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We study the effects of an oscillating axion field on the pressure between two metallic plates.
We consider the situation where a magnetic field parallel to the plates is present and show that the electric
field induced by the coupling of the axion to photons leads to resonances. When the boundary plates are
perfect conductors, the resonances are infinitely thin whilst they are broadened when the conductivity of the
boundary plates is taken into account. The resonances take place at the tower of distances close to

d = (2n+1)z

, where m is the axion mass and have a finite width and height depending on the conductivity.

The resulting resonant pressure on the plate depends on the induced polarization at the surface of the plates.
We investigate the reach of future Casimir experiments in terms of the axion mass and the conductivity of
the boundary plates. We find that for large enough conductivities, the axion-induced pressure could be
larger than the quantum Casimir effect between the plates.
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I. INTRODUCTION

The standard model contains a few naturalness issues,
one of them being the so-called strong-CP problem. This is
an archetypical fine-tuning problem: QCD (quantum
chromodynamics) is observed to respect the CP symmetry,
as verified at the 107'° level by the nonobservation of the
neutron electric dipole moment [1]. In the strict context of
the standard model, QCD contains a CP-violating 0GG
term, where G, is the gluon field strength and no degree of
freedom allows for the 0 term to relax to zero. The Peccei-
Quinn mechanism consists in introducing a new U(1)
symmetry that is broken spontaneously at some high
energy M, making the € term dynamical and solving the
above puzzle [2,3]. This is done at the expense of
introducing new fields, e.g. new heavy fermions [4,5], or
extending the Higgs sector [6,7]. Eventually, there remains
a single degree of freedom corresponding to a massless
pseudoscalar goldstone boson called the axion [8,9].
Because of the QCD phase transition, (gg) # 0 three
things happen: the axion acquires a small mass, the 8 term
can effectively relax to zero, and the axion ¢ acquires an
effective interaction with the electromagnetic field, of the
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form ¢/M FF, where F w 18 the electromagnetic field
strength.

Independently, observations of the Universe at all scales
from dwarf galaxies to the whole Hubble radius favor the
presence of a new type of cosmological fluid, which we call
cold dark matter [10]. The energy density of dark matter
today represents about one third of the total energy and
84% of the total mass [11]. The axions could well be the
source of dark matter. They could have been produced in
the early Universe during the Peccei-Quinn symmetry
breaking in a thermal way but such a thermal relic is
irrelevant for dark matter as its abundance turns out to be
highly suppressed [12]. On the other hand, the zero mode of
the axion field could be misaligned with the minimum of
the axion potential whose origin is nonperturbative. Due to
this nonthermal production mechanism, the axions
would be cold in the first place. In that case the axion
field oscillates in its potential and one has approximately
¢ = ¢pocos(mt) with m the axion mass close to the
minimum of the axion potential. In this scenario, it is
the classical energy density of the axion field that plays the
role of the energy density for the cold dark matter
fluid [13]. In this case, the local dark matter density p
is related to the amplitude of the oscillation ¢, and its
frequency m through py = Lm*(¢?) +1(¢?) = 1m>¢3.

It is well known that the zero-point energy of the
electromagnetic field in a cavity leads to an attractive
force between the walls due to the so-called Casimir
pressure [14,15]. This is related to the fact that even if
the cavity contains only vacuum, the corresponding
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electromagnetic modes inside the cavity are countable, as
opposed to outside the cavity where they are continuous.
Suppose one sets up such a cavity embedded inside a
constant magnetic field. The dark matter axion field will
couple to some of the modes of the vacuum and could
potentially modify the value of the Casimir pressure. The
question addressed here is whether this could lead to
observable effects in actual experiments. Typically, there
are two potentially important physical effects in this setting.
The first one is classical and comes from the force between
the plates due to the induced polarization in metals
comprising the boundary plates. We discuss this effect
here. The second one is a quantum effect and follows from
the shift in the quantum modes of the electromagnetic field
between the plaques due to the axion-photon coupling. This
is left for future work, see [16—-19]. We give an estimate of
this effect in Appendix F.

In this paper, we study the effect of the dark matter
oscillating axion field on the Casimir pressure at the
classical level. We consider a constant background mag-
netic field which triggers the mixing between axions and
photons. As a result an electromagnetic field is induced
along the magnetic field lines. In particular between two
metallic parallel plates, we estimate the effects of this
mixing on the Casimir pressure. Intuitively we expect the
axion to induce resonances and thus a modification of the
Casimir forces. The resonant effect on the pressure
between the plates depends on the geometry of the cavity
and on the frequency of the oscillating axion field. These
resonances are regularized by the dissipation effect in the
metal. To account for dissipation, we use a classical
approach and leave the full quantum field theoretic treat-
ment to a future study, where the modification to the
quantum pressure due to the axion field will be discussed.
At the classical level, we find that the resonances are not
perfect and have a finite width depending on the conduc-
tivity of the metal. The width of the resonances is also
broadened by the velocity dispersion of the axion in the
galactic halo. Our analysis assumes that the broadening is
dominated by the metallic effects. We find that for
distances of the order of a few microns, the axion-induced
pressure can compete with the quantum pressure in 1/d*,
where d is the distance between the plates. We also notice
that, in real material, the quantum pressure is reduced by
the imperfect reflexivity of the boundary plates and we
recall the Lifschitz formalism in an Appendix E. This
would make the emergence of the axion-induced effects
easier. We leave the detailed study of this to future work.
The competitive cases where the axion-induced pressure
becomes of the order of the quantum Casimir effect require
conductivities which are larger than the ones of ordinary
metals such as copper. We leave phenomenlogical inves-
tigations on the type of metal and experimental situations,
such as temperature, necessary to maximize the axionic
effect to future work.

In Sec. 11, we introduce the model and derive the general
equations for an axion subject to a magnetic field in a
geometry with boundaries. The treatment of dissipation in
metal is described there, and the classical equations of
motion are obtained. In Sec. III, a one-sided boundary
condition is considered. This is an intermediate step
towards the treatment of the classical Casimir pressure
induced by an axion in the presence of a magnetic field, and
it allows one to retrieve known results, such as the ones
typically considered for dish-antenna experiments [20].
Then in Sec. IV we consider two boundary conditions, i.e. a
cavity, with an external magnetic field parallel to the plates.
We will see that in the ideal case with infinite conductivity,
we obtain infinite resonances for discrete plate separations,
described by Dirac distributions. We will see that the
resonances are regularized when a finite conductivity is
considered. In the last part we discuss orders of magnitudes
for the modifications of the Casimir forces and some
prospects. We discuss the Green’s functions in the one
and two side plates, more details on dissipation, the energy
budget, the Lifschitz theory [21,22], and the quantum
effects in the Appendices.

II. AXIONS IN A CONSTANT MAGNETIC FIELD
A. The model

We start with the usual Lagrangian of electrodynamics in
vacuum coupled to an axionlike field ¢ in natural units

1 )
F F* — %F””FW, (1)

[,:—Z uv

where F w = %eﬂM,F ¢ is the dual field strength. We define
€123 = 1. The pseudoscalar field ¢ will be assumed to be
time dependent, as representing the oscillations of the dark
matter field in our environment. The energy scale M is of
the order of the scale of the Peccei-Quinn symmetry
breaking. For dark matter axions of mass m ~ 107> eV,
this scale is at least of the order of 10'2 GeV [10]. The full
Lagrangian includes also kinetic terms for the axion, which
we disregard here as we are interested in the conventional
electromagnetic field modes. The equations of motion for
the photon field become

1
0 F" + 5 €070, (F ) = 0. (2)

In the Lorentz gauge 9,A* = 0, the first term gives [1A”
and instead of the classical d’Alembert equation we obtain
the modified propagation equation

1
0AY = — M "0, (¢pF ;). (3)

We decompose the gauge field into a background field and
a perturbation A = A” + a”, where the background field is
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generated by a homogeneous and constant magnetic field
corresponding to A’ =1ekx/Bk, A" =0, satisfying the
background wave equation [JA* = 0. The Maxwell’s
equation for the fluctuation of the electromagnetic field
becomes

1
Oa = =5 () F o + B0, F,).  (4)

In the following, we will assume that the axion field is
homogeneous and time-dependent 9,¢p = 4552, correspond-
ing to the cosmological field associated to dark matter in
the environment. Then we obtain

1 -
Ua* = _m(eow)o—(ﬁ(Fpa +f/)o') +€MW}H¢(aﬂF/m + aﬂfﬂﬂ))’
(5)

and upon considering the magnetic field is constant in
space, i.e. aﬂF o = 0, we get

1. _ 1
Da" =-4 P (F oo + f o) — o P 0uf o (6)

where last term vanishes as f,, = d,a,
equations of motion now become

—d,a,. The two

. 1. - -
Oi=——-¢(B+b) and Ca°=0. (7)

They are conveniently written in terms of the perturbations
of electric ¢/ = —4' and the magnetic field b; = J ¢,/ in
vector form as

=LV A(B+b) and
L1, 1 .
07 = (B +5) + - $(B+b) (8)

These equations can also be easily derived from a reduced
Lagrangian involving an external current induced by both
the background magnetic field and the oscillating axion,
see Appendix C.

