Higgs sector [6,7]. Eventually, there remains
a single degree of freedom corresponding to a massless
pseudoscalar goldstone boson called the axion [8,9].
Because of the QCD phase transition, hqq̄i ≠ 0 three
things happen: the axion acquires a small mass, the θ term
can effectively relax to zero, and the axion ϕ acquires an
effective interaction with the electromagnetic field, of the

form ϕ=M FF̃, where Fμν is the electromagnetic field
strength.
Independently, observations of the Universe at all scales

from dwarf galaxies to the whole Hubble radius favor the
presence of a new type of cosmological fluid, which we call
cold dark matter [10]. The energy density of dark matter
today represents about one third of the total energy and
84% of the total mass [11]. The axions could well be the
source of dark matter. They could have been produced in
the early Universe during the Peccei-Quinn symmetry
breaking in a thermal way but such a thermal relic is
irrelevant for dark matter as its abundance turns out to be
highly suppressed [12]. On the other hand, the zero mode of
the axion field could be misaligned with the minimum of
the axion potential whose origin is nonperturbative. Due to
this nonthermal production mechanism, the axions
would be cold in the first place. In that case the axion
field oscillates in its potential and one has approximately
ϕ ¼ ϕ0 cosðmtÞ with m the axion mass close to the
minimum of the axion potential. In this scenario, it is
the classical energy density of the axion field that plays the
role of the energy density for the cold dark matter
fluid [13]. In this case, the local dark matter density ρ0
is related to the amplitude of the oscillation ϕ0 and its
frequency m through ρ0 ¼ 1

2
m2hϕ2i þ 1

2
hϕ̇2i ¼ 1

2
m2ϕ2

0.
It is well known that the zero-point energy of the

electromagnetic field in a cavity leads to an attractive
force between the walls due to the so-called Casimir
pressure [14,15]. This is related to the fact that even if
the cavity contains only vacuum, the corresponding
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electromagnetic modes inside the cavity are countable, as
opposed to outside the cavity where they are continuous.
Suppose one sets up such a cavity embedded inside a
constant magnetic field. The dark matter axion field will
couple to some of the modes of the vacuum and could
potentially modify the value of the Casimir pressure. The
question addressed here is whether this could lead to
observable effects in actual experiments. Typically, there
are two potentially important physical effects in this setting.
The first one is classical and comes from the force between
the plates due to the induced polarization in metals
comprising the boundary plates. We discuss this effect
here. The second one is a quantum effect and follows from
the shift in the quantum modes of the electromagnetic field
between the plaques due to the axion-photon coupling. This
is left for future work, see [16–19]. We give an estimate of
this effect in Appendix F.
In this paper, we study the effect of the dark matter

oscillating axion field on the Casimir pressure at the
classical level. We consider a constant background mag-
netic field which triggers the mixing between axions and
photons. As a result an electromagnetic field is induced
along the magnetic field lines. In particular between two
metallic parallel plates, we estimate the effects of this
mixing on the Casimir pressure. Intuitively we expect the
axion to induce resonances and thus a modification of the
Casimir forces. The resonant effect on the pressure
between the plates depends on the geometry of the cavity
and on the frequency of the oscillating axion field. These
resonances are regularized by the dissipation effect in the
metal. To account for dissipation, we use a classical
approach and leave the full quantum field theoretic treat-
ment to a future study, where the modification to the
quantum pressure due to the axion field will be discussed.
At the classical level, we find that the resonances are not
perfect and have a finite width depending on the conduc-
tivity of the metal. The width of the resonances is also
broadened by the velocity dispersion of the axion in the
galactic halo. Our analysis assumes that the broadening is
dominated by the metallic effects. We find that for
distances of the order of a few microns, the axion-induced
pressure can compete with the quantum pressure in 1=d4,
where d is the distance between the plates. We also notice
that, in real material, the quantum pressure is reduced by
the imperfect reflexivity of the boundary plates and we
recall the Lifschitz formalism in an Appendix E. This
would make the emergence of the axion-induced effects
easier. We leave the detailed study of this to future work.
The competitive cases where the axion-induced pressure
becomes of the order of the quantum Casimir effect require
conductivities which are larger than the ones of ordinary
metals such as copper. We leave phenomenlogical inves-
tigations on the type of metal and experimental situations,
such as temperature, necessary to maximize the axionic
effect to future work.

In Sec. II, we introduce the model and derive the general
equations for an axion subject to a magnetic field in a
geometry with boundaries. The treatment of dissipation in
metal is described there, and the classical equations of
motion are obtained. In Sec. III, a one-sided boundary
condition is considered. This is an intermediate step
towards the treatment of the classical Casimir pressure
induced by an axion in the presence of a magnetic field, and
it allows one to retrieve known results, such as the ones
typically considered for dish-antenna experiments [20].
Then in Sec. IV we consider two boundary conditions, i.e. a
cavity, with an external magnetic field parallel to the plates.
We will see that in the ideal case with infinite conductivity,
we obtain infinite resonances for discrete plate separations,
described by Dirac distributions. We will see that the
resonances are regularized when a finite conductivity is
considered. In the last part we discuss orders of magnitudes
for the modifications of the Casimir forces and some
prospects. We discuss the Green’s functions in the one
and two side plates, more details on dissipation, the energy
budget, the Lifschitz theory [21,22], and the quantum
effects in the Appendices.

II. AXIONS IN A CONSTANT MAGNETIC FIELD

A. The model

We start with the usual Lagrangian of electrodynamics in
vacuum coupled to an axionlike field ϕ in natural units

L ¼ −
1

4
FμνFμν −

ϕ

4M
FμνF̃μν; ð1Þ

where F̃μν ¼ 1
2
ϵμνρσFρσ is the dual field strength. We define

ϵ0123 ¼ 1. The pseudoscalar field ϕ will be assumed to be
time dependent, as representing the oscillations of the dark
matter field in our environment. The energy scale M is of
the order of the scale of the Peccei-Quinn symmetry
breaking. For dark matter axions of mass m ∼ 10−5 eV,
this scale is at least of the order of 1012 GeV [10]. The full
Lagrangian includes also kinetic terms for the axion, which
we disregard here as we are interested in the conventional
electromagnetic field modes. The equations of motion for
the photon field become

∂μFμν þ 1

2M
ϵμνρσ∂μðϕFρσÞ ¼ 0: ð2Þ

In the Lorentz gauge ∂μAμ ¼ 0, the first term gives □Aν

and instead of the classical d’Alembert equation we obtain
the modified propagation equation

□Aν ¼ −
1

2M
ϵμνρσ∂μðϕFρσÞ: ð3Þ

We decompose the gauge field into a background field and
a perturbation Aν ¼ Āν þ aν, where the background field is
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generated by a homogeneous and constant magnetic field
corresponding to Āi ¼ 1

2
ϵijkxjBk, Ā0 ¼ 0, satisfying the

background wave equation □Āν ¼ 0. The Maxwell’s
equation for the fluctuation of the electromagnetic field
becomes

□aν ¼ −
1

2M
ϵμνρσðð∂μϕÞFρσ þ ϕ∂μFρσÞ: ð4Þ

In the following, we will assume that the axion field is
homogeneous and time-dependent ∂μϕ ¼ ϕ̇δ0μ, correspond-
ing to the cosmological field associated to dark matter in
the environment. Then we obtain

□aν ¼−
1

2M
ðϵ0νρσϕ̇ðF̄ρσ þfρσÞþ ϵμνρσϕð∂μF̄ρσ þ ∂μfρσÞÞ;

ð5Þ

and upon considering the magnetic field is constant in
space, i.e. ∂μF̄ρσ ¼ 0, we get

□aν ¼ −
1

2M
ϕ̇ϵ0νρσðF̄ρσ þ fρσÞ −

1

2M
ϕϵμνρσ∂μfρσ; ð6Þ

where last term vanishes as fμν ¼ ∂μaν − ∂νaμ. The two
equations of motion now become

□a⃗ ¼ −
1

M
ϕ̇ðB⃗þ b⃗Þ and □a0 ¼ 0: ð7Þ

They are conveniently written in terms of the perturbations
of electric ei ¼ −ȧi and the magnetic field bi ¼ 1

2
ϵijkfjk in

vector form as

□b⃗ ¼ −
1

M
ϕ̇ ∇! ∧ ðB⃗þ b⃗Þ and

□e⃗ ¼ 1

M
ϕ̈ðB⃗þ b⃗Þ þ 1

M
ϕ̇ð ˙B⃗þ ˙b⃗Þ: ð8Þ

These equations can also be easily derived from a reduced
Lagrangian involving an external current induced by both
the background magnetic field and the oscillating axion,
see Appendix C.

B. The classical field and the introduction
of dissipation

The classical equations of motions can be solved by
iterations in an inverse power expansion in M. At leading
order we have

□b⃗ ¼ −
1

M
ϕ̇ ∇! ∧ B⃗ and □e⃗ ¼ 1

M
ϕ̈ B⃗þ 1

M
ϕ̇ ˙B⃗ : ð9Þ

Let us denote the axion-induced source term of the electric
field by

J⃗ ¼ 1

M
ϕ̈ B⃗þ 1

M
ϕ̇ ˙B⃗; ð10Þ

then the perturbation of the electric field becomes

e⃗ðxÞ ¼
Z

d4uGðx; uÞJ⃗ðuÞ; ð11Þ

in terms of a well-defined Green’s function which
depends on the geometry of the experimental situation
under consideration. Here xμ and uμ are 4-vectors. The
Maxwell equation (9) for the electric with the current (10)
characteristic of axion electrodynamics have important
consequences. First of all, let us notice that the current J⃗
is parallel to the external magnetic field. This implies that
the electric field in(9) sourced by the external current is
parallel to the external magnetic. In fact the Maxwell
equation (7) for the vector potentials shows that the
classical sourced solution is also along the external mag-
netic field.
In the cases of interest, we will consider experimental

situations where the background magnetic field is present
everywhere in space. The boundary conditions used to
exhibit the classical Casimir effect correspond to a cavity
between two parallel plates where the external magnetic
field is along the plates in the x direction when the direction
perpendicular to the planes is chosen to be the z direction.
As we are interested in the classical solutions sourced by
the external current J⃗ along the x direction, the gauge field
a⃗ solution to (7) only depends on z direction by symmetry
reason. A dependence of the solution on the ðx; yÞ
directions would break the translation invariance of the
cavity configuration with its constant magnetic field
parallel to the plates.1 As a consequence the Maxwell
equation (7) becomes a scalar equation for a single
component of the gauge potential along the x direction
with a dependence on time and the z direction. Hence the
Green’s function becomes a scalar Green’s function G
instead of the tensor Green’s function which can be found
in [23].2 As the induced vector potential is along the
external magnetic field so is the induced electric field.
Moreover as the vector potential only depends on z, the
induced magnetic field is along the y direction and there-
fore parallel to the plate too. Inside the plates, the
perturbations of the electric and magnetic field penetrate
only over a length depending on ω−1

Pl , i.e. the skin depth δ.

1Solutions of the vacuum Maxwell equation in the cavity can
propagate along the plane. Although they are crucial for the
calculation of the quantum Casimir effect, they are not generated
by the external source here.

