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The homogeneous Bethe-Salpeter equation (hBSE), describing a bound system in a genuinely
relativistic quantum-field theory framework, was solved for the first time by using a D-Wave quantum
annealer. After applying standard techniques of discretization, the hBSE, in ladder approximation, can be
formally transformed in a generalized eigenvalue problem (GEVP), with two square matrices: one
symmetric and the other nonsymmetric. The latter matrix poses the challenge of obtaining a suitable formal
approach for investigating the nonsymmetric GEVP by means of a quantum annealer, i.e., to recast it as a
quadratic unconstrained binary optimization problem. A broad numerical analysis of the proposed
algorithms, applied to matrices of dimension up to 64, was carried out by using both the PROPRIETARY

simulated-annealing package and the D-Wave Advantage 4.1 system. The numerical results very nicely
compare with those obtained with standard classical algorithms, and also show interesting scalability
features.
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I. INTRODUCTION

The past decade has seen an exponential growth of
research activity and interest in quantum computing in an
impressive number of fields (see, e.g., Refs. [1–11] for
recent reviews which could offer an admittedly partial idea
of the state-of-the-art). The driving force behind all of
this has been the astonishing advances in new quantum-
hardware implementation which occurs with close fre-
quency, as shown by the long list of major achievements
one can find in literature and media (see, e.g., Ref. [12] for
a an introduction of the main quantum-computing plat-
forms, as well as algorithms). However, one should recall

that an easy path toward a universal, fault-tolerant quantum
computer is currently hindered by noise, decoherence and
scalability [1].
In general, one can perform calculations that take

advantage of either digital gate-based quantum computing
or analog quantum annealing (see, e.g., Ref. [13] for a
detailed discussion of the two approaches). The first
choice is more widely adopted, since it is meant as the
quantum analog of a classical general-purpose computer,
and it has the possibility to address a broader set of
problems (see, e.g., Ref. [14], for recent experimental
results obtained using an IBM quantum machine). The
second possibility, the quantum annealing, is mainly
devoted to optimization problems, that can be properly
encoded into an Ising Hamiltonian. In this case, one
searches for the ground-state of the system by exploiting
quantum fluctuations (see, e.g., Refs. [15–19] for an
introduction to the foundations of quantum annealing).
Quantum annealing, that has its basis in the adiabatic
theorem, have been exploited in several practical appli-
cations (see, e.g., Refs. [20–24] and references quoted
therein for a nonexhaustive list of quantum-annealing
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applications) outperforming the results obtained with
simple classical heuristics, like simulated annealing.
In this work we exploit this second possibility to solve

the nonsymmetric generalized eigenvalue problem (GEVP).
In particular we use the D-Wave Advantage quantum
annealer (QA) [25–27] which has a network of more than
5000 qubits, with 15-way connectivity.
The application of the quantum annealer for finding the

solution of the GEVP for symmetric matrices it is very well
known in literature [28–32]. In this work, we aim instead to
find the minimal/maximum right eigenvalue (and corre-
sponding eigenvector) of a nonsymmetric GEVP by the use
of a quantum annealer. Notice that the proposed technique
could also be used for the left eigenvectors with simple
modifications. In our specific case we focus on the non-
symmetric GEVP stemming from the discretization method
adopted for solving the homogeneous Bethe-Salpeter
equation (hBSE) [33,34] in ladder approximation, directly
in the four-dimensional (4D) Minkowski space (see also
Refs. [35–37] for a detailed introduction to the topic, and
the brief resumé in Appendix A). In particular we focus on
the numerical solutions of the hBSE for two massive scalar
fields interacting through the ladder exchange of another
massive scalar field (see Ref. [38] for the results obtained
with a classical computation).
The nonsymmetric GEVP is given in general by the

expression

Avi ¼ λiBvi ð1Þ

where the n × n matrix A is a real and nonsymmetric, the
n × n matrix B is nonsingular and symmetric and, vi is the
eigenvector corresponding to the ith eigenvalue λi. It is
important to underline that this form is relevant for many
areas, e.g., for the analysis of mechanical systems [39,40], in
fluid mechanics [41], for investigating criticality in nuclear
reactors [42] or the onset of oscillatory instability in a heated
cavity [43], for lattice QCD [44], in industry [45], etc.
At the present stage, we reduce the GEVP into a standard

eigenvalue problem by inverting the matrix B through a
classical algorithm, before passing it to the quantum annealer
to compute the real maximal/minimal eigenvalue and eigen-
vector. This is a crucial first step of the investigation since it
permits to asses the viability of this algorithm before being
generalized.
The problem is then divided in two steps. The first step is

to translate the GEVP into a quadratic unconstrained binary
optimization1 (QUBO), constructing the suitable objective
function (OF) in terms of binary variables. The second step,
carried out through the PROPRIETARY software, is to map
the QUBO problem onto such Ising-model, embodied by
the qubit architecture (see Ref. [46] for the first imple-
mentation of a QUBO problem on a D-Wave QA and

Refs. [25–27] for the D-Wave Advantage System). The
quantum annealear is then used to search for the global
minimum of the corresponding Ising Hamiltonian imple-
mented on the physical quantum processing units (QPUs).
The paper is organized as follows. In Sec. II, the physics

problem from where the nonsymmetric GEVP stemmed
from is briefly illustrated. In Sec. III, the OF, which our
GEVP is mapped onto, and its expression in terms of the
binary variables are presented in detail. In Sec. IV, the
results of our numerical investigation on the annealing
simulator, SA, as well as the D-Wave Advantage System
QA are discussed at some length and compared. Finally, in
Sec. V, our conclusions are drawn with a focus on the
perspectives. Appendixes are devoted to supply more
details on the physics case and the construction of the OF.

II. THE PHYSICS PROBLEM

As previously stated, our aim is to solve the homo-
geneous Bethe-Salpeter equation [33] of a system com-
posed by two massive scalars bound through the ladder
exchange of a third massive scalar, directly in Minkowski
space. Avariational method, tailored for a QA, is applied in
order to obtain the ground-state of the system. This non-
perturbative quantum-field-theory problem was solved in
Ref. [38] by using the Nakanishi integral representation [47]
(NIR) of the Bethe-Salpeter (BS) amplitude, i.e., the key
quantity for describing the ground-state of the system and
eventually calculating relevant observables. Following
Ref. [38], one can formally transform the hBSE in
Minkowski space into a GEVP adopting a standard discre-
tization method. In particular, a polynomial orthonormal
basis, composed by the Cartesian product of Laguerre and
Gegenbauer polynomials, was adopted. It should be pointed
out that solutions obtained directly inMinkowski spacemake
a more direct comparison between the theoretical outcomes
and the experimental results possible, without resorting to
Euclidean solutions (see, e.g., Refs. [48–50] for an intro-
duction to the Dyson-Schwinger plus hBSE framework, in
Euclidean space). Let us recall that Euclidean solutions could
be directly adopted for describing physical observables, once
the assumptions of the famous theorems by Osterwalder and
Schrader [51,52], stating necessary and sufficient conditions
for formally bridging Euclidean andMinkowskian quantum-
field theory, are fulfilled and the set of unavoidable approx-
imations is actually under control.
From a bird’s eye view, the two-body BS amplitude

allows to reconstruct the residue of the four-leg Green’s
function at the bound-state mass pole. Moreover, one can
show that such an amplitude is the solution of a homo-
geneous integral equation, i.e., the hBSE. Notice that, in
relativistic quantum-field theory, the hBSE has the same
role in the bound-state description that the Schrödinger
equation has in nonrelativistic quantum mechanics.
In conclusion, one is able to formally transform the

Minkowskian hBSE into the nonsymmetric GEVP of the1One aims to get a quadratic polynomial over binary variables.
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form in Eq. (1). The eigenvalue is proportional to the
inverse of the square coupling constant present in the
interaction vertex (produced by the underlying field
theory). Since the coupling constant is real for physical
reasons, real eigenvalues must be sought. It should be
pointed out that the eigenvalues and corresponding eigen-
vectors (eigenpair) in a nonsymmetric GEVP can be real or
complex. In case they are complex they appear in con-
jugated pairs. Moreover, the eigenvectors vi do not have the
property to be orthogonal. As specified above, in our case
we are interested only in the real eigenvalues, and particu-
larly the one corresponding to the largest, positive real λi,
since it is the inverse of the minimal coupling constant that
allows the existence of a bound system with a given
mass [38].

III. QA MODELING OF A NONSYMMETRIC
GENERALIZED EIGENVALUE PROBLEM

In order to perform numerical calculations on a QA, the
actual problem has to be expressed as a QUBO model or,
equivalently, to find an Ising-model form for the problem
under scrutiny (see, e.g., Ref. [53] for a tutorial on
formulating and using QUBO models).
For a symmetric GEVP, where the eigenvalues are real,

there are already several investigations with specific appli-
cation to different problems (see, e.g., Refs. [28–30,54–
56]). In all these applications, the Rayleigh-Ritz variational
principle is adopted to transform the eigenvalue problem in
a QUBO form. For the nonsymmetricGEVP, involving also
complex eigenpairs, dedicated efforts are still needed.
Recalling that QUBO problems are by definition strictly
symmetric, one should be able to replace the nonsymmetric
original problem with a symmetric one, which allows to
evaluate the set of real eigenpairs we are interested in. This
will be achieved by transforming the initial GEVP into a
symmetric one with an equivalent spectrum. Thus, the same
algorithm used for applying the Rayleigh-Ritz variational
principle, with minimal changes, can be adopted. In
performing such a transformation, the minimization prob-
lem acquires a quadratic dependence on the parameter
playing the role of eigenvalue. This means that each
eigenvalue is a minimum. This on one side can be usefully
exploited for addressing the entire spectrum on the other
side require to guide the search toward the relevant region
where the eigenvalue has to be found.
In this Section we go through the formalism we adopted

for the nonsymmetric case with some detail.