B. The classical field and the introduction
of dissipation

The classical equations of motions can be solved by
iterations in an inverse power expansion in M. At leading
order we have

h——L3VAB and Oe=—pB+—pB. (9)
= —— e =— s .
M v’ m

Let us denote the axion-induced source term of the electric
field by

> 1 .- 1.3
J=—¢B+—¢B, 10
B (10)
then the perturbation of the electric field becomes

2(x) = / d*u G (x; u)J (u), (11)

in terms of a well-defined Green’s function which
depends on the geometry of the experimental situation
under consideration. Here x* and u* are 4-vectors. The
Maxwell equation (9) for the electric with the current (10)
characteristic of axion electrodynamics have important

consequences. First of all, let us notice that the current J
is parallel to the external magnetic field. This implies that
the electric field in(9) sourced by the external current is
parallel to the external magnetic. In fact the Maxwell
equation (7) for the vector potentials shows that the
classical sourced solution is also along the external mag-
netic field.

In the cases of interest, we will consider experimental
situations where the background magnetic field is present
everywhere in space. The boundary conditions used to
exhibit the classical Casimir effect correspond to a cavity
between two parallel plates where the external magnetic
field is along the plates in the x direction when the direction
perpendicular to the planes is chosen to be the z direction.
As we are interested in the classical solutions sourced by

the external current J along the x direction, the gauge field
a solution to (7) only depends on z direction by symmetry
reason. A dependence of the solution on the (x,y)
directions would break the translation invariance of the
cavity configuration with its constant magnetic field
parallel to the plates.' As a consequence the Maxwell
equation (7) becomes a scalar equation for a single
component of the gauge potential along the x direction
with a dependence on time and the z direction. Hence the
Green’s function becomes a scalar Green’s function G
instead of the tensor Green’s function which can be found
in [23].% As the induced vector potential is along the
external magnetic field so is the induced electric field.
Moreover as the vector potential only depends on z, the
induced magnetic field is along the y direction and there-
fore parallel to the plate too. Inside the plates, the
perturbations of the electric and magnetic field penetrate
only over a length depending on wp;', i.e. the skin depth 5.

'Solutions of the vacuum Maxwell equation in the cavity can
propagate along the plane. Although they are crucial for the
calculation of the quantum Casimir effect, they are not generated
by the external source here.

The off-diagonal terms in the tensor Green’s functions can be
seen to vanish when no dependence on (x, y) exists. This can be
seen explicitly in Eq. (81.5) of chapter 81 in [23] dedicated to
quantum effects in cavities. This results from taking ¢ = 0 in
Eq. (81.5).
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Before moving to the estimates of the classical pressure
in specific cases, we must discuss the treatment of
dissipation inside matter. This is relevant for the case
where the metallic plates are made of nonideal conductors.
For this we follow the method described in [24]. Inside
matter as in the case of metals, the relevant vector field for
electric phenomena is the displacement field d = & + p,
sometimes called the electric induction field. It differs from
the electric field in vacuum due to the existence of the
polarization p. The displacement vector is related to the
electric field via a retarded effect

QUL

(% 1) = /_  dre(t = 1)8(E,1) = ex (% 1), (12)

(e8]

or equivalently d(X¥,w) = e(w)é(X, ) in Fourier space
with

d(Z. 1) = / dwe(w)e(X, )™, (13)

with 4 = d/2x. Dissipation will be taken into account
considering that the permittivity is not equal to 1 and is a
complex number. This is because the propagation equation
in matter in the z direction is 02e = ed?e and if € € C, then
from the dispersion relation k> = ew?, k is also a complex
number k = k' + ik”, and a plane wave gets a real factor
that can account for dissipation e ¥'¢¢=i(@1=K2),

In the following we are interested in the case of a metal,
and we follow the Drude model. Readers familiar with this
model and only interested in the applications to axion
physics can skip this paragraph. The permittivity relates the
polarization field to the electric field through p = (¢ — 1)eé.
On the one hand one has in the x direction p = Ngx, where
N is the density of electrons and ¢ their charge. The
movement of electrons are modeled classically with a
frictional force and a restoring force, such that

-

Y="(E+XA(B+b)—yi-ali,  (14)

3=

where y is a typical damping time and @} is related to the
confinement of electrons around atoms. Typically we
expect that y = Nv,0;,, where oy, is the cross section of

the moving electrons with the material and v, = , /31—T is the

thermal velocity of the electrons. The Lorentz force acting
on the electrons depend on both the external magnetic field

B and the induced one b. We take the external magnetic
field in the x direction and we consider the induced electric
waves as propagating in the z direction by symmetry
reason. Because the electric field perturbation is in the
direction of the external magnetic field, the only displace-
ment of the electrons related to € is in the x direction and, as
far as the polarization is concerned, the magnetic force has
no effect. Indeed, the external magnetic field is along the

motion of the electrons and as usual we neglect the force
coming from the induced magnetic since its magnetic is
reduced compared to the electric force by a factor of
v/c < 1. Solving the equation of motion in Fourier space
one gets

q/m
=——5—¢€. 15
* a)é—a)z—iya)e (15)

In metals, electrons are free and w, — 0 so it is disregarded.
By identification with the expression d = € + p, one gets
for the complex permittivity

2
@p

e=1 (16)

St iye’

where wp, = \/Ng?/m is the plasma frequency. The
damping time y is related to the conductivity through

2
_ Wp

o= o (17)

The integral leading to the displacement field d (X, 1) can be
evaluated in the complex plane. In the Drude model, when
t < 0 the contour must be closed in the upper half plane and
as long as (X, w) has no singularity in the upper half plane
we find that d(¥, f) = (%, f). On the contrary, when ¢ > 0,
the contour must be closed in the lower half plane where the
permittivity has a pole at @, = —iy. Noticing that for the
Drude model |w||e(X, ) — 1| converges to zero for large
|w|, the integral on the large circle in the lower half plane
vanishes and we find that

d(Z. 1) = (%, 1) + 62(X, —iy)e"", (18)

implying that the displacement field vanishes after a time
1/y and has an amplitude depending on the conductivity.
This is what happens due to dissipation as long as a
permanent regime is not considered.

Including the displacement field, the phenomenological
equation for the electric field is

—0y(e%,00G) + AG = 6™ (x# — y#). (19)

This equation can be solved using the Green’s function of
the operator in Fourier space

G=(A+e(w)w?)™h (20)

The Green’s function can be explicitly defined as soon
as the boundary conditions are specified. In the next parts
of the paper, different boundary conditions are considered,
and the associated Green’s functions are used to solve the
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equations of motions in the vacuum and in the

metallic plates.

C. Classical pressure from the electromagnetic field
and the axion field

In Casimir experiments, the observable is an attractive
force between the plates. This can be described by a
negative pressure in vacuum. Before moving on with the
expression of the pressure, several remarks are in order.
First of all, an interesting effect follows from the Maxwell
equation in matter. Inside the plaques we have the identity

VA b =00 + fina. (21)

where Jj,q is the induced current. As VA b —0y¢ =
—Ad + 02a, we find that Ji,q = —0q(ek,0yd — dyd) which
coincides with

.}:ind = ﬁ (22)

inside matter. As can be seen this current only exists in a
finite width within the plate, i.e. this is a skin effect. This
current is responsible for the dissipation power jind.é' in the
plate, corresponding to the loss of energy % (%) due to the
polarizability of the material. As a result, the plaque heats
up due to the Joule effect. We will give a thorough
discussion of dissipative effects in Appendix D.

The oscillating axion field will perturb the electromag-
netic modes via the coupling between the axion and two
photons. In Casimir experiments, the observed effect is a
pressure in vacuum. Here there is an additional classical
pressure that will be induced by the coupling of the axion
field with the electromagnetic field. In vacuum, the energy
momentum tensor of the electromagnetic field is given by

)
%F{ (23)

TH = F"FY —
which gives for the pressure against the plates

2 2 2 2
o :_TZZ:eZ—I—bZ_e +b
2z 2 2 °

(24)

Notice that there is no contribution from the axion term as
FF is topological and independent of the metric. Indeed
T*¥ is obtained by the variation of the action with respect to
the metric; the FF term gets a (—g)~'/? term for the Levi-
Civita tensor to be covariant, which cancels with the /=g
in the integration measure of the action. Moreover e, =
b, = 0 implying that the electromagnetic pressure on the
plate due to the axion source is given by

; 62+b2
2z = 2 >

(25)

evaluated on the plates. This is the pressure due to the
vacuum on the interface between the plaques and the
vacuum.

In matter, the energy-momentum tensor of electromag-
netism gives the pressure

2.d+ b>
. (26)

As e, =0, the pressure on the plaques is given by the
difference from the two classical pressures inside and
outside the plaques. This gives

! e
Poozot==5+5 =7

= %R((e—1)e?). (27)

This term is always negative. In the next sections, the
explicit determination of the electric field and the related
polarization field allows for the computation of the pres-
sure. In the single-plate case, this leads to a thrust force on
the plate, whereas in the two-plate case, this modifies the
Casimir effect.

III. RADIATION FROM A SINGLE PLATE

As an application of the Green’s function techniques, we
will derive the expression for the electric field when only
one plate is present and the magnetic field penetrates inside
a metal with finite conductivity. This generalizes the ideal
case where the conductivity is taken to be infinite. The
geometry for this section is sketched in Fig. 1.

