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We compute three-loop corrections of O(a?) to form factors with one massive and one massless quark
coupling to an external vector, axialvector, scalar, pseudoscalar, or tensor current. We obtain analytic results
for the color-planar contributions, for the contributions of light-quark loops, and the contributions with two
heavy-quark loops. For the computation of the remaining master integrals we use the “expand and match”
approach which leads to semianalytic results for the form factors. We implement our results in a
Mathematica and a Fortran code which allows for fast and precise numerical evaluations in the physically
relevant phase space. The form factors are used to compute the hard matching coefficients in Soft-Collinear
Effective Theory for all currents. The tensor coefficients at lightlike momentum transfer are used to extract

the hard function in B — X,y to three loops.
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I. INTRODUCTION

Form factors are the basic building blocks of scattering
amplitudes in quantum field theories. Most prominently,
they represent the bulk of virtual corrections to physical
observables. The form factors for two massless external
particles coupling to an external current have been com-
puted up to four-loop order in QCD and QED for various
combinations of particles and currents [1-19]. The heavy
quark form factors, i.e. two fermions with the same mass
coupling to a current, were known at the two-loop level for
a long time [20-32] and partial three-loop results became
available over the last decade [29,32-37]. Recently, the
three-loop corrections for the vector, axialvector, scalar,
and pseudoscalar currents were completed semianalytically
[38-40].

The heavy-to-light form factors of a heavy and a light
fermion are especially relevant for decays of heavy quarks
such as t - bW*, b —» ¢W*, and b — uW* or the produc-
tion of a single top quark through the #-channel process.
Specializing to QED, they also contribute to the muon
decay in the Fermi theory, see e.g. Refs. [41,42]. For some
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of the applications, neglecting the mass of the light fermion
is a good first approximation in which the form factors were
known to two-loop order for some time [43-46].! Only a
few years ago the full mass dependence of the heavy-to-
light form factor became available at O(a?) [50,51].
Neglecting the light fermion mass, the color-planar cor-
rections at O(a?) to the vector, axialvector, scalar, and
pseudoscalar form factors were computed recently [52,53].

In this paper we compute the three-loop corrections to
the heavy-to-light form factors in full QCD, still neglecting
the mass of the light fermion. We reproduce the analytic
results of Ref. [53] in the color-planar limit and extend it to
the tensor form factors. Furthermore, we provide analytic
results for the contributions of light-fermion loops and the
contributions with two heavy-fermion loops for all form
factors. For the remaining color factors we present semi-
analytic results in terms of expansions around kinematic
points following the strategy of Ref. [54] which was
already applied to the three-loop corrections to the massive
form factors in Refs. [38—40]. We restrict ourselves to the
physically interesting regions relevant for the heavy-
fermion decay and the heavy-fermion production in the
t-channel. Furthermore, we present results for generic
external currents. The specification to vertices appearing
in the Standard Model or other theories of interest is

'See also Refs. [47-49] for the computation of the respective
master integrals.
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straightforward. We provide our analytic results in the form
of ancillary files accompanying this paper, and the numeric
results for the full form factors as Mathematica and Fortran
programs which perform an interpolation based on a dense
grid [55].

The QCD form factors can be used to compute the hard
matching coefficients to Soft-Collinear Effective theory
(SCET) [56-59] at leading power in the SCET expansion.
The infrared divergences still present in the QCD form
factors are removed during the procedure of infrared
subtraction, yielding finite SCET matching coefficients.
While their one-loop expressions have been computed in
the founding SCET papers (see also Ref. [60]), the two-
loop coefficients for the vector and axial vector current
were computed in Refs. [43—46]. In Ref. [61] the results
were extended to the scalar and tensor currents. In the
present paper the matching coefficients are computed to
three-loop order for all currents considered.

An immediate application of the matching coefficients of
the tensor current at lightlike momentum transfer concerns
the inclusive decay B — X,y. In a SCET-based approach, the
decay rate is formulated in a factorized form as the product of
a hard function times a convolution of a jet with a soft
function [62-64]. While the latter two are known to three
loops already [65—68], the hard function has to date only been
evaluated to two loops [69—71]. With the three-loop match-
ing coefficients at hand we close this gap and compute the
three-loop QCD correction to the hard function in B — X ,y.

In the recent study [71], the authors claim the perfor-
mance of a next-to-next-to-next-to-leading-logarithmic
analysis of the photon energy spectrum in B — X,y
including three-loop corrections to the renormalization-
scale independent part of the hard, jet, and soft functions in
SCET (i.e. a study to N°LL’ accuracy). However, for the
hard function this piece has only become available with the
calculation presented here. In Ref. [71] the missing
numerical coefficient at three loops was treated as a
nuisance parameter. Our explicit three-loop calculation
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shows that the exact numerical value of the parameter in
question lies more than a factor of two outside the variation
region assumed in Ref. [71].

