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In this work, we study the effects of random temperature fluctuations on the partition function of a
quantum system by means of the replica method. This picture provides a conceptual model for a quantum
nonequilibrium system, depicted as an ensemble of subsystems at different temperatures, randomly
distributed with respect to a given mean value. We then assume the temperature displays stochastic
fluctuations T ¼ T0 þ δT with respect to its ensemble average value T0, with zero mean δT ¼ 0 and

standard deviation δT2 ¼ Δ. By means of the replica method, we obtain the average grand canonical
potential, leading to the equation of state and the corresponding excess pressure caused by these
fluctuations with respect to the equilibrium system at a uniform temperature. Our findings reveal an
increase in pressure as the system’s ensemble average temperature T0 rises, consistently exceeding the
pressure observed in an equilibrium state. We applied our general formalism to three paradigmatic physical
systems; the relativistic Fermi gas, the ideal gas of photons, and a gas of non-Abelian gauge fields (gluons)
in the noninteracting limit. Finally, we explore the implications for the deconfinement transition in the
context of the simple bag model, where we show that the critical temperature decreases.

DOI: 10.1103/PhysRevD.110.056014

I. INTRODUCTION

Finite temperature quantum field theory provides a
general framework to study the statistical and thermody-
namic properties of quantum matter, from condensed matter
systems to applications in high-energy physics [1–3].
However, many experimental systems of interest are not
in strict thermodynamic equilibrium. For instance, in
high-energy experiments such as ultrarelativistic heavy-
ion collisions, the emergence of the quark-gluon plasma is
a broadly accepted phenomenon [4–6]. This state involves
the coexistence of the fundamental degrees of freedom
in quantum chromodynamics, in principle assumed to be

in thermal equilibrium, so that finite temperature
field theory has been instrumental in successfully explain-
ing and predicting a wide array of observables arising
from such systems. Nevertheless, the initial and hadroni-
zation phases of a heavy-ion collision are not in thermal
equilibrium [7–10]. This leads to essential questions: How
do thermal fluctuations impact observables during these
stages? And what theoretical approaches can correctly
capture those effects?
A number of theoretical approximations have been

developed to represent nonequilibrium conditions in quan-
tum systems. For instance, the Keldysh contour path
emerged as a formalism to describe the quantum mechanical
evolution of systems under time-varying external fields [11].
This formalism has found notable applications, particularly
within strongly correlated electron systems [12–16], offering
insights into their many-body properties and nonequilibrium
dynamics [17,18]. Another approach used to model the
fluctuations of intensive thermodynamic parameters is the
so-called superstatistics. This method assumes an ensemble
of subsystems, each of them individually in local thermal
equilibrium [19]. Although this approximation represents
a semiclassical description of the thermal fluctuations,
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it has been applied extensively in condensed matter
systems [20,21], information theory [22–24], and more
recently to the study of the QCD phase diagram [25,26].
There is an alternative perspective to address fluctua-

tions or disorder within a system; the well-known replica
trick, introduced by Parisi as a method to average the free
energy, defined via the logarithm of the partition function
lnZ, of a system over quenched (or frozen) disorder [27].
This method builds on the mathematical identity,

lnZ ¼ lim
n→0

Zn − 1

n
; ð1Þ

which in practical implementation involves replicating the
system n-times, with the corresponding partition function
as an effective coupling of the n-replicas of the same
Lagrangian. This procedure can be performed either at the
level of the canonical ensemble, leading to an statistical
average of the Helmholtz free-energy F ðN ;V; TÞ ¼
−TlnZðN ;V; TÞ or the grand canonical ensemble, where
in such case one obtains the corresponding average of the
grand potential Ω̄ðμ;V; TÞ ¼ −TlnZðμ;V; TÞ.
In a series of two recent articles [28,29], we applied this

formalism to investigate the effects of stochastic fluctua-
tions in a classical background magnetic field on the
properties of a quantum electrodynamics (QED) medium.
Specifically, we showed that magnetic fluctuations lead to
an effective interaction between the fermions. This
approach, at the perturbative level, results in quasi-par-
ticles propagating through a dispersive medium [28].
Moreover, our mean-field analysis predicted the emer-
gence of order parameters representing the components of
a vector current [29]. Both perspectives revealed devia-
tions from Uð1Þ symmetry, highlighting the influence of
stochastic fluctuations within the background magnetic
field on the properties of the QED medium.
In this study, we shall assume a nonequilibrium sce-

nario, where temperature is then not defined uniformly
through the whole system, but smaller regions may still be
pictured as nearly thermalized subsystems. Therefore, we
model this situation by an ensemble of subsystems whose
individual temperatures T ¼ T0 þ δT are subjected to
stochastic fluctuations with zero mean δT ¼ 0, but finite

variance δT2 ¼ Δ.
For technical reasons, it is more convenient to represent

these fluctuations in terms of the inverse temperature,

β ¼ ðT0 þ δTÞ−1 ¼ T−1
0 −

δT
T2
0

¼ β0 þ δβ; ð2Þ

where clearly we have the corresponding relations,

δβ ¼ −
δT
T2
0

;

δβ ¼ −T−2
0 δT ¼ 0;

δβ2 ¼ T−4
0 δT2 ¼ β40Δ ¼ Δβ: ð3Þ

We capture these statistical features by assuming a
Gaussian distribution with zero mean, i.e.

dP½δβ� ¼ dðδβÞffiffiffiffiffiffiffiffiffiffiffi
2πΔβ

p e
−δβ2

2Δβ : ð4Þ

Therefore, the corresponding moments of the thermal
fluctuations are given by the exact expressions (∀ j∈N)

δβ ¼ δβ2j−1 ¼ 0;

δβ2 ¼ Δβ;

δβ2j ¼ Δj
βð2j − 1Þ!!: ð5Þ

We will further apply the replica formalism to average
over these temperature fluctuations. Subsequently, in the
grand canonical ensemble at finite chemical potential, by
using the Matsubara imaginary time formalism, we calcu-
late the system’s grand potential, and its equation of state.