Now we consider the generation of an electric field due
to the axion coupling when the magnetic occupies all space.
This is deduced from Eq. (11) as a function of the Fourier
transform in time of the Green’s function evaluated at the
frequency @ = m,

e(z,t) = JoN {e‘”’" /_oo dzoG(m, Z;Zo)}, (28)

(e8]

B’T TE

Conductor Vacuum

I(Lf
Yy 2

FIG. 1.
case.

Geometry and boundary conditions for the one-plate
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where in the case of an external magnetic field B, and a
homogeneous axion field, the source term depends on
the amplitude

_ m2¢oBo

J,
0 M

The Green’s function is such that it vanishes in vacuum at
7 = +o0 and in matter at z = —oo. In vacuum, this selects
the modes in e™* where the replacement @’ — w* + i&
with & - 0 guarantees the convergence. The Green’s
function is the solution of Eq. (19). To determine explicitly
G, it is convenient to separate the cases z, < 0 and z; > 0,
which is done in the next subsections. More details on the
derivation of the Green’s function will be given in the case
of two-plate systems.

A. The Green’s function for z, < 0
We find that when z < zg,

1 é(w) +iw _
1+ — ¢ é(0)zo 65(“’)(1 Zo),
2((w) < (o) —iw

G(w,z;29) =
(29)

whilst when z € [z, 0],

&(w)zo 4
G(w,z;29) = Zé(w) <e‘5(‘”)z +—§(a)) w ef(‘”)z>, (30)

and finally when z > 0,

eimz+§(m)z0
G(w, z;20) :cf(a))——ia)’ (31)

where we defined the function &(w) as
E(w) = (—e(w)a?)'"2, (32)

where the square root is such that the real part is always
positive. The same calculation can be performed when
ZO > 0

B. The Green’s function for z, > 0
In this case, it is shown in Appendix A that, if z < 0, then

eiwz()—Hc(w)z

Glos20) = o @) (33)
if z€(0, z¢], then
G(w.2:20) = (W_ﬁ) i) +e";(;—z)’ -
and finally when z > z,
1 | A ei®(z=2)
G(w,2;20) = <W+~§(a))_21w) eiw(ta) 4 o (35)

C. The electric field in vacuum

In dish antenna experiments, the boundary condition
implied by the presence of the conductor leads to the
emergence of an outgoing electric field wave. This propa-
gating electric field is the signal of interest. To compute its
amplitude, we now have to select the Green’s function for
z > 0, i.e., outside the plate in Egs. (31), (34), and (35). As
a result we have

/_deQG(m,Z;ZO)
_L 1 _§(m) 1 eimz
m2+<§(m)(§(M)—im) m’ cf(m)+im> - (9)

Hence there are two components. There is an oscillating
electric field at the frequency m of the axion oscillations.
This is due to the presence of the magnetic field in the

vacuum and the (/)E - B form of the axion coupling: as soon
as a magnetic field line is present, a small electric field is
induced. There is also a propagating wave with frequency
m, due to the presence of the boundary condition at z = 0
and the breaking of translation invariance in that direction.
Explicitly written, the electric field reads

e(Z,l) —74‘

It is interesting to take the limit of an ideal metal
corresponding to £(m) — oo. In this case we find that
the electric field becomes

J , .
Cideal (2. 1) = m_ggf[e—sza — ™). (38)

_Em) 1 )<>] (37)

As expected the oscillating solution is simply

_ Jocosmt

eosc(t) - Tv (39)

directly from the propagation equation in the absence of z
dependence. Mathematically, this is the solution of the
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propagation equation including the source term. The
propagating wave satisfies the propagation equation in
the absence of the source term and its amplitude is such that
the electric field vanishes at the surface of the perfect
conductor. This specifies a unique solution. Here this has
been obtained using the Green’s function and has been
generalized to the case of a nonperfect conductor. The other
component is a propagating electric field in the z direction,

e(2,8) prop = %cos (m(z —1)). (40)

This expression allows us to retrieve the usual expressions
for dish antenna experiments. The output power per unit
area is given by the Poynting vector

PoB3

where the average is taken over the rapid oscillations. With
conventional units and some typical values for the param-
eters, one finds

B 2
My =276 x 10730 W/m?(——P0 ) (20
ideal x /m (0.3 Gev/em® ) \1T

m -2 M -2
. 41
x <100 pev> (1014 GeV) (41)

The previous expression is used to estimate the signal
power in dish antenna experiments in the case a perfect
conductor setting the boundary condition. It is interesting to
see how the Green’s function method developed here
allows for a generalization to the case of nonideal metals.
To obtain a useful formula, one can consider for real metals
that w < y < wpj, in which case

poB2 ] ]
ey = 720 (W + 2= [Ligear + L. (42)

1

This leads to a tiny correction of the emitted power, which
is at first order independent of the axion mass,

B, 2
M —=455% 10735 W/m2([— 20 (2o
’ 8 /m <0.3 GeV/e® ) \I T

c -2 M -2
X b
(6 X 108/9/m> (1014 GeV)

where the reference value for the conductivity is that of
Copper. Notice that a finite conductivity, and thus dis-
sipation leads to an increase of the signal power. This is

rather counterintuitive, but allowing for p # 0 leads to
more small oscillating dipoles, hence more radiation. As
can be seen from the previous formula, the effect is
very small.

D. Pressure on a single plate
The emission of an electromagnetic wave from the
surface of the plate extracts momentum from the electro-
magnetic field, thus leading to a force per unit area. This is
simply the radiation pressure and is due to the presence of
the polarization field at the surface of the conductor. The
pressure is given by a time average of Eq. (27),

p EO.0F0.0) )

where p is the polarization vector, which is deduced from
Eq. (13),

Ble.1) = / dor(e(o) — 1)3(z, o). (44)

Using the results from the previous section, we have that p
is along B with a magnitude

p(0.0 =) (5 + oy~ oy 7)) )

So in that case, the averaged pressure on the plaque is given by

1

2

1 E(m) 1

J2
P= Eoﬂ[e(m) - 1]’

which is always negative, i.e. the vacuum attracts the
plaque. This pressure is rather small for typical values of
the parameters. For instance, for a 50 T magnetic field, an
axion mass of m =100 peV and a coupling scale
M = 10" GeV, the value of the pressure is of the order
of 107 Pa. One can imagine using this pressure to

w2 Em)(E(m) = im)

m? &(m) + im (46)

I
produce thrust on a spaceship. Should a spaceship be
equipped with such a system and a 1 m? metal plate, then
the pressure converts into a 107" kg thrust. As a com-
parison, the same plate at the level of the Oort cloud would
undergo a thrust of about 10~!7 kg from Solar radiation
pressure. On the other hand as dark matter is present
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everywhere even in the absence of radiation from nearby
stars, we could imagine that such an effect could be used in
total darkness.

IV. CLASSICAL PRESSURE
IN AN EMPTY CAVITY

A. The ideal case

Let us move on to the simple case of a two-plate system,
where the plates are made of an ideal conductor, i.e. with
infinite conductivity. In that case the electric field do not
penetrate the metallic plates, as sketched in Fig. 2.

Like in the previous situation, the electric field € points

in the B direction. We denote by e = 2"73 its magnitude such
that Cle = J. Denoting by G(z, t; z, ty) the Green’s func-
tion such that

G+ G" =68(t—19)8(z = zp). (47)

where ' = d/dz we have then

e(z,1) :/dlodfoG(L 1:20.10) (20, 19).  (48)

‘We now perform the computation of the Green’s function in
that case.

1. Determination of the Green’s function

Using Fourier modes in time, the Green’s function
verifies

G" + @G = §(z — zg)e'™". (49)

Denoting by d the distance between the plates in the z
direction, the solution becomes

0<z<z,

70 <z <d,

G = Asinwz,
G = Csinwz + Dcos wz.
We impose the Dirichlet boundary conditions, that is

¢(0,w) = e(d,w) = 0. This corresponds to the nonpene-
tration of the electric field inside the plates and the

ET TE Té

Ideal N Ideal
Conductor x Vacuum Conductor

Y z

FIG. 2. Geometry and boundary conditions for the two-plate
case with perfect conductors.

continuity of its parallel component at the interface. This
implies that

Csinwd + D cos wd = 0. (50)
We must also have a discontinuity of G’ with a jump
G, = eieho, (51)
We find that

3 iwzg 1
o S wz, e _ S wz eimZn

C= , D = 52
o tanwd w (52)
and
_sinwzy e'o% <1 _ tan cod>' (53)
w tanwd tan wz
Now we have
m2B¢ eimt + e—imt
Using
Gz 200 10) = / doe G (z.a120.19)  (55)
and

0<z<zy) G(z,w;20,19) =

el (sina)zo

—coswzy | sinwz,
®

tanwd

. el (sinwz
70<z5d  G(z.w320, 1)) =sinwz ( —coswz |,
0]

tanwd
(56)
we first evaluate
. /da) e!®=1) sin @z sin wz ‘ (57)
0) tan wd

The integrand is a meromorphic function in the complex
plane with no singularity at the origin and simple poles for

nm .
Wy =, with neN*. (58)
If t > 1, then we close the contour on a large circle in the

lower half plane, avoiding all the poles with infinitesimal
circles above the horizontal axis

R
I (59)
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S
holds when ¢ < t; by closing the contour in the upper half
plane. For the same reason, by going to the complex plane
we have

where Res, = sinw,zsinw,z,. The same method

eiw(to—t)
/ dw sinwz cos wzy = 0, (60)
»

leading to

sinw,z sinw,zo .
e 1

G(z.t:20.10) = Y sinw, (tg —1).  (61)

n>0 dw”

We see that the Green’s function oscillate at the resonance
frequencies w,,.