The remainder of this paper is structured as follows: In
Sec. II we introduce the form factors and discuss their
renormalization, the infrared subtraction, as well as the
Ward identities of the currents which relate some of the
form factors. Our calculational strategy is described in
Sec. III. We then present our results and discuss the analytic
and numeric results in Secs. IV and V, respectively. The
hard function in B — X,y is presented in Sec. VI. We
conclude in Sec. VIL. In the Appendixes we present explicit
results for the projectors to all form factors. Furthermore,
we describe the program FFh2i where our results are
implemented and which allows for a fast and precise
numerical evaluation.

II. FORM FACTORS

A. Currents and form factors

The theoretical framework used for our calculation is
QCD supplemented with external currents formed by a
heavy (Q) and a light quark field (g). In this paper we
consider the vector, axialvector, scalar, pseudoscalar, and
tensor currents

Ju =WoruWy

T = WoYuYsWy

7 =woy,.

JP = 1orsy,.

Jiw = W0y, (1)

where 6, = i[y*,y*]/2 is antisymmetric in the indices u
and v. The wave functions of the heavy and light quark
fields are denoted by v, and vy, respectively. We use the
currents from Eq. (1) to construct vertex functions

(g1, q>) via

iu(q>, Sz)r(‘]hQ2)“<41751)5<4)(Q - q1 = q2). (2)

which are independent of the spin indices s; and s, and which can be decomposed into scalar form factors. We follow the

notation introduced in Ref. [39] and define them as

i 2
Ci(q1.q2) = F{(q*)y, — —Fé(qz)%q” +EF§(q2)q,”
i 2

T4(q1.92) = F{(q*)1,rs ——F5(4*)0,,4"7s +ZF§(€12)61,,75,
Fs(t‘hv%) (q )
I7(qy.q2) = iF?(q%)ys,

: Fi(q?) Fi(q?) Fi(q?)
F/tw(chv q2) = 1Ftl (qz)g;w + 22 (QI,yyv - QI,uyy) + 2 (qZ./ﬂ/z/ - QZ,UJ/;/) + ‘;’)’1—2 (ql.ﬂCIZu - ql,v‘]ly)' (3)
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Here, ¢, is the incoming momentum of the massless quark
and ¢, is the outgoing momentum of the heavy quark.
Furthermore, we have g = ¢, — ¢,, with ¢*> =5, ¢ =0,
and g5 = m?. In all vertex functions the color structure is a
simple Kronecker delta in the fundamental color indices of
the external quarks and is not written out explicitly.

For the perturbative expansion of the scalar form factors
we introduce

Py (0 Fo, @)

i>0

where a; depends on the number of active flavors. We will

use a§”' ) (with ny = n; + n;,) for the parametrization of the
ultraviolet renormalized but still infrared divergent form
factors and for the finite matching coefficients where also
the infrared divergences have been subtracted. Here, n is
the number of active flavors, i.e. for the b — u vertex
corrections we have ny = 5 with n, = 1. The nonzero tree-
level contributions are given by

F71/7(0) _ FT’(O) — Fs(0) — pp.(0) — Ftl»(o) —1. (5)

The form factors of the heavy-light currents do not get
contributions from so-called singlet diagrams where the
external current couples to a closed quark loop. This allows
us to use anticommuting y5 without ambiguity. Since one of
the quarks is massless it is always possible to anticommute

|

FX = Zx(ZgSQ)1/2<ZQZ)1/2Fx,bMC

The bare one-loop vertex corrections develop 1/ terms and
at two-loop order we even have quartic poles. Thus the (on-
shell) renormalization and decoupling constants are required
to order e* at one-loop order and to order € at two loops.
Let us summarize the renormalization constants appear-
ing in Eq. (8), up to which orders they are needed, and
which schemes we choose:
(i) The renormalization of a, is needed to two-loop
order and is performed in the MS scheme [72-74].
(i) The renormalization of the heavy-quark mass m is
required to two-loop order. We choose the on-shell
scheme [75,76], in which we need the one-loop
result to order ¢* and the two-loop result to order €?
[77-80].

(iii) The on-shell wave function renormalization constant
of the heavy quark, Z9%, is needed to three-loop
order and can be found in Refs. [81-83]. Again, we
need the one-loop result to order €* and the two-loop
result to order €* [84].

adre=7 o @

ys to one end of the fermion string and obtain simple
relations for the axialvector and pseudoscalar form factors
to their vector and scalar counterparts. In our case we have

F{=F], F{=F}, F¢=F}, F' =Fr. (6)
We use these relations as an internal cross-check for our
calculation.

In the work [53] the vector and axialvector form factors
have been considered with a slightly different decompo-
sition of the vertex functions. The authors have introduced
scalar factors G, G,, and G; which are related to ours via

v ! v 1 v 1
F1:G1+§G2, FZZ_EGZ’ F3:—ZG3. (7)

B. Renormalization

For the three-loop calculation of the form factors we
have to perform the standard parameter renormalization of
the strong coupling and the quark masses, the wave
function renormalization of the massive and massless
external quarks, and the renormalization of the external
currents. Furthermore, we decouple the contribution from
the heavy quark from the running of «@,. Then the
combination with the subtraction terms from the infrared
divergences is more convenient. We thus write the ultra-
violet renormalized form factors as

(8)

(nf)

bare_ 708,08 ") _eo1 (m)"
g mONE=Z0mO _Ca,‘- Qs

|

(iv) The wave function renormalization constant of the
light quark, Z9%, starts at order a; and is needed up
to three-loop order [85]. We need the two-loop result
to order ¢ [86].