II. THE GRAND CANONICAL
PARTITION FUNCTION

Let us start by considering the general definition of the
partition function in the grand canonical ensemble,

Zðμ;V; TÞ ¼ Tr½e−βðĤ−μN̂Þ�: ð6Þ

As we stated in the Introduction, we shall assume that our
system is not fully thermalized, but for a quenched
distribution of local temperatures, with the statistical proper-
ties described by Eq. (5). Moreover, the statistical average
over such distribution of temperatures is calculated via the
replica trick Eq. (1),

lnZ¼ lim
n→0

1

n

�
Tr

�
exp

�
−ðβ0þ δβÞ

Xn
r¼1

K̂ðrÞ
��

− 1

�
; ð7Þ

where here each replica 1 ≤ r ≤ n has an associated
operator K̂ðrÞ.
Let us now expand the exponential inside the trace in

Eq. (7) in powers of the fluctuation δβ, and then take the
statistical average of each term using the properties of the
distribution in Eq. (5) as follows:
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Zn ¼ Tr

�
exp

�
−ðβ0 þ δβÞ

Xn
r¼1

K̂ðrÞ
��

¼
Z

dP½δβ�Tr
"
e−β0

P
n
r¼1

K̂ðrÞ
 
1þ

X∞
j¼1

ð−1ÞjðδβÞj
j!

 Xn
r¼1

K̂ðrÞ
!

j
!#

¼ Tr

"
e−β0

P
n
r¼1

K̂ðrÞ
 
1þ

X∞
j¼1

Δj
β

ð2jÞ! ð2j − 1Þ!!
 Xn

r¼1

K̂ðrÞ
!

2j
!#

¼
 
1þ

X∞
j¼1

Δj
β

ð2jÞ! ð2j − 1Þ!! ∂
2j

∂β2j0

!
Tr
h
e−β0

P
n
r¼1

K̂ðrÞi
: ð8Þ

Remarkably, after the statistical average over fluctua-
tions was taken, the power expansion involving the trace
can be expressed as temperature derivatives of the partition
function of the reference system, defined by

Zn
0 ¼ Tr

h
e−β0

P
n
r¼1

K̂ðrÞi
; ð9Þ

as follows:

Zn ¼
 
1þ

X∞
j¼1

ðΔβ=2Þj
j!

∂
2j

∂β2j0

!
Zn
0

¼ exp

�
Δβ

2

∂
2

∂β20

�
Zn
0; ð10Þ

where in the first line we used the identity ð2j − 1Þ!!=
ð2jÞ! ¼ 2−j=j!, and we finally reassembled the series in the
form of the exponential differential operator.
For the thermodynamics analysis of different systems,

we shall be interested in the statistical average over noise of
the grand potential −β0Ω ¼ lnZ, such that applying the
appropriate limit over the number of replicas n → 0, we
obtain

−β0Ω̄ ¼ lnZ ¼ lim
n→0

Zn − 1

n
¼ exp

�
Δβ

2

∂
2

∂β20

�
lim
n→0

Zn
0 − 1

n

¼ exp

�
Δβ

2

∂
2

∂β20

�
lim
n→0

en lnZ0 − 1

n

¼ exp

�
Δβ

2

∂
2

∂β20

�
lnZ0: ð11Þ

Even though Eq. (11) is an exact result, we shall assume
that the temperature fluctuations are weak. Therefore, up to
first order in the fluctuation Δ, the Taylor expansion of the
exponential differential operator leads to

lnZ=Z0 ¼
Δβ

2

∂
2

∂β20
lnZ0 þOðΔ2

βÞ

¼ β0ðPV − ðPVÞigÞ; ð12Þ

where β0ðPVÞig ¼ lnZ0 is the equation of state for the
corresponding ideal gas. Therefore, up toOðΔ2Þ, the excess
pressure δP ≡ P − Pig of the gas due to the average effect
of the temperature fluctuation is

δP ≡ P − Pig ¼
Δβ

2Vβ0

∂
2

∂β20
lnZ0 þOðΔ2Þ: ð13Þ

It is interesting to analyze the physical interpretation of this
lowest order contribution using general thermodynamics
relations. From the differential form of the grand potential
for the ideal reference system, we have

dΩ0 ¼ −PdV − SdT0 − Ndμ; ð14Þ

from which we conclude that

S ¼ −
∂Ω0

∂T0

				
μ;V

: ð15Þ

On the other hand, using T0 ¼ β−10 and the definition
Ω0 ¼ −T0 lnZ0, it is possible to show the identity (see
Appendix A for details)