2. Resonances

The final step for this evaluation of the electric field
consists in performing the time integral in Eq. (48), first we
obtain

ot
e(z,1) = —nJOZW(I —cos w,d)8(w, — m).
n>0 n

(62)
Notice that the sum vanishes for all even n, implying that

Sin@; 4 1SN Wy, 112

e(z,1) = —27:]02

p>0

5(wp 41 — m).
dw%p+l 4

(63)

The delta function selects one specific frequency, at which
there is a resonance when w,,.; = m. This specifies a
number of distances d,, = (2p + 1)z/m where the electric
field is resonant. The energy and pressure associated with
these resonances is ill defined as it involves the square of
Dirac distributions. This resonance is regularized when one
takes into account the finite conductivity of the plates. In
particular, we will find that the finite conductivity leads to a
shift of the resonances below the real axis in the complex
plane of pulsations @. Moreover, the number of resonances
will become finite.

B. Nonideal conductors with no magnetic field inside

As a generalization of the previous situation, and in order
to regularize the resonances obtained before, we now
perform the same study with the inclusion of a finite
conductivity for the metallic plates. For pedagogical
purposes, the study is performed in two steps, the first
one considers no magnetic field penetrating the metallic
plates. This would correspond to superconducting material
and lead to simpler expressions. Then, the more realistic

.

Conductor

vy

Conductor

o
Vacuum

Yy z

FIG. 3. Geometry and boundary conditions for the two-plate
case with finite-conductivity but no magnetic field.

case of a magnetic field present everywhere, including in
the plates, is considered.

1. The Green’s function

We now introduce a finite conductivity for the boundary
metallic plates and consider the magnetic field only lies
outside the plates. It corresponds to the situation sketched
in Fig. 3. In the next section, we will extend the setting to
the more realistic case where both the conductivity is finite
and the magnetic field penetrates inside the metal.

Inside the plates the permittivity is not equal to one and is
given by (16). Notice that there is a pole in the lower half
plane as required by causality, i.e. the support of the Fourier
transform of the permittivity (7) as a function of time is the
positive real axis implying that the displacement field at a
given time depends only on the values of the electric field in
the past. In this case, the Green’s function satisfies

G" + e(0)0*G = e/®5(z — z) (64)
for z < 0 and z > d, together with
G" + 0*G = e'®5(z — z¢) (65)
for 0 < z < d. The values of Green’s function for different
ranges in z are shown in Table I. The values for G, and G_
are specified below.

Notice that here z; lies between 0 and d. The general
case is treated in Appendix B. We find that

G_ = O(w)en (cos w(zo—d) — gsin w(zo — d)) (66)

TABLEI Expressions of Green’s function in different z ranges.
Range for z Expression of Green’s function
<0 G=G_e%, <0
0<z<z G = Asinwz + Bcoswz
70<z<d G = Csinwz + D cos wz
z>d G =G, e
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and

O(w)

G, = o el <cos Wz + g sin CUZO) . (67)

where ©(w) is given by
1

O(w) = .
w((l —f}—i) sinwd—2%coswd)

With this, we can identify
0<z<z, G=G._ <coswz +£sinwz),
[0}

70<z<d, G=0G, <cosa)(z —d) —ésina)(z —d)).
0]
(69)
This Green’s function depends on the frequency @ and

has resonances when ®(w) has poles. The nature of the
resonances is important as will be seen below.

2. The resonances

The function ® has poles when w verifies

&
tan wd = “’62 . (70)
T
We can distinguish several cases.
When @ > wp, the resonances would be for
tan wd ~ 2i, (71)

which has no solution. In this limit the Green’s function is

eia)(to-'rZo—Z)
z< ZOG >

2iw
£i@(to+2=20)

22 70G =~ , (72)

2iw
with no effect from the plates at all, i.e. this is the free
propagator in (1 4+ 1) dimensions and the plates are trans-
parent at high frequency. This is the optical regime of a
metal as one expects for frequencies larger than the plasma
frequency.

Below the plasma frequency, there is another character-
istic scale given by y. The poles are now obtained as
solutions of

(73)

which gives

> .
wndﬁl/lﬂ'<1——d ) - (74)

Wp) Wpy
as long as w, > y. When o <y, the poles are located at

w,d =~ nm —2e"/* Vi (75)
wpVd
Resonances exist for w,, < y only if d > y~'.

As a result all the poles are shifted by the effect of the
plasma frequency and are now below the real axis. Notice
that there are only a finite number of poles below the
plasma frequency, whereas there were an infinite number in
the ideal case. Poles below the real axis imply that the
Green’s function respects causality. In fact, the poles of ®
represent the eigenfrequencies of the free system with no
source

a' + e(w)w*a = 0. (76)

These modes have a temporal dependence in e~*’ which
goes to zero at large time, i.e. the modes are evanescent
waves which decay due to the dissipation induced by a
finite conductivity.

3. The electric field

We can now evaluate the electric field with metallic
plates on the boundary. Formally the electric field is
given by

d .
e(z,1) = Jogh {A dzo/dwe"‘”’ﬁ(w -m)G(w, z;20,0) |,

(77)

where G(w, z; 2, fy) was calculated in the previous section.
Thanks to time translation invariance we can always set
to = 0 and use the expressions derived in Appendix B
obtained by setting p = 0 as we consider that the problem
is planar. Notice that the integral on z, is only between the
plates as the magnetic field vanishes in the plates. Now the
integral over w is trivial if G has no singularities along
the real axis. We have seen that there are only poles when ©
diverges. This can happen when (70) is satisfied, i.e. for a
finite number values for w, or when w = 0. Close to w = 0,
we have © ~ —1/(2w3,d + wp) so no singularity. As a
result when the plasma frequency does not vanish, the
Green’s function has no singularity on the real axis and
therefore

, d
e(z,t) = Jgh {e"m’A dzoG(m,7;729,0)|. (78)
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As a result, we have

z<0, e(z,1) = JoR [e‘i”” % (sin md + % (1 —cos md)) e§<’">z} (79)
and
z>d, e(z,1) = JoR [e‘”’” # <sin md + il—m) (1 —cos md)) e‘f(’”xz‘d)] , (80)

which is symmetric in z — d — z. Notice that the electric field only penetrates inside the plates over a distance of order
1/&(m) corresponding to a skin effect. Finally, we have for 0 <z < d

e(z,1) = JoN {e"'mlegnm) { (sin mz + % (1 —cos mz)> <cos m(z—d) — 5(’;’1) sinm(z — d)>
—i—(cosmz 4 5(’:) sinmz) (sinm(d— 2) +‘5(m—m)(1 _cosm(d - z))) H (81)

which is also symmetric in 7z —» d — z.
In the next section, we generalize this result to the case where the magnetic field is in all space, i.e. a more realistic
situation, and calculate the classical Casimir pressure induced by the axion.

C. Nonideal conductors with magnetic field in all space
1. Electric field

The configuration under consideration here is probably the closest to a possible realistic experimental setup. The cavity is
made of conductors with finite conductivity and the magnetic field is present everywhere. The situation is sketched in Fig. 4.
When the magnetic field is present everywhere, the electric field receives new contributions Se(z), which are given

, C)
Se(z, 1) = JgR [e‘"’"*f(m)z Om) <1 + e~4m)z <cos md + £0m) sin md>
&(m) m
T (1 — e=5tmy2) (sin md — &m) cos md> )] (82)
&(m) m
and the contribution obtained by z — d — z when z > d. Between the plates, for z € [0, d] the contribution is given by
de(z,t) = JyN [e‘"’” % <cos mz + cosm(d — z) + &m) (sinmz + sinm(d — z)))} , (83)
m m

which is symmetric in z - d — z.
One interesting fact is that there is a nonvanishing oscillating electric field at infinity, which is not propagating and results
from the coupling between the axion and the external magnetic field. More precisely we get far inside the plate

epe(f) = JoM [e_im’ % (2 cos md + (@ - 5%) sin md)] . (84)

~—

When the conductivity is larger than the mass, as in realistic situations, this simplifies to
. O(m)
maelt) 2 Jo3 [e-""'%sm md], (85)
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Y T

T
Vacuum

Yy z

Conductor Conductor

FIG. 4. Geometry and boundary conditions for the two-plate
case with real conductors.
and finally

—imt

Cotaque () & —Joh sz(—mJ ~—JR [i ema ] (86)

This implies that there is a conduction current

Jo .
]cond( ) m s m ( )

the amplitude of which does not depend on the conductivity.