2The off-diagonal terms in the tensor Green’s functions can be
seen to vanish when no dependence on ðx; yÞ exists. This can be
seen explicitly in Eq. (81.5) of chapter 81 in [23] dedicated to
quantum effects in cavities. This results from taking q ¼ 0 in
Eq. (81.5).
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Before moving to the estimates of the classical pressure
in specific cases, we must discuss the treatment of
dissipation inside matter. This is relevant for the case
where the metallic plates are made of nonideal conductors.
For this we follow the method described in [24]. Inside
matter as in the case of metals, the relevant vector field for
electric phenomena is the displacement field d⃗ ¼ e⃗þ p⃗,
sometimes called the electric induction field. It differs from
the electric field in vacuum due to the existence of the
polarization p⃗. The displacement vector is related to the
electric field via a retarded effect

d⃗ðx⃗; tÞ ¼
Z þ∞

−∞
dτϵðt − τÞe⃗ðx⃗; τÞ≡ ϵ⋆te⃗ðx⃗; tÞ; ð12Þ

or equivalently d⃗ðx⃗;ωÞ ¼ ϵðωÞe⃗ðx⃗;ωÞ in Fourier space
with

d⃗ðx⃗; tÞ ¼
Z

=dωϵðωÞe⃗ðx⃗;ωÞe−iωt; ð13Þ

with =d ¼ d=2π. Dissipation will be taken into account
considering that the permittivity is not equal to 1 and is a
complex number. This is because the propagation equation
in matter in the z direction is ∂2ze ¼ ϵ∂2t e and if ϵ∈C, then
from the dispersion relation k2 ¼ ϵω2, k is also a complex
number k ¼ k0 þ ik00, and a plane wave gets a real factor
that can account for dissipation e−k

00ze−iðωt−k0zÞ.
In the following we are interested in the case of a metal,

and we follow the Drude model. Readers familiar with this
model and only interested in the applications to axion
physics can skip this paragraph. The permittivity relates the
polarization field to the electric field through p⃗ ¼ ðϵ − 1Þe⃗.
On the one hand one has in the x direction p ¼ Nqx, where
N is the density of electrons and q their charge. The
movement of electrons are modeled classically with a
frictional force and a restoring force, such that

̈x⃗ ¼ q
m
ðe⃗þ ˙x⃗ ∧ ðB⃗þ b⃗ÞÞ − γ ˙x⃗ − ω2

0x⃗; ð14Þ

where γ is a typical damping time and ω2
0 is related to the

confinement of electrons around atoms. Typically we
expect that γ ¼ Nveσint where σint is the cross section of

the moving electrons with the material and ve ¼
ffiffiffiffi
3T
me

q
is the

thermal velocity of the electrons. The Lorentz force acting
on the electrons depend on both the external magnetic field
B⃗ and the induced one b⃗. We take the external magnetic
field in the x direction and we consider the induced electric
waves as propagating in the z direction by symmetry
reason. Because the electric field perturbation is in the
direction of the external magnetic field, the only displace-
ment of the electrons related to e⃗ is in the x direction and, as
far as the polarization is concerned, the magnetic force has
no effect. Indeed, the external magnetic field is along the

motion of the electrons and as usual we neglect the force
coming from the induced magnetic since its magnetic is
reduced compared to the electric force by a factor of
v=c ≪ 1. Solving the equation of motion in Fourier space
one gets

x ¼ q=m
ω2
0 − ω2 − iγω

e: ð15Þ

In metals, electrons are free and ω0 → 0 so it is disregarded.
By identification with the expression d⃗ ¼ e⃗þ p⃗, one gets
for the complex permittivity

ϵ ¼ 1 −
ω2
Pl

ω2 þ iγω
; ð16Þ

where ωPl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nq2=m

p
is the plasma frequency. The

damping time γ is related to the conductivity through

σ ¼ ω2
Pl

γ
: ð17Þ

The integral leading to the displacement field d⃗ðx⃗; tÞ can be
evaluated in the complex plane. In the Drude model, when
t < 0 the contour must be closed in the upper half plane and
as long as e⃗ðx⃗;ωÞ has no singularity in the upper half plane
we find that d⃗ðx⃗; tÞ ¼ e⃗ðx⃗; tÞ. On the contrary, when t ≥ 0,
the contour must be closed in the lower half plane where the
permittivity has a pole at ωp ¼ −iγ. Noticing that for the
Drude model jωjjϵðx⃗;ωÞ − 1j converges to zero for large
jωj, the integral on the large circle in the lower half plane
vanishes and we find that

d⃗ðx⃗; tÞ ¼ e⃗ðx⃗; tÞ þ σe⃗ðx⃗;−iγÞe−γt; ð18Þ

implying that the displacement field vanishes after a time
1=γ and has an amplitude depending on the conductivity.
This is what happens due to dissipation as long as a
permanent regime is not considered.
Including the displacement field, the phenomenological

equation for the electric field is

−∂0ðϵ⋆t∂0GÞ þ ΔG ¼ δð4Þðxμ − yμÞ: ð19Þ

This equation can be solved using the Green’s function of
the operator in Fourier space

G≡ ðΔþ ϵðωÞω2Þ−1: ð20Þ

The Green’s function can be explicitly defined as soon
as the boundary conditions are specified. In the next parts
of the paper, different boundary conditions are considered,
and the associated Green’s functions are used to solve the
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equations of motions in the vacuum and in the
metallic plates.

C. Classical pressure from the electromagnetic field
and the axion field

In Casimir experiments, the observable is an attractive
force between the plates. This can be described by a
negative pressure in vacuum. Before moving on with the
expression of the pressure, several remarks are in order.
First of all, an interesting effect follows from the Maxwell
equation in matter. Inside the plaques we have the identity

∇⃗ ∧ b⃗ ¼ ∂0e⃗þ j⃗ind; ð21Þ

where j⃗ind is the induced current. As ∇⃗ ∧ b⃗ − ∂0e⃗ ¼
−Δa⃗þ ∂

2
0a, we find that j⃗ind ¼ −∂0ðϵ⋆t∂0a⃗ − ∂0a⃗Þ which

coincides with

j⃗ind ¼ ˙p⃗ ð22Þ

inside matter. As can be seen this current only exists in a
finite width within the plate, i.e. this is a skin effect. This
current is responsible for the dissipation power j⃗ind:e⃗ in the
plate, corresponding to the loss of energy d

dt ðp⃗:e⃗2 Þ due to the
polarizability of the material. As a result, the plaque heats
up due to the Joule effect. We will give a thorough
discussion of dissipative effects in Appendix D.
The oscillating axion field will perturb the electromag-

netic modes via the coupling between the axion and two
photons. In Casimir experiments, the observed effect is a
pressure in vacuum. Here there is an additional classical
pressure that will be induced by the coupling of the axion
field with the electromagnetic field. In vacuum, the energy
momentum tensor of the electromagnetic field is given by

Tμν ¼ FμρFν
ρ −

ημν

4
F2; ð23Þ

which gives for the pressure against the plates

σvzz ¼ −Tzz ¼ e2z þ b2z
2

−
e2 þ b2

2
: ð24Þ

Notice that there is no contribution from the axion term as
FF̃ is topological and independent of the metric. Indeed
Tμν is obtained by the variation of the action with respect to
the metric; the FF̃ term gets a ð−gÞ−1=2 term for the Levi-
Civita tensor to be covariant, which cancels with the

ffiffiffiffiffiffi−gp
in the integration measure of the action. Moreover ez ¼
bz ¼ 0 implying that the electromagnetic pressure on the
plate due to the axion source is given by

σvzz ¼ −
e2 þ b2

2
; ð25Þ

evaluated on the plates. This is the pressure due to the
vacuum on the interface between the plaques and the
vacuum.
In matter, the energy-momentum tensor of electromag-

netism gives the pressure

σmzz ¼
ezdz þ b2z

2
−
e⃗:d⃗þ b2

2
¼ −

e⃗:d⃗þ b2

2
: ð26Þ

As ez ¼ 0, the pressure on the plaques is given by the
difference from the two classical pressures inside and
outside the plaques. This gives

P ¼ σvzz − σmzz ¼ −
e2

2
þ e⃗ · d⃗

2
¼ −

1

2
e⃗ · ðe⃗ − d⃗Þ ¼ p⃗:e⃗

2

¼ ℜððϵ − 1Þe2Þ: ð27Þ

This term is always negative. In the next sections, the
explicit determination of the electric field and the related
polarization field allows for the computation of the pres-
sure. In the single-plate case, this leads to a thrust force on
the plate, whereas in the two-plate case, this modifies the
Casimir effect.

III. RADIATION FROM A SINGLE PLATE

As an application of the Green’s function techniques, we
will derive the expression for the electric field when only
one plate is present and the magnetic field penetrates inside
a metal with finite conductivity. This generalizes the ideal
case where the conductivity is taken to be infinite. The
geometry for this section is sketched in Fig. 1.
Now we consider the generation of an electric field due

to the axion coupling when the magnetic occupies all space.
This is deduced from Eq. (11) as a function of the Fourier
transform in time of the Green’s function evaluated at the
frequency ω ¼ m,

eðz; tÞ ¼ J0ℜ

�
e−imt

Z
∞

−∞
dz0Gðm; z; z0Þ

�
; ð28Þ

FIG. 1. Geometry and boundary conditions for the one-plate
case.
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where in the case of an external magnetic field B0 and a
homogeneous axion field, the source term depends on
the amplitude

J0 ¼
m2ϕ0B0

M
:

The Green’s function is such that it vanishes in vacuum at
z ¼ þ∞ and in matter at z ¼ −∞. In vacuum, this selects
the modes in eiωz where the replacement ω2 → ω2 þ iϵ̃
with ϵ̃ → 0 guarantees the convergence. The Green’s
function is the solution of Eq. (19). To determine explicitly
G, it is convenient to separate the cases z0 < 0 and z0 > 0,
which is done in the next subsections. More details on the
derivation of the Green’s function will be given in the case
of two-plate systems.

A. The Green’s function for z0 < 0

We find that when z < z0,

Gðω; z; z0Þ ¼
1

2ξðωÞ
�
1þ ξðωÞ þ iω

ξðωÞ − iω
e2ξðωÞz0

�
eξðωÞðz−z0Þ;

ð29Þ

whilst when z∈ ½z0; 0�,

Gðω; z; z0Þ ¼
eξðωÞz0

2ξðωÞ
�
e−ξðωÞz þ ξðωÞ þ iω

ξðωÞ − iω
eξðωÞz

�
; ð30Þ

and finally when z > 0,

Gðω; z; z0Þ ¼
eiωzþξðωÞz0

ξðωÞ − iω
; ð31Þ

where we defined the function ξðωÞ as

ξðwÞ ¼ ð−ϵðwÞω2Þ1=2; ð32Þ

where the square root is such that the real part is always
positive. The same calculation can be performed when
z0 > 0.