A. Formalism

Since the physical case under consideration generates a
nonsymmetric matrix A in Eq. (1), the Rayleigh-Ritz
variational principle is not directly exploitable. A first
trivial attempt to overcome this problem might be to single
out the symmetric part of the matrix A, and solve the

corresponding symmetric GEVP, recalling that B by itself
is symmetric. Unfortunately, this formal manipulation
does not return the original global minimum. This is
illustrated in Appendix C, where an inequality between
the eigenvalues of a nonsymmetric matrix and the ones of its
symmetric part is discussed in the simpler case of a standard
eigenvalue problem. Therefore, the eigenvalue problem
½ðAþ ATÞ=2�vi ¼ λiBvi cannot be used for determining
the minimal/maximal eigenvalue of Eq. (1). The same issue
is met also for other methods of symmetrization, like ATA
(see Appendix C for more discussion and examples).
A possibleway to overcome this problemwas discussed in

Ref. [39], where the symmetrization of the original problem
is recast as the product of A − λ̃B with its transpose, i.e.,

S ¼ ½AT − λ̃BT �½A − λ̃B�; ð2Þ

where λ̃ can be complex (see below).
The resulting OF, which now contains a symmetric

product, reads

fðA;B; v; λ̃Þ ¼ vT ½AT − λ̃BT �½A − λ̃B�v
¼ vT ½ATA − 2λ̃M þ λ̃2BTB�v ≥ 0; ð3Þ

where v is chosen to be a real normalized vector andM is a
symmetric matrix, defined as

M ¼ ðBTAþ ATBÞ
2

: ð4Þ

In what follows, it should be kept in mind that our goal is to
find a real eigenpair of the analyzed GEVP, although the
OF fðA;B; v; λ̃Þ vanishes also for complex eigenpairs.
The striking difference between the global-minimum

search of fðA; B; v; λ̃Þ and the standard eigenvalue problem
is the quadratic dependence upon the variable λ̃. Calling λ
the solution of the quadratic form in Eq. (3) for a given real
vector v, one gets

λðvÞ ¼ λRðvÞ � iλIðvÞ ð5Þ

where the real part is

λRðvÞ ¼ M̄ðvÞ
jBvj2 : ð6Þ

with M̄ðvÞ ¼ vTMv. The imaginary part is written as
follows

λIðvÞ ¼
ffiffiffiffiffiffiffiffiffiffi
IðvÞp

jBvj2 ð7Þ

where

IðvÞ ¼ kAvk2kBvk2 − M̄2ðvÞ; ð8Þ
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with kAvk2 ¼ vTATAv and equivalently for kBvk2. Notice
that IðvÞ is a positive quantity, since

IðvÞ ¼ kAvk2kBvk2 −
�
vT

BTAþ ATB
2

v

�
2

≥ kAvk2kBvk2 −
�kvTBTAvk þ kvTATBvk

2

�
2

≥ kAvk2kBvk2 − kvTBTAvk2 ≥ 0: ð9Þ

Therefore, our task is to set up an algorithm for finding a
real vector v that minimizes both the OF and the imaginary
part of the eigenvalue, λIðvÞ, so that the set fv; λRðvÞg is the
searched eigenpair. Notice that a real vector v that mini-
mizes IðvÞ, also minimizes the OF fðA;B; v; λ̃ ¼ λRÞ.
However, the opposite is not true, since the OF vanishes
also for complex eigenpairs.
In Ref. [39], the search was carried out by classically

minimizing IðvÞ through a gradient-descent method.
Unfortunately, IðvÞ has a quartic dependence on v, and
therefore the corresponding minimization cannot straight-
forwardly be translated into a QUBO problem. The quartic
problem can be recast into a quadratic one by adding suitable
penalties, at the price of a substantial increase of the dimen-
sion of the QUBO problem (see, e.g., Refs. [53,57]).
However this will require to substantially increase thematrix
size to pass to the annealer. In order to overcome the
difficulties, we approached the problem in a different way.
First of all, given the exploratory nature of our inves-

tigation, instead of directly using the OF in Eq. (3), we
introduced a hybrid algorithm, namely, we transformed the
initial GEVP into a standard one, leaving the generalized
problem for future investigations. We exploit the symmetry
and nonsingularity of the matrix B, decomposing it by
using the standard LDLT factorization, with L a lower
triangular matrix, having diagonal elements equal to 1, and
D a nonsingular diagonal matrix (see, e.g., the LAPACK

library). Hence, the original GEVP, Eq. (1), becomes

CLTvi ¼ λiLTvi; ð10Þ
where

C ¼ D−1L−1A½LT �−1; ð11Þ
is nonsymmetric, and the real vector LTvi is no longer
normalized. Since the global-minimum search is not
affected by multiplicative factors, we can use a normalized
vector formally defined by

w ¼ LTv=kLTvk: ð12Þ

Then, one can address the QUBO problem by replacing the
initial OF with an equivalent one, given by

fðC;w; λ̃Þ ¼ wT ½CT − λ̃�½C − λ̃�w: ð13Þ

The real part of the solution of the quadratic form in λ̃, for a
given w, is

λRðwÞ ¼ 1

jwj2 w
T C

T þ C
2

w; ð14Þ

while the imaginary part reads

λIðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCwj2
jwj2 − ½λRðwÞ�2

s
: ð15Þ

Since we have chosen wTw ¼ 1, it is understood that in
order to get the normalized eigenvector of the original
GEVP, one has to apply the inverse transformation to w and
normalize the result, i.e.,

v ¼ ½LT �−1w=k½LT �−1wk: ð16Þ

B. Algorithm implementation

The OF in Eq. (13) is explicitly written as follows:

fðC;w; λ̃Þ ¼ wTSðλ̃Þw ¼
X
i;j

wiwjSi;j; ð17Þ

where S is an n × n matrix (n is dictated by the discretiza-
tion method applied to the hBSE) given by

Si;jðλ̃Þ ¼ λ̃2δi;j − λ̃ðCi;j þ Cj;iÞ þ
X
l

Cl;iCl;j; ð18Þ

and w≡ fwig is a normalized vector. By using the binary
representation introduced in Appendix B, the components
wi ∈ ½−1; 1� are expressed in terms of the binary basis as
follows

wi ¼ −qi;b þ
Xb−1
l¼1

qi;l
2l

; ð19Þ

where b is the number of bits, qi;l ¼ 0, 1 and the bit qi;b
carries the sign, i.e., for wi ≥ 0 (wi < 0) one assigns qi;b ¼
0 (qi;b ¼ 1). Notice that the binary expression in Eq. (19)
belongs to the interval ½−1; 1Þ.
The string f−1; 1=2; 1=4;…; 1=2b−1g is the so-called

precision vector, p, since the last term 1=2b−1 controls the
precision at which wi ∈ ½−1; 1Þ is approximated. Within our
notation p is a column vector with dimension b. Using the
precision vector p, it is possible to construct a rectangular
matrix, PT , with n rows and n × b columns, that allows to
transform a real vector w into its binary expression, and
eventually fðC;w; λ̃Þ in a form suitable for a QUBO
evaluation by using a QA. In a compact form, one writes

w ¼ PTx; ð20Þ
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where

PT ¼

0
BBBBB@

pT 0 … 0

0 pT … 0

..

. ..
. . .

.
0

0 0 … pT

1
CCCCCA; ð21Þ

and

x ¼

0
BBBBB@

q1;b

q2;b

..

.

qn;b

1
CCCCCA; ð22Þ

with qi;b ≡ fqi;1; qi;2;…; qi;bg. Inserting Eq. (20) in
Eq. (17) one obtains (see Appendix B for details)

fðC;w; λ̃Þ ¼ xTPSðλ̃ÞPTx: ð23Þ

One easily recognizes that x is a column vector containing
n × b bits, leading to the expected QUBO form of our
problem, and PSðλ̃ÞPT is a square symmetric matrix, with
dimensions ðn × bÞ × ðn × bÞ.
Starting with some given real value of λ̃ (see the next

subsection), that guides the algorithm toward a real-valued
eigenpair, the SA or the QA returns a binary vector x for
each annealing cycle NA. Among the NA vectors x we
select the one that gives the minimal value of fðC;w; λ̃Þ.
Such a vector allows to get w, necessary for calculating
λRðwÞ and λIðwÞ, using Eqs. (14) and (15), respectively. To
accurately determine w, which minimizes at the same time
the number of bits required in the QA, a two-step search is
implemented: the first step is the guess phase (GP), and the
second one is the iterative gradient-descent phase (DP)
(see, e.g., Refs. [28–30] for the symmetric case).

C. Initial guess for the nonsymmetric case

Differently from what happens for the symmetric case
[28–30,32], the nonsymmetric one leads to a nonlinear
dependence on the scalar parameter λ̃, and therefore the
search needs a particular care. It should be emphasized that
the OF is minimized by the entire set of real eigenpairs.
Hence, in order to point to the largest, positive real eigen-
value, we need to add further information to our algorithm.
We can guide the search of the minimum by using the
Gershgorin circle theorem (see, e.g., Ref. [58,59], for an
introduction). Noteworthy, it provides bounds for each
eigenvalue of a given complex matrix, allowing the search
range to be narrowed.