(v) Since the vector and axialvector current are con-
served, their anomalous dimensions vanish and we
have Z, =7, = 1.

(vi) The anomalous dimension of the scalar and pseudo-
scalar currents corresponds to the anomalous dimen-
sion of the quark mass and we thus have Z, =
Z, = Z,, which we need to three loops. We choose
to renormalize it both in the MS as well as in the on-

shell scheme. ZMS is available from Refs. [75,87,88].
For Z93, we again need the one-loop result to order e*
and the two-loop result to order €2 [75-80].

(vii) The tensor current has a nonvanishing anomalous
dimension which cannot be deduced from other
quantities. We need it to three loops to construct Z,
in the MS scheme [89,90].
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(viii) Finally, we decouple the heavy quark(s) from the
running by employing the decoupling relation
aﬁ"f) = ;! o™ where we remind the reader that

ng = n; + ny,. We require the decoupling relation to

two loops [85,91-96], the one-loop result to order e,

and the two-loop result to order €? [85,86,97-100].

C. Ward identities
Using the equations of motion, one can derive the Ward
identities

il = imj,

©)

between the renormalized vector and scalar as well as
between the axialvector and pseudoscalar currents. The
equations of motion imply that both the mass and the
currents are renormalized in the on-shell scheme. Due to
Eq. (6) it is sufficient to consider the vector and the scalar
currents in the following. Employing Eq. (2), we can
rewrite the Ward identity as

o j, = mjr

—g'T}, = mI'* (10)

on the level of the renormalized vertices (see e.g. Ref. [43]).
Using Eq. (3) then leads to the relation

Fi - Fy=F 1
i (11)

between the renormalized form factors. This provides an
important check on our results later, which we discuss
in Sec. V.

D. Infrared subtraction and matching onto SCET

Infrared singularities of multileg QCD amplitudes with a
massive and massless partons have been discussed in
Refs. [101,102]. By specifying ourselves to the case
O — g, i.e. one massive initial quark and one massless final
state quark, we can write the Z factor associated to the infrared
subtraction in the minimal scheme in the following way:

F I [04 2 3ﬁ0F, F/ - 4/}0F0 Fl
InZ ==% 0 0 s _ 0 1 -1
S [4 2 +2€] * (zm) { 1663 1662 +4.e
— - @) 12
* (47[) { 724 72¢3 36¢? + 6 + O(ax), (12)
where a, = a™ (1),
I' = y9(a, ag) — y™P(ay) 1 r, 13
12t + (e) = rorie)os (it ) =3 o () (13)
with x = s/m? and
I = 9 = },cusp( ) (]4)
dlog u
The coefficients in the perturbative series of the lightlike cusp anomalous dimension
el n+1
cusp — ZUSP @5 15
o) = () (15)
are available up to four-loop order [9,11-14,16,103—110]. Up to three loops we have
Yo | =4Cr,
cus 67 71'2 20
P =4Cp |:CA<9 ?> —ETFW},
245 134x% 2245 1zt 55
PP = 4C, |G (== - s CrTrny( 1685 —=
F[ <6 7 T3 tas ) O {106 =5
418  407%  56¢; 16
+CATFnl( 27 27 —T> —ET%I’!%] (]6)

056011-4



HEAVY-TO-LIGHT FORM FACTORS TO THREE LOOPS PHYS. REV. D 110, 056011 (2024)

The perturbative expansion of the anomalous dimension ¥ (for i = g, Q) can be written as
; _ ® ; ﬂ n+1 17
v'(ay) n; Yn (4”) (17)

and it can be extracted from the divergent part of the quark form factor. y4 is know to four-loop order [5,16,110—112]; up to three
loops the results read:

7o =—3Cp.

Y = CaC (_95%1 _ %”2 ¥ 26§3) +C2 (—%+ 2% — 24@) +Cpn T (% + 27”2> :

q_cc (_ 1;3_?615 ~ 72683;2 3529643 _ 833“ _ 44’;2¢3 - 136&)
e (_ % N 20;712 ) 84;;@ . 2411;;[4 ~ 871’;5:3 _ 120 §5> e (_% — 3% — 685 — 8?”4 +24005 + 16;;%3)
eceton( 1t B B
et (2233 B 269;;2 51 sg ) 25,7,4> T ot (9762698 ) 4(2);;2 ~ 3§§3> , (18)

For massive quarks, y€ is available up to three loops [68,113—117]:

8 = -2Cy,
0= e (-5 a0 + Pt
N e
T, (% _ 32c3> + 2t (19)

Note that Z introduced in Eq. (12) is defined in terms of a§”’ ), Thus, the decoupling relation has to be applied to the form

factors in d dimensions as discussed in the previous section. We then have
C=2"F, (20)

where F is any of the ultraviolet renormalized form factors. The corresponding matching coefficient C is finite (i.e. the limit
€ — 0 can be taken), and expanded perturbatively in analogy to Eq. (4). Note that C; and C; vanish in four dimensions since
the pseudotensor current is reducible in four space-time dimensions. This serves as another nontrivial check of our
calculation.