B. The Green’s function for z0 > 0

In this case, it is shown in Appendix A that, if z < 0, then

Gðω; z; z0Þ ¼
eiωz0þκðωÞz

iωþ ξðωÞ ; ð33Þ

if z∈ ½0; z0�, then

Gðω;z;z0Þ¼
�

1

iωþξðωÞ−
1

2iω

�
eiωðzþz0Þ þeiωðz0−zÞ

2iω
; ð34Þ

and finally when z > z0,

Gðω;z;z0Þ¼
�

1

iωþξðωÞ−
1

2iω

�
eiωðzþz0Þ þeiωðz−z0Þ

2iω
: ð35Þ

C. The electric field in vacuum

In dish antenna experiments, the boundary condition
implied by the presence of the conductor leads to the
emergence of an outgoing electric field wave. This propa-
gating electric field is the signal of interest. To compute its
amplitude, we now have to select the Green’s function for
z > 0, i.e., outside the plate in Eqs. (31), (34), and (35). As
a result we have

Z
∞

−∞
dz0Gðm;z;z0Þ

¼ 1

m2
þ
�

1

ξðmÞðξðmÞ− imÞ−
ξðmÞ
m2

1

ξðmÞþ im

�
eimz: ð36Þ

Hence there are two components. There is an oscillating
electric field at the frequency m of the axion oscillations.
This is due to the presence of the magnetic field in the
vacuum and the ϕE⃗ · B⃗ form of the axion coupling: as soon
as a magnetic field line is present, a small electric field is
induced. There is also a propagating wave with frequency
m, due to the presence of the boundary condition at z ¼ 0
and the breaking of translation invariance in that direction.
Explicitly written, the electric field reads

eðz; tÞ ¼ J0 cosmt
m2

þ J0ℜ

��
1

ξðmÞðξðmÞ − imÞ −
ξðmÞ
m2

1

ξðmÞ þ im

�
eimðz−tÞ

�
: ð37Þ

It is interesting to take the limit of an ideal metal
corresponding to ξðmÞ → ∞. In this case we find that
the electric field becomes

eidealðz; tÞ ¼
J0
m2

ℜ½e−imtð1 − eimzÞ�: ð38Þ

As expected the oscillating solution is simply

eoscðtÞ ¼
J0 cosmt

m2
; ð39Þ

directly from the propagation equation in the absence of z
dependence. Mathematically, this is the solution of the
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propagation equation including the source term. The
propagating wave satisfies the propagation equation in
the absence of the source term and its amplitude is such that
the electric field vanishes at the surface of the perfect
conductor. This specifies a unique solution. Here this has
been obtained using the Green’s function and has been
generalized to the case of a nonperfect conductor. The other
component is a propagating electric field in the z direction,

eðz; tÞprop ¼
J0
m2

cos ðmðz − tÞÞ: ð40Þ

This expression allows us to retrieve the usual expressions
for dish antenna experiments. The output power per unit
area is given by the Poynting vector

Π ¼ he2i ¼ ρ0B2
0

m2M2
;

where the average is taken over the rapid oscillations. With
conventional units and some typical values for the param-
eters, one finds

Πideal ¼ 2.76 × 10−30 W=m2

�
ρ0

0.3 GeV=cm3

��
B0

1 T

�
2

×

�
m

100 μeV

�
−2
�

M
1014 GeV

�
−2
: ð41Þ

The previous expression is used to estimate the signal
power in dish antenna experiments in the case a perfect
conductor setting the boundary condition. It is interesting to
see how the Green’s function method developed here
allows for a generalization to the case of nonideal metals.
To obtain a useful formula, one can consider for real metals
that ω ≪ γ ≪ ωPl, in which case

Πreal ¼
ρ0B2

0

M2

�
1

m2
þ 1

σ2

�
¼ Πideal þ Πσ: ð42Þ

This leads to a tiny correction of the emitted power, which
is at first order independent of the axion mass,

Πσ ¼ 4.55 × 10−35 W=m2

�
ρ0

0.3 GeV=cm3

��
B0

1 T

�
2

×

�
σ

6 × 108=Ω=m

�
−2
�

M
1014 GeV

�
−2
;

where the reference value for the conductivity is that of
Copper. Notice that a finite conductivity, and thus dis-
sipation leads to an increase of the signal power. This is
rather counterintuitive, but allowing for p⃗ ≠ 0⃗ leads to
more small oscillating dipoles, hence more radiation. As
can be seen from the previous formula, the effect is
very small.

D. Pressure on a single plate

The emission of an electromagnetic wave from the
surface of the plate extracts momentum from the electro-
magnetic field, thus leading to a force per unit area. This is
simply the radiation pressure and is due to the presence of
the polarization field at the surface of the conductor. The
pressure is given by a time average of Eq. (27),

P ¼ he⃗ð0; tÞ:p⃗ð0; tÞi
2

; ð43Þ

where p⃗ is the polarization vector, which is deduced from
Eq. (13),

p⃗ðz; tÞ ¼
Z

=dωðϵðωÞ − 1Þe⃗ðz;ωÞ: ð44Þ

Using the results from the previous section, we have that p⃗
is along B⃗ with a magnitude

pð0; tÞ ¼ J0ℜ

�
ðϵðmÞ − 1Þ

�
1

m2
þ 1

ξðmÞðξðmÞ − imÞ −
ξðmÞ
m2

1

ξðmÞ þ im

�
e−imt

�
: ð45Þ

So in that case, the averaged pressure on the plaque is given by

P ¼ J20
2
ℜ½ϵðmÞ − 1�

���� 1

m2
þ 1

ξðmÞðξðmÞ − imÞ −
ξðmÞ
m2

1

ξðmÞ þ im

����
2

; ð46Þ

which is always negative, i.e. the vacuum attracts the
plaque. This pressure is rather small for typical values of
the parameters. For instance, for a 50 T magnetic field, an
axion mass of m ¼ 100 μeV and a coupling scale
M ¼ 1014 GeV, the value of the pressure is of the order
of 10−39 Pa. One can imagine using this pressure to

produce thrust on a spaceship. Should a spaceship be
equipped with such a system and a 1 m2 metal plate, then
the pressure converts into a 10−40 kg thrust. As a com-
parison, the same plate at the level of the Oort cloud would
undergo a thrust of about 10−17 kg from Solar radiation
pressure. On the other hand as dark matter is present
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everywhere even in the absence of radiation from nearby
stars, we could imagine that such an effect could be used in
total darkness.

IV. CLASSICAL PRESSURE
IN AN EMPTY CAVITY

A. The ideal case

Let us move on to the simple case of a two-plate system,
where the plates are made of an ideal conductor, i.e. with
infinite conductivity. In that case the electric field do not
penetrate the metallic plates, as sketched in Fig. 2.
Like in the previous situation, the electric field e⃗ points

in the B⃗ direction. We denote by e ¼ e⃗:B⃗
B its magnitude such

that □e ¼ J. Denoting by Gðz; t; z0; t0Þ the Green’s func-
tion such that

−G̈þ G00 ¼ δðt − t0Þδðz − z0Þ; ð47Þ

where 0 ¼ d=dz we have then

eðz; tÞ ¼
Z

dz0dt0Gðz; t; z0; t0ÞJðz0; t0Þ: ð48Þ

We now perform the computation of the Green’s function in
that case.

1. Determination of the Green’s function

Using Fourier modes in time, the Green’s function
verifies

G00 þ ω2G ¼ δðz − z0Þeiωt0 : ð49Þ

Denoting by d the distance between the plates in the z
direction, the solution becomes

0 ≤ z ≤ z0; G ¼ A sinωz;

z0 ≤ z ≤ d; G ¼ C sinωzþD cosωz:

We impose the Dirichlet boundary conditions, that is
eð0;ωÞ ¼ eðd;ωÞ ¼ 0. This corresponds to the nonpene-
tration of the electric field inside the plates and the

continuity of its parallel component at the interface. This
implies that

C sinωdþD cosωd ¼ 0: ð50Þ

We must also have a discontinuity of G0 with a jump

½G0�z0 ¼ eiωt0 : ð51Þ

We find that

C ¼ sinωz0
ω

eiωz0

tanωd
; D ¼ −

sinωz0
ω

eiωz0 ð52Þ

and

A ¼ sinωz0
ω

eiωz0

tanωd

�
1 −

tanωd
tanωz0

�
: ð53Þ

Now we have

J ¼ m2Bϕ0

M
cosmt≡ J0

eimt þ e−imt

2
: ð54Þ

Using

Gðz; t; z0; t0Þ ¼
Z

=dωe−iωtGðz;ω; z0; t0Þ ð55Þ

and

0≤ z≤ z0 Gðz;ω;z0;t0Þ¼
eiωt0

ω

�
sinωz0
tanωd

−cosωz0

�
sinωz;

z0≤ z≤d Gðz;ω;z0;t0Þ¼ sinωz0
eiωt0

ω

�
sinωz
tanωd

−cosωz

�
;

ð56Þ

we first evaluate

I1 ¼
Z

=dω
eiωðt0−tÞ

ω

sinωz sinωz0
tanωd

: ð57Þ

The integrand is a meromorphic function in the complex
plane with no singularity at the origin and simple poles for

ωn ¼
nπ
d
; with n∈N⋆: ð58Þ

If t > t0, then we close the contour on a large circle in the
lower half plane, avoiding all the poles with infinitesimal
circles above the horizontal axis

I1 ¼ −πi
X
n≠0

Resn
2π

; ð59ÞFIG. 2. Geometry and boundary conditions for the two-plate
case with perfect conductors.
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where Resn ¼ eiωnðt0−tÞ
dωn

sinωnz sinωnz0. The same method
holds when t < t0 by closing the contour in the upper half
plane. For the same reason, by going to the complex plane
we have

Z
=dω

eiωðt0−tÞ

ω
sinωz cosωz0 ¼ 0; ð60Þ

leading to

Gðz; t; z0; t0Þ ¼
X
n>0

sinωnz sinωnz0
dωn

sinωnðt0 − tÞ: ð61Þ

We see that the Green’s function oscillate at the resonance
frequencies ωn.

2. Resonances

The final step for this evaluation of the electric field
consists in performing the time integral in Eq. (48), first we
obtain

eðz; tÞ ¼ −πJ0
X
n>0

sinωnt sinωnz
dω2

n
ð1 − cosωndÞδðωn −mÞ:

ð62Þ

Notice that the sum vanishes for all even n, implying that

eðz; tÞ ¼ −2πJ0
X
p≥0

sinω2pþ1t sinω2pþ1z

dω2
2pþ1

δðω2pþ1 −mÞ:

ð63Þ

The delta function selects one specific frequency, at which
there is a resonance when ω2pþ1 ¼ m. This specifies a
number of distances dp ¼ ð2pþ 1Þπ=m where the electric
field is resonant. The energy and pressure associated with
these resonances is ill defined as it involves the square of
Dirac distributions. This resonance is regularized when one
takes into account the finite conductivity of the plates. In
particular, we will find that the finite conductivity leads to a
shift of the resonances below the real axis in the complex
plane of pulsations ω. Moreover, the number of resonances
will become finite.

B. Nonideal conductors with no magnetic field inside

As a generalization of the previous situation, and in order
to regularize the resonances obtained before, we now
perform the same study with the inclusion of a finite
conductivity for the metallic plates. For pedagogical
purposes, the study is performed in two steps, the first
one considers no magnetic field penetrating the metallic
plates. This would correspond to superconducting material
and lead to simpler expressions. Then, the more realistic

case of a magnetic field present everywhere, including in
the plates, is considered.