Δβ

2β0V
∂
2

∂β20
lnZ0 ¼

ΔβT2
0

2V
T0

∂S
∂T0

				
μ;V

¼ ΔβT2
0

2V

�
Cv þ

ðT0
∂N
∂T0

j
μ;V

Þ2
hðδN̂Þ2i

�

≥ 0: ð16Þ

Therefore, based on general thermodynamics consider-
ations for the ideal reference system, we expect for the
excess pressure due to random temperature fluctuations in
the ensemble to be positive δP ≥ 0 at first order in Δ.
In the next sections, we shall apply this general identity to

three basic but rather fundamental examples: The relativistic
Fermi gas, a gas of Abelian gauge fields (photons), and a
gas of non-Abelian gauge fields (gluons).
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III. RELATIVISTIC FERMI GAS
WITH THERMAL NOISE

Let us first focus on a system of QED fermions,
described by the Hamiltonian operator (including the
chemical potential)

Ĥ − μN̂ ¼
Z

d3xψ̂†ðxÞγ0½γ · ð−i∇Þ þm − γ0μ�ψ̂ðxÞ

≡ K̂: ð17Þ

The corresponding partition function Zn
0 ≡ Zn

F0 in
Eq. (10) corresponds to n-replicas of this ideal gas of
relativistic fermions, represented by the Grassmann fields
ψ rðxÞ, with 1 ≤ r ≤ n the replica index. The correspond-
ing standard functional integral representation is thus
given by

Zn
F0 ¼

Yn
r¼1

Z
D½ψ†

r ;ψ r� exp
�
−
Z

β0

0

dτ
Xn
r¼1

ψ†
rðx; τÞγ0ðγ0ð∂τ − μÞ þ γ · pþmÞψ rðx; τÞ

�

¼ det ½∂τ − μþ γ0γ · pþmγ0�n
¼ exp fnTr ln ½∂τ − μþ γ0γ · pþmγ0�g
¼ exp ðn lnZF0Þ; ð18Þ

where the symbol Tr stands for the functional trace (integral
over phase-space) and the trace in the space of Dirac
matrices. Here, we also defined the partition function for
the fermion gas,

lnZF0 ¼ Tr ln ½∂τ −μþ γ0γ ·pþmγ0�

¼ V
Z

d3p
ð2πÞ3

X
k∈Z

tr ln ½iωk−μþ γ0γ ·pþmγ0�; ð19Þ

where we diagonalized the operator in Matsubara-
momentum space, and ωk ¼ ð2kþ 1Þπ=β0 (k∈Z) are
the Fermi Matsubara frequencies. Using the elementary
identity, valid for any diagonalizable matrix Â,

tr ln Â ¼ tr½P̂−1ðln ÂÞP̂� ¼ tr½lnðP̂−1Â P̂Þ�
¼
X
i

ln λi; ð20Þ

where P̂ is the unitary transformation that diagonalizes Â
and λi its eigenvalues.
We evaluate the trace in Eq. (20) from the (double-

degenerate) eigenvalues of the matrix in the argument of the
logarithm: iωk − μ� Ep, with Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, to obtain

lnZF0 ¼ 2V
Z

d3p
ð2πÞ3

X
k∈Z

fln ½iωk − μþ Ep�

þ ln ½iωk − μ − Ep�g

¼ 2V
Z

d3p
ð2πÞ3

n
ln


1þ eβ0ðμ−EpÞ�

þ ln


1þ eβ0ðμþEpÞ�o: ð21Þ

The evaluation of the Matsubara sum in the final step is
presented in detail in Appendix B. Finally, inserting this
result into Eq. (11), we obtain

lnZF ¼ lim
n→0

Zn
F − 1

n
¼ exp

�
Δβ

2

∂
2

∂β20

�
lim
n→0

Zn
F0 − 1

n

¼ exp

�
Δβ

2

∂
2

∂β20

�
lim
n→0

en lnZF0 − 1

n

¼ exp

�
Δβ

2

∂
2

∂β20

�
lnZF0: ð22Þ

A. The equation of state

Applying Eq. (13), we obtain the explicit formula for the
excess pressure δP ¼ P − Pig,

δP ¼ Δβ

β0

X
s¼�1

Z
d3p
ð2πÞ3 ðEp þ sμÞ2nF

�
Ep þ sμ

T0

�

×

�
1 − nF

�
Ep þ sμ

T0

��
; ð23Þ
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where nFðxÞ ¼ ðex þ 1Þ−1 is the Fermi distribution, allows
us to verify that it is clearly positive definite, in agreement
with our general analysis in Eq. (16).
In order to evaluate the integral, it is convenient to

perform the change of variable (here E ¼ Ep for short
notation)

p2¼E2−m2→ d3p¼ 4πp2dp¼ 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−m2

p
EdE; ð24Þ

and later define the dimensionless variables x≡ E=m,
y≡ T0=m, z ¼ μ=m, and Δ̃≡ Δ=m2, with m the bare
mass (it is an ideal Fermi gas without interactions), such
that we have

δP ¼ m4Δ̃
2π2y3

X
s¼�1

Z
∞

1

dx xðxþ szÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p

× nF

�
xþ sz

y

�
nF

�
−
xþ sz

y

�
; ð25Þ

where we used the property nFð−xÞ ¼ 1 − nFðxÞ.
We represent the ratio between the total ensemble-

average pressure P ¼ Pig þ δP and the fourth power of
the average temperature, i.e. P=T4