Like Z, the matching coefficients C are expanded in aﬁ"’) (u). They satisfy the renormalization group equation (RGE)

d
dIn(u)

(I =x)m
U

Cs.u) = [ycusp(ag"')) ln< ) 7 (o) + 7P (") | C (s, ), (21)

with y# = y2 + y4. The quantity y2¢P is the anomalous dimension of the corresponding QCD current. It is expanded in

ag'lf') and can be extracted from the general formula [90]2

*Note the typo in Eq. (7) of Ref. [90]: —144T%C% should read —144T12pn%, in accordance with Eq. (6) of Ref. [90].
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a&"f )

¥4

Yin) = —(n=1)(n- 3)CF< > + [4(n— 15)Tan + (1813 — 126n% 4+ 163n + 291)C,

s

(ns)\ 2

-1

—9(n —3)(5n% = 20n + 1)Cy] (”18 )¢, <0’4 > + {[144n5 — 1584n* + 6810n° — 15846n> + 15933n + 11413
T

—216n(n — 3)(n — 4)(2n® — 8n + 13)5,)]C% — [3(72n° — 792n* + 3809n° — 11279> + 15337n + 1161)
—432n(n = 3)(n — 4)(3n% — 120 + 19)5]CoCr — [18(n — 3)(17n* — 13663 + 28112 — 360 + 129)
+864n(n —3)(n — 4)(n* — 4n + 6){3]C% + [8(3n® + 51n? — 226n — 278)

+ 1728(n = 3)53)CaTrny — [12(170% 4 n? = 326n + 414) + 1728(n — 3)(3])CrTrny

(np)\ 3
-1 8
+16(13n - 35)T2n2) (”108 e, <a ) +0(a)) (22)

n

4

via y?fft} = =2y{(0),(1).(2)}» Where y(;) = 0 due to the conservation of the vector current.

The structure in Eq. (21) allows us to distinguish two scales; the scale y that governs the renormalization group evolution
in SCET, and a second scale v that governs the renormalization group evolution in QCD. The matching coefficients
C(s, u,v) then fulfill the two separate RGEs

— |,cusp (m1) (l_x)m Ho o (ng)
iy Cl) = [0 0 (V) ) ) 23

Cls.p,v) = 122 (a™ (1)) C (s, . v). (24)

d
dIn(v)

The dependence of the matching coefficients on L, = In(u?/m?*) and L, = In(v*/m?) is then most conveniently derived by
combining the running and the decoupling relation,

2 (ny)
) =0 1 - (%) (2 2)
2 2 (ns) 2

n n 4 a.(vn[) M
) =00 |1+ 5 L7 (2 2)

()
16 4 \ 2
+ <3L,3T1% + CpTp(4L, + 15) + 5 CuTp(15L, — 8)) <O’T£”>> + O(ai)] : (26)

Note that contrary to Eq. (20) the four-dimensional version of the decoupling relation is sufficient here. The coefficients of
the QCD f function follow from

(”f) (”/) (”f)

das”" (1) (ny) () (@5 (W) () (s (1) \?

Tding a5 () | By v + 5’ ) T O(a3) (27)
and assume their usual form
n 11 4
ﬂ(() = ?CA - g”fTF, (28)
ny 34 20

ﬂs /) = ?Ci - ?nfTFCA - 4”fTFCF (29)
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III. TECHNICALITIES

For our calculation we use the canonical chain based on
QGRAF [118], TAaPIR [119], EXP [120,121], the inhouse
FORM [122,123] code CALC, Kira [124,125], and FireFly
[126,127]. All one- and two-loop and some of the three-
loop master integrals are computed to sufficiently high
order in € analytically. For the remaining three-loop master
integrals we construct semianalytic results based on
“expand and match” [38—40,54].

A. Amplitude and projectors

In Fig. 1 we show a set of sample Feynman diagrams for
the heavy-to-light form factors.

One of the first steps in our calculation is the application
of projectors for the scalar form factors introduced in
Eq. (3). Explicit expressions are given in Appendix A.
Afterwards there are no open indices and all the scalar
products can be decomposed into denominator factors used
to define the integral families. For this step we use an
auxiliary file generated by TAPIR. In total we have con-
tributions from 47 integral families. We extract the

respective lists of integrals which serve as input for the
integral reduction. For all external currents we generate the
corresponding amplitude for general QCD gauge param-
eter &

B. Integral reduction

In a next step, we want to reduce the list of integrals
contributing to the amplitude to a smaller set of master
integrals using integration-by-parts relations [128—130] and
the Laporta algorithm [131]. Before performing the actual
reduction for the amplitude, we reduce sample integrals
with up to two dots and one scalar product for each integral
family using Kira [124,125], employing Fermat [132] as
computational backend. These samples allow us to find a
basis of master integrals in which the dependence on the
space-time d and the kinematic variable s/m? factorizes in
the denominators of all coefficients appearing in the final
reduction tables [133,134]. We achieve this as well as a
reduction of spurious poles in ¢ with an improved version
of the code ImproveMasters.m [133].