1. The Green’s function

We now introduce a finite conductivity for the boundary
metallic plates and consider the magnetic field only lies
outside the plates. It corresponds to the situation sketched
in Fig. 3. In the next section, we will extend the setting to
the more realistic case where both the conductivity is finite
and the magnetic field penetrates inside the metal.
Inside the plates the permittivity is not equal to one and is

given by (16). Notice that there is a pole in the lower half
plane as required by causality, i.e. the support of the Fourier
transform of the permittivity ϵðtÞ as a function of time is the
positive real axis implying that the displacement field at a
given time depends only on the values of the electric field in
the past. In this case, the Green’s function satisfies

G00 þ ϵðωÞω2G ¼ eiωt0δðz − z0Þ ð64Þ

for z < 0 and z > d, together with

G00 þ ω2G ¼ eiωt0δðz − z0Þ ð65Þ

for 0 ≤ z ≤ d. The values of Green’s function for different
ranges in z are shown in Table I. The values for Gþ and G−
are specified below.
Notice that here z0 lies between 0 and d. The general

case is treated in Appendix B. We find that

G− ¼ ΘðωÞeiωt0
�
cosωðz0 − dÞ − ξ

ω
sinωðz0 − dÞ

�
ð66Þ

FIG. 3. Geometry and boundary conditions for the two-plate
case with finite-conductivity but no magnetic field.

TABLE I. Expressions of Green’s function in different z ranges.

Range for z Expression of Green’s function

z < 0 G ¼ G−eξz, z < 0
0 ≤ z ≤ z0 G ¼ A sinωzþ B cosωz
z0 ≤ z ≤ d G ¼ C sinωzþD cosωz
z > d G ¼ Gþe−ξðz−dÞ
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and

Gþ ¼ ΘðωÞ
sinωd

eiωt0
�
cosωz0 þ

ξ

ω
sinωz0

�
; ð67Þ

where ΘðωÞ is given by

ΘðωÞ ¼ 1

ω
��

1 − ξ2

ω2

	
sinωd − 2 ξ

ω cosωd
	 : ð68Þ

With this, we can identify

0 ≤ z ≤ z0; G ¼ G−

�
cosωzþ ξ

ω
sinωz

�
;

z0 ≤ z ≤ d; G ¼ Gþ

�
cosωðz − dÞ − ξ

ω
sinωðz − dÞ

�
:

ð69Þ

This Green’s function depends on the frequency ω and
has resonances when ΘðωÞ has poles. The nature of the
resonances is important as will be seen below.

2. The resonances

The function Θ has poles when ω verifies

tanωd ¼ 2 ξ
ω

1 − ξ2

ω2

: ð70Þ

We can distinguish several cases.
When ω ≫ ωPl, the resonances would be for

tanωd ≃ 2i; ð71Þ

which has no solution. In this limit the Green’s function is

z ≤ z0G ≃
eiωðt0þz0−zÞ

2iω
;

z ≥ z0G ≃
eiωðt0þz−z0Þ

2iω
; ð72Þ

with no effect from the plates at all, i.e. this is the free
propagator in (1þ 1) dimensions and the plates are trans-
parent at high frequency. This is the optical regime of a
metal as one expects for frequencies larger than the plasma
frequency.
Below the plasma frequency, there is another character-

istic scale given by γ. The poles are now obtained as
solutions of

tanωd ≃ −
2

ð−ϵÞ1=2 ; ð73Þ

which gives

ωnd ≃ nπ

�
1 −

2

dωPl

�
−

iγ
ωPl

ð74Þ

as long as ωn ≫ γ. When ω ≪ γ, the poles are located at

ωnd ≃ nπ − 2eiπ=4
ffiffiffiffiffiffiffiffi
nπγ

p
ωPl

ffiffiffi
d

p : ð75Þ

Resonances exist for ωn ≪ γ only if d ≫ γ−1.
As a result all the poles are shifted by the effect of the

plasma frequency and are now below the real axis. Notice
that there are only a finite number of poles below the
plasma frequency, whereas there were an infinite number in
the ideal case. Poles below the real axis imply that the
Green’s function respects causality. In fact, the poles of Θ
represent the eigenfrequencies of the free system with no
source

a00 þ ϵðωÞω2a ¼ 0: ð76Þ

These modes have a temporal dependence in e−iωnt which
goes to zero at large time, i.e. the modes are evanescent
waves which decay due to the dissipation induced by a
finite conductivity.

3. The electric field

We can now evaluate the electric field with metallic
plates on the boundary. Formally the electric field is
given by

eðz; tÞ ¼ J0ℜ

�Z
d

0

dz0

Z
=dωe−iωtδðω −mÞGðω; z; z0; 0Þ

�
;

ð77Þ

whereGðω; z; z0; t0Þwas calculated in the previous section.
Thanks to time translation invariance we can always set
t0 ¼ 0 and use the expressions derived in Appendix B
obtained by setting pk ¼ 0 as we consider that the problem
is planar. Notice that the integral on z0 is only between the
plates as the magnetic field vanishes in the plates. Now the
integral over ω is trivial if G has no singularities along
the real axis. We have seen that there are only poles whenΘ
diverges. This can happen when (70) is satisfied, i.e. for a
finite number values for ω, or when ω ¼ 0. Close to ω ¼ 0,
we have Θ ≃ −1=ð2ω2

Pldþ ωPlÞ so no singularity. As a
result when the plasma frequency does not vanish, the
Green’s function has no singularity on the real axis and
therefore

eðz; tÞ ¼ J0ℜ

�
e−imt

Z
d

0

dz0Gðm; z; z0; 0Þ
�
: ð78Þ

PHILIPPE BRAX and PIERRE BRUN PHYS. REV. D 110, 056015 (2024)

056015-10



As a result, we have

z ≤ 0; eðz; tÞ ¼ J0ℜ

�
e−imt ΘðmÞ

m

�
sinmdþ ξðmÞ

m
ð1 − cosmdÞ

�
eξðmÞz

�
ð79Þ

and

z ≥ d; eðz; tÞ ¼ J0ℜ

�
e−imt ΘðmÞ

m

�
sinmdþ ξðmÞ

m
ð1 − cosmdÞ

�
e−ξðmÞðz−dÞ

�
; ð80Þ

which is symmetric in z → d − z. Notice that the electric field only penetrates inside the plates over a distance of order
1=ξðmÞ corresponding to a skin effect. Finally, we have for 0 ≤ z ≤ d

eðz; tÞ ¼ J0ℜ

�
e−imt ΘðmÞ

m


�
sinmzþ ξðmÞ

m
ð1 − cosmzÞ

��
cosmðz − dÞ − ξðmÞ

m
sinmðz − dÞ

�

þ
�
cosmzþ ξðmÞ

m
sinmz

��
sinmðd − zÞ þ ξðmÞ

m
ð1 − cosmðd − zÞÞ

���
; ð81Þ

which is also symmetric in z → d − z.
In the next section, we generalize this result to the case where the magnetic field is in all space, i.e. a more realistic

situation, and calculate the classical Casimir pressure induced by the axion.

C. Nonideal conductors with magnetic field in all space

1. Electric field

The configuration under consideration here is probably the closest to a possible realistic experimental setup. The cavity is
made of conductors with finite conductivity and the magnetic field is present everywhere. The situation is sketched in Fig. 4.
When the magnetic field is present everywhere, the electric field receives new contributions δeðzÞ, which are given

δeðz; tÞ ¼ J0ℜ

�
e−imtþξðmÞz ΘðmÞ

ξðmÞ
�
1þ e−ξðmÞz

�
cosmdþ ξðmÞ

m
sinmd

�

þ m
ξðmÞ ð1 − e−ξðmÞzÞ

�
sinmd −

ξðmÞ
m

cosmd

���
ð82Þ

and the contribution obtained by z → d − z when z ≥ d. Between the plates, for z∈ ½0; d� the contribution is given by

δeðz; tÞ ¼ J0ℜ
�
e−imt ΘðmÞ

ξðmÞ
�
cosmzþ cosmðd − zÞ þ ξðmÞ

m
ðsinmzþ sinmðd − zÞÞ

��
; ð83Þ

which is symmetric in z → d − z.
One interesting fact is that there is a nonvanishing oscillating electric field at infinity, which is not propagating and results

from the coupling between the axion and the external magnetic field. More precisely we get far inside the plate

eplateðtÞ ¼ J0ℜ

�
e−imt ΘðmÞ

ξðmÞ
�
2 cosmdþ

�
ξðmÞ
m

−
m

ξðmÞ
�
sinmd

��
: ð84Þ

When the conductivity is larger than the mass, as in realistic situations, this simplifies to

eplaqueðtÞ ≈ J0ℜ

�
e−imt ΘðmÞ

m
sinmd

�
; ð85Þ
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and finally

eplaqueðtÞ ≈ −J0ℜ
�
e−imt

ξ2ðmÞ
�
≃ −J0ℜ

�
i
e−imt

mσ

�
: ð86Þ

This implies that there is a conduction current

jcondðtÞ ¼
J0
m

sinmt; ð87Þ

the amplitude of which does not depend on the conductivity.

2. Classical pressure

The experimental observable for the effect under scrutiny
here is a modification of the Casimir pressure in the void
between the plates. The pressure is given by Eq. (43),
which comes only from the polarization effects in matter
given by

pðd; tÞ ¼ B⃗:p⃗
B

¼
Z

=dωe−iωtðϵðωÞ − 1Þeðd;ωÞ: ð88Þ

As a result, we only need to evaluate the integral

eðd; tÞ ¼ J0ℜ

�
e−imt

Z
∞

−∞
dz0Gðm; d; z0; 0Þ

�
: ð89Þ

The expressions that we need are given below. When
z0 < 0 we have

Gðm; d; z0Þ ¼ ΘðmÞeξðmÞz0 ; ð90Þ

for z0 ∈ ½0; d�,

Gðm; d; z0Þ ¼ ΘðmÞ
�
cosmz0 þ

ξðmÞ
m

sinmz0

�
; ð91Þ

and finally for z0 > d,

Gðm; d; z0Þ ¼ ΘðmÞ
�
cosmdþ ξðmÞ

m
sinmd

�
e−ξðz0−dÞ;

ð92Þ

which is continuous at z0 ¼ 0; d. Now it is easy to see thatR∞
−∞ dz0Gðm; d; z0; t0Þ converges and becomes

Gðm; dÞ ¼
Z

∞

−∞
dz0Gðm; d; z0; t0Þ

¼ ΘðmÞ
m

�
m

ξðmÞ
�
1þ cosmdþ ξðmÞ

m
sinmd

�

þ sinmdþ ξðmÞ
m

ð1 − cosmdÞ
�
: ð93Þ

Then the electric field is given by

eðω;dÞ¼ J0
2
ðGðm;dÞδðω−mÞþ Ḡðm;dÞδðωþmÞÞ; ð94Þ

and the polarizability is

pðt; dÞ ¼ J0ℜ½e−imtðϵðmÞ − 1ÞGðm; dÞ�: ð95Þ

As a result the pressure becomes

hPzi ¼
J20
2
jGðm; dÞj2ℜ½ϵðmÞ − 1�; ð96Þ

where

ℜ½ϵðmÞ − 1� ¼ −
ω2
Pl

m2 þ γ2
: ð97Þ

Notice that this is always negative so the pressure is
attractive. Moreover there is still a resonance when Θ
diverges.