0 in Fig. 1, for the specific
case of vanishing chemical potential. For the sake of
comparison, we included the well known temperature
dependence of the ideal relativistic Fermi gas, that asymp-
totically attains the limitP=T4

0 ∼ 7π2=180 as T0=m > 1 [2],
wherem is the bare mass, consistent with our noninteracting
model of an ideal Fermi gas. We also represent the excess
pressure contribution δP arising from stochastic fluctua-
tions in the temperature, calculated after Eq. (25). As can be
noticed, the excess pressure represents a significant con-
tribution at low equilibrium temperatures T0 ≲m, but it
rapidly decreases at higher temperatures T0 > m, with m

the bare mass consistent with our noninteracting fermion
model. Moreover, the magnitude of this deviation from the
ideal gas pressure in actual thermal equilibrium is propor-
tional to the parameter Δ̃ representing the standard deviation
in the temperature distribution across the ensemble of
subsystems. The effects of a finite chemical potential μ > 0
over the excess pressure are displayed in Fig. 2. Clearly, the
chemical potential represents a small effect over the overall
temperature dependence already discussed in Fig. 1

IV. THE PHOTON GAS WITH THERMAL NOISE

In this section, we shall apply our general result as
expressed by Eq. (10) to the particular case of a system of
free Abelian gauge fields AμðxÞ, whose gauge invariant
Lagrangian is defined by

FIG. 1. Pressure normalized to T4
0 when μ ¼ 0 for the ideal fermion gas (dotted line), the excess pressure of Eq. (25) (dashed line), and

the total pressure (continuous line). The arrow indicates the asymptotic ideal gas limit at high temperatures.

FIG. 2. Excess pressure of the Fermi gas, computed up to order
OðΔÞ from Eq. (25), as a function of the average temperature T0,
and the chemical potential μ.
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L ¼ −
1

4
FμνFμν; ð26Þ

with Fμν ¼ ∂μAν − ∂νAμ the strength tensor. As is well-
established [3], the partition function is obtained by the
Fadeev-Popov technique

ZB0 ¼ Tre−β0Ĥ

¼
Z

D½Aμ�δ½F � det
�
∂F
∂α

�
e
R

β0
0

dτ
R

d3xL; ð27Þ

where the general gauge-fixing condition is determined by
the functional equation F ½Aμ� ¼ 0. A convenient way to
perform the integral is to consider the family of covariant
gauges F ½Aμ� ¼ ∂

μAμ − fðx; τÞ ¼ 0. Therefore, under a
gauge transformation Aμ → Aμ − ∂

μα, the former equation
becomes

F ½Aμ − ∂
μα� ¼ ∂

μAμ − fðx; τÞ − ∂
2α; ð28Þ

thus leading to the result

det

�
∂F
∂α

�
¼ det ð−∂2Þ; ð29Þ

such that

ZB0 ¼
Z

D½Aμ�δ½∂μAμ − f� det ð−∂2Þe
R

β0
0

dτ
R

d3xL: ð30Þ

Integrating over a functional distribution of gauge-fixing
conditions with weight exp ½− 1

2ξ

R
dτ
R
d3xf2ðx; τÞ�, we

arrive at

ZB0 ¼
Z

D½Aμ� det ð−∂2Þe
R

β0
0

dτ
R

d3xðL− 1
2ξð∂μAμÞ2Þ: ð31Þ

Finally, we introduce a set of Grassmann “ghost” fields η, η,
to represent the determinant of the Laplacian operator,
such that

ZB0 ¼
Z

D½Aμ�
Z

D½η̄; η�e
R

β0
0

dτ
R

d3xðL− 1
2ξð∂μAμÞ2−η̄∂2ηÞ

¼
Z

D½Aμ�
Z

D½η̄; η�e
R

β0
0

dτ
R

d3x½−1
2
Aμð−gμν∂2þð1−1

ξÞ∂μ∂νÞAν−η̄∂2η�; ð32Þ

where in the second step we integrated by parts. The corresponding partition function for n-replicas of this system
(assuming the Feynman gauge for definiteness ξ ¼ 1) requires the introduction of the replica gauge fields Aa

μðxÞ, as well as
the replica ghosts η̄r, ηr, for 1 ≤ r ≤ n, such that

Zn
B0 ¼

Z Yn
r¼1

D½Ar
μ�
Z

D½η̄r; ηr�e
R

β0
0

dτ
R

d3x½−1
2

P
n
r¼1

Ar
μð−∂2ÞAr

μ−
P

n
r¼1

η̄r∂2ηr�

¼ ðdet½−∂2�Þ−4n=2 × ðdet½−∂2�Þ2n=2 ¼ exp ½−nTr ln½−∂2��
¼ exp½n lnZB0�; ð33Þ

where we identify the grand partition function of an ideal
gas of massless bosons (with zero chemical potential
μB ¼ 0)