The theorem yields

jλ − aiij ¼
X
j≠i

���� aijxjðλÞxiðλÞ
���� ≤ X

j≠i
jaijj ¼ RGðaiiÞ; ð24Þ

where λ is an eigenvalue of the given matrix, with elements
aij, and xiðjÞðλÞ are components of the corresponding
eigenvector, such that jxj=xij ≤ 1, ∀ j ≠ i. Hence, an
eigenvalue belongs to a proper disc, with radius RGðaiiÞ
and center aii. The same is valid by summing over the
columns, once the transpose is considered. It is also worth
mentioning a second Gershgorin theorem [59]. It proves
that if a disc is disconnected from all the others, then it
contains one and only one eigenvalue, which necessarily is
real (the complex ones are conjugated).
Inspired by the Gershgorin theorem, a suitable permu-

tation can be applied in order to rearrange the matrix C in
Eq. (11), so that the diagonal elements are in decreasing
order, i.e., c11 ≥ c22 ≥ … ≥ cðn×bÞðn×bÞ. The initial value of
λ̃ is chosen equal to c11. The matrix PSðλ̃ÞPT is passed to
the QA or the SA. For each of the NGP

A annealing cycles the
binary vectors xα, and the corresponding values of the OF
is returned. With α we label the annealing cycle. Following
the Gershgorin constraint, we analyze the set

fxα; fðC;wα; λ̃ ¼ c11Þ; λRðwαÞ; λIðwαÞg;

and eliminate the solutions such that

jλRðwαÞ − c11j > RGðc11Þ:

Among the surviving solutions, the one that satisfies the
condition

fGPbest ¼ min
wα

fðC;wα; λ̃ ¼ λRðwαÞÞ ð25Þ

is retained, and λRðwαÞ is calculated. The minimization
search is repeated three times, i ¼ 1, 2, 3, testing if the
condition fGPbest;i < fGPbest;i−1 is satisfied. If there is an
improvement, the next run receives λ̃ ¼ λRðwαbest;iÞ, other-
wise the iteration stops and the GP is closed. Empirically,
we found this procedure is more effective in finding a good
initial eigenvector than just increasing the number of
annealing samples in a single iteration. After completing
the minimization search, the best pair, i.e., λRðwGPÞ and the
corresponding real vector wGP, that satisfies the condition
in Eq. (25), is passed to the gradient-descent phase. The
algorithm of the GP is schematically illustrated in Table I,
and the numerical results that illustrate the behavior of the
algorithm are discussed in Sec. IVA.

D. Gradient-descent phase

The algorithm proceeds through a second phase: the
gradient-descent phase, which is based on the Hessian of
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the OF in Eq. (17). Let us call δðzÞ≡ fδiðzÞg the variation
of the vector wz, i.e., δðzÞ ¼ wz − wz−1, where z labels the
iterations or zoom steps of the gradient-descent phase. Note
that w0 ¼ wGP. Then, the following binary expression for
the δðzÞ components holds

δiðzÞ ¼
1

2z

�
−qi;b þ

Xb−1
l¼1

ql;b
2l

�
¼ 1

2z
pT · qi;b; ð26Þ

where the prefactor 1=2z decreases at each iteration by
increasing z (cf. Refs. [28–30]). The prefactor 1=2z allows
to control the refinement of our search, increasing the
precision of the gradient-descent method. It should be
pointed out that by increasing the number of iterations, i.e.,
zoom steps, one could decrease the initial number of bits b
in the expansion of the real vectors involved in the
minimization, without worsening the accuracy of the
algorithm (see also Refs. [28,29] for the symmetric GEVP).
By expanding fðC;wz; λ̃Þ around wz−1 up to the second

order, one gets [cf. Eqs. (17) and (18)]

ΔfðC;wz; λ̃Þ ¼ 2δTðzÞSðλ̃Þwz−1 þ δTðzÞSðλ̃ÞδðzÞ: ð27Þ

The term linear in δðzÞ can be recast in a QUBO form by
(i) recalling that ql ¼ q2l, being ql ¼ 0, 1, and (ii) trans-
forming the vector Sðλ̃Þwz−1 in a ðn × bÞ × ðn × bÞ diago-
nal matrix, where the vector components are the diagonal
elements (see Ref. [28]). Then, the OF suitable for the
gradient-descent phase is obtained. Specifically, recalling
that one can divide or multiply by a constant an OF without
affecting the minimization procedure, one has

f̂ðC; δðzÞ; λ̃Þ ¼ δTðzÞQðz; λ̃ÞδðzÞ ð28Þ

where the square matrix Q is given by

½Qðz; λ̃Þ�ij ¼ 2δij½Sðλ̃Þwz−1�i þ Sðλ̃Þij; ð29Þ

with the elements of the symmetric matrix Sðλ̃Þ written in
Eq. (18). The transformation to the binary expression of the
vectors δðzÞ follows the rule given in Eq. (20).

The gradient-descent phase proceeds through iteration
on z, with z ¼ 1;…; Nz, and aims to minimize the OF in
Eq. (28), starting with the value of λ̃ ¼ λRðwGPÞ and the
corresponding vector wGP. At each zoom step z, an inner
loop (labeled with i) is opened. Within this loop, the QA, or
the SA, returns an ensemble of αi ¼ 1; 2;…; NDP

A qubits
states, from which we select the one with minimal energy,
i.e.,

f̂DP
best;iðzÞ ¼ min

δαi ðzÞ
f̂ðC; δαiðzÞ; λ̃ ¼ λRðwz

αiÞÞ; ð30Þ

where i is the inner-loop index for a fixed z and
wz

αi ¼ δαiðzÞ þ wz
best;i−1. For the value αi ¼ αbest in cor-

respondence of f̂DP
best;iðzÞ, we calculate the values

λRðIÞðwz
αbest ; iÞ, that is input for the next iteration starting

with the new eigenvector wz
best;i ¼ wz

αbest;i
. When, for a fixed

z, the condition f̂DP
best;iþ1ðzÞ ≥ f̂DP

best;iðzÞ is found, then the
internal loop on i is terminated and the value of z updated,
namely z → zþ 1. The final best result obtained for a
given z is used as starting point in the zþ 1 iteration.
The procedure is repeated until the desired precision is
reached (zmax).
Finally, one obtains the eigenvector of the GEVP in

Eq. (1) by inverting the relation in Eq. (12), i.e.,

vbest ¼ ½LT �−1wzmax
best=k½LT �−1wzmax

bestk; ð31Þ

where zmax indicates the final run of the iterative gradient-
descent method and wzmax

best is the eigenvector corresponding
to the final eigenvalue

λbest ¼ λRðwz
bestÞ: ð32Þ

It should be recalled that the Hessian is always positive, so
that a minimization path is ensured. The gradient-descent
algorithm is sketched in Table II.
By repeating the entire minimization procedures, i.e.,

guess plus gradient-descendent phases, given the non-
deterministic nature of the annealing process, errors and
fluctuations of the final results, fλbest; vbestg, are generated.
In order to study such uncertainties, the entire algorithm
was run by Nrun times, keeping fixed the initial matrices A

TABLE I. The guess-phase search of the minimum for the OF in Eq. (17), obtained from Eq. (3) after applying a classical LDLT

factorization. An assigned number of bits b is used for the transformation to the QUBO form, Eq. (23) (see text).

Algorithm for the guess-phase, with a given number of bits b

1: Assign the input value λ̃ ¼ c11, suggested by the Gershgorin theorem
2: While fGPbest;i < fGPbest;i−1, for i ¼ 1, 2, 3
3: Minimize the QUBO form, Eq. (23), with NGP

A annealing cycles
4: Look for acceptable λRðwαiÞ falling in the Gershgorin disc
5: Among the acceptable solutions, check if fGPbest;i < fGPbest;i−1 and continue the loop, replacing λ̃ by λRðwαbest;iÞ
6: Put λRðwGPÞ ¼ λRðwαbest;iÞ and wGP ¼ wαbest;i and pass those quantity to the gradient-descent phase
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and B. This provides an estimate of the uncertainties
associated to the annealing process, and how these uncer-
tainties propagate through the algorithm. We performed
this statistical analysis using both the noisy annealer
simulator, provided by D-Wave Systems software-package,
with large Nrun, and the QA with a substantially smaller
Nrun, given the limitation on running-time at our disposal.
In what follows, the results obtained with the simulator are
indicated by inserting SA at the beginning of the figure
captions, while the results obtained with the D-Wave
Advantage System 4.1 are labeled by QA.

IV. RESULTS

In order to study the reliability of the algorithm, we
used the matrices A and B obtained from the discretization
of the hBSE describing a system of two massive scalars,
with mass equal to m and strong binding energy
EB=m ¼ 1.0. They interact through the ladder-exchange
of a massive scalar, with mass μ=m ¼ 0.15 [see Eq. (A4) in
Appendix A, and for more details Ref. [38] ]. In our
investigation we classically evaluate the LDLT factoriza-
tion, exploiting the nonsingularity of the symmetric matrix
B, and then we solve the standard eigenvalue problem given
in Eq. (13). We leave to future works the generalized case.
Let us recall that we focus only on the search of the largest
real eigenpair. It should be recalled that, in our approach,
the largest real eigenvalue corresponds to the lowest
coupling constant, which is able to bind the two massive
scalars. Finally, we give a first insight on the scalability of
the proposed algorithm by considering matrix dimensions
nM ¼ 4, 8, 12, 16, 24, 32.
In an effort to better optimize the available quantum-

computing resources, a challenging issue is to guide the
choice of the input parameters of the proposed algorithm.
They are given by: (i) the number of bits b, needed for the
binary representation of the real vectors involved in the
problem, and (ii) the number of annealing cycles, i.e., NGP

A ,
for the guess phase, and NDP

A , for the gradient-descent one.
This important optimization task, which is time consuming,
was carried out by using the SA, and the corresponding
results are discussed in the first part of this section. In the

second part, we illustrate the outcomes obtained by using
the QA.
In particular, to perform the SA analysis, a matrix with

dimension nM ¼ 32 was adopted and the entire algorithm
was run for Nrun ¼ 500 times, in order to gather enough
statistics and determine a reasonable set of input parameters
to be used with the QA. For the remaining part of this work,
the following symbols are adopted: (i) λ̄bestðλ̄IbestÞ is the
average of λRðλIÞ obtained from Eq. (14) [Eq. (15)] over the
Nrun runs of the algorithm for zmax; (ii) kvtrue − vbestk
indicates the mean Euclidean distance, where vtrue is the
real eigenvector of the original GEVP, and vbest computed
for zmax is given in Eq. (31).