V. RESONANCES IN A COPPER CAVITY

For a fixed mass m when the size of the cavity d takes
different values, the pressure on the plates experiences
resonances. The resonances are due to the vanishing of
ΘðmÞ, which happens for complex values of m with an
imaginary part controlled by the parameter γ. In real
situations, resonances occur for values close to mn ¼
nπ=d and their height is regularized by the dissipation
parameter γ. Effectively, the resonances on the real axis are
obtained for

tanmnd ≃ −ℜ
�

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵðmnÞ

p
�
; ð98Þ

where jϵðmnÞj ≫ 1. Close to the resonances, we have

Gðm; dÞ ≃ 2ΘðmÞ
mn

ξðmnÞ
mn

ð1 − ð−1ÞnÞ ð99Þ

FIG. 4. Geometry and boundary conditions for the two-plate
case with real conductors.
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from which we recover that the resonances are only present
when n ¼ 2pþ 1,3 this is a result we already obtained in
the ideal case. For a fixed cavity size, the behavior of the
pressure with the mass of the axion is not trivial. This is
illustrated in Fig. 5, for which the use of Copper plates is
considered, corresponding to a damping time γ parameter
of 1014 Hz, or 6.6 × 10−11 GeV in natural units. We
consider a 50 T magnetic field, close to the value of the
higher stationary magnetic fields obtained experimentally,
a plate separation of 50 μm (2.5 × 1011 GeV−1 in natural
units) and a generic axion scale of 1010 GeV.
In Fig. 5, one can see the resonances, alternatively

upward and downward. As expected the peak separation
decreases as the mass increases. Resonances disappear
gradually above m ¼ 2 × 10−9 GeV, which is precisely the
plasma frequency for Copper.
For a fixed mass, the dependence of the axion classical

pressure with the distance is displayed in Fig. 6. The
pressure varies on 10 orders of magnitude between upward
and downward peaks, around a mean value that does not
depend on the distance. In Fig. 6, an axion mass of 1.26 ×
10−11 GeV is considered, corresponding to the first peak
at 50 μm.
In Fig. 6, the conventional vacuum pressure is shown in

comparison to the axion pressure, with its typical 1=d4

dependance. At the first peak for d ¼ 50 μm, the vacuum
pressure is 19 orders of magnitude higher than the axion
pressure, making impossible to detect these axions in a
Copper cavity. As the vacuum pressure drops very quickly
with the size of the cavity, and as the axion field injects
energy uniformly, the ratio becomes more favorable as the
size increases. Around a few meters, some axion reso-
nances are larger than the vacuum pressure. However, no
measurement of Casimir pressure is available at this scale.

The search for axion through Casimir effects at short
distances in a Copper cavity is not very promising as shown
above. To search for a signal, the general rule is to try
measuring the Casimir pressure on the largest possible
distance. In addition, we will now see that the use of a
reflecting material with a smaller value for the damping
parameter γ leads to more narrow resonances and might
provide a higher signal.

VI. THE DAMPING PARAMETER AND THE
WIDTH OF RESONANCES

In this section we investigate the influence of the
damping parameter γ on the strength of a potential axion
signal. From Eq. (68), we can approximate

ΘðmÞ ≃ 1

2m2pþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵðm2pþ1Þ

q
1ffiffiffiffiffiffiffiffiffi

−ϵðmÞ
p

ℜð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵðm2pþ1Þ

p
Þ − 1

ð100Þ

and upon using ξðmnÞ=mn ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵðmnÞ

p
we find that the

Green’s function reduces to

Gðm; dÞ ≃ 1

m2
2pþ1

1ffiffiffiffiffiffiffiffiffi
−ϵðmÞ

p
ℜð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵðm2pþ1Þ

p
Þ − 1

ð101Þ

close to the resonance at m ¼ m2pþ1. This can be approxi-
mated in the two regimes corresponding to m2pþ1 ≫ γ
and m2pþ1 ≪ γ.
The width of the resonances will be controlled by the

value of the damping parameters. Two regimes can be
observed depending on the relative value of γ and the axion
mass. As the width diminishes, the peak signal naturally
increases.
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FIG. 5. The Casimir pressure (absolute value) from axions as
a function of the axion mass for a distance d ¼ 50 μm cm
and B ¼ 50 T.
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FIG. 6. The Casimir pressure (absolute value) from vacuum and
from axions as a function of the distance between the metallic
plates when a magnetic field B ¼ 50 T is present between the
plates, and m ¼ 1.26 × 10−11 GeV.

3Of course, the amplitude G does not vanish when n ¼ 2p. The
subdominant terms are small compared to the resonant case when
n ¼ 2pþ 1.
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A. Broad resonances m ≪ γ

We first consider when the resonances is given bym2pþ1

and when m2pþ1 ≪ γ. In this case we have

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵðmÞ

p
≃

ωPlffiffiffiffiffiffi
γm

p e−iπ=4
�
1þ iω

2γ

�
: ð102Þ

Notice that this is a complex number with a nonvanishing
imaginary part even when γ is vanishingly small. This
implies that the width of the resonance has no direct
connection to γ as can be seen in the approximation

Gðm; dÞ ≃ 1

m2pþ1

1
m−m2pþ1

2
þ im2pþ1

: ð103Þ

As the width of the resonance is of order m2pþ1 and
m2pþ1 ≪ γ, the width of the resonance is constrained to be
small compared to γ. On the other hand, as the width is of
the order of the location m ¼ m2pþ1 of the resonance, this
corresponds to a broad resonance. When several resonances
of this type are present, the resonance of lowest order p ¼ 0
dominates as its amplitudes is the largest. The resulting
pressure becomes

hPzi ¼ −
2ω2

PlJ
2
0

γ2m2
2pþ1

1

ðm −m2pþ1Þ2 þ 4m2
2pþ1

: ð104Þ

At the resonance we have

hPzi ¼ −
2ω2

PlJ
2
0

γ2m4
2pþ1

; ð105Þ

which shows that the strength of the signal is suppressed by
γ2 for high values of the damping parameter. So for large γ
values, the resonances are broader and with a reduced peak
height. This is illustrated in Fig. 7, where γ ¼ 10−8 GeV

has been used (1.5 × 1016 Hz). It displays the first four
resonances of the axion-induced pressure with respect to
the distance between the plates.

B. Narrow resonances γ ≪ m

It appears from the previous section that to increase the
strength of the signal, it is better to consider a small
damping parameter, i.e. a material that tends to be a better
conductor. We focus now on the case where m2pþ1 ≫ γ for
which we obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵðmÞ

p
≃

ωPlffiffiffiffi
m

p
�
1 −

iγ
2m

�
: ð106Þ

In this case, the imaginary part is directly related to γ. This
leads to

Gðm; dÞ ≃ 1

m2pþ1

1

m −m2pþ1 þ iγ
2

: ð107Þ

This is a Breit-Wigner distribution with a width Γ ¼ γ,
much smaller than the location of the resonance at
m ¼ m2pþ1. In this case we obtain the pressure

hPzi ¼ −
J20
2

ω2
Pl

m4
2pþ1

1

ðm −m2pþ1Þ2 þ γ2

4

: ð108Þ

At the resonance we have

hPzi ¼ −2J20
ω2
Pl

m4
2pþ1

1

γ2
; ð109Þ

which diverges in the small γ limit where the resonances
become infinitely thin. Figure 8 shows how resonances get
narrower and higher for small values of γ. For this figure,

FIG. 8. First resonances from axions as a function of the
distance between the metallic plates, with an decreased value
of the damping parameter γ ¼ 10−17 GeV, B ¼ 50 T, and
m ¼ 1.26 × 10−11 GeV.

FIG. 7. First resonances from axions as a function of the
distance between the metallic plates, with an increased
value of the damping parameter γ ¼ 10−8 GeV, B ¼ 50 T, and
m ¼ 1.26 × 10−11 GeV.
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γ ¼ 10−17 GeV (15 MHz) and all other parameters are
unchanged compared to previous figures.

C. Comparison with the halo velocity distribution

The width of the resonance is limited by the dispersion
due to the finite velocity of dark matter in the galactic halo

Δm
m

¼ γ

m
≳ v2: ð110Þ

From an observational point of view, there is no interest in
searching for a material with arbitrarily small γ. The natural
velocity dispersion will blur the resonance anyway. As the
Casimir effect cannot be seen for distances less than a
typical distance dmax, which is a fraction of a micron, we
find that the observability of the axion effect compared to
the usual Casimir effect will be possible only for

γ ≳ πv2

dmax
: ð111Þ

For lower values of γ, the resonances would be affected by
the velocity dispersion mostly. For dmax ¼ 50 μm, the
limiting value of γ is ∼10−17 GeV (15 MHz). Notice that
the uncertainty on m would also result in an uncertainty on
the first resonance Δd such that

Δd
d

¼ γd
π
≳ v2: ð112Þ

VII. POTENTIAL SENSITIVITY
OF CASIMIR EXPERIMENTS

To estimate the possible reach of Casimir experiments
with a magnetic field, we assume an experiment could be
built with a 50 T magnetic field to perform a measurement
of Casimir pressure between d ¼ 5 μm and d ¼ 50 μm.
A 50 T magnetic field is of the order of the highest intensity
for stable magnetic fields produced in the laboratory, see
for instance [25] (27 T) and SMHFF (45 T). Running a
Casimir experiment in such a high intensity magnetic field
is therefore probably challenging but not impossible. We
also assume that the plates are made out of an extremely
good conductor and that the regularization of the reso-
nances is the result of the natural velocity dispersion of the
dark matter halo. This is independent of the material as long
as the conductivity is high enough. This could be achieved
with superconducting material, or any material with a
damping factor of γ ∼ 10−17 GeV. The plasma frequency
is taken equal to 2 × 10−9 GeV. As the London length for
superconductors lie in the range 10 to 1000 nm, this seems
achievable [26]. We assume that a 1% deviation of the
vacuum Casimir pressure can be observed. To determine
the sensitivity of such an experiment, we solve numerically
the equation

Paxionðm;MÞ ¼ η × Pvacuum; ð113Þ

for the variables m and M, where η is the sensitivity of the
experiment to the observation of a variation of the standard
value of the pressure. In the following we assume η ¼ 1%,
meaning that a percent-level deviation to the conventional
Casimir pressure is detectable. We consider the ideal
pressure relation

Pvacuum ¼ −
π2

240d4
; ð114Þ

so by taking the value of the axion-induced pressure at a
resonance (109) for a distance d one gets the value of the
sensitivity on the axion-photon coupling

gsens ¼
ffiffiffi
η

p πffiffiffiffiffiffiffiffi
960

p γ

ωP

m
Bd2

; ð115Þ

where the coupling is simply taken as the inverse of the
axion scale g ¼ 1=M.
The projected constraints are displayed in Fig. 9 in a

coupling-mass plane. The mass range is imposed by the
range of distances over which the Casimir effect can
reasonably be probed. There exist several constraints in
the considered mass range, at low mass, the laboratory
experiments ALPS [27] and PVLAS [28] constraint the
highest values of the coupling. In the whole range, the blue
region is the constraint from the CAST helioscope [29]. The
blue regions on the right side of the plot are direct constraints
from telescopes (JWST [30,31], WINERED [32],
MUSE [33], VIMOS [34]), and indirect constraints from
the level of infrared background in theUniverse asmeasured
by γ rays [35]. The Casimir type of experiments for axion
search obviously require that axions are the dark matter.
Above the dashed red line labeled “decay limit,” in the redish
region the lifetime of the axions is shorter than the age of the