With the basis chosen, we then perform the reductions of
all integral families again employing Kira, this time

N fos, oo

Sample Feynman diagrams contributing to the heavy-to-light form factors. The double solid, solid, and curly lines refer
to massive quarks, massless quarks, and gluons, respectively. The gray blob represents one of the external currents given in
Eq. (1).

FIG. 1.
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exploiting the finite field techniques [135-137] imple-
mented in FireFly [126,127].3 In addition to the separate
reductions of all families, we run Kira to find symmetries
between the master integrals and arrive at a set of 429
master integrals at the three-loop level. We then use LiteRed
[139,140] and a subsequent reduction with Kira and FireFly to
establish differential equations for the master integrals
[141-144] in s/m>.

C. Master integrals

We calculate the master integrals at one and two loops
analytically. Additionally, we also consider the master
integrals which contribute to the leading-color amplitude,
the ones depending on the number of light flavors, and the
ones with two closed heavy-fermion loops analytically. The
master integrals contributing to the leading color amplitude
have been obtained before in Refs. [52,53]. In the second
reference also the leading color amplitudes for the vector,
axialvector, scalar, and pseudoscalar currents have been
obtained. We consider in addition the tensor current. For
the calculation we use the techniques of Ref. [35]. In
practice this means that we do not try to find a canonical
basis of master integrals, but we uncouple blocks of the
differential equation into higher-order ones and solve these
via the factorization of the differential operator and
variation of constants. This technique is successful for
the considered subset of master integrals since the differ-
ential operators factorize to first order and the results can
therefore be expressed as iterated integrals over algebraic
letters. We checked explicitly that this is not the case for the
full amplitude, where also elliptic sectors contribute. For
the implementation of the algorithms we make use of the
packages Sigma [145,146] and HarmonicSums [147—158].

The boundary constants for the solution are either
obtained by direct integration, Mellin-Barnes techniques,
or using PSLQ [159] on numerical results computed with
AMFLow [160] implementing the auxiliary-mass flow
method [161-163] at the point s = (0. Many boundary
conditions can also be fixed by regularity conditions in
s/m?>=0and s/m> = 1.

We find that we can express our analytical results as
iterated integrals over the alphabet

1 1 1
x’ 1+x’ 2 —x

For the remaining master integrals we use the semi-
analytic technique developed in Ref. [38-40,54]. The
method is based on series expansions around regular and
singular points of the differential equation. Two neighbor-
ing expansions are then numerically matched at a point
where both expansions converge. We use expansions at the
points
% = {-o0, 60, —40, -30, -20, —15,-10, -8, -7,

m
-6,-5,-4,-3,-2,-1,-1/2,0,1/4,1/2,
3/4,7/8.1}, (30)

where in each case we used 50 expansion terms. All but the
expansions around s/m? = 1 and s/m?* = —co are regular
Taylor expansions. We used boundary conditions at the
regular point s/m?> = 0 which we obtained with the help of
AMFLow demanding 100 digits precision.

IV. ANALYTICAL RESULTS

As mentioned in Sec. III C, we have analytic results for
all one- and two-loop form factors up to order €* and €2,
respectively. The computer-readable expressions for all
twelve scalar form factors can be downloaded from
Ref. [164] for general renormalization scales p and v
and with the option to renormalize the scalar and pseudo-
scalar current in the MS or in the on-shell scheme. We
provide both expressions where only the ultraviolet coun-
terterms have been introduced, and expressions where in
addition the infrared poles have been subtracted. For
illustration we show in the following the result for Cj
for 1> = u> = m? up to O(e°) which up to two-loop order
reads (x = s/m?):

(0

1 3 22 (1-2x)H,
Ct1<)_CF{—§—4—8 2y —5Ho1—Hy, ¢,
0 _ o o f 119851 2*(=49 +75x— 20127 +31x°) | (354~ 829x)H,
LT TATEL 20736 1920(1 — x)? 216x

398 — 978x + 681x> — 137x* 7 5 253 — 830x — 1007x2
+§3 3 +-H, T 5
576(1 — x) 8 3456(1 — x)