lnZB0 ¼ −Tr ln½−∂2� ¼ −Tr ln½−∂2τ −∇2�

¼ −V
Z

d3p
ð2πÞ3

X
k∈Z

ln½ω2
k þ p2�

¼ −V
Z

d3p
ð2πÞ3

X
k∈Z

fln½jpj þ iωk� þ ln½jpj − iωk�g

¼ −V
Z

d3p
ð2πÞ3 ½ln ð1 − e−β0jpjÞ þ ln ðeβ0jpj − 1Þ�

¼ −2V
Z

d3p
ð2πÞ3

�
β0
2
jpj þ ln ð1 − e−β0jpjÞ

�
: ð34Þ

Here, the Matsubara sum is over bosonic even frequencies
ωk ¼ 2kπ=β0, for k∈Z (details in Appendix B). In

addition, the overall prefactor represents the νB ¼ 2 de-
grees of freedom, that for photons represents the two
transverse physical polarization modes [the other two were
naturally removed upon integrating the ghosts, as seen in
Eq. (33)]. The first, linear term in the integral Eq. (34)
represents the (divergent) vacuum energy, and can therefore
be subtracted. For the remaining logarithmic expression, it
is convenient to use polar coordinates d3p ¼ 4πjpj2djpj,
and then change the integration variable by introducing
x ¼ β0jpj to obtain the grand potential,

ΩB
0 ¼ −T0 lnZB0 ¼ νB

VT4
0

2π2

Z
∞

0

dx x2 ln ð1 − e−xÞ

¼ −νB
VT4

0

6π2

Z
∞

0

dx
x3

ex − 1

¼ −νBV
π2T4

0

90
; ð35Þ
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where in the second line we integrated by parts, and we
finally generalized the result by introducing νB as the total
number of discrete degrees of freedom. The ideal gas
pressure for bosons in equilibrium at temperature T0 is thus

PB
ig ¼ νB

π2T4
0

90
: ð36Þ

To obtain the statistical average over noise, we again apply
the identity Eq. (10), such that

lnZB ¼ lim
n→0

Zn
B − 1

n

¼ exp

�
Δβ

2

∂
2

∂β20

�
lim
n→0

Zn
B0 − 1

n

¼ exp

�
Δβ

2

∂
2

∂β20

�
lnZB0: ð37Þ

Therefore, we have

lnZB=ZB0 ¼
Δβ

2

∂
2

∂β20
lnZB0 þOðΔ2

βÞ

¼ β0ðPV − ðPVÞigÞ: ð38Þ

The corresponding excess pressure due to nonequilibrium
thermal fluctuations will be, after Eq. (13)

δPB ¼ P − PB
ig ¼

Δβ

2β0V
∂
2

∂β20
lnZB0

¼ νB
π2

15
Δββ

−6
0 ¼ νB

π2

15
ΔT2

0 > 0; ð39Þ

a positive quantity as well, in agreement with the general
proof presented in Eq. (16).

V. THE GLUON GAS WITH THERMAL NOISE

The Lagrangian for a system of non-Abelian, SUðNÞ
gauge fields Aμ

a is given by

L ¼ −
1

4
Fμν
a Fa;μν; ð40Þ

where 1 ≤ a ≤ N2 − 1 represents the color index, with
N ¼ 3 for gluons in QCD. The corresponding N2 − 1 Lie
group generators ta satisfy the algebra ½ta; tb� ¼ ifabctc,
with fabc the structure constants. The field strength tensor
in the Lagrangian equation (40), for a color charge g, is thus
defined by

Fμν
a ¼ ∂

μAν
a − ∂

νAμ
a þ gfabcAμ

bA
ν
c: ð41Þ

The corresponding partition function is expressed by means
of the Fadeev-Popov technique [2,3],

ZG ¼
Z

D½Aμ
a�δ½F a� det

�
δF a

δαc

�
e
R

β0
0

dτ
R

d3xL: ð42Þ

In this case, we have a set of N2 − 1 gauge-fixing
conditions F a½Aμ

a� ¼ 0. By choosing a family of covariant
gauges F a ¼ ∂μA

μ
a − faðx; τÞ ¼ 0, such that under a gauge

transformation Aμ
a → Aμ

a þ gfabcAμ
bα

c − ∂
μαa, one obtains

det

�
δF a

δαc

�
¼ det ð−∂2δac þ gfabc∂μA

μ
bÞ: ð43Þ

As in the case already discussed for photons, we integrate
over a functional distribution of gauge fixing conditions
exp ½− 1

2ξ

R
dτ
R
d3xf2aðx; τÞ�, to obtain

ZG ¼
Z

D½Aμ
a� det ð−∂2δac þ gfabc∂μA

μ
bÞ

× e
R

β0
0

dτ
R

d3xðL− 1
2ξð∂μAμ

aÞ2Þ: ð44Þ

The functional determinant is expressed in terms of an
integral over Grassmann “ghosts” fields ηa, ηa, for each
color index 1 ≤ a ≤ N2 − 1, to obtain (choosing the
Feynman gauge ξ ¼ 1 for definiteness, and integrating
by parts in the gauge field sector)