FIG. 9. Potential reach of Casimir experiments in a mass/
coupling plane. The three green regions correspond to different
assumptions on the experimental parameters (see text).
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Universe so they cannot be the dark matter. Finally the
oblique yellow band labeled “QCD” corresponds to the
region where parameters nicely combine to solve the strong-
CPproblem.Themain result of this paper is the central light-
green region labeled “Casimir 5–50 μm.” It contains the
parameters that complywith the condition (113) for η ¼ 1%.
The edge at 2 eV is due to the value of the plasma frequency,
above which resonances disappear.
To understand the shape of the sensitivity curve that is

shown below, let us consider the first resonance. At short
distance, the ratio between the vacuum pressure and the
axion pressure is not favorable, because Pvacuum decreases
very steeply with d and Paxion is constant on average. The
mass corresponding to this first resonance is as high as it
can get because of the inverse proportionality between ma
and d at resonance. One can imagine an experiment where
d can be varied. When d increases, two things happen: the
mass of the first resonance decreases, and the ratio
Paxion=Pvacuum improves, making the sensitivity better. In
a coupling/mass plane, going from short distance to large
distance, the sensitivity follows a line from a larger mass/
larger coupling value to a lower mass lower coupling value.
The same reasoning is true for all the other resonances, thus
leading to a sawtoothlike line for the sensitivity curve of
Casimir experiments. This is what appears in Fig. 9. The
figure also displays various existing constraints in the axion
coupling/mass plane, the excluded regions being the differ-
ent blue patches.
To show the limits of the current sensitivity estimates,

some parameters can be varied. For example it is expected
that the plasma frequency in superconducting materials
depends on the magnetic field [36]. In that case the plasma
frequency could be lower. In Fig. 9, the dark green region at
higher values of the coupling corresponds to resonances of
the same width as for the other curves but with higher
values of the plasma frequency, here ωp ¼ 2 × 10−11 GeV.
On a more optimistic side, if it were possible to measure the
Casimir force on distances up to 500 μm, the sensitivity
region would enlarge towards lower masses and lower
coupling values, as shown in lighter green in Fig. 9. If it
were possible to probe the Casimir pressure on such large
distances, some parameters favored by QCD could be
tested.
Finally let comment briefly on the quantum contribution

to the Casimir pressure from the presence of the rapidly
oscillating axion field. The correction to the Casimir
pressure can be estimated by consider a typical one loop
vacuum diagram for the photons with two axionic inser-
tions. At each vertex and working in the Coulomb gauge,
one time derivative acts on the oscillating axion leading to a
factor of m2. The diagram itself is proportional to ϕ2

0=M
2.

Finally a factor of d2 must be inserted for dimensional
reason, see Appendix F for a sketch of the calculation. The
fact that the contribution vanishes when m ¼ 0 follows
from the fact that for a constant axion field, the FF̃ term in

the Lagrangian is nondynamical and therefore no pressure
can be generated. All in all we have

δPaxion

Pcasimir
¼ O

�
ϕ2
0

M2
m2d2

�
; ð116Þ

which is negligible for the typical values considered in this
paper. A more thorough analysis is left for the future.

VIII. CONCLUSION

We showed that the presence of axionic dark matter in
the form of an oscillating scalar field coupled to electro-
magnetism modifies the Casimir effect at the classical level,
i.e., it induces a classical pressure between metallic plates.
The main new phenomenon resulting from our study is the
appearance of a series of resonances whose positions
depend on the spatial scale probed by the Casimir experi-
ment. The resonances are regularized by the finite con-
ductivity of the metallic plates. Estimates of the sensitivity
show that the potential reach of this method could be
competitive with other probes such as helioscopes or
haloscopes. This will require experiments sensitive to long
distance Casimir forces and very high magnetic fields. The
comparison between the classical pressure calculated here
and the Casimir pressure expected between the two plaques
will have to take into account the finite temperature effects
and also most importantly the newly discovered strong
effects that large background magnetic fields have on the
quantum Casimir pressure [37]. This is left for future work.
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APPENDIX A: RADIATION
FROM A SINGLE PLATE

As an application of the Green’s function techniques, we
will derive the expression for the electric field when only
one plate is present and the electric field penetrates inside a
metal with finite conductivity. This generalizes the ideal
case where the conductivity is taken to be infinite. We first
consider the generation of an electric due to the axion
coupling when the magnetic field occupies all space. This is
given by

eðz; tÞ ¼ J0ℜ

�
e−imt

Z
∞

−∞
dz0Gðm; z; z0; t0Þ

�
; ðA1Þ

where the Green’s function is such that it vanishes in
vacuum at z ¼ þ∞ and in matter at z ¼ −∞. In vacuum,
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this selects the modes in eiωz where the replacement
ω2 → ω2 þ iϵ̃ with ϵ̃ → 0 guarantees the convergence.
We now have to select the Green’s function for z > 0,

i.e., outside the plaque. This gives

z0 < 0∶ Gðω; z; z0Þ ¼
eiωzþξðωÞz0

ξðωÞ − iω
; ðA2Þ

and

z0 ∈ ½0; z�∶ Gðω; z; z0Þ ¼
�

1

iωþ ξðωÞ −
1

2iω

�
eiωðzþz0Þ

þ eiωðz−z0Þ

2iω
; ðA3Þ

whilst finally

z0 > z∶ Gðω; z; z0Þ ¼
�

1

iωþ ξðωÞ −
1

2iω

�
eiωðzþz0Þ

þ eiωðz0−zÞ

2iω
: ðA4Þ

As a result we have

Z
∞

−∞
dz0Gðm;z;z0;0Þ

¼ 1

m2
þ
�

1

ξðmÞðξðmÞ−imÞ−
ξðmÞ
m2

1

ξðmÞþim

�
eimz: ðA5Þ

Hence there are two components. There is an oscillating
electric field at the frequency m of the axion oscillations.
There is also a propagating wave with frequency m

eðz;tÞ¼J0cosmt
m2

þJ0ℜ

�
1

ξðmÞðξðmÞ−imÞ−
ξðmÞ
m2

1

ξðmÞþim
eimðz−tÞ

�
:

ðA6Þ

Let us now assume that the magnetic field is only in the
plaque for z < 0, then the external electric is obtained by
evaluating

Z
0

−∞
dz0Gðm; z; z0; 0Þ ¼

1

ξðmÞðξðmÞ − imÞ e
imz; ðA7Þ

corresponding to a propagating wave

eðz; tÞ ¼ J0ℜ

�
1

ξðmÞðξðmÞ − imÞ e
imðz−tÞ

�
: ðA8Þ

As typically ξðmÞ ∼ ωPl for m ≪ ωPl, we have the order of
magnitude estimate

eðz; tÞ ≃ J0
ω2
Pl

cosðmðz − tÞ; ðA9Þ

i.e. a propagating wave of small amplitude.
In the case the magnetic field does not penetrate in the

plaque we have

eðz; tÞ¼ J0 cosmt
m2

−J0ℜ

�
ξðmÞ
m2

1

ξðmÞþ im
eimðz−tÞ

�
; ðA10Þ

where we see that the field vanishes at the surface only in
the ideal case.

APPENDIX B: THE GREEN’S FUNCTION
IN THE TWO-PLATE CASE

In this appendix we will give explicit formulas for the
Green’s function satisfying

−∂0ðϵ⋆t∂0GÞ þ ΔG ¼ δð4Þðxμ − yμÞ: ðB1Þ

As explained in the main text, as we are considering
classical solutions to a field configuration depending on z
along the external field in the x direction, we only need the
scalar Green’s function for the Maxwell equation on the x
direction. The full tensorial nature of the problem is
discussed in chapter 81 of [23] where the absence of
off-diagonal terms can be ascertained by taking q ¼ 0 in
Eq. (81.5) for instance. For the sake of generality, we give
here the Green’s function for the scalar Maxwell equation
where we restore the dependence on ðx; yÞ. In the main text
we only need the following expressions with pk ¼ 0. The
reader only interested in applications can take these
expressions for granted or refer to [23] for details. In the
following we will use time-translation invariance and
space-translation invariance in the ðx; yÞ plane along the
plaques to choose yμ ¼ ð0⃗; z0; 0Þ. In terms of Fourier
decomposition the Green’s function satisfies

ð∂2z − p2
k þ ϵðωÞω2ÞG ¼ δðz − z0Þ: ðB2Þ

We define

ξ ¼ ðp2
k − ϵðωÞω2Þ1=2; ðB3Þ

where the square root is such that the real part is always
positive. We also have

Δ ¼ ðω2 − p2
kÞ1=2: ðB4Þ

We will separate the z axis into three intervals and give the
solution in each case using the continuity of the Green’s
function at the boundaries z ¼ 0 and z ¼ d. The first
derivative is continuous there too whilst there is a jump
½dGdz jz¼z0 ¼ 1 of the first derivative when G itself is
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continuous at z ¼ z0. Moreover we impose that
limjzj→∞G ¼ 0. This determines a unique solution.

1. z0 ∈ ½0; d�
When 0 ≤ z0 ≤ d is between the plates, the Green’s

function is then defined by

G ¼ G−eξz; z < 0 ðB5Þ

and

G ¼ Gþe−ξðz−dÞ; z > d; ðB6Þ

where we have now

G− ¼Θðω;pkÞ
�
cosΔðz0−dÞ− ξ

Δ
sinΔðz0−dÞ

�
ðB7Þ

and

Gþ ¼ Θðω; pkÞ
�
cosΔz0 þ

ξ

Δ
sinΔz0

�
ðB8Þ

and the Green’s function between the plates

0 ≤ z ≤ z0; G ¼ G−

�
cosΔzþ ξ

Δ
sinΔz

�
;

z0 ≤ z ≤ d; G ¼ Gþ

�
cosΔðz− dÞ− ξ

Δ
sinΔðz− dÞ

�
;

ðB9Þ

where

Θðω; pkÞ ¼
1

Δ
��

1 − ξ2

Δ2

	
sinΔd − 2 ξ

Δ cosΔd
	 : ðB10Þ

2. z0 < 0

This case is different from the previous case as

G ¼ G−eξz; z ≤ z0; ðB11Þ

and

G ¼ Aeξz þ Be−ξz; z∈ ½z0; 0�; ðB12Þ

whilst

0 ≤ z ≤ d; G ¼ Gþ

��
sinΔd −

ξ

Δ
cosΔd

�
sinΔzþ

�
cosΔdþ ξ

Δ
sinΔd

�
cosΔz

�

z ≥ d; G ¼ Gþe−ξðz−dÞ: ðB13Þ

We find that

A ¼ Gþ
2

�
cosΔdþ ξ

Δ
sinΔdþ Δ

ξ

�
sinΔd −

ξ

Δ
cosΔd

��
;