A. Running the guess-phase on the SA

Selecting a reliable initial guess in the first phase of the
algorithm, sketched in Table I, is a crucial step for obtaining
an accurate result in the subsequent gradient-descent phase.
As already mentioned, all the real-valued eigenpairs are
acceptable for the annealer, and therefore one has to guide
the search toward the target solution, i.e., the real eigenpair
with the largest real eigenvalue. In addition, one has to
carefully consider another source of numerical challenges:
the (necessarily) finite number of bits b. In fact, one has to
assign b for representing the components of the normalized
vector entering the definition of the QUBO OF in Eq. (23),
and eventually construct the matrix PSPT . This obvious
limitation can generate spurious minima, and direct the
path toward a wrong target. An example is shown in Fig. 1,
where the case of the three largest real eigenvalues,
λ1 > λ2 > λ3, is studied. For bit numbers b ¼ 3, 4, 6, 8
and running the entire algorithm only one time (i.e.,
Nrun ¼ 1), the values of λRðwαÞ, Eq. (14), obtained in
the guess-phase from each of the NGP

A ¼ 2000 annealing
cycles on the SA, are plotted as a function of the
corresponding annealer energies divided by ½λR�2 (this is
suggested by the quadratic dependence of the OF on λ̃ and
the purpose of assigning a normalization to different
outcomes). Notice that the annealer energies correspond
to the values of Eq. (23) as returned by the annealer in the
QUBO form i.e., with the binary vectors not normalized.

TABLE II. The gradient-descent phase search of the global minimum on both SA and QA. The gradient-descent
phase is based on the Hessian of the OF in Eq. (3) (see text). The same guess-phase number of bits b is used.

Algorithm for the gradient-descent phase

1: Use λ̃ ¼ λRðwGPÞ, from the guess phase
2: While 1=2z ≥ ϵ0 (z ≥ 1)
3: Transform the obj. function in Eq. (28) to QUBO form with 1=2z in p
4: While f̂DP

best;zðiÞ < f̂DP
best;zði − 1Þ for i ¼ 1; 2; 3;…

5: Minimize the QUBO form in Eq. (28), with NDP
A annealing cycles

6: Search the minimal value among the NDP
A energies returned by the annealer (αbest)

7: Replace λ̃ with λRz ðwαbest ; iÞ
8: Pass to zþ 1 with λ̃ ¼ λRz ðwαbest ;NzÞ
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In Fig. 1, the dashed horizontal lines represent the three
largest real eigenvalues (calculated classically) of the
32 × 32 matrix C in Eq. (11). The solid line is the lower
extremum of the Gershgorin disc, with center c11 ¼ 0.190.
Such an extremum is the lowest value admissible for λ1. In
the various panel, one observes several regions where the
results appear to clusterize despite the initial guess λ̃ ¼ c11
is very close to the actual eigenvalue λ1 ¼ 0.188225. Once
a more detailed analysis is performed, it can be shown that
the clusterization is present already at b ¼ 3, although it is
not observable in the figure. Moreover, some clusters
approach the minima generated by the other two eigen-
pairs, with eigenvalues λ2 and λ3, while others are spurious
minima, that are generated by the limited precision of the
assigned binary representation, i.e., 3 bits. By increasing b,
the clusters migrate close to the actual eigenvalues, with
smaller and smaller energies (notice the different x-axis
scale for the four panels). At the same time, a larger amount
of points are approaching λ1, given the increasing precision,
although they spread over a wider range of energy as
expected. This is due to the increase of states degeneration
when the number of b increases, since the returned bit
strings are neither normalized nor orthogonal.
Interestingly, λ1 is approached from below by increasing

b. This behavior can be understood considering the bias
due to the spectrum of the matrix under scrutiny. In fact, the
decreasing ordering of the real eigenvalues, that follows
from the chosen ordering of the matrix elements along the
main diagonal, can generate the observed pattern, since the
annealing process should clearly spend a non-negligible
amount of time to explore the minima corresponding to the
part of the spectrum below λ1. It turns out that the feature
persists, even after running many times the code.
Increasing b allows to refine the solution found by the

annealer. On the other hand, a larger value of b implies a
larger dimension of the matrix representing the OF.
Unfortunately, such matrix dimension is constrained by
the actual topology of the qubits network during the process
of minor-embedding (see below). This limits the precision of

our solution in the initial guess phase. Fortunately, as also
discussed in Refs. [28,29], a reasonable compromise can be
reached by properly increasing the number of iterated
annealing cycles and adopting a small number of bits, as
investigated in the following gradient-descent phase.
In order to gain insights on the mapping of the OF in

Eq. (13) and the one given in terms of the binary strings, it
is useful to show an analysis equivalent to the one in Fig. 1,
but focusing on the values of the OF in Eq. (13), where
normalized vectors are used. In particular, the cases with
b ¼ 3 and b ¼ 8 are shown in Fig. 2, where the squares are
the solutions selected after applying the Gershgorin crite-
rium with RGðc11Þ. The clusterization is more evident than
in Fig. 1 and presents a different overall behavior compared
to the results directly obtained from the annealing process.
In particular, the accuracy of the OF mapping onto the
binary basis improves by increasing the number of bits, and
the annealer spend more and more time close to the actual
minima.
Summarizing, two main consequences can be deduced

from the calculations shown in Figs. 1 and 2. First, in the
guess phase, it is not possible to select the final value of λR

only on the basis of the annealer energies, as in the
symmetric case (see, e.g., Refs. [28,29]), but we need
the Gershgorin criterium, to overcome the issue of the
quadratic dependence on λ̃ in the OF. Second, we note that
by exploiting the mentioned quadratic dependence, the
annealer becomes a powerful tool to explore a wide portion
of the spectrum of our eigenvalue problem. In principle, it is
possible to identify also the other eigenpairs, by studying
the clusterization of the returned energies. This appealing
feature will be investigated elsewhere.
In Fig. 3, the GP success-rate, i.e., the number of times

the algorithm is able to find a solution falling inside the
Gershgorin disc, is shown as a function of the GP annealing
cycles, NGP

A , for b ¼ 3 and running the code Nrun ¼ 500

times for the 32 × 32 matrix. A number of ∼200 annealing
cycles seems to guarantee a 100% probability of having at
least one point within the Gershgorin disc, by using the SA.

FIG. 1. SA: scatter plot of the NGP
A ¼ 2000 guess-phase values λRα , Eq. (14), vs the corresponding annealer energies divided by ½λR�2,

for the bit numbers b ¼ 3, 4, 6, 8 used to get the QUBO matrix PSPT , Eq. (23), with dimension 32 × b. Dashed lines: the three largest
real eigenvalues, λ1 > λ2 > λ3 of the matrix C, Eq. (11). Solid line: jc11 − RGðc11Þj with RGðc11Þ ¼

P
j≠1 jc1jj, i.e., the lower limit of

the Gershgorin disc, with center c11 ¼ 0.190.
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Since it is crucial to receive as reliable input as possible
from the guess phase, so that a better final outcome could
be reached, we attempted to find a tighter bound, if any, for
λ̃ to be used in the initial run of the gradient-descent phase.
In order to implement this, we arbitrarily reduced the
Gershgorin radius, RGðc11Þ, to a chosen value r. In Fig. 4,
the GP success-rate for the above 32 × 32 matrix is
analyzed by (i) taking b ¼ 3 and (ii) running Nrun ¼
500 times the GP algorithm with annealing cycles
NGP

A ¼ 200. As expected, the GP success-rate decreases

by reducing r, and we were not able to find any solution
below r=RG < 0.4. In conclusion, for the matrices consid-
ered in this work, the most reasonable and practical choice
is r ¼ RGðc11Þ.

B. Running the gradient-descent phase on the SA

The main goal of the gradient-descent phase is the
improvement of the accuracy in determining the searched

FIG. 3. SA: guess-phase success-rate vs NGP
A , for a 32 × 32

matrix in Eq. (13). The solid line was obtained considering
Nrun ¼ 500 independent samples with b ¼ 3 (see Table I for the
outline of the algorithm in the guess-phase).

FIG. 2. SA: the same as the panels b ¼ 3 and b ¼ 8, in Fig. 1, but with the values of fðC;wα; λRÞ=ðλRÞ2, Eq. (13), on the x-axis,
instead of the annealing energies [see Eq. (23)]. Recall that here the vector wα is normalized. Red squares are the solutions selected after
applying the RGðc11Þ cut, and blue crosses are the solutions outside the Gershgorin disc.