2. Classical pressure

The experimental observable for the effect under scrutiny
here is a modification of the Casimir pressure in the void
between the plates. The pressure is given by Eq. (43),
which comes only from the polarization effects in matter
given by

B.p .
pld.1) = ?" - / doe= ' (e(w) — e(d,»).  (88)
As a result, we only need to evaluate the integral
e(d, 1) =Jon [e"”"’/oo dzoG(m,d;z9,0)|. (89)

The expressions that we need are given below. When
7o < 0 we have

G(m, d;zy) = O(m)ebm, (90)

for zo €10, dJ,

G(m,d;zg) = ©(m) (cos mzy + £m) sin mz0>, (91)

and finally for zq > d,

G(m,d;zp) = ©(m) <cos md + ) i md> e~¢z=d),
m

(92)

which is continuous at z, = 0, d. Now it is easy to see that
[, dzoG(m, d; 2y, ty) converges and becomes

g(m, d) = /oo dZOG(m, d, 20, to)

SO (ot + 5 )
+sin md—i—%(l — cos md)]. (93)

Then the electric field is given by

e(w.d) :%(Q(m,d)ﬁ(a)—m) +G(m,d)S(@+m)), (94)

and the polarizability is
p(t.d) = Johle™™ (e(m) = 1)G(m.d)]. ~ (95)

As a result the pressure becomes

(P.) =2 \Glm. d)PRle(m) = 1], (96)
where
0)2
Rle(m) —1] = -— J‘jyz. (97)

Notice that this is always negative so the pressure is
attractive. Moreover there is still a resonance when ©®
diverges.

V. RESONANCES IN A COPPER CAVITY

For a fixed mass m when the size of the cavity d takes
different values, the pressure on the plates experiences
resonances. The resonances are due to the vanishing of
©(m), which happens for complex values of m with an
imaginary part controlled by the parameter y. In real
situations, resonances occur for values close to m, =
nr/d and their height is regularized by the dissipation
parameter y. Effectively, the resonances on the real axis are
obtained for

tan m,d ~ —N <2> , (98)

_e(mn)
where |e(m,,)| > 1. Close to the resonances, we have

20(m) &(my,)

m n m n

G(m, d) ~

(1=(=1)") (99)
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FIG. 5. The Casimir pressure (absolute value) from axions as

a function of the axion mass for a distance d = 50 pm cm
and B=50T.

from which we recover that the resonances are only present
when n = 2p + 1, this is a result we already obtained in
the ideal case. For a fixed cavity size, the behavior of the
pressure with the mass of the axion is not trivial. This is
illustrated in Fig. 5, for which the use of Copper plates is
considered, corresponding to a damping time y parameter
of 10% Hz, or 6.6 x 107! GeV in natural units. We
consider a 50 T magnetic field, close to the value of the
higher stationary magnetic fields obtained experimentally,
a plate separation of 50 um (2.5 x 10" GeV~! in natural
units) and a generic axion scale of 10' GeV.

In Fig. 5, one can see the resonances, alternatively
upward and downward. As expected the peak separation
decreases as the mass increases. Resonances disappear
gradually above m = 2 x 10™° GeV, which is precisely the
plasma frequency for Copper.

For a fixed mass, the dependence of the axion classical
pressure with the distance is displayed in Fig. 6. The
pressure varies on 10 orders of magnitude between upward
and downward peaks, around a mean value that does not
depend on the distance. In Fig. 6, an axion mass of 1.26 x
107" GeV is considered, corresponding to the first peak
at 50 pm.

In Fig. 6, the conventional vacuum pressure is shown in
comparison to the axion pressure, with its typical 1/d*
dependance. At the first peak for d = 50 pm, the vacuum
pressure is 19 orders of magnitude higher than the axion
pressure, making impossible to detect these axions in a
Copper cavity. As the vacuum pressure drops very quickly
with the size of the cavity, and as the axion field injects
energy uniformly, the ratio becomes more favorable as the
size increases. Around a few meters, some axion reso-
nances are larger than the vacuum pressure. However, no
measurement of Casimir pressure is available at this scale.

30f course, the amplitude G does not vanish when n = 2p. The
subdominant terms are small compared to the resonant case when
n=2p+1.

1048 Vacuum pressure

10-58

10-68

Pressure (GeV#4)

10-78

50 pm

1088 |

1‘012 I I 1‘015 I I 1‘018 I I 1(‘)21
Distance (GeV-!)

FIG. 6. The Casimir pressure (absolute value) from vacuum and
from axions as a function of the distance between the metallic
plates when a magnetic field B = 50 T is present between the
plates, and m = 1.26 x 107! GeV.

The search for axion through Casimir effects at short
distances in a Copper cavity is not very promising as shown
above. To search for a signal, the general rule is to try
measuring the Casimir pressure on the largest possible
distance. In addition, we will now see that the use of a
reflecting material with a smaller value for the damping
parameter y leads to more narrow resonances and might
provide a higher signal.

VI. THE DAMPING PARAMETER AND THE
WIDTH OF RESONANCES

In this section we investigate the influence of the
damping parameter y on the strength of a potential axion
signal. From Eq. (68), we can approximate

1 1
O(m) ~ —e(m 100
) 2 gy ey — e (1)
N(y/—€e(mapi1))

and upon using &(m,,)/m, ~ \/—e(m,) we find that the
Green’s function reduces to

1 1
Q(m,d) ~—

My

(101)

—e(m) -1

5“(\/ —€(m2p+1 ))
close to the resonance at m = m,,, . This can be approxi-
mated in the two regimes corresponding to my, | >y
and my, | <.

The width of the resonances will be controlled by the
value of the damping parameters. Two regimes can be
observed depending on the relative value of y and the axion
mass. As the width diminishes, the peak signal naturally
increases.
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A. Broad resonances m <y

We first consider when the resonances is given by m;,, ||
and when m,,; < y. In this case we have

—e(m) ~ %e‘mM (1 + %) .

Notice that this is a complex number with a nonvanishing
imaginary part even when y is vanishingly small. This
implies that the width of the resonance has no direct
connection to y as can be seen in the approximation

(102)

1 1
G(m, d) ~ LTy

Map41 5

(103)

+ IMypt1

As the width of the resonance is of order m,,,; and
my, .1 <y, the width of the resonance is constrained to be
small compared to y. On the other hand, as the width is of
the order of the location m = m,,,; of the resonance, this
corresponds to a broad resonance. When several resonances
of this type are present, the resonance of lowest order p = 0
dominates as its amplitudes is the largest. The resulting
pressure becomes

2w J? 1
<PZ> = - 26‘)1;1 ) B B . (104)
Y my, g (m — m2p+1> + 4m2p+1
At the resonance we have
2 2J2
(P) = =50 (105)
[T

which shows that the strength of the signal is suppressed by
y? for high values of the damping parameter. So for large y
values, the resonances are broader and with a reduced peak
height. This is illustrated in Fig. 7, where y = 107% GeV

1066 -
7 ="7cu = 6.6 x 1071 GeV

o

>

Q

2 100

=4

2

w

<

[a T}

10-72
0.5 1 5 10
Distance (10!! GeV-1)

FIG. 7. First resonances from axions as a function of the

distance between the metallic plates, with an increased
value of the damping parameter y = 10~® GeV, B = 50 T, and
m =126 x 107! GeV.

has been used (1.5 x 10'6 Hz). It displays the first four
resonances of the axion-induced pressure with respect to
the distance between the plates.

B. Narrow resonances y < m

It appears from the previous section that to increase the
strength of the signal, it is better to consider a small
damping parameter, i.e. a material that tends to be a better
conductor. We focus now on the case where m,, | > y for

which we obtain
LOn (i
S ym 2m)’

In this case, the imaginary part is directly related to y. This
leads to

—e(m)

(106)

1 1

iy*
Mop1 M= Myp iy +

g(m,d) ~

(107)

This is a Breit-Wigner distribution with a width I" =y,
much smaller than the location of the resonance at
m = my, . In this case we obtain the pressure

J5 wp 1
B . (108)

<P > = !
) 2 Myt (m—myyin)? + 1

At the resonance we have
2

® 1
<Pz> = _2‘](2) 4Pl 2
myp1V

(109)

which diverges in the small y limit where the resonances
become infinitely thin. Figure 8 shows how resonances get
narrower and higher for small values of y. For this figure,

1052F

r v =107 GeV
= 10-57F
> C
<} r
p r
10-62F
2t
&
A 1067
1072F

F 5 =70 = 6.6 x 107 GeV

0.5 1 5 10
Distance (101! GeV-!)
FIG. 8. First resonances from axions as a function of the

distance between the metallic plates, with an decreased value
of the damping parameter y = 1077 GeV, B =50 T, and
m=1.26x 107! GeV.
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y = 10717 GeV (15 MHz) and all other parameters are
unchanged compared to previous figures.