ZG ¼
Z

D½Aμ
a�
Z

D½η̄a; ηa�e
R

β0
0

dτ
R

d3xLeff ½Aμ
a;η̄a;ηa� ð45Þ

with the effective Lagrangian

Leff ¼ −
1

2
Aμ
að−δabgμν∂2ÞAν

b þ η̄að−δab∂2Þηb

−
g2

4
ðfeabAaμAbνÞðfecdAμ

cAν
dÞ

− gfabcð∂μAaνÞAμ
bA

ν
c − gη̄afabc∂μAbμηc: ð46Þ

The first two terms in the effective Lagrangian represent a
noninteracting system of N2 − 1 free gluons and ghosts,
respectively. The remaining three contributions represent the
self-interaction between gluons, of first and second order in
the color charge, respectively, as well as the interaction
between gluons and ghosts, which is first order in the charge.
In what follows, to illustrate our method via explicit
analytical results, we shall consider the effects of thermal
noise over the noninteracting, ideal gas of gluons, such that
we shall restrict ourselves to zero order in the color charge,
corresponding to the first two terms in the effective
Lagrangian. Applying then the replica trick for this non-
interacting system, we have (adding an additional replica
index 1 ≤ r ≤ n to all the fields)
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Zn
G0 ¼

Z Yn
r¼1

D½Arμ
a �
Z

D½η̄ra; ηra�e
R

β0
0

dτ
R

d3x½−1
2

P
n
r¼1

Arμ
a ð−δabgμν∂2ÞArν

b þη̄að−δba∂2Þηb�

¼ ðdet ½−∂2�Þ−4nðN2−1Þ=2 × ðdet ½−∂2�Þ2ðN2−1Þn=2 ¼ exp ½−nðN2 − 1ÞTr ln ½−∂2��
¼ exp ½nðN2 − 1Þ lnZB0�; ð47Þ

where lnZB0 ¼ −Tr ln ½−∂2� is just the partition function
for the ideal gas of bosons, already defined and calculated
explicitly in Eqs. (34) and (35). Therefore, as in the
previous examples we apply Eq. (11) to obtain

lnZG ¼ lim
n→0

Zn
G0 − 1

n

¼ exp

�
Δβ

2

∂
2

∂β20

�
lim
n→0

enðN2−1Þ lnZB0 − 1

n

¼ ðN2 − 1Þ exp
�
Δβ

2

∂
2

∂β20

�
lnZB0: ð48Þ

Therefore, repeating the same steps already discussed in
the gas of photons, the corresponding equation of state in
thermal equilibrium for the ideal gluon gas is again given by
Eq. (36), but with a total number of degrees of freedom
νB ¼ 2ðN2 − 1Þ. Similarly, the excess pressure due to
stochastic fluctuations in temperature will be given by
Eq. (39), with νB ¼ 2ðN2 − 1Þ (with N ¼ 3 for gluons in
QCD). Despite this explicit result is exact at zero order in
the color charge, one can extend the applicability of the
formalism to incorporate interaction effects at the level of
the effective action, for instance, with a running coupling
constant g → gðkÞ determined by the standard βðgÞ ¼
∂g=∂ logM function in perturbation theory [30]. The tech-
nical aspects of such procedure are beyond the scope of the
present article, and will be communicated in a separate
contribution.

VI. IMPLICATIONS FOR THE DECONFINEMENT
TRANSITION

Our previous results, although exact, were explicitly
applied to noninteracting systems represented by ideal
Fermi and Bose gases, respectively. Nevertheless, it is
interesting to explore their consequences in the context
of the deconfinement transition, within the simple bag
model considerations. The Bag model represents an elemen-
tary approach, where the corresponding hadronic and
plasma phases are modeled as ideal quantum gases [2],
just as developed in our former results, and hence it provides
a toy model to explore the effects of stochastic thermal
fluctuations in the deconfinement transition. Assuming that
the hadronic phase is mainly constituted by pions [2]
(bosons with μ ¼ 0 and νB ¼ 3 for charged states 0;�),
applying Eq. (36) we have that its pressure, including the

excess pressure effect due to temperature fluctuations,
would be

PHad ¼ 3
π2T4

0

90
þ δPHad: ð49Þ

On the other hand, for the plasma phase we have
νF ¼ 2 × 3 × 2 ¼ 12 for quarks (fermions), and νB ¼ 2 ×
ð32 − 1Þ ¼ 16 for gluons (non-Abelian gauge fields),
such that

PPlasma ¼
�
νB þ 7

4
νF

�
π2T4

0

90
þ δPPlasma − B

¼ 37π2

90
T4
0 þ δPPlasma − B: ð50Þ

Here, we included the bag constant B ∼ 200 MeV [2],
and the excess pressure due to temperature fluctuations
associated to both quarks and gluons δPPlasma ¼ δPG þ
δPQ > 0.
The critical temperature Tc is obtained by imposing the

condition of equal pressures at both phases at the phase
transition, i.e.