FIG. 4. [SA] Guess-phase success-rate vs an arbitrary reduction
of the Gershgorin radius (represented by the ratio r=RG), for a
32 × 32 matrix in Eq. (13). The solid line was obtained by
considering Nrun ¼ 500 independent samples, with b ¼ 3 and
NGP

A ¼ 200 (see Table I for the outline of the algorithm in the
guess phase).
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eigenpair. We pursued this scope by decreasing the pre-
factor 1=2z, with z ≥ 1, in Eq. (26). In this subsection we
focus on the impact of the input parameters by increasing
this prefactor. Notice that for all the analysis carried out in
this section, we run Nrun ¼ 500 independent simulations.
In Fig. 5, the relative precision j1 − λ̄bestðzÞ=λtruej

[cf. Eq. (32)] dependence on the number of bits, b ≥ 2,
is presented for various zoom steps z (in what follows,
z ¼ 0 indicates the guess phase and the values z ≥ 1 belong
to the gradient-descent phase). The dots in the figure are the
mean, over 500 independent runs, of the relative precision
obtained by using NGP

A ¼ 200, and NDP
A ¼ 20. An overall

decreasing pattern can be observed for increasing b and
fixed z, that can be largely ascribed to a better identification
of the minimum during the guess phase, z ¼ 0 (see Sec. IV
A). Interestingly, the numerical outcomes shown in Fig. 5
suggest that it is possible to establish a fair trade-off
between the number of bits and the number of zoom steps
in order to achieve increasingly accurate results, as already
observed for the symmetric GEVP (see, e.g., Refs. [28,29]).
One should recall that the lower the number of bits, the
lower the dimension of the QUBO matrix, and thus the less
difficult the eigenpair search becomes.
In Fig. 6, the relative precision at fixed zoom step was

studied by changing the number of annealing cycles during
the gradient-descent phase, NDP

A , keeping fixedNGP
A ¼ 200

and b ¼ 3. The figure shows that there is basically no
improvement by increasing NDP

A . In the gradient-descent
phase for a given z, the algorithm requires a minimal
number of annealing cycles to find the best minima for
δðzÞ. This is one of the advantage of using such an
algorithm.
In conclusion, the campaign of numerical calculations

performed on the SA has suggested to adopt the following

input parameters for the studies of our algorithm on the QA:
NGP

A ¼ 200, NDP
A ¼ 20, and b ¼ 2 or b ¼ 3, but with a

suitable number of zoom steps. This preliminary analysis is
critical to fine-tune the strategy when the QA comes into
play and a limited run-time is available. It also sheds light
on the different behavior of QA and SA, with obvious
practical implications for the analysis of large matrices.

C. Analysis of the QA results

We perform the experimental study of the algorithm by
using the Advantage 4.1 quantum annealer, provided by D-
Wave Systems. As a first step, we adopted NGP

A ¼ 200 and
NDP

A ¼ 20 in order to study the whole set of matrices whose
relevant eigenpairs we aim to determine. As for the number
of bits, we used b ¼ 3 for nM < 16 and b ¼ 2 for nM ≥ 16,
in order to avoid limitations on the matrix dimensions that
can be processed by the QA. In fact, the current QA has a
given upper-bound on the number of logical qubits to be
mapped onto sets of physical qubits, organized with an
assigned topology.2

In Table III we show the summary of the QA results for
the problem in Eq. (1), with dimensions nM ¼ 4, 8, 12, 16,
24, 32. As target we selected a nominal relative precision
on the eigenvalue of ϵ0 ¼ 10−3 that in the algorithm
corresponded to a value of z ¼ 9.

FIG. 5. SA: relative precision j1 − λ̄bestðzÞ=λtruej, at fixed zoom
step, vs the number of bits b. In the calculations, we used
NGP

A ¼ 200, NDP
A ¼ 20. The dots represent the mean of the

relative precision obtained from Nrun ¼ 500 independent sam-
ples.

FIG. 6. SA: the relative precision j1 − λ̄bestðzÞ=λtruej, at fixed
zoom step, vs NDP

A , the number of annealing cycles in the
gradient-descent phase. In the calculations, NGP

A ¼ 200 and
b ¼ 3 were used. The dots represent the mean of the relative
precision performed over Nrun ¼ 500.

2This process is called minor-embedding or simply embed-
ding. Recall that the matrix dimension in the QUBO problem is
nM × b, and therefore nM × b logical qubits are fully connected
with weights given by the values of the matrix elements. For the
Advantage 4.1 system [26,27], based on the Pegasus topology of
the physical qubits, a maximal size of a fully connected set of
logical qubits (clique) is 177, but it can be reached under very
peculiar conditions, not fully achievable in our actual problem, if
accurate results have to be obtained.
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In the fifth column, we present the mean value λ̄best
obtained running the algorithm Nrun times. The agreement
between the true eigenvalue, λtrue in the fourth column,
and the mean value λ̄best is smaller than the nominal
precision requested ϵ0 ¼ 10−3. More importantly, all the
results obtained in our runs are better than the requested
precision. This can be observed by comparing the 68% con-
fidence interval over the Nrun runs with the nominal
precision ϵ0 ¼ 10−3.
In Table III we also show: (i) the ratio λ̄Ibest=λ̄best, and

(ii) the mean Euclidean distance kvtrue − vbestk. It is worth
noting that the ratio and the mean Euclidean distance have
almost the same magnitude, and slightly increases with the
matrix dimension nM. In view of this, a remarkable degree
of reliability of the proposed algorithm can be inferred.
In Fig. 7 we plot the two dimensional distribution

of the results obtained running the code for Nrun ¼ 200
in the nM ¼ 32 case for z ¼ 6 and z ¼ 9 as function of
ð1 − λbest=λtrueÞ, and the Euclidean distance kvtrue − vbestk,
where λbest and vbest are the solution found by the algorithm
(notice the difference with λ̄best). It is worth noticing that the
relevant area substantially shrinks when passing from the
distribution of the results for z ¼ 6 to z ¼ 9, as shown by
the changes in the x − y scales, but it is not possible to
identify a direct correlation between the two quantities.
However, the results seems to accumulate on a circular
region that does not change shape increasing z indicating
that the correlation does not depend on the specific zoom
phase. We observed also that the projection on the x axis,
the distribution of ð1 − λbest=λtrueÞ, approaches a Gaussian
distribution centered in zero with a smaller and smaller
width as z increases, while the projection on the y axis, the
Euclidean distance, starts from zero and extend to positive
values, still with a Gaussian fall-off. Plainly, these distri-
butions are very important for a better understanding of the

TABLE III. QA: results obtained by using the Advantage 4.1 quantum annealer, provided by D-Wave Systems. In the table, nM is the
dimension of the matrices A, B and C involved in the calculations [see Eqs. (1) and (11), respectively]; b is the number of bits adopted
for the matrix representation in the QUBO problem [see Eq. (23)]; Nrun is the number of runs of the entire algorithm
(guess phaseþ gradient-descent phase); λ̄best is the average of λbestðzfinÞ ¼ λRðwzfin

αfinÞ [cf. Eq. (14) and the definition below
Eq. (31)], over the outcomes returned after running the entire algorithm Nrun times; in λ̄Ibest=λ̄best the numerator λ̄Ibest is obtained as
λ̄best, but following Eq. (15); kvtrue − vbestk is the mean Euclidean distance between the true eigenvector and the one from the QA (recall
that the vectors vi are normalized). In addition to the mean values, the 68% confidence interval is shown. All the results are obtained
using z ¼ 9 zoom steps, corresponding to an upper bound for the relative precision equal to ϵ0 ¼ 10−3.

nM b Nrun λtrue λ̄best λ̄Ibest=λ̄best kvtrue − vbestk
4 3 80 0.188026 0.188012þ1×10−5

−7×10−6 0.00024þ2×10−5

−5×10−6 0.00024þ3×10−5

−2×10−5

8 3 80 0.188204 0.18820þ2×10−5

−2×10−5 0.0003þ1×10−4

−1×10−4 0.0003þ1×10−4

−1×10−4

12 3 80 0.188203 0.18821þ2×10−5

−2×10−5 0.0005þ1×10−4

−1×10−4 0.0006þ2×10−4

−1×10−4

16 2 80 0.188203 0.18820þ4×10−5

−3×10−5 0.0009þ1×10−4

−1×10−4 0.0011þ2×10−4

−2×10−4

24 2 80 0.188225 0.18822þ5×10−5

−4×10−5 0.0013þ1×10−4

−3×10−4 0.0015þ3×10−4

−2×10−4

32 2 200 0.188225 0.18823þ4×10−5

−3×10−5 0.0016þ2×10−4

−2×10−4
0.0018þ4×10−4

−3×10−4

FIG. 7. QA: two dimensional distribution of the results for the
nM ¼ 32 case, after running Nrun ¼ 200 times the entire algo-
rithm as a function of the Euclidean distance kvtrue − vbestk vs the
precision ð1 − λbest=λtrueÞ. Upper panel: z ¼ 6 results. Lower
panel: z ¼ 9 results.
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quantum-hardware behavior and should be carefully inves-
tigated in a future work, when a much longer QA running-
time will be available for exploring larger Nrun and lower ϵ0.