C. Comparison with the halo velocity distribution

The width of the resonance is limited by the dispersion
due to the finite velocity of dark matter in the galactic halo

Am vy
m m

Vv

= 2. (110)
From an observational point of view, there is no interest in
searching for a material with arbitrarily small y. The natural
velocity dispersion will blur the resonance anyway. As the
Casimir effect cannot be seen for distances less than a
typical distance d,,,,, which is a fraction of a micron, we
find that the observability of the axion effect compared to
the usual Casimir effect will be possible only for

02

dmax

&

(111)

For lower values of y, the resonances would be affected by
the velocity dispersion mostly. For d,,,, = 50 pm, the
limiting value of y is ~10~!7 GeV (15 MHz). Notice that
the uncertainty on m would also result in an uncertainty on
the first resonance Ad such that

Ad  yd

e (112)

d V4

VIL POTENTIAL SENSITIVITY
OF CASIMIR EXPERIMENTS

To estimate the possible reach of Casimir experiments
with a magnetic field, we assume an experiment could be
built with a 50 T magnetic field to perform a measurement
of Casimir pressure between d =5 pm and d = 50 pm.
A 50 T magnetic field is of the order of the highest intensity
for stable magnetic fields produced in the laboratory, see
for instance [25] (27 T) and SMHFF (45 T). Running a
Casimir experiment in such a high intensity magnetic field
is therefore probably challenging but not impossible. We
also assume that the plates are made out of an extremely
good conductor and that the regularization of the reso-
nances is the result of the natural velocity dispersion of the
dark matter halo. This is independent of the material as long
as the conductivity is high enough. This could be achieved
with superconducting material, or any material with a
damping factor of y ~ 10717 GeV. The plasma frequency
is taken equal to 2 x 10~ GeV. As the London length for
superconductors lie in the range 10 to 1000 nm, this seems
achievable [26]. We assume that a 1% deviation of the
vacuum Casimir pressure can be observed. To determine
the sensitivity of such an experiment, we solve numerically
the equation

Paxion<m’M> =1 X Pyacuum> (113)
for the variables m and M, where 7 is the sensitivity of the
experiment to the observation of a variation of the standard
value of the pressure. In the following we assume n = 1%,
meaning that a percent-level deviation to the conventional
Casimir pressure is detectable. We consider the ideal
pressure relation

7{2

- 114
2404* (114)

P vacuum —

so by taking the value of the axion-induced pressure at a
resonance (109) for a distance d one gets the value of the
sensitivity on the axion-photon coupling

Ty m
Gsens = \/ﬁ\/%wP 3L (115)
where the coupling is simply taken as the inverse of the
axion scale g = 1/M.

The projected constraints are displayed in Fig. 9 in a
coupling-mass plane. The mass range is imposed by the
range of distances over which the Casimir effect can
reasonably be probed. There exist several constraints in
the considered mass range, at low mass, the laboratory
experiments ALPS [27] and PVLAS [28] constraint the
highest values of the coupling. In the whole range, the blue
region is the constraint from the CAST helioscope [29]. The
blue regions on the right side of the plot are direct constraints
from telescopes (JWST [30,31], WINERED [32],
MUSE [33], VIMOS [34]), and indirect constraints from
the level of infrared background in the Universe as measured
by y rays [35]. The Casimir type of experiments for axion
search obviously require that axions are the dark matter.
Above the dashed red line labeled “decay limit,” in the redish
region the lifetime of the axions is shorter than the age of the

Casimir projections
5 pum - 50 ym

3 | Casimir projections
10,]05 5 pm - 500 ym

1/M (GeV1)

g:

107114

107124

107194

103 1072 107! 10° 10"
m, (eV)

FIG. 9. Potential reach of Casimir experiments in a mass/
coupling plane. The three green regions correspond to different
assumptions on the experimental parameters (see text).
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Universe so they cannot be the dark matter. Finally the
oblique yellow band labeled “QCD” corresponds to the
region where parameters nicely combine to solve the strong-
CP problem. The main result of this paper is the central light-
green region labeled “Casimir 5-50 pm.” It contains the
parameters that comply with the condition (113) forny = 1%.
The edge at 2 eV is due to the value of the plasma frequency,
above which resonances disappear.

To understand the shape of the sensitivity curve that is
shown below, let us consider the first resonance. At short
distance, the ratio between the vacuum pressure and the
axion pressure is not favorable, because P, ..., decreases
very steeply with d and P,,;,, is constant on average. The
mass corresponding to this first resonance is as high as it
can get because of the inverse proportionality between m,
and d at resonance. One can imagine an experiment where
d can be varied. When d increases, two things happen: the
mass of the first resonance decreases, and the ratio
P osion/ Pyacuum improves, making the sensitivity better. In
a coupling/mass plane, going from short distance to large
distance, the sensitivity follows a line from a larger mass/
larger coupling value to a lower mass lower coupling value.
The same reasoning is true for all the other resonances, thus
leading to a sawtoothlike line for the sensitivity curve of
Casimir experiments. This is what appears in Fig. 9. The
figure also displays various existing constraints in the axion
coupling/mass plane, the excluded regions being the differ-
ent blue patches.

To show the limits of the current sensitivity estimates,
some parameters can be varied. For example it is expected
that the plasma frequency in superconducting materials
depends on the magnetic field [36]. In that case the plasma
frequency could be lower. In Fig. 9, the dark green region at
higher values of the coupling corresponds to resonances of
the same width as for the other curves but with higher
values of the plasma frequency, here w, = 2 x 107! GeV.
On a more optimistic side, if it were possible to measure the
Casimir force on distances up to 500 pm, the sensitivity
region would enlarge towards lower masses and lower
coupling values, as shown in lighter green in Fig. 9. If it
were possible to probe the Casimir pressure on such large
distances, some parameters favored by QCD could be
tested.

Finally let comment briefly on the quantum contribution
to the Casimir pressure from the presence of the rapidly
oscillating axion field. The correction to the Casimir
pressure can be estimated by consider a typical one loop
vacuum diagram for the photons with two axionic inser-
tions. At each vertex and working in the Coulomb gauge,
one time derivative acts on the oscillating axion leading to a
factor of m?. The diagram itself is proportional to ¢3/M?.
Finally a factor of d* must be inserted for dimensional
reason, see Appendix F for a sketch of the calculation. The
fact that the contribution vanishes when m = 0 follows
from the fact that for a constant axion field, the FF term in

the Lagrangian is nondynamical and therefore no pressure
can be generated. All in all we have

OP ixion _ O(ﬁﬁ) mzdz)
M b

2
P casimir

(116)

which is negligible for the typical values considered in this
paper. A more thorough analysis is left for the future.

VIII. CONCLUSION

We showed that the presence of axionic dark matter in
the form of an oscillating scalar field coupled to electro-
magnetism modifies the Casimir effect at the classical level,
i.e., it induces a classical pressure between metallic plates.
The main new phenomenon resulting from our study is the
appearance of a series of resonances whose positions
depend on the spatial scale probed by the Casimir experi-
ment. The resonances are regularized by the finite con-
ductivity of the metallic plates. Estimates of the sensitivity
show that the potential reach of this method could be
competitive with other probes such as helioscopes or
haloscopes. This will require experiments sensitive to long
distance Casimir forces and very high magnetic fields. The
comparison between the classical pressure calculated here
and the Casimir pressure expected between the two plaques
will have to take into account the finite temperature effects
and also most importantly the newly discovered strong
effects that large background magnetic fields have on the
quantum Casimir pressure [37]. This is left for future work.
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APPENDIX A: RADIATION
FROM A SINGLE PLATE

As an application of the Green’s function techniques, we
will derive the expression for the electric field when only
one plate is present and the electric field penetrates inside a
metal with finite conductivity. This generalizes the ideal
case where the conductivity is taken to be infinite. We first
consider the generation of an electric due to the axion
coupling when the magnetic field occupies all space. This is
given by

€(Z, l) = J()ER {e"'m’/ dzOG(m, 2520 to) s (A])

[Se]

where the Green’s function is such that it vanishes in
vacuum at z = +oo and in matter at z = —oo. In vacuum,
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this selects the modes in e where the replacement
®* — w* + i€ with & — 0 guarantees the convergence.
We now have to select the Green’s function for z > 0,

i.e., outside the plaque. This gives

eiwz+§(m)zo

z0 < 0: G(w,z;zo):m, (A2)
and
1 1 .
720€[0,7]: G(w, z;z9) = (m - %> ei@(z+7)
whilst finally
1 1 4
720> 2! G(w,z329) = (m - m) ei@(z+20)
S ~
As a result we have
/oodzoG(m,z;zo,O)
“t <a:<m><:<1n>—im)j;?am;ﬂm)e"’“' (43)

Hence there are two components. There is an oscillating
electric field at the frequency m of the axion oscillations.
There is also a propagating wave with frequency m

e(z,t):4jocl7(1)§m[
/ 1 _&(m) 1 im(z—t)
O o &) —im) n? Em)rim© |
(A6)

Let us now assume that the magnetic field is only in the
plaque for z < 0, then the external electric is obtained by
evaluating

0 1 .
[ daosm a0 0) = e
corresponding to a propagating wave
1 ,
_ im(z—t)
o) =900 [y =y ) 4

As typically &(m) ~ wp for m < wp;, we have the order of
magnitude estimate

e(z. 1) =22 cos(m(z — 1), (A9)

Wp)

i.e. a propagating wave of small amplitude.
In the case the magnetic field does not penetrate in the
plaque we have

§m) 1

_ Jocosmt
m? E(m)+im

e(z,t)= T

Joh e (A10)

where we see that the field vanishes at the surface only in
the ideal case.