3
π2T4

c

90
¼ 37π2

90
T4
c þ δPNet − B; ð51Þ

where we defined the net excess pressure as

δPNet ¼ δPPlasma − δPHad ¼ δPG − δPHad þ δPQ

¼ 13
π2

15
ΔT2

0 þ δPQ > 0; ð52Þ

which is clearly a positive definite quantity.
Finally, solving for Tc in Eq. (51), we obtain

Tc ¼ T0
c

�
1 −

δPNet

ðT0
cÞ4
�

1=4

≤ T0
c; ð53Þ

with T0
c ¼ ð45B=17π2Þ1=4 ∼ 144 MeV [2] the critical tem-

perature for a homogenous thermalized system. Therefore,
we conclude that nonequilibrium temperature fluctuations
will in principle decrease the critical temperature for the
deconfinement transition.
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VII. SUMMARY AND CONCLUSIONS

As an approximation to the nonequilibrium conditions
arising in several relativistic quantum systems, such as
heavy-ion collisions, we have considered an ensemble
of subsystems at different temperatures T ¼ T0 þ δT,

with average T0 and standard deviation δT2 ¼ Δ. These
statistical properties imply that the inverse temperature
β ¼ β0 þ δβ can be modeled by a Gaussian distributed
stochastic fluctuation δβ, with zero mean and standard

deviation δβ2 ¼ Δβ ¼ β40Δ. We applied the replica trick to
obtain the statistical average of the grand potential as a
series expansion at all orders in the parameter Δ, that can
be expressed in compact form as an exponential differ-
ential operator acting upon the partition function of the
system in equilibrium at the average temperature T0, thus
allowing to obtain the excess pressure due to temperature
fluctuations. This represents an exact result, that can be
applied to quantum systems even in the presence of
interactions. In order to present our novel formalism,
we applied it explicitly to solve for the equation of state
and excess pressure in three paradigmatic physical sys-
tems: The relativistic Fermi gas, the photon gas, and a gas
of non-Abelian gauge fields (gluons) in the noninteracting
limit. In agreement with our previous works [28,29], the
statistical average over fluctuating parameters (in this case
the temperature) within the replica formalism, can be
interpreted as an effective particle-particle interaction
introduced to the free Lagrangian [28,29]. The strength
of these interactions is here proportional to the parameter
Δ, that represents the autocorrelation in the temperature
fluctuations. This result may be of significant impact in
the interpretation of nonequilibrium effects and thermal
fluctuations in several high-energy systems, particularly
on the deconfinement transition between hadronic matter
and the quark gluon plasma, for which we provided a
simple but straightforward analysis based on the bag
model, showing that the critical temperature decreases
due to such nonequilibrium fluctuations. A more precise
assessment of such effects in this context can be per-
formed, by applying our formalism to the corresponding
interacting field theories, which is work currently in
progress.
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APPENDIX A: THERMODYNAMIC RELATIONS
FOR THE FLUCTUATIONS

As clearly stated in the main text, the first order in Δ
contribution to the excess pressure is proportional to the
second derivative of the grand partition function of
the reference system, constituted by the relativistic
Fermi gas. Using the relation β0 ¼ T−1

0 , and the definition
lnZ0 ¼ −Ω0=T0, we have

∂
2

∂β20
lnZ0 ¼ −T0

∂

∂T0

�
T0

∂Ω0

∂T0

				
μ;V

−Ω0

�
μ;V

¼ −T3
0

∂
2Ω0

∂T2
0

				
μ;V

: ðA1Þ

On the other hand, from the differential form of the grand
potential,

dΩ0 ¼ −PdV − SdT0 − Ndμ; ðA2Þ

we have the relations

S ¼ −
∂Ω0

∂T0

				
μ;V

;

∂S
∂μ

				
T0;V

¼ ∂N
∂T0

				
μ;V

: ðA3Þ

Inserting the first expression into Eq. (A1) we obtain

∂
2

∂β20
lnZ0 ¼ T3

0

∂S
∂T0

				
μ;V

: ðA4Þ

We remark that the entropy derivative in Eq. (A4) is
related to the specific heat at constant volume Cv, and
hence a positive definite quantity, as we show as follows.
By definition, we have (using the Jacobian notation)

Cv ¼ T0

∂S
∂T0

				
V;N

¼ T0

∂ðS;NÞ
∂ðT0; NÞ ¼ T0

∂ðS;NÞ
∂ðT0;μÞ
∂ðT0;NÞ
∂ðT0;μÞ

¼ T0

∂N
∂μ

			
T0;V

							
∂S
∂T0

			
μ;V

∂S
∂μ

			
T0;V

∂N
∂T0

			
μ;V

∂N
∂μ

			
T0;V

							: ðA5Þ

Evaluating the determinant, we obtain after some
elementary algebra
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Cv

T0

¼ ∂S
∂T0

				
μ;V

−
∂S
∂μ

			
T0;V

· ∂N
∂T0

			
μ;V

∂N
∂μ

			
T0;V

¼ ∂S
∂T0

				
μ;V

−

�
∂N
∂T0

			
μ;V


2

∂N
∂μ

			
T0;V

; ðA6Þ

where in the second line we substituted the second relation
in Eq. (A3). From Eq. (A6) we obtain

∂S
∂T0

				
μ;V

¼ Cv

T0

þ

�
∂N
∂T0

			
μ;V


2

∂N
∂μ

			
T0;V

: ðA7Þ

Therefore, substituting this result into Eq. (A4), we obtain

∂
2

∂β20
lnZ0 ¼ T2

0

0
B@Cv þ T0

�
∂N
∂T0

			
μ;V


2

∂N
∂μ

			
T0;V

1
CA: ðA8Þ

Finally, applying the statistical-mechanical definition fo
the average particle number N ¼ hN̂i in the grand canoni-
cal ensemble, we have

∂N
∂μ

				
T0;V

¼ 1

T0

ðhN̂2i − hN̂i2Þ ¼ hðδN̂Þ2i
T0

≥ 0; ðA9Þ

which combined with Eq. (A8) leads us to prove the
inequality,

∂
2

∂β20
lnZ0 ¼ T3

0

∂S
∂T0

				
μ;V

¼ T2
0

0
B@Cv þ T2

0

�
∂N
∂T0

			
μ;V


2

hðδN̂Þ2i

1
CA ≥ 0; ðA10Þ

as stated in the main text.