D. Is the QA advantageous?

The algorithm presented in this paper can work in
general with any kind of optimizer and it is not necessarily
limited to the use of an annealer (simulated or quantum).
For example, we performed some tests by running a
random-sampling simulation, and got numerical results
comparable to the ones obtained by using the QA, only for
a matrix with dimension 4 × 4. In particular, to achieve
results for nM ¼ 4 and b ¼ 3 similar to the ones obtained
by calling the QA 200 times for the guess phase and 20 for
the descent one, we sampled the space a number of times
∼4 × 103, with a substantial increase of the running time.
For larger matrices, the number of samplings exponentially
grows and in parallel the running time.
Moreover, in order to understand the differences between

the classical and the quantum annealing, a comparison
between the outcomes obtained for matrix dimensions
nM ¼ 4 and 32 from SA and QA is provided. The results
are shown in Figs. 8–11, for both the eigenvalue and the
eigenvector, respectively. For matrix dimensions nM ¼ 4,
the analysis has been carried out by using b ¼ 3 and
pushing the number of zoom step beyond z ¼ 30 (recall
that in the calculations shown in previous figures the
maximal value is z ¼ 9, leading to a nominal precision
ϵ0 ¼ 10−3). For the case nM ¼ 32, the number of bits was
reduced to b ¼ 2, as already explained, and the zoom steps
exceeded z ¼ 20.
In Figs. 8 and 9, the mean relative precision j1 −

λ̄bestðzÞ=λtruej for fixed z is shown for nM ¼ 4 and
nM ¼ 32, respectively. Red squares and arrows represent
the mean and the worst result obtained over Nrun ¼ 1000
simulations, respectively. Green triangles and arrows are
the same as before, but running the entire algorithm on QA
by Nrun ¼ 10 times for nM ¼ 4 and by Nrun ¼ 8 times for
nM ¼ 32. We reduced the number of runs used for this
study compared to the one in Table III, because of the larger
running-time requested to go beyond z ¼ 9. Finally, blue
dots are the results obtained using the exact, classical solver
for the QUBO problem at each zoom step. These blue dots
are not available for nM ¼ 32, since it should be necessary
to poll 264 states and infer the suitable distributions (i.e., the
well-known Feynman’s argument in favor of a quantum
computer).
As clearly seen in Figs. 8 and 9, the actual accuracy

improves substantially as z increases for both SA and QA.
In general, it remains below the nominal precision 1=2z,
given by the dashed lines. For nM ¼ 4, the results obtained
with SA and QA are below 1=2z up to z ¼ 25, reaching a
plateau with a rough value of ∼10−8. For nM ¼ 32, the SA
reach a plateau roughly around ∼10−6 while the QA shows

a behavior close to the one seen for nM ¼ 4. From the
comparison between nM ¼ 4 and nM ¼ 32 SA results, one
could ascribe the different behavior to a lower SA’s
performance in managing large matrices, rather than an
issue with the algorithm. In fact, the results obtained with
the QA just follows the expected behavior. One could
understand heuristically the presence of a plateau by
considering that the actual zero of the OF fðC;w; λ̃Þ is
numerically about 10−16, and therefore a precision for λ̃ of
the order of

ffiffiffi
f

p
, i.e., ∼10−8, is expected. Properly rewriting

Eq. (13), one gets

FIG. 8. SA–QA: mean relative precision, j1 − λ̄bestðzÞ=λtruej, vs
the zoom step in the gradient-descent phase, for nM ¼ 4 case with
b ¼ 3. The dashed line is the nominal precision at each zoom
step, equal to 1=2z. Red squares and arrows represent the mean
and the worst result respectively, obtained by averaging over
Nrun ¼ 1000 runs on the SA. Green triangles and arrows are the
same as before obtained with the QA, but averaging over Nrun ¼
10 runs. Blue dots are the results obtained using the exact solver
for the QUBO problem at each zoom step.

FIG. 9. SA–QA: the same as Fig. 8, but for nM ¼ 32 and b ¼ 2.
The QA results are obtained by averaging over Nrun ¼ 8
runs (see text).
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fðC;w; λ̃Þ
jwj2 ¼ ½λ̃ − λRðwÞ�2 þ ½λIðwÞ�2; ð33Þ

that for real λ̃ leads to the above estimate.
The Euclidean distance between the target eigenvector

and the results obtained, at each zoom step, with the SA
and the QA, is shown in Figs. 10 and 11, for nM ¼ 4 and
nM ¼ 32, respectively. The symbols are the same as in
Figs. 8 and 9, while the error bars represent the 99.9%
confidence level. As expected, the Euclidean distance
decreases by increasing z, until it reaches a plateau
following a pattern similar to the eigenvalue relative
precision. Again, for nM ¼ 32, the QA performs better
than the SA.

Summarizing, the proposed algorithm opens an actual
window on the study of the spectrum of nonsymmetric
matrices by using a QA. In particular, our algorithm applied
to QA outperforms the random-sampling optimization
method and our results suggest that it also outperforms
the simulated annealing. Clearly, the algorithm is still
limited to small matrices, but this will be surely overcome
by the planned improvements of the QPU topology, so that
larger and larger matrices will be embedded. In the present
stage, our algorithm together with the QA is still limited in
comparison with the classical LAPACK [60] approach.
However, in the future a detailed comparison among the
two algorithms is recommended, since the minimal number
of matrix operation required in our algorithm (substantially
only matrix vector products) suggests a good scalability
with the matrix dimension.

E. Scalability on the QA

A first study of the scalability of the proposed hybrid
algorithm running on the QA has been carried out by
focusing on the total time spent in the annealing cycles. In
our case, the total annealing-time is theoretically given by
3 × NGP

A × tþ zmax × imax × ðNDP
A × tÞ (cf. Tables I and II)

where t ∼ 20 μs is the annealing time selected, zmax is the
maximal value of zoom steps adopted in the gradient-
descent phase, e.g., for the results shown in the third
column of Table III one has zmax ¼ 9. Moreover, imax is the
maximal number of search cycles for a given z (see step 4 in
Table II). In Table IV, T½ms� is the total annealing-time
averaged on Nrun runs of the two-phase algorithm. One
notices that a slightly increasing behavior is present when
the matrix dimension, nM × b, increases, at fixed b. But,
further studies with larger matrices will be necessary for
fully assessing a linear increasing of the total annealing
time on the QA.
Another parameter to be considered when studying the

scalability of the algorithm is the number of physical
qubits, Nqubits, used by the annealer to map the logical
qubits of the QUBO problem on the topology of the
hardware (Pegasus in this case), through the embedding
process. This is deeply interconnected with the constraints

FIG. 11. SA–QA: the same as Fig. 10, but for nM ¼ 32 and
b ¼ 2. The QA results are averaged over Nrun ¼ 8 runs.

FIG. 10. SA–QA: mean Euclidean distance between the target
eigenvector and the true one, at each zoom step, for the nM ¼ 4
case with b ¼ 3. Green triangles: results from the QA. Red
squares: outcomes from the SA. Error bars represent the
99% confidence level over 10 (1000) runs on the QA (SA).

TABLE IV. QA: total annealing time, T½ms�, and total number
of physical qubits Nqbits, averaged on Nrun runs, for the results
shown in Table III.

nM × b Nrun T½ms� Nqubits

12ð4 × 3Þ 80 18.5þ0.9
−0.7 24.1þ0.9

−1.1
24ð8 × 3Þ 80 21.7þ1.3

−0.9 81.3þ2.1
−2.3

32ð16 × 2Þ 80 23.0þ1.4
−1.0 140.9þ1.9

−1.9
36ð12 × 3Þ 80 23.0þ1.4

−1.3 177.6þ6.4
−6.6

48ð24 × 2Þ 80 23.0þ1.0
−1.0 306.6þ11.8

−15.6
64ð32 × 2Þ 200 23.6þ1.2

−1.2 529.8þ30.6
−33.8
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posed by the quantum hardware and it is a hard problem by
itself (interested readers may find useful information in
Refs. [61,62], where theoretical analyses of heuristic
algorithms for embedding are discussed, also in relation
to the approach pursued by D-Wave). In general, since each
physical qubit is not connected to all the other, the mapping
is not a one-to-one correspondence, but it is a one-to-many,
i.e., one logical qubit is represented by a set of physical
qubits, all in principle forced to have the same value. For
this formal step we rely on the algorithm elaborated by the
PROPRIETARY software D-Wave Ocean, mainly based on the
Cai et al. heuristic algorithm [63]. Since the software is
heuristic, a different embedding,3 with a different number
of physical qubits, is used at each QA run. However, the
exact number of physical qubits adopted for mapping the
QUBO squarematrix is provided by the software, so that the
distribution of Nqubits over different runs can be eventually
obtained. The mean value and the 68% confidence level of
the number of this distribution is then showed in the last
column of Table IV. It should be noted that the number of
involved physical qubits is roughly given by the matrix
dimension times the so-called chain length, i.e., the number
of qubits needed for representing a single logical qubit. In
our analysis, the chain length linearly grows with the
matrices dimension as shown in Ref. [26].4 The overall
memory required by the algorithm grows therefore quad-
ratically with the dimension of the original matrix.

V. CONCLUSIONS AND PERSPECTIVES

A hybrid algorithm, suitable for a quantum annealer, was
implemented to evaluate the largest real eigenvalue and
corresponding eigenvector of a generalized eigenvalue
problem involving a nonsymmetric matrix. This numerical
problem stems from the discretization of the homogeneous
Bethe-Salpeter equation describing a bound state of two
massive scalars, that interact by exchanging a massive
scalar (see, e.g., Ref. [38]). In the current initial stage of the
study, the nonsingularity of the symmetric matrix was
exploited, so that a classical LDLT factorization of the
symmetric matrix was used in order to deal with a simpler
QUBO problem.
The numerical results were obtained by running our two-

phase algorithm both on an Advantage 4.1 quantum

annealer, provided by the D-Wave Systems, and a simu-
lator, based on the PROPRIETARY software Ocean. We first
tested our algorithm, based on an OF suggested in Ref. [39]
and supplemented by the result of the valuable Gershgorin
circle theorem [59], on the SA. This first investigation led
to establish a practical set of input parameters, given by:
(i) the number of bits for expressing the real components of
the involved vectors in the binary basis, and (ii) the number
of annealing cycles in both the guess phase and the
gradient-descent one. Notably, the studies carried out on
the SA have confirmed that the trade-off between the bit
number and the zoom-step number, that controls the
nominal precision, is favorable as already found in the
symmetric case [28,29]. Then, a minimal bit number can be
chosen, so that the matrix dimension in the QUBO problem
does not exceed the current limitations of the quantum
hardware. After strengthening our numerical experience on
the SA, we performed a numerical campaign by running
Nrun times our algorithm on the D-WaveQA, obtaining very
encouraging results. We successfully approached the target
eigenpair, extending our studies up to a matrix dimension
nM ¼ 32, with a corresponding QUBO-matrix dimension
equal to 64. We have shown that the algorithm used in
combination with the QA is able to compute the eigenpair
corresponding to the largest eigenvaluewith 100% reliabilty
and with improvable precision up to ∼10−8. As to the
scalability of the algorithm, Table IV yields a promising
slightly linear increasing for growing matrix dimension, but
more studies have to be performedwith larger and larger nM,
before drawing definite conclusions.
With an eye to the future, the next challenge is to

improve the algorithm in order to address the generalized
eigenvalue problem in its full glory, i.e., without exploiting
the nonsingularity of the symmetric matrix.
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APPENDIX A: THE HOMOGENEOUS BETHE-
SALPETER EQUATION