*While we managed to complete the reduction after fixing the gauge to £ = 0 with Kira 2.3, we resorted to the current development
version to perform the reduction for general £. We thank Johann Usovitsch and Zihao Wu for allowing us to use the development version
(see Ref. [138] for a first brief discussion of some of the improvements).
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(24 =x+56x* +65°)H,  (2-x)2-5x—x*)H, (1+x)(1-3x)H_, N (1 =15x — 6x> —4x*)H, |
288(1 — x)%x 96(1 — x)* 24(1 —x)x 48(1 — x)*
| 1 (32— 48x + 922 + 11:3) In(2)\ (66 — 308x + 259x2 — 149x%)H ,
+Ho1 +—Hy - 3 2 ’
24 12 96(1 — x) 144(1 — x)2x
(2-5x)(39—83x)H;; (8 + 12x+ 9x* —25x3)H g, _(20-192x + 237x* = 61x*)Hy 1
144(1 — x)x 48(1 — x)3 48(1 —x)?
_ (15 - 16}6 + 17.X2)H170!1 _ EH _ (2 - x)(2 - 5X - Xz)Hz’l.l _ (1 + X)(l - 3X)H_1_0’1
16(1 — x)? 6 M 48(1 — x)3 2(1 —x)x
(1 +x+6x2)H0Y0’0Y1 (l +x+6x2)H0,0‘1’1 _ (1 +x+6x2)H0‘1’0’1 —i—lH —i—lH
8(1 —x)3 4(1—x)? 8(1—x)3 20O L0
2515  7*(389 + 7473x — 1857+ + 907x) (3 - 8x)H, 26— 5dx +21x% + 3253 1
2 Higpg—— “H
i { 768 23040(1 — x)? o 4x 3( 32(1 — x)? 3 1)
LR CS1447x+2x° (11 = 114x = 1052 + 16x°)H,  (2-x)(2=5x—-x)H, (1+x)(1-3x)H_
48(1 — x)? 96(1 — x)%x 48(1 —x)? 12(1 = x)x
_ (35+135x + 21x* +x%)Hy, 1 1 (32 —48x + 9x2 + 11x%) ln(2)>

- —H H
96(1 — x)? PR T 48(1 — x)3

_(6—42x +91x* +45x°)Hy, (97 +3x)H ),y | (64 12x + 84x* — 141x° +35x*)Hy g 4
24(1 — x)%x 24(1 —x) 24(1 —x)*x
C3(1=20H,,, (12 150x + 1262 = 516 + 5954 Hy 1, (=41 = 68x + 138)H, o,
2x 24(1 —x)3x 24(=1+x)?
(24 x) (=24 5x+ ) Hy g (L 4+x)(=1+3x)H 00 (1+17x = 4% +2x%)Hp g0,
24(-1 + x)? (=1 +x)x 4(-1+x)3
B+ lx+2x%)Hyg, | 1 (2+ 14x — x>+ x*)Hy 10, | 3 }

—H 3H —H —H,_ -H
2=l +x) T Hien Tt FTESESE T 50111 = Ho-10. 1.00.1

T 2267 — 5398x + 4283x*  #?(=11+45x = 57x* + 7x3)  2(—=6 + 13x — 14x% + 19x*)H
" _
FEETh 1296(~1 + x)2 108(—1 + x)? 27(=1 + x)%x

(14+x)(=3+5x =5+ 11x3)Hy; 1 s 7859 1
- Ly Hooy =2 Y CpT —_22(109 + 48H
18(—1 + x)°x Fgtoor =g+ Crlrm gigy+ g (109 + 48H))

L (S124310H, (- 1nHy, (- 10H, | 1 1 2 1343}

_H H H H
27x 18x Ox tttoor 3o T3 Hor T 3M

(31)
The one-loop order has successfully been compared to Ref. [61] up to order > and has been extended to e*. Similarly, our
two-loop results up to the constant part in ¢ agrees with Ref. [61] and we have added €' and €* terms.

After multiplying I, (¢, ¢») in Eq. (3) with ¢* and projecting the result to F} we obtain the contribution for b — sy
which is given by

1 1 1 1 1
Fy =3 Fy =S F. (32)

Using our analytic results we find agreement with the numerical expressions given in Egs. (88) and (89) of Ref. [69].

At three-loop order the amplitude can be divided up into the different color factors®

FO = ;2 F " 4 2 PO 4 CoT2mmy PO 4 QAT oy FY M 4 CpCuTn o

+ NAFEONE L @2, 1 I 00 any T FE DO 4 O(N2) (33)

*The same color decomposition also holds for the infrared subtracted quantities C.
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up to color suppressed contributions. We have computed the first six terms analytically. The corresponding expressions
can again be downloaded from the webpage [164]. The explicit three-loop expressions for the tensor coefficient
C} read

@) 370949 2217 829 (3-11x)H, 1 2
C’ I _ — 72 — —H, —H
! 419904 ~ 38880 \3888 slx | a7tor ot
(657 — 1430x)H, (48 — 121x)Hy; (48 — 121x)H,,

1458x 162x 81x

(3—11x)H001 2(3—11x)H011 2(3—11X)H101 4
0. L oL _Th
* 27x * 27x i 27x g Lol

LAG-10H ] 2 2 4

——Hyoo1 —=Hoo11—=Ho101 —=H,
27x 9 0,0,0,1 9 0,0,1,1 9 0,1,0,1 9 0,1,1,1

2 4 8 (323 + 126H,)¢;

—~Hioo1—<Hio11—cHiii1— 136

9 9 9 (34)