B ¼ Gþ
2

�
cosΔdþ ξ

Δ
sinΔd −

Δ
ξ

�
sinΔd −

ξ

Δ
cosΔd

��
;

ðB14Þ

and we have

Gþ ¼ Θðω; pkÞeξz0 : ðB15Þ

Finally we find that

G− ¼ Θðω; pkÞ
�
cosh ξz0

�
cosΔdþ ξ

Δ
sinΔd

�

þ Δ
ξ
sinh ξz0

�
sinΔd −

ξ

Δ
cosΔd

��
: ðB16Þ

3. z0 > d

We have now

z < 0; G ¼ G−eξz ðB17Þ

and

z∈ ½0; d�; G ¼ G−

�
cosΔzþ ξ

Δ
sinΔz

�
; ðB18Þ

whilst we have

z∈ ½d; z0�;

G ¼ G−

2

�
sinΔd

�
ξ

Δ
þ Δ

ξ

�
e−ξðz−dÞ

þ
�
2 cosΔdþ sinΔd

�
ξ

Δ
−
Δ
ξ

��
eξðz−dÞ

�
ðB19Þ

and finally

z > z0; G ¼ Gþe−ξðz−dÞ; ðB20Þ
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where we find

G− ¼ Θðω; pkÞe−ξðz0−dÞ ðB21Þ

and

Gþ ¼Θðω;pkÞ
�
coshξðz0−dÞ

�
cosΔdþ ξ

Δ
sinΔd

�

þΔ
ξ
sinhξðz0−dÞ

�
−sinΔdþ ξ

Δ
cosΔd

��
: ðB22Þ

APPENDIX C: DISSIPATION

In the background magnetic field, the complete equa-
tions of motion for aμ can be deduced from the complete
action4

S ¼
Z

d4x

�
−
1

4
fμνfμν −

ϕ

4M
fμνf̃μν − J μaμ

�
: ðC2Þ

The magnetic field induces the source term for the gauge
field. It is convenient to rewrite the action in terms of the
electric and magnetic fields using − 1

4
fμνfμν ¼ 1

2
ðe⃗2 − b⃗2Þ

and − 1
4
fμνf̃μν ¼ e⃗:b⃗ resulting in the action

S ¼ 1

2

Z
d4x

�
e⃗2 − b⃗2 þ 2ϕ

M
e⃗:b⃗ − 2J⃗:a⃗

�
; ðC3Þ

from which the equations of motion used in the main text
can be obtained.
Inside matter as in the case of metals, the physics is

modified. The permittivity ϵ of the material and its effect on
the electric field captures in an effective way the inter-
actions between the matter particles and the photons. This
leads to the existence of the displacement vector which is
related to the polarization of the medium by d⃗ ¼ e⃗þ p⃗.
The displacement vector is related to the electric field via a
retarded effect

d⃗ðx⃗; tÞ ¼
Z

dτϵðt − τÞe⃗ðx⃗; τÞ: ðC4Þ

A naive action due to the presence of a nontrivial
permittivity can be postulated as

S ¼ 1

2

Z
d4x

�
e⃗:d⃗ − b⃗2 þ 2ϕ

M
e⃗:b⃗ − 2J⃗:a⃗

�
: ðC5Þ

As the action is not local anymore, the concept of particle is
ill defined. Moreover dissipation coming from the imagi-
nary part of ϵðωÞ breaks unitarity. Let us use this action
naively and get the canonical momentum associated to the
vector potential

π⃗ ¼ −
1

2
ðϵþ ϵ̂Þ⋆te⃗ −

ϕ

M
b⃗; ðC6Þ

where we have introduced the notation ϵ̂ðtÞ ¼ ϵð−tÞ and ⋆t
is the convolution operator in time. The Hamiltonian
becomes

H ¼ 1

2

Z
d3xðe⃗: ⃗d̂þ b⃗2 þ 2J⃗:a⃗Þ; ðC7Þ

where we have defined

⃗d̂ ¼ ϵ̂⋆te⃗ ¼
Z

dτϵðτ − tÞe⃗ðτÞ: ðC8Þ

As can be seen this differs from the usual energy postulated
for electromagnetism

Hmat ¼
1

2

Z
d3xðe⃗:d⃗þ b⃗2 þ 2J⃗:a⃗Þ: ðC9Þ

The two Hamiltonians reduce to the same expression when
ϵ ¼ ϵ̂. This condition can be understood after Fourier
transforming in time d⃗ðω; x⃗Þ ¼ ϵðωÞe⃗ðω; x⃗Þ, where ϵðωÞ
is a complex function such that ϵ̄ð−ωÞ ¼ ϵðωÞ. In a metal,
the permittivity has a pole on the negative imaginary axis.
There is dissipation unless ϵð−ωÞ ¼ ϵðωÞ implying that
ℑϵ ¼ 0, i.e., the imaginary part of ϵðωÞ vanishes. When this
is the case we have ϵðtÞ ¼ ϵð−tÞ and the Hamiltonian H
coincide with Hmat. In general this is not the case and the
two Hamiltonians differ.
There is another major issue with the naive action: it does

not reproduce the correct equations of motion. Indeed the
Euler-Lagrange for a⃗ coming from (C5) is

−∂0
�ðϵþ ϵ̂Þ

2
⋆t∂0a⃗

�
þ Δa⃗ ¼ −

ϕ̇

M
b⃗þ J⃗; ðC10Þ

which does not coincide with the phenomenological
equation of motion

−∂0ðϵ⋆t∂0a⃗Þ þ Δa⃗ ¼ −
ϕ̇

M
b⃗þ J⃗: ðC11Þ

4Notice that this action is only gauge invariant aμ → aμ þ ∂μα
on shell when we impose current conservation ∂μJ μ ¼ 0. This
can be remedied by introducing a Stückelberg field θ as

S ¼
Z

d4x

�
−
1

4
fμνfμν −

ϕ

4M
fμνf̃μν − J μðaμ − ∂μθÞ

�
; ðC1Þ

which transforms as θ → θ þ α under a gauge transformation.
The equations of motion of θ give ∂μJ μ ¼ 0whilst the value of θ
is left undetermined. This does not matter as the Hamiltonian
obtained by Legendre transform with respect to both aμ and θ
does not depend on θ.
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This equation is not a time-reversal invariant as ϵ ≠ ϵ̂; i.e.
dissipation implies a specific arrow of time. In fact it is
interesting to consider the time-reversed process defined as

ãiðt̃Þ ¼ aið−tÞ; ðC12Þ

where t̃ ¼ −t. It satisfies the time reversed equation

−∂0ðϵ̂⋆t̃∂0
⃗ãÞ þ Δ ⃗ã ¼ −

ϕ̇

M
b⃗þ J⃗; ðC13Þ

where time derivatives are with respect to t̃. The equation of
motion (C10) is symmetrized in time of (C11) and (C13). In
this case when ϵðtÞ ¼ ϵð−tÞ the normal process and its
time-reversed satisfy the same equation. This only applies
to plasmas and not to metals with a finite conductivity.

APPENDIX D: ENERGY BUDGET

1. The small mass limit in the one plaque case

Let us consider the case of m ≪ γ ≪ ωPl then we have

ξ ≃
ffiffiffiffiffiffiffi
mσ

p
e−iπ=4

�
1þ i

m
2γ

�
: ðD1Þ

This implies that

1

m2
þ 1

ξðmÞðξðmÞ − imÞ −
ξðmÞ
m2

1

ξðmÞ þ im
≃

−i
m

ffiffiffiffiffiffiffi
mσ

p eiπ=4:

ðD2Þ

When the magnetic field is present everywhere,

eðz; tÞ ¼ J0
m2

cosmt −
J0
m2

cosmðt − zÞ

þ J0
m

ffiffiffiffiffiffiffi
mσ

p sin

�
mðt − zÞ − π

4

�
; ðD3Þ

corresponding to the electric field generated in the ideal
case complemented by a term which disappears when the
conductivity because infinite. The pressure on the plaques
follows from

ℜ½ϵðmÞ − 1� ¼ −
ω2
Pl

γ2 þm2
ðD4Þ

and becomes

hPi ≃ −
J20

2γm3
; ðD5Þ

which is always negative, corresponding to the fact that the
vacuum for z > 0 attracts the plate situated at z ≤ 0.
In the single plaque case with a magnetic field only in the

metal we have

eðz; tÞ ¼ J0
mσ

sinmðt − zÞ; ðD6Þ

which vanishes for a perfect conductor. The pressure on the
plaque becomes

hPi ≃ J20
2m3γ

; ðD7Þ

i.e. the same result as before when the magnetic field is
everywhere.
In both cases the vacuum attracts the plate. This effect

will reemerge in the two plate case where the two plates
will attract each other classically.

2. Energy balance

It is interesting to consider the conservation of energy
when one plaque is present and radiation from the plate
takes place. Inside the plaques we have the Maxwell
equation

∇⃗ ∧ b⃗ ¼ ∂0e⃗þ j⃗ind þ j⃗axion; ðD8Þ

where j⃗ind is the induced current

j⃗ind ¼ ˙p⃗; ðD9Þ

where p⃗ is the polarizability. This current only exists in a
finite width of the plaque; i.e. this is a skin effect. This
current is responsible for the dissipation power j⃗ind:e⃗ in the
plaque corresponding to the loss of energy. As a result, the
plaque heats up due to the Joule effect. The axionic current
is given by

j⃗axion ¼
ϕ̇

M
B⃗: ðD10Þ

This is complemented with the Bianchi identity

∂0b⃗þ ∇⃗ ∧ e⃗ ¼ 0; ðD11Þ

from which we can get the propagation equation in matter
for the magnetic field

ðϵðωÞω2 þ ΔÞb⃗ ¼ 0: ðD12Þ

It coincides with the propagation equation for the elec-
tric field.
Let us now study the local conservation of energy

E ¼ e⃗2 þ b⃗2

2
; ðD13Þ
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which satisfies

dE
dt

þ ∇⃗:P⃗poynting ¼ −ðj⃗ind þ j⃗axionÞ:e⃗; ðD14Þ

where the Poynting vector corresponds to the radiated
power

P⃗poynting ¼ e⃗ ∧ b⃗: ðD15Þ

In the absence of currents we have

dE
dt

þ ∇⃗:P⃗poynting ¼ 0; ðD16Þ

expressing the conservation of energy, i.e. the energy lost
by the system is matched by the flux of radiation. When the
axion is present and dissipation too, we find that the power
dissipated by Joule’s effect is

Pjoule ¼ hj⃗ind:e⃗i; ðD17Þ

which has to be positive. We will study this local equation
more precisely below.
In the case treated in the main text with a single plaque

and a magnetic field the polarizability at the surface of the
metal does not vanish and becomes

pð0; tÞ ¼ −
J0σ cos ðmt − π

4
Þ

m2
ffiffiffiffiffiffiffi
mσ

p ðD18Þ

in the small mass limit. This induces a surface current

jindð0; tÞ ¼
J0σ sin ðmt − π

4
Þ

m
ffiffiffiffiffiffiffi
mσ

p : ðD19Þ

The power dissipated by Joule’s effect at the surface of the
metal is on average

Pjoule ¼ hjindð0; tÞeð0; tÞi ¼
J20
2m3

: ðD20Þ

Let us now assume that dissipation acts adiabatically over
times tdis ≫ 1=m, then the average energy decreases as

dhEi
dt

¼ 1

2m3σ

dJ20
dt

; ðD21Þ

i.e. the amplitude of the current inside matter varies in time
due to dissipation.
As we consider the balance equation at z ¼ 0 we have

h∇⃗P⃗Poyntingi¼
�
de
dz

ð0; tÞbð0; tÞþdb
dz

ð0; tÞeð0; tÞ

; ðD22Þ

where the Bianchi identity gives us that

by ¼ −
J0
m2

cosmðt − zÞ þ J0
m

ffiffiffiffiffiffiffi
mσ

p sin

�
mðt − zÞ − π

4

�
:

ðD23Þ

Notice that the nonpropagating term of eðz; tÞ in cosmt
corresponds to a term with a Fourier transform proportional
to δðkÞ; as a result we can also write by ¼ k

ω eðk;ωÞ, where
the Fourier transform of the nonpropagating part is

eðω; kÞ ⊃ J0
2m2

ðδðω −mÞ þ δðωþmÞÞδðkÞ; ðD24Þ

whose contribution does not appear in byðk;ωÞ as
kδðkÞ≡ 0. Hence only the propagating part of e contributes
to by as k ¼ �m. We then find that hbð0; tÞ∂zeð0; tÞi ¼ 0

and h∇⃗P⃗Poyntingi ¼ h∂zbð0; tÞeð0; tÞi, which gives

h∇⃗P⃗Poyntingi ¼ −
J20

2
ffiffiffi
2

p
m2

ffiffiffiffiffiffiffi
mσ

p : ðD25Þ

Similarly we find that the axion injects energy in the
system as

hjaxionð0; tÞeð0; tÞi ¼
J20

2
ffiffiffi
2

p
m2

ffiffiffiffiffiffiffi
mσ

p ; ðD26Þ

implying that the radiated energy balances the axionic
injection

h∇⃗P⃗Poyntingi þ hjaxionð0; tÞeð0; tÞi ¼ 0: ðD27Þ

This implies that the change of amplitude of the current
satisfies

dhEi
dt

¼ −hjindð0; tÞeð0; tÞi; ðD28Þ

where the variation of the electromagnetic energy at the
surface of the plaque is due to the Joule effect from the
induced current. This would give

J20ðtÞ ¼ J20ð0Þe−σt; ðD29Þ

corresponding to a dissipation time tdis ¼ 1=σ. Typically
for copper, we have σ ¼ 10−8 GeV, implying that the
dissipation time appears to be much shorter than the
oscillation time 1=m as long as m ≤ 10 eV. In this case,
the previous calculation does not apply and one must take
into account both the time evolution of the axions and the
photons.
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3. Axion electrodynamics in the plaque

Let us now go beyond the simple hypothesis that ϕ0 is
constant in the plaque. The Joule’s effect implies that this
cannot be the case. We must analyze the coupled Klein-
Gordon equation following the line of [38]

ϕ̈ − Δϕþm2ϕ ¼ −
B
M

ȧ; ðD30Þ

where e ¼ −ȧ. The equation for the electric field becomes

Δa − ä ¼ −
B
M

ϕ̇þ σȧ; ðD31Þ

where the term jσ ¼ σe is the conduction current.
We can analyze the modes of this system in the plaque by

going to Fourier space. Having two equations with no
sources, the nontrivial modes are obtained by requiring that
the determinant of the system vanishes. This gives

ðω2 − k2 þ iσωÞðω2 − k2 −m2Þ ¼ B2ω2

M2
: ðD32Þ

As we are interested in B=M ≪ m, the mixing is very small
implying that there are two branches of solutions. The first
branch corresponds to

ω2 − k2 þ iσω ≈ 0; ðD33Þ

corresponding to two modes

ω1 ≈ −iσ; ω2 ≈ −i
k2

σ
; ðD34Þ

where we have assumed that k ≪ σ. Both modes are
decaying modes in time with no time oscillations. So they
do not correspond to the case of an initial oscillatory axion
being affected by Joule’s effect. The mode ω1 decays very
fast whereas the second one has a long lifetime.
The more interesting modes which would correspond to

an initially oscillating axions are on the second branch
close to ω2 ¼ k2 þm2. The modes are then

ω� ¼ �
�
ðk2 þm2Þ1=2 þ m2

2σ2
B2

M2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p −
B2

2M2

i
σ

�
:

ðD35Þ

The physical mode is the decreasing one ωþ whose
imaginary part is in − B2

2M2
i
σ. Notice that when σ is very

large, this gives a very large lifetime. This is the surprising
result of this analysis. The mode ω1 corresponds to the
intuition that the Joule’s effect withdraws the energy from a
finite source and therefore depletes the axion and the
electric field very rapidly. The mode ωþ corresponds to
the fact that the Joule’s effect removes energy from the
system but the axion keeps replenishing. The two effects

compete but the second one with a long lifetime is the
dominant effect.
As a result, the analysis in the plaque confirms that our

initial hypothesis of a constant amplitude for the axion is
justified as the variation time due to the Joule effect is very
large. So we are entitled to trust our analysis and keep that
J0 is constant on the timescale of the experiment.

APPENDIX E: COMPARISON WITH THE
LIFSCHITZ THEORY

For a metal the Casimir effect depends on the conduc-
tivity too. In this case, the pressure separates in the electric
pressure

Pþ
z ¼ −

Z
=dω=d2pk

Δ�
1þξ

Δ
1−ξ

Δ

�
2

e2Δd − 1

; ðE1Þ

coming from the TE modes with two plates with the
permittivity ϵ. We have introduced Δ ¼ ðp2

k þ ω2Þ1=2. This
integral can be written as

Pþ
z ¼ −

Z
=dω=d2pk

Δ
r−2TEe

2Δd − 1
; ðE2Þ

where rTE is the reflection coefficient for the TE modes

evaluated for imaginary frequencies rTEðiωÞ ¼ 1−ξ
Δ

1þξ
Δ
where

ξ ¼ ðp2
k þ ω2ϵðiωÞÞ1=2 depends on the permittivity for

imaginary frequencies

ϵðiωÞ ¼ 1þ ω2
Pl

ωðωþ γÞ : ðE3Þ

The magnetic pressure is given by

P−
z ¼ −

Z
=dω=d2pk

Δ�
1þ ξ

ϵðiωÞΔ
1− ξ

ϵðiωÞΔ

�
2

e2Δd − 1

; ðE4Þ

coming from the TM modes with two plates with the
same permittivity ϵ. Notice that the same integral can be
written as

P−
z ¼ −

Z
=dω=d2pk

Δ
r−2TMe

2Δd − 1
; ðE5Þ

where rTM is the reflection coefficient for the TM modes
evaluated for imaginary frequencies. In the ideal case where
rTE ¼ rTM ¼ 1, the electric and magnetic contributions to
the Casimir pressure are equal and the total pressure
reduces to

Pz ¼ −2
Z

=dω=d2pk
Δ

e2Δd − 1
; ðE6Þ
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which can be evaluated as

Pz ¼ −
2 × 4π

16ð2πÞ3d4
Z

∞

0

dx
x3

ex − 1
¼ −

2 × 4π

16ð2πÞ3d4 Γð4Þζð4Þ

¼ −
π2

240d4
: ðE7Þ

This is the usual Casimir pressure in the ideal case. At finite
temperature T, the Lifschitz formulas must be computed by
replacing the integral

R
=dω → T

P
n>0 over the Matsubara

frequencies where ωn ¼ 2πnT. As the reflection coeffi-
cients are less than unity, the effect of the conductivity of
the real plates is to reduce the quantum pressure between
the plates. Finally, let us notice that when ω becomes larger
than ωPl, the reflection coefficients converge to zero
implying that the pulsation integral giving rise to the
Casimir pressure has a natural cutoff scale of order ωPl
above which the integral receive no contribution. Similarly
when the transverse momenta pk are much larger than ω,
the TE reflection coefficient vanishes too. In all cases, when

the quantized pulsation ωn ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
k þ n2π2

d2

q
exceeds the

plasma frequency, in particular for large pk, the plaques
become transparent implying that ϵ ¼ 1 and the absence of
Casimir pressure. As a result the plasma frequency serves
as a UV cutoff for energies and momenta for the Casimir
effect in the presence of metallic plates.

APPENDIX F: QUANTUM EFFECTS

The contribution of the axion to the quantum pressure
can be evaluated by considering the corrections of the
photon propagator due to the axion. For each photon
polarization, let us consider the vacuum energy per unit
surface which behaves like

Evac

S
¼

Z
=dω=d2pkω2Δðω; pkÞ; ðF1Þ

where the photon propagator in the cavity with resonances
at ω ¼ ωnðpkÞ ∼ p2

k þ n2π2

d2 , where p⃗k is the transverse
momentum to the plates, is given by

Δðω; pkÞ ∼
X
n

i
ω2 − ω2

nðpkÞ þ iϵ
: ðF2Þ

A contour integral in the lower half plane gives the usual
1
2

P
n

R
=d2pkωnðpkÞ before the axionic corrections. As the

photon energy momentum tensor is not corrected by the
axion coupling due to its topological nature, we just have to
correct the propagator and average over the fast axion

oscillations. The first correction to the vacuum energy
appears after two axionic insertions and gives a term in

δEvac

S
∼m2

ϕ2
0

2M2

Z
=dω=d2pkp2

kΔðω; pkÞðΔðωþm;pkÞ

þ Δðω −m;pkÞÞΔðω; pkÞ; ðF3Þ

where each vertex bring a spatial and a time derivative. The
time derivatives lead to the prefactor inm2 coming from the
derivative of the axion field and the spatial derivative is in
pk. In this expression, we are only interested in the order of
magnitude. A more precise calculation using field theoretic
methods from first principle is in progress. Notice that the
axionic insertions shift the energy in the propagator
ω → ω�m. The integral is dominated by the resonances
at ωn and gives a leading contribution

δEvac

S
∼ im2

ϕ2
0

4M2

X
n

Z
=dω=d2pkω2p2

k

×
1

ðω2 − ω2
nðpkÞ þ iϵÞ2

1

ω2
nðpkÞ − m2

4

: ðF4Þ

The same contour integral in the lower half plane gives a
contribution in

δEvac

S

���� ∼m2
ϕ2
0

4M2

X
n

Z
=dω=d2pkp2

k
1

ωnðpkÞ
1

ω2
nðpkÞ − m2

4

;

ðF5Þ
which is an integral which can be calculated in dimensional
regularization

δEvac

S
∼m2

ϕ2
0

4M2

X
n

Z
=d2pkp2

k
1�

p2
k þ n2π2

d2

	
3=2

∼m2
ϕ2
0

16πM2

Γ
�
− 3

2

	

Γ
�
1
2

	 X
n

nπ
d

ðF6Þ

when md ≪ 1. This gives

δEvac

S
∼m2d2

ϕ2
0

16M2

Γ
�
− 3

2

	

Γ
�
1
2

	 ζð−1Þ 1

d3
ðF7Þ

and dimensionally we have

δEvac

Evac
∼m2d2

ϕ2
0

M2
ðF8Þ

as Evac
S ∼ 1=d3.
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