In this appendix, some details about the physical case,
which suggested the nonsymmetric GEVP to be investi-
gated with the QA, are briefly illustrated.
The Bethe-Salpeter equation (BSE) was introduced

[33,34] in order to describe an interacting system within
the relativistic quantum-field theory framework (see, e.g.,
Refs. [35,36] for a detailed introduction). In particular,
scattering and bound states can be studied by using inho-
mogeneous and homogeneous versions of the equation,
respectively, in analogy with the Lippmann-Schwinger
equation and the Schrödinger one, in the nonrelativistic
framework. It should be pointed out that BSE is an integral
equation (plus a typical boundary condition in case of the
scattering processes), with a kernel constructed through the
set of two-particle irreducible Feynman diagrams contrib-
uting to the interaction between constituents [33].
The simplest hBSE is the one that allows to dynamically

describe a bound system composed by two massive scalars
interacting through the exchange of a massive scalar (the
case with a simple ladder-exchange of a massless scalar
between massless scalars is known as the Wick-Cutkowsky
model [65,66]). In 4D Minkowski space, it reads (see
Ref. [38] for more details)

Φbðk;pÞ¼Gð1Þ
0 ðk;pÞGð2Þ

0 ðk;pÞ
Z

d4k0

ð2πÞ4 iKðk;k0;pÞΦbðk0;pÞ;

ðA1Þ

where Φbðk; pÞ is the BS amplitude of a two-body bound
system, p ¼ p1 þ p2 the total momentum of the system,
with square mass M2 ¼ p2, k ¼ ðp1 − p2Þ=2 the relative
momentum, and iK the interaction kernel, that contains all

the irreducible diagrams [33]. In Eq. (A1), GðiÞ
0 ðk; pÞ is the

free scalar propagator, given by

GðiÞ
0 ðk; pÞ ¼ i

ðp
2
� kÞ2 −m2 þ iϵ

; ðA2Þ

with m the mass of the scalar constituents.

To proceed for obtaining actual numerical solutions is
helpful to adopt the NIR [37,47] of the BS amplitude, so
that its analytic structure is made explicit. Within the NIR
framework, the BS amplitude is written as a proper folding
of (i) a nonsingular weight function that depends upon real
variables and appears in the numerator (for the system
under consideration, one variable is compact and the other
is noncompact), and (ii) a denominator that contains the
analytic structure. One writes

Φbðk;pÞ ¼ i
Z

1

−1
dz0

Z
∞

0

dγ0
gbðγ0; z0; κ2Þ

½γ0 þ κ2 − k2 −p · kz0 − iϵ�2þn

ðA3Þ

where gbðγ0; z0; κ2Þ is the Nakanishi weight function
(NWF), n ≥ 1 is a suitable power that can be chosen with
some degree of arbitrariness [37] (one should properly
redefine the NWF) and κ2 is given by

κ2 ¼ m2 −
M2

4
; ðA4Þ

that is a measure of the binding, defined by B ¼ 2m−
M ≥ 0. Inserting such a relation in Eq. (A4), one gets
κ2 > 0 for bound states. Interestingly, the dependence upon
z0 of gbðγ0; z0; κ2Þ is even as expected by the symmetry
property of the BS amplitude for the two-scalar system and
gbðγ0; z0 ¼ �1; κ2Þ ¼ 0, as illustrated in Ref. [38]. It is
crucial to emphasize that once the NWF is known, then the
BS amplitude can be reconstructed via Eq. (A3) and the
evaluation physical observables can be carried out.
If the 4D kernel iK is explicitly known, one can perform

the analytic integration of both sides of Eq. (A1). To this
end, instead of using the Minkowskian four-momentum k
in Cartesian coordinates it is very useful to introduce their
light-front (LF) combination, that amount to k≡ fk� ¼
k0 � k3;k⊥g (for interested readers, Ref. [67] yields details
on the Dirac proposal of the light-front dynamics, and in
general on the relativistic Hamiltonian description of a
dynamical system). Hence, one gets an integral equation for
the NWF, avoiding the difficulties related to the indefinite
metric of the Minkowski space. In particular, the integral
equation reads

Z
∞

0

dγ0
gbðγ0; z; κ2Þ

½γ0 þ γ þ z2m2 þ ð1 − z2Þκ2 − iϵ�2 ¼
Z

∞

0

dγ0
Z

1

−1
dz0 VLF

b ðγ; z; γ0; z0Þgbðγ0; z0; κ2Þ; ðA5Þ

where the new kernel VLF
b , so-called Nakanishi kernel, is related to the 4D BS kernel, iK, in Eq. (A1), as follows

VLF
b ðγ; z; γ0; z0Þ ¼ ipþ

Z
∞

−∞

dk−

2π
Gð1Þ

0 ðk;pÞGð2Þ
0 ðk;pÞ

Z
d4k0

ð2πÞ4
iKðk; k0; pÞ

½k02 þp · k0z0 − γ0 − κ2 þ iϵ�3 ; ðA6Þ
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with pþ ¼ M, once the intrinsic frame where p⊥ ¼ 0 is
chosen (one adopts the rest frame for carrying out the
calculation, given our interest on the intrinsic properties of
the system).
Two comments are in order. Given the dependence on k2

in both scalar propagators and interaction kernel, one
expects double poles in the Cartesian variable k0. If one
uses LF variables, one remains with single poles in k− and
kþ, obtaining a simplification in the formal treatment. To
numerically evaluate the integral equation (A5), one has to
specify the structure of the interaction kernel. A quantita-
tive analysis was carried out by using the exchange of one
massive scalar particle, that generates the ladder approxi-
mation of the hBSE, by iteration. This means that the
integral equation automatically produces an infinite number
of scalar exchanges, so that the bound-system pole of the
four-leg Green’s function can be established. The ladder
kernel is given by

iKðLdÞðk; k0Þ ¼ ið−igÞ2
ðk − k0Þ2 − μ2 þ iϵ

; ðA7Þ

where g is the coupling constant and μ the mass of the
exchanged scalar. A quantitative analysis of Eq. (A5) with

the kernel in Eq. (A7) was carried out in Ref. [38] by using
a complete orthonormal basis for expanding the NWF
gbðγ; z; κ2Þ. In particular, one writes

gðLdÞb ðγ; z; κ2Þ ¼
XNz

l¼0

XNγ

j¼0

Cljðκ2ÞGlðzÞLjðγÞ; ðA8Þ

where (i) the functions GlðzÞ are given in terms of even

Gegenbauer polynomials, Cð5=2Þ
2l ðzÞ, by

GlðzÞ ¼ 4ð1 − z2ÞΓð5=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 5=2Þð2lÞ!

πΓð2lþ 5Þ

s
Cð5=2Þ
2l ðzÞ;

ðA9Þ

and (ii) the functions LjðγÞ are expressed in terms of the
Laguerre polynomials, LjðaγÞ, by

LjðγÞ ¼
ffiffiffi
a

p
LjðaγÞe−aγ=2: ðA10Þ

The following orthonormality conditions are fulfilled

Z
1

−1
dzGlðzÞGnðzÞ ¼ δln;

Z
∞

0

dγ LjðγÞLlðγÞ ¼ a
Z

∞

0

dγ e−aγLjðaγÞLlðaγÞ ¼ δjl: ðA11Þ

By inserting the expansion of the NWF and approximating the kernel with only the one-scalar exchange (i.e., the ladder
approximation), Eq. (A5) becomes

X
l0j0

Z
∞

0

dγ
Z

1

−1
dz

Z
∞

0

dγ0
Z

1

−1
dz0 GlðzÞLjðγÞBðγ; z; γ0; z0; κ2ÞGl0 ðz0ÞLj0 ðγ0ÞCl0j0 ðκ2Þ

¼ α
X
l0j0

Z
∞

0

dγ
Z

1

−1
dz

Z
∞

0

dγ0
Z

1

−1
dz0GlðzÞLjðγÞVLd

b ðγ; z; γ0; z0ÞGl0 ðz0ÞLj0 ðγ0ÞCl0j0 ðκ2Þ: ðA12Þ

where α ¼ g2=ð32π2Þ, Bðγ; z; γ0; z0; κ2Þ is a function symmetric under the exchange γ → γ0 and z → z0 given by

Bðγ; z; γ0; z0; κ2Þ ¼ δðz − z0Þ
½γ0 þ γ þ z2m2 þ ð1 − z2Þκ2 − iϵ�2 ; ðA13Þ

and VLd
b ðγ; z; γ0; z0Þ is a function nonsymmetric in the above exchange and is obtained from the following integral (see

Ref. [38])

VLd
b ðγ; z; γ0; z0Þ ¼ 32πpþ

Z
∞

−∞

dk−

2π

Z
d4k0

ð2πÞ4
Gð1Þ

0 ðk; pÞGð2Þ
0 ðk; pÞ

½ðk − k0Þ2 − μ2 þ iϵ�½k02 þ p · k0z0 − γ0 − κ2 þ iϵ�3 : ðA14Þ

By applying the above steps, one is able to formally
transform the 4D hBSE into a GEVP with the following
structure

Avi ¼ λiBvi; with i ¼ 1; 2…; n; ðA15Þ

where A and B are real square matrices, calculated from rhs
and lhs of Eq. (A12) respectively. Moreover, the matrix A
is nonsymmetric, while B is symmetric, and they have
dimension n ¼ Nz × Nγ . The eigenvector vi, correspond-
ing to the ith eigenvalue λi ¼ 1=αi, contains the coefficients
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Cljðκ2Þ of the expansion of the NWF [cf. Eq. (A8)]. It
should be pointed out that the eigenvalues and eigenvectors
can be real and complex conjugated, but we are interested
only in real eigenvalues, since we aim to describe a physical
system (recall that the eigenvalue is the inverse of the
square coupling constant, in the ladder approximation we
adopted).