O _71'_4 7%(5 + 3x) 667 —2704x + 4273x* — 3070x> + 810x*
! 540 135(1 —x) 324(1 — x)*
21 — 162x + 483x% — 668x> + 477x* — 198x> 4 39x6 2
+ C3 6 + _Hl
27(-1+x) 9
438 — 2147x + 4124x% — 4926x° 4 3734x* — 1079x°)H,
+
972(1 — x)*x
N (14 x)(48 — 193x + 282x% — 346x> + 354x* — 121x°)H, |
162(1 — x)°x
N (3 = 11x + 39x% — 123x% + 153x* — 75x° + 33x° — 11x7)
27(1 — x)%x 001

1 2
—§H0,0.0,1 —§H1,o.o,1, (35)

ct®mn _ 23611 —43766x +9787x> (371 — 585x — 327x% + 349x°
’ =

810 5832(1 — x)? 1944(1 — x)?
(14+x)3=5x+52-113)H, 1 (73 = 308x + 421x> — 138x%)H, 2 2
81(1 —x)%x +27H°‘> 81(1 — x)%x 9
(48 — 157x + 153x2 — 27x% + 31x*)Hy,  8(6 — 13x + 14x2 — 19x%)H
81(1 —x)3x 81(1 —x)*x
2(3 = 1x+27x% = 24x> — 11x*)Hpo,  2(1+x)(3=5x+5x* = 11x*)Hp 1, 2
27(1 — x)*x * 27(1 — x)3x 9
2(10 = 20x + x%)¢3 2(1+x)(3=5x+5x* = 11x°)H, o
1 —x2 271 —x)x ’

(36)
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cHOcm _ 82223 ﬂ4 (52459 + 113919x — 71799x2 4 48173x3 N 61H1>

! 62208 ' OTNOL 622080(—1 + x)? 4320

e (_ 6142 — 6438x — 3345x> + 3155x°
2592(—1 + x)?
(=73 +70x — 473x> +284x*)H,  7(=2 + x)(=2 + 5x + x*)H,
B 144(—=1 + x)x 144(=1 + x)3
(14x)(=1+3x)H_; (=49 +387x —231x% + 85x*)H,; 1 91
4(=1+x)x B 144(-1 + x)3 tgto- )

,[575209 + 500974x + 5545 280 — 516x +249x% + 5x>  (7+17x)H, 1 1
" { 248832(—1 + x)? (2)< 144(—1 + x)? 36(—1 + x) ~g o Tt

(=24 x)(=2+5x+x)H, (1+x)(=1+3x)H_;

72(=1 +x)3 6(—1+ x)x )
(1569 — 14528x — 11363x% + 2434x3)H, (2 — x)(26 — 31x + 23x2)H,
5184(—1+ x)%x 144(1 — x)?

(14 x)(41 = 131x + 102x2)H_; (=402 + 2899x + 1347x* — 2175x° + 923x*)H, |
B 216(—1 + x)x - 1728(—1 + x)’x
(=12 +71x = 1172 + 15 + 19x*)Hy _; (90 — 1117x — 1636x* + 359x°)H | |

216(—1 + x)°x B 864(—1 + x)%x
N (6+x)H i, (1+x)(=14+3x)H, .  (=2+x)(=2+5x +x)Hy; (=24 x)(=2+5x +x7)H,,
36x 18(—1 + x)x 72(=1 + x)3 72(—=1+x)3
L+ (=1 430H,  (L+x)(=1+30H | (=107 -79x — 1812 + 47x)Hoo, | 1
9(=1 + x)x 18(—1 + x)x 288(—1 + x)3 18 00!
2 3

e 97:8?_71x+4;).°’;x Mo _ %HO,I.Z + %HO,I,—I —é 0.-1.1 = TlgHo,—l,—l

1 13 1 40 — 72x + 15x% + 13x%)In?(2
=g o —7H _H1,1.2_( 3 Jn' @)
108(—1 + x)

1447101 T g
(725 4 14145x — 35372 + 1723:)¢5] (<7103 +22516x)H,
3456(—1 + x)° 10368x
n (4608 — 27263x + 80878x> + 36529x)H,y n (—432 + 2976x + 44615x* + 217x°)H | |
10368(—1 + x)x 5184(=1 + x)x?
(14 + 217x + 2074 — 730x° + 274x* o, (246 — 3392x + 3372x% — 363x + 83x%)Hy 1 |
72(—1 + x)%x - 216(—1 + x)°x
(=90 + 701Lx + 1220x + 89 )H, o, (18— 87x + 194)H,
216(—1 + x)%x 9(—1 4 x)x
(=2 +x)(26 — 31x + 23x*)H, 1 _(I4+x)(41 - 131x + 102x*)H_1 0,
72(=1 +x)? 18(—1 + x)*x
| (124225 4+ 3382 — 4156 + 12769 Hy1 _ (12285 = 12122 4 128x° + 22x)Hoou
36(—1 4+ x)°x 36(—1+x)x
(=9 + 34x + 1352 + 252 + ¥ )Hy o1 (21 = 231x + 33927 — 270 + 137x*)Ho 1 1,
18(=1 4 x)*x B 18(=1 + x)*x
(=12 + 7lx = 11722 + 155 + 195 Hy 101 (=24 + 17x — 23822 + 1012°)H 0,
18(=1 + x)3x * 36(—1 + x)%x
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(=15 + 140x — 109x% + 80x*)H g1 (=12 —5x—=254x* + 79x*)H 10, 10(=1+3x)H