APPENDIX B: THE GREEN’S FUNCTION
IN THE TWO-PLATE CASE

In this appendix we will give explicit formulas for the
Green’s function satisfying
—0y(ex,00G) + AG = 6™ (x# — y#). (B1)
As explained in the main text, as we are considering
classical solutions to a field configuration depending on z
along the external field in the x direction, we only need the
scalar Green’s function for the Maxwell equation on the x
direction. The full tensorial nature of the problem is
discussed in chapter 81 of [23] where the absence of
off-diagonal terms can be ascertained by taking ¢ = 0 in
Eq. (81.5) for instance. For the sake of generality, we give
here the Green’s function for the scalar Maxwell equation
where we restore the dependence on (x, y). In the main text
we only need the following expressions with p = 0. The
reader only interested in applications can take these
expressions for granted or refer to [23] for details. In the
following we will use time-translation invariance and
space-translation invariance in the (x,y) plane along the

plaques to choose y* = (6, 20,0). In terms of Fourier
decomposition the Green’s function satisfies

(02 — pﬁ + e(w)@?)G = 8(z — 7). (B2)

We define

£ = (p? - e(@)?)12, (B3)
where the square root is such that the real part is always
positive. We also have

A = (w? = pj)'/2. (B4)
We will separate the z axis into three intervals and give the
solution in each case using the continuity of the Green’s
function at the boundaries z =0 and z =d. The first
derivative is continuous there too whilst there is a jump
46

% lz= =1 of the first derivative when G itself is
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continuous at z=z,. Moreover we impose that B £ .
lim,|_,o, G = 0. This determines a unique solution. 0<z<z. G=G_{cosAz+ A Az ).
1. zp€[0,d] 70 <z <d, G:G+<COSA(Z—CZ)—%SinA(Z—d)),
When 0 < z5 <d is between the plates, the Green’s
function is then defined by (B9)
G=G_e,  7<0 (B5)  Where
1
A((1-£) sinad - 2§ cos Ad)
G=G, e, >4, (B6)
where we have now 2.2 <0
£ This case is different from the previous case as
G_=0(w.p|) (cosA(zO—d)—KsinA(zo—d)> (B7)
G=G_e¥*,  z7<z (B11)
and
and
¢ .
G =6(w.p|) (COS Azg + sin Az (BS) G =Aef + Be¥,  7€(z.0,  (BI2)
and the Green’s function between the plates whilst
|
0<z<d, G=G, ((sin Ad — %cos Ad) sin Az + (cos Ad + %sin Ad) cos Az)
z>d, G=G e =9, (B13)
We find that 3.20>d
We have now
G A
A:%(cosAd—l—%sinAd—i—E<sinAd—§cosAd)>, 2<0, G = G_e% (B17)
G A
B= 7* <cosAd+§sinAd 3 (sinAd—%cosAd)), and
(B14) €0.d), G—G_<cosAz+§sinAz>, (B18)
and we have whilst we have
G, = O(w, p)e. (B15) €ld. zo).
(sm Ad( ) e~¢e=d)
Finally we find that
A
{2 cos Ad + sin Ad (g - E)} e‘f(z‘d)> (B19)
G_=0(w,p) (cosh £z (cos Ad + ¢ sin Ad>
A and finally
—l—é inh ¢ inAd—é s Ad (B16)
g Smeto 8 AC° ' 2>2, G=G,ea) (B20)
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where we find

G_ = 0(w, pj)ecw=d) (B21)

and
G, =0(w,p|) (coshé(zo —d) <cos Ad+§sin Ad)

—l—?sinhf(zo—d) (— sinAd—f—%cosAd)). (B22)

APPENDIX C: DISSIPATION

In the background magnetic field, the complete equa-
tions of motion for ¢* can be deduced from the complete
.4
action

1 ¢ -
S:/d4x<—1fﬂyf””—mf””fﬂy—J”a,,). (C2)
The magnetic field induces the source term for the gauge
field. It is convenient to rewrite the action in terms of the

electric and magnetic fields using — £, f* = 3 (& — l;z)

and —1f®f, = &.b resulting in the action

1 = 2 s
S:z/d4x<é’2—b2+ﬁ¢ib—2J.a>, (C3)

from which the equations of motion used in the main text
can be obtained.

Inside matter as in the case of metals, the physics is
modified. The permittivity € of the material and its effect on
the electric field captures in an effective way the inter-
actions between the matter particles and the photons. This
leads to the existence of the displacement vector which is

related to the polarization of the medium by d = & + p.
The displacement vector is related to the electric field via a
retarded effect

d(x, 1) = / dre(t — 1)8(%. 7). (C4)

*Notice that this action is only gauge invariant a, — a, + 0,
on shell when we impose current conservation d,J* = 0. This
can be remedied by introducing a Stiickelberg field 6 as

which transforms as 8 — 6 + « under a gauge transformation.
The equations of motion of € give 9, 7" = 0 whilst the value of 0
is left undetermined. This does not matter as the Hamiltonian
obtained by Legendre transform with respect to both a* and 6
does not depend on 6.

A naive action due to the presence of a nontrivial
permittivity can be postulated as

1 s 2~ -
s=3 / d*x (é’.d -b + b= 2J.a>. (C5)

As the action is not local anymore, the concept of particle is
ill defined. Moreover dissipation coming from the imagi-
nary part of ¢(w) breaks unitarity. Let us use this action
naively and get the canonical momentum associated to the
vector potential

| -
T=——(e+8&)k,e——b, C6

Setexe-1 (o)
where we have introduced the notation &(¢) = e(—t) and %,
is the convolution operator in time. The Hamiltonian
becomes

1 L3 e o=l

H=3 / Bx(E.d+ b +2].4), (C7)
where we have defined

J—exi— / dre(z - 1)8(2). (C8)

As can be seen this differs from the usual energy postulated
for electromagnetism

The two Hamiltonians reduce to the same expression when
€ = é. This condition can be understood after Fourier
transforming in time d(w,¥) = e()é(w, X), where (o)
is a complex function such that é(—w) = e(w). In a metal,
the permittivity has a pole on the negative imaginary axis.
There is dissipation unless ¢(—w) = ¢(w) implying that
Je = 0, i.e., the imaginary part of (@) vanishes. When this
is the case we have e(f) = e¢(—¢) and the Hamiltonian H
coincide with H . In general this is not the case and the
two Hamiltonians differ.

There is another major issue with the naive action: it does
not reproduce the correct equations of motion. Indeed the
Euler-Lagrange for @ coming from (C5) is

- (w*,aoa) +AG = —%E +17,

5 (C10)

which does not coincide with the phenomenological
equation of motion

—0y(eXx,00d) + Ad = —%E +7. (C11)
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This equation is not a time-reversal invariant as € # €; i.e.
dissipation implies a specific arrow of time. In fact it is
interesting to consider the time-reversed process defined as

a'(i) =a'(-1), (C12)
where 7 = —r. It satisfies the time reversed equation
A > > $- 5
—00<€*;a()a) + Aa = —Mb + J, (C13)

where time derivatives are with respect to 7. The equation of
motion (C10) is symmetrized in time of (C11) and (C13). In
this case when e(z) = e(—t) the normal process and its
time-reversed satisfy the same equation. This only applies
to plasmas and not to metals with a finite conductivity.

APPENDIX D: ENERGY BUDGET

1. The small mass limit in the one plaque case

Let us consider the case of m < y < wp then we have

5:v%3€”“<1+i2>. (D1)
This implies that
i + ! — f(m) ! ~ ein/4,
m* =~ E(m)(E(m) —im)  m? &(m) +im my/mo
(D2)

When the magnetic field is present everywhere,
J J
e(z,1) = —02005 mt — —02cos m(t —z)
m m
Jo
m-/mo

_|_

sin <m(l -27)— Z) , (D3)

corresponding to the electric field generated in the ideal
case complemented by a term which disappears when the
conductivity because infinite. The pressure on the plaques
follows from

2
Wp

Re(m) =1 = =72

(D4)

and becomes

_
2ym?’

(P) =~ (D5)

which is always negative, corresponding to the fact that the
vacuum for z > 0 attracts the plate situated at z < 0.

In the single plaque case with a magnetic field only in the
metal we have

J
e(z,1) = m—oasin m(t—z),

(Do)

which vanishes for a perfect conductor. The pressure on the
plaque becomes

J2
P
2m’y

(D7)

i.e. the same result as before when the magnetic field is
everywhere.

In both cases the vacuum attracts the plate. This effect
will reemerge in the two plate case where the two plates
will attract each other classically.

2. Energy balance

It is interesting to consider the conservation of energy
when one plaque is present and radiation from the plate
takes place. Inside the plaques we have the Maxwell
equation

VAb= a02 + Jina T jaxiom (DS)
where find is the induced current
Jina = D (D9)

where p is the polarizability. This current only exists in a
finite width of the plaque; i.e. this is a skin effect. This

current is responsible for the dissipation power find.E in the
plaque corresponding to the loss of energy. As a result, the
plaque heats up due to the Joule effect. The axionic current
is given by

T
Jaxion :MB (DIO)
This is complemented with the Bianchi identity
db+V AZ=0, (D11)

from which we can get the propagation equation in matter
for the magnetic field

(e(w)w® + A)b = 0. (D12)
It coincides with the propagation equation for the elec-

tric field.
Let us now study the local conservation of energy

2B
E:eg , (D13)
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which satisfies

dE < = = - -
— T V'Ppoynting = —(Jina + Jaxion)-€s

- (D14)

where the Poynting vector corresponds to the radiated
power

Pooyniing = & A b (D15)
In the absence of currents we have
dE = -
-+ v-Ppoyming =0, (D16)

dt

expressing the conservation of energy, i.e. the energy lost
by the system is matched by the flux of radiation. When the
axion is present and dissipation too, we find that the power
dissipated by Joule’s effect is

Pjoule = <jind-z>’ (D17)
which has to be positive. We will study this local equation
more precisely below.