APPENDIX B: THE BINARY BASIS

This appendix illustrates how to transform a QUBO
problem in a form suitable for the evaluation with a
quantum annealer. The needed step is given by the trans-
formation of each component of the involved real vectors
into their expression in terms of a binary string, by using b
binary variables. For instance, a generic real number, a,
such that jaj ≤ 1, can be expressed in terms of a binary
basis with b bits as follows (see also Refs. [28,29] for
details)

a ¼ −qb þ q1
1

2
þ q2

1

22
þ q3

1

23
þ � � � þ qb−1

1

2b−1
; ðB1Þ

where a∈ ½−1; 1Þ (see below), qi ¼ 0, 1 and the b-th bit
carries the sign, i.e., for a ≥ 0 (a < 0) one uses qb ¼ 0
(qb ¼ 1). In a compact form, one can rewrite a as a scalar
product between two vectors with b components, viz.

a ¼ pT · qb; ðB2Þ

where qb ≡ fq1; q2;…; qbg is a binary string (a column
vector in our notation) and pT ≡ f−1; 1=2; 1=4;…;

1=2b−1g is a row vector, representing the transpose of
the so-called precision vector, since 1=2b−1 controls the
precision to which one wants to approximate the number a.
Notice that 1 can be reached only asymptotically, since

lim
b→∞

Xb−1
i¼1

1

2i
¼ 1

2
lim
b→∞

�
1 − 2−ðb−1Þ

1=2

�
→ 1; ðB3Þ

while −1 corresponds to the binary vector 1; 0;……; 0,
truncated at any order. Therefore, one has to consider the
right-open interval a∈ ½−1; 1Þ.
One quickly generalizes the compact expression in

Eq. (B2) to a vector v with real components and dimension
n, since one has

0
BBBBB@

v1
v2

..

.

vn

1
CCCCCA ¼

0
BBBBB@

pT 0 … 0

0 pT … 0

..

. ..
. . .

.
0

0 0 … pT

1
CCCCCA

0
BBBBB@

x1b

x2b

..

.

xnb

1
CCCCCA

¼ PTX; ðB4Þ

where xib is the ith binary vector with dimension b. The
vector X≡ fxig in the last line has dimension: n × b, and
the rectangular matrix PT has n rows and n × b columns. In
the last line X≡ fxig.
Hence, for a n × n matrix C, and a given vector v with

real components, one can write

vTCv ¼ ð v1 v2 … vn ÞC

0
BBBBB@

v1
v2

..

.

vn

1
CCCCCA ¼

�
xT
1b xT

2b … xT
nb

	
0
BBBBB@

p 0 … 0

0 p … 0

..

. ..
. . .

.
0

0 0 … p

1
CCCCCAC

0
BBBBB@

pT 0 … 0

0 pT … 0

..

. ..
. . .

.
0

0 0 … pT

1
CCCCCA

0
BBBBB@

x1b

x2b

..

.

xnb

1
CCCCCA

¼ XTPCPTX; ðB5Þ

recalling that p is a column vector.

APPENDIX C: INEQUALITIES FOR
NONSYMMETRIC-MATRIX EIGENVALUES

In this appendix, some inequalities between the eigen-
values of a n × n nonsymmetric matrix and the ones of its
symmetric part are briefly reviewed, following the results
of Ref. [68]. Indeed, in Ref. [68], the most general case of a
linear transformation in a n-dimensional unitary space was
considered, while we limit ourselves to our specific needs.
Let us introduce the symmetric combination of a real,

nonsymmetric matrix A and its transpose AT

S ¼ Aþ AT

2
: ðC1Þ

Recall that TrfSg¼P
ifλiðSÞg¼TrfAg¼P

iℜefλiðAÞg
for real A, where λiðSÞ (real) and λiðAÞ (both real and,
possibly, complex conjugated) are the eigenvalues of S and
A, with i ¼ 1;…; n, respectively.
From Theorem II of Ref. [68], one can deduce that the

maximal eigenvalue of S is an upper-bound of the maximal
eigenvalue ofA, as sketched in what follows. It turns out that

Xq
i¼1

λiðSÞ ≥
Xq
i¼1

ℜefλiðAÞg; with q ≤ n; ðC2Þ
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where the two sets of eigenvalues are ordered in a decreasing
way, i.e., λ1ðSÞ ≥ λ2ðSÞ ≥ …… ≥ λnðSÞ and the same for
the real parts of λiðAÞ. If q ¼ 1, then one has the following
inequality

λmaxðSÞ ≥ ℜefλmaxðAÞg ðC3Þ
The minimal eigenvalue of S is lower-bound of the minimal
eigenvalue of A. Recalling that TrfAg ¼ TrfSg one gets

Xn−1
i¼1

ℜefλiðAÞg þℜefλminðAÞg ¼
Xn−1
i¼1

λiðSÞ þ λminðSÞ;

ðC4Þ
and using Eq. (C2) with q ¼ n − 1 one eventually has

ℜefλminðAÞg ¼
"Xn−1

i¼1

λiðSÞ −
Xn−1
i¼1

ℜefλiðAÞg
#
þ λminðSÞ

≥ λminðSÞ: ðC5Þ
It should be pointed out that the antisymmetric combi-

nation A ¼ ðA − ATÞ=2 leads to bounds on the imaginary
part of the eigenvalues λðAÞ.
For the sake of completeness, one can mention that if

(i) the largest eigenvalue of the symmetric matrix S is
positive and (ii) λmaxðAÞ is real and positive, then
λmaxðAÞ ¼ λmaxðSÞ, after applying Eq. (C3). In fact, by
introducing the Schatten p–norm of a matrix M, namely
kMkp ¼ ½TrfðM†MÞp=2g�1=p with M† the Hermitian
adjoint (see Ref. [69] for details), one has

kSkp ≤ kAkp ¼ kATkp ∀ p: ðC6Þ
Notice the difference with the lp-norm given by
kMkp ¼ supkxkp¼1kMxkp, although these two norms share
the same notation. It turns out that the Schatten p–norm
becomes the spectral norms (that amount to l2 norms) for
p ¼ ∞ [69], and therefore in this limit Eq. (C6) reads

kSk∞ ¼ max ½jλminðSÞj; jλmaxðSÞj�
≤ max ½jλminðAÞj; jλmaxðAÞj� ¼ kAk∞; ðC7Þ

where the standard spectral norm is given by the largest jλj.
Since we have assumed that the symmetric matrix S has a
positive largest eigenvalue, one can readily write

kSk∞ ¼ λmaxðSÞ ≤ jλmaxðAÞj ¼ kAk∞ ðC8Þ
and after taking into account Eq. (C3) one writes

ℜefλmaxðAÞg2 ≤ λmaxðSÞ2 ≤ jλmaxðAÞj2
¼ ℜefλmaxðAÞg2 þ ℑmfλmaxðAÞg2 ðC9Þ

This means that if the largest eigenvalue of A is real then the
largest eigenvalue of S will be equal to it. Unfortunately the

assumptions are quite restrictive and are not fulfilled by our
actual matrices.
For the symmetric combination AAT , one has an analo-

gous result. For the sake of simplicity (and since we are
interested in), we focus on real eigenvalues of the non-
symmetric matrix A. One writes

AxλðAÞ ¼ λðAÞxλ; xT
λðAÞA

T ¼ λðAÞxT
λðAÞ ðC10Þ

and

xT
λðAÞA

TAxλðAÞ ¼ λ2ðAÞxT
λðAÞxλðAÞ: ðC11Þ

Let us now consider the eigenvalue problem for the
symmetric matrix P ¼ ATA. One has real eigenvalues
and eigenvectors generating an orthonormal basis. To
establish formalism, one writes

PxλiðPÞ ¼ λiðPÞxλiðPÞ: ðC12Þ
The expansion of an eigenvector of A on the orthonormal
basis xλiðPÞ yields

xλðAÞ ¼
X
i

cixλiðPÞ

that leads to

xT
λðAÞA

TAxλðAÞ ¼ ½λðAÞ�2

¼
X
i

λiðPÞc2i jxT
λðAÞxλiðPÞj2

≥ λminðPÞxT
λðAÞxλðAÞ; ðC13Þ

and then

λmaxðPÞ ≥ ½λðAÞ�2 ≥ λminðPÞ; ðC14Þ
where an obvious inequality involving λmaxðPÞ has been
used for the lhs. In conclusion, again the minimal(maximal)
eigenvalue of the naively symmetrized matrix is a lower
(upper) bound, and a variational method can return
λminðPÞðλmaxðPÞÞ and not λðAÞ.
Another possible approach to be mentioned is based on

the following symmetric form

Ã ¼
�

0 A

AT 0

�
: ðC15Þ

Since the nonsymmetric matrices A and its transpose has the
same set of eigenvalues but not the right, or left, eigenvectors
one should solve the following symmetric GEPV�

0 A

AT 0

��
wi

vi

�
¼ λi

�
0 1

1 0

��
wi

vi

�
ðC16Þ

where Avi ¼ λivi and ATwi ¼ λiwi. Clearly, this approach
doubles the dimension of the initial problem and therefore is
confronted with the limits of the matrix dimension tractable
by using a quantum annealer.
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