APPENDIX B: MATSUBARA SUMS

Here we present the detail of the evaluation of the
Matsubara sum of the logarithmic functions in the main
text. For simplicity, let us define ξp ¼ μ� Ep, and hence
consider the generic sum for ωk ¼ ð2kþ 1Þπ=β0,

S ¼
X
k∈Z

ln ðiωk − ξpÞ: ðB1Þ

To evaluate the sum, we shall construct an integration
path on the complex contour, by using the meromorphic
function

gFðzÞ ¼
β0

eβ0z þ 1
; ðB2Þ

that possesses infinitely many single poles along the
imaginary axis at the Matsubara frequencies zk ¼ iωk,
with residue 1:

ResgFðzÞjz¼iωk
¼ lim

z→iωk

ðz − iωkÞgFðzÞ

¼ β0 lim
z→iωk

z − iωk

1þ eiβ0ωkeβ0ðz−iωkÞ

¼ β0 lim
z→iωk

z − iωk

1 − eβ0ðz−iωkÞ

¼ 1: ðB3Þ
Therefore, we consider the complex integral over the

contour illustrated in Fig. 3,

1

2πi

I
dz gFðzÞ lnðz − ξpÞ ¼

Z
CR

dz
2πi

gFðzÞ lnðz − ξpÞ

þ
Z
Bþ∪B−

dz
2πi

gFðzÞ lnðz − ξpÞ

þ
Z
Γþ∪Γ−

dz
2πi

gFðzÞ lnðz − ξpÞ

¼ 0; ðB4Þ
where we have surrounded the branch cut of the logarithm
starting at z ¼ ξp, and no poles are enclosed inside the
contour. Now, we calculate separately each component.
Clearly, after the exponential contribution in the denom-
inator of gFðzÞ, we have

lim
R→∞

Z
CR

dz
2πi

gFðzÞ lnðz − ξpÞ ¼ 0: ðB5Þ

The integral that surrounds the Matsubara poles in the
imaginary axis is calculated using the residue theorem,

FIG. 3. Integration contour in Eq. (B4).
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lim
R→∞

Z
Γþ∪Γ−

dz
2πi

gFðzÞ lnðz − ξpÞ

¼ −
X
k∈Z

lim
z→iωk

ðz − iωkÞgFðzÞ lnðz − ξpÞ

¼ −
X
k∈Z

lnðiωk − ξpÞ ¼ −S; ðB6Þ

where we applied Eq. (B3) for the residues of gðzÞ.
Substituting Eq. (B6) into Eq. (B4), we have that the
Matsubara sum is given by the integral around the
branch cut,

S ¼
X
k∈Z

lnðiωk − ξpÞ ¼
Z
Bþ∪B−

dz
2πi

gFðzÞ lnðz − ξpÞ

¼ −
1

2πi

Z
∞

ξp

dx gFðxÞ½lnðx − ξp þ iϵþÞ − lnðx − ξp − iϵþÞ�

¼ −
1

2πi

Z
∞

ξp

dx
β0e−β0x

e−β0x þ 1
½lnðx − ξp þ iϵþÞ − lnðx − ξp − iϵþÞ�

¼ 1

2πi

Z
∞

ξp

dx
∂

∂x
ln ðe−β0x þ 1Þ½lnðx − ξp þ iϵþÞ − lnðx − ξp − iϵþÞ�

¼ −
1

2πi

Z
∞

ξp

dx ln ðe−β0x þ 1Þ
�

1

x − ξp þ iϵþ
−

1

x − ξp − iϵþ

�

¼
Z

∞

ξp

dx ln ðe−β0x þ 1Þδðx − ξpÞ

¼ ln ðe−β0ξp þ 1Þ; ðB7Þ

where in the fourth line we integrated by parts, and in the
third step we used the identity

lim
ϵ→0þ

1

A� iϵ
¼ PVð1=AÞ ∓ iπδðAÞ: ðB8Þ

For the case of bosons, an identical contour integration as
depicted in Fig. 3 can be performed, but using instead the
meromorphic function

gBðzÞ ¼
β0

eβ0z − 1
; ðB9Þ

that possesses infinitely many simple poles at the zk ¼ iωk,
with ωk ¼ 2πk=β0 (k∈Z) the even Matsubara frequencies.
The residues of this function at each pole are

ResgBðzÞjz¼iωk
¼ lim

z→ωk

ðz − iωkÞgBðzÞ

¼ β0 lim
z→ωk

z − iωk

eiβ0ωkeβ0ðz−iωkÞ − 1

¼ β0 lim
z→ωk

z − iωk

eβ0ðz−iωkÞ − 1

¼ 1: ðB10Þ

Integrating along the contour Fig. 3, and following the
same steps in the calculation, one arrives in this second case
for bosonic frequencies ωk ¼ 2πkβ0 to the result

S ¼
X
k∈Z

ln ðiωk − ξpÞ ¼ ln ð1 − e−β0ξpÞ: ðB11Þ
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