In the case treated in the main text with a single plaque
and a magnetic field the polarizability at the surface of the
metal does not vanish and becomes

Joo cos (mt — %)
m?\/mo

in the small mass limit. This induces a surface current

p(0,1) = (D18)

_ Joosin (mt —%)

ina(0, 1) =
de( ) m\/%

The power dissipated by Joule’s effect at the surface of the
metal is on average

(D19)

2

: J
Pjoule = <]ind(0’ l)e(()’ t)> = 2—1’}23 . (DZO)

Let us now assume that dissipation acts adiabatically over
times f4;, > 1/m, then the average energy decreases as
diE) 1 dJ?
dt  2m’c dt’

(D21)

i.e. the amplitude of the current inside matter varies in time
due to dissipation.
As we consider the balance equation at z = 0 we have

de

(TP = G 0:06(0.0) + 2 0.060.0 ). (D2)

where the Bianchi identity gives us that

J J
b, = —m—ozcosm(t -2)+ m\/(;n_asm (m(t -z)— %)
(D23)

Notice that the nonpropagating term of e(z, ) in cos mt
corresponds to a term with a Fourier transform proportional
to §(k); as a result we can also write b, = ﬁe(k, ), where
the Fourier transform of the nonpropagating part is

T0_(5(a = m) + 8( + m))(k),

k) D —=
e, k) 2m?

(D24)

whose contribution does not appear in by(k,w) as
ké(k) = 0. Hence only the propagating part of e contributes
to b, as k = £m. We then find that (b(0,)d.e(0,1)) =0

and <6ﬁpoynﬁng> = (0,b(0,1)e(0,1)), which gives

12
o
232m?\/mo

<§I_$Poynting> = (DZS)

Similarly we find that the axion injects energy in the
system as

<mwammm=%@gﬁ;

(D26)
implying that the radiated energy balances the axionic
injection

<VﬁPoynting> + <jaxion(0’ t)e(o’ t)> =0. (D27)

This implies that the change of amplitude of the current
satisfies

d{E)

7 = _<jind<0’ t)e(o’ t)>’

(D28)
where the variation of the electromagnetic energy at the
surface of the plaque is due to the Joule effect from the
induced current. This would give
(1) = 0y, (D29)
corresponding to a dissipation time z4, = 1/0. Typically
for copper, we have ¢ = 1078 GeV, implying that the
dissipation time appears to be much shorter than the
oscillation time 1/m as long as m < 10 eV. In this case,
the previous calculation does not apply and one must take

into account both the time evolution of the axions and the
photons.
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3. Axion electrodynamics in the plaque

Let us now go beyond the simple hypothesis that ¢, is
constant in the plaque. The Joule’s effect implies that this
cannot be the case. We must analyze the coupled Klein-
Gordon equation following the line of [38]

. B
d—Ap+mp=——a, (D30)
M
where e = —a. The equation for the electric field becomes
Aa—i = qu+ ' (D31)
a-d=-- oa,

where the term j, = oe is the conduction current.

We can analyze the modes of this system in the plaque by
going to Fourier space. Having two equations with no
sources, the nontrivial modes are obtained by requiring that
the determinant of the system vanishes. This gives

B2w?

(@? = k> + iow)(w? — kK> —m?) = ST (D32)

As we are interested in B/M < m, the mixing is very small
implying that there are two branches of solutions. The first
branch corresponds to

w? — k> + iow ~ 0, (D33)
corresponding to two modes
k2
|~ —iG, Wy X —i— s <D34)
c

where we have assumed that k <« . Both modes are
decaying modes in time with no time oscillations. So they
do not correspond to the case of an initial oscillatory axion
being affected by Joule’s effect. The mode w; decays very
fast whereas the second one has a long lifetime.

The more interesting modes which would correspond to
an initially oscillating axions are on the second branch
close to @* = k* + m?. The modes are then

2 p? 1 B% i
— 4 (2 a2 M BT _ Ay
W <( +m) +20'2M2\/k2+m2 2M? o
(D35)

The physical mode is the decreasing one w, whose

imaginary part is in —%g Notice that when o is very
large, this gives a very large lifetime. This is the surprising
result of this analysis. The mode w; corresponds to the
intuition that the Joule’s effect withdraws the energy from a
finite source and therefore depletes the axion and the
electric field very rapidly. The mode @, corresponds to
the fact that the Joule’s effect removes energy from the

system but the axion keeps replenishing. The two effects

compete but the second one with a long lifetime is the
dominant effect.

As a result, the analysis in the plaque confirms that our
initial hypothesis of a constant amplitude for the axion is
justified as the variation time due to the Joule effect is very
large. So we are entitled to trust our analysis and keep that
Jy is constant on the timescale of the experiment.

APPENDIX E: COMPARISON WITH THE
LIFSCHITZ THEORY

For a metal the Casimir effect depends on the conduc-
tivity too. In this case, the pressure separates in the electric
pressure

A

2 b
1+£
( ?> Q2Ad _
1=z

coming from the TE modes with two plates with the
permittivity . We have introduced A = (pj + @?)'/2. This

integral can be written as

Pl = —/dawflp (El)

Pi=-— / drdp, r}%e%d—l’ (E2)
where ryg is the reflection coefficient for the TE modes
evaluated for imaginary frequencies rrx(iw) = :%é where
&= (pj+ w*e(iw))"/? depends on the permittivity for
imaginary frequencies

2

0]
elio) =1 +—F—. E3
(i) = 1+ 20 (E3)
The magnetic pressure is given by
A
(E4)

- _ 2

PZ—/a’am’p“ i \2 ,
< s(im)A) o2Ad _ |
1
e(iw)A
coming from the 7M modes with two plates with the
same permittivity e. Notice that the same integral can be
written as

A
™
where rpy, is the reflection coefficient for the TM modes
evaluated for imaginary frequencies. In the ideal case where
rrg = rry = 1, the electric and magnetic contributions to
the Casimir pressure are equal and the total pressure
reduces to

A
PZ = —Z/d/a)dzp” 62M7—1’ (E6)
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which can be evaluated as

2 x4r 0 x3 2 X 4r
P=——2"" [Ty S r(4)¢(4
: 16(27:)3414% Yo 1T TTeapat W
2
T
= E7
240 (E7)

This is the usual Casimir pressure in the ideal case. At finite
temperature 7', the Lifschitz formulas must be computed by
replacing the integral [dw — T, over the Matsubara
frequencies where w, = 2znT. As the reflection coeffi-
cients are less than unity, the effect of the conductivity of
the real plates is to reduce the quantum pressure between
the plates. Finally, let us notice that when @ becomes larger
than wp), the reflection coefficients converge to zero
implying that the pulsation integral giving rise to the
Casimir pressure has a natural cutoff scale of order wp
above which the integral receive no contribution. Similarly
when the transverse momenta p| are much larger than w,
the TE reflection coefficient vanishes too. In all cases, when

the quantized pulsation w, ~ 4/ pﬁJr% exceeds the

plasma frequency, in particular for large p, the plaques
become transparent implying that ¢ = 1 and the absence of
Casimir pressure. As a result the plasma frequency serves
as a UV cutoff for energies and momenta for the Casimir
effect in the presence of metallic plates.

APPENDIX F: QUANTUM EFFECTS

The contribution of the axion to the quantum pressure
can be evaluated by considering the corrections of the
photon propagator due to the axion. For each photon
polarization, let us consider the vacuum energy per unit
surface which behaves like

Eyae
T = /da)dzp”a)zA(a),p), (Fl)

where the photon propagator in the cavity with resonances
at o = w,(p)) ~ pﬁ +%, where P is the transverse

momentum to the plates, is given by

Z w? - p|| +ie’ (F2)

(@, py)

A contour integral in the lower half plane gives the usual
I A p|@,(p|) before the axionic corrections. As the
photon energy momentum tensor is not corrected by the
axion coupling due to its topological nature, we just have to
correct the propagator and average over the fast axion

oscillations. The first correction to the vacuum energy
appears after two axionic insertions and gives a term in

6EV‘«10 ~

¢2
S mzz—A;z/da)dzppﬁA(va)(A(w+m7pll)

+ A(w —m, p)))A(w, py), (F3)

where each vertex bring a spatial and a time derivative. The
time derivatives lead to the prefactor in m? coming from the
derivative of the axion field and the spatial derivative is in
p|- In this expression, we are only interested in the order of
magnitude. A more precise calculation using field theoretic
methods from first principle is in progress. Notice that the
axionic insertions shift the energy in the propagator
@ — @ = m. The integral is dominated by the resonances
at w,, and gives a leading contribution

m2 ¢0 Z/d/wdea) pH

1
. (R4
wp(p)) =% (54)

5EV3C

X

(0* - wn(Pu) + ie)?

The same contour integral in the lower half plane gives a
contribution in

(4 1
24M22/da)d2pp“w (p”) ”(pH)_mT,

(F5)

SEVZlC ~

[N}

which is an integral which can be calculated in dimensional
regularization

5Evac m2
~ 4MZZ/‘JZPP|| >3/2

3
’ 16?342 FF<(5) n 'ZT (F6)

~

when md < 1. This gives

3
SE L, 2 T (—z) 1
N mPd? -1)— F7
R TTVZ r(}) ‘Dz @)
2
and dimensionally we have
SE z
e g P (F8)
E M?

vac

EVﬂC J
as 5 ~ l/d’§
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