B 18(—1 + x)%x 36(—1 + x)x 3x
(6+x)Hip11 200 +x)(=1+3x)H, 101 | (=2+x)(=2+5x+x*)Hy 114
18x 3(=1+x)x 18(—1 +x)3
(24 0)(245x+ ) Ho0a  S(LHX)(=1+30)H 001 (1+2)(=1+3x)H_10,.1
36(—1+ x)* 6(—1+x)x (-1 +x)x
_ 2(1 —+ X)(—l —+ 3X)H_1‘1’0’1 I 2(1 —+ )C)(—l —+ 3X)H_1._1’0’1 (1 + 17x — 4x2 + 2X3>H0’0‘0!0’1
3(=1+x)x 3(-14x)x 3(=1+x)°
(5 + 25x + X2 + XS)HO,O,O,l,l (—4 + 32x — 19X2 + 7x3)H0’0y1’0‘1 _ (1 + x)(lS + 20x — 3X2)H0$0’1’1,1
3(=1+x)3 12(—=1 +x)3 6(1 —x)*
N 2, N (=2 +66x = 27x* + 11x°)Ho 1000 (=9 = 13x = 13x° +3x°)Ho 1 0.1
3110.0.-1.0.1 12(—1 + x)3 6(—1+x)*
1+ 17x — 4x* 4+ 2x*)H 10 1 2 5
- 3(-1 +x)3) CLLl ~—3 Horrnn =3 Hoa201 +3Hoa—101 + ¢ Ho-00.
2 2 2 11
+ gHo,—u,o,l - gHO,—l,—l,O,l +2H 0001 + §H1,0,1.0,1 —3H 0111+ FHI'I’O'O’I —2H; 1011
4y 20, . (68— 108x + 2127 + 23:%)In*(2) (68 — 108x + 21x% + 23x*)Liy (})
3ion =3 i =3 Mo 432(=1 42 18(=1 + )
—13 = 21x — 18x? + 4x?
( X X 3—1— X )55, (37)
9(—1+x)
CH3)Cam _ 4126157~ ( 113 —9573x — 7707x* 4+ 2935x3 B 1_9H L —5092 + 21000x — 29703x> + 13309x°
! T 419904 155520(—1 + x)? 864 ! ’ 5184(—1 +x)3
1 3 (=36 + 113x — 202x2 + 173x3)H,  7(=2 +x)(=2 + 5x +x*)H,
__HO,—I +_H1,1 + 2 - 3
8 8 144(—1 + x)*x 288(—1+x)
(1+x)(=14+3x)H_; (=7+ 17x—24x> + 6x°)H,
8(—1+x)x 24(-1 +x)?
, (236191 = 273122x + 373243x? n(2) 280 — 516x + 249x> + 5x* (74 17x)H,
279936(—1 + x)? 288(—1 + x)° 72(=1 +x)
(24 X)(245x+x)Hy,  (1+x)(=1+30)H, 1 " 1,
144(—1 + x)3 12(=1 + x)x 1270t
(=108 + 8077x — 592122 + 7780x°)H, (=2 + x)(26 — 31x + 23x2)H,
7776(—1 + x)%x 288(—1+x)?
(14 x)(41 = 131x+ 102x*)H_, N (=16 + 4x — 110x* — 145x° + 87x*)H,y
432(—1 +x)*x 288(—1 +x)3x
n (=124 71x = 117x% + 158 + 19x*)H_; (96 + 71x + 74x* + 335x%)H | _(6+x)H,,
432(—1+ x)’x 864(—1 + x)%x T2x
(I4+x)(=14+3x)H, . (=24 x)(=2+5x +x*)Hyy  (=2+x)(=2+5x+x%)H,,
36(—1 +x)x 144(=1 +x)3 144(=1 +x)3
C(+x)(=143x0)H,; (I+x)(=1+3x)H, ; (=3+29%x+ 6x% +8x%)H .1
18(—=1 4+ x)x 36(—1 + x)x 144(=1 + x)?
1 1 1 (=1 +15x+6x> +4x)Hy,; 1 1
——Hyo_1 +-—=H ——Hy 1 — ——+—Hy__1+-—<Hy_
36 100-1 T 5 Hoaa =3 Hoam 36(—1 1 2)° 36 70-1-1 T g o-11
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1 1 (40 — 72x + 15x% + 13x%)In?(2) (53 — 23x + 261x% — 19x3)¢3
—cHia+5Hu2 - -
g LL T L 216(1 — x)° 288(1 — 1)
(~98586 + 201431x)H,  (~2742 + 10661x — 10999x% + 5906x>)Ho, (4431 — 14722x + 13117x2)H,
23328x N 1296(—1 + x)’x 1296(—1 + x)x
(264 = 968x + 26192 = 2079 + 218" o1 , (420 = 2539x + 7119x% = T008x" + 1954x') o,
+ 432(=1 +x)3x 432(=1 +x)3x
(=501 + 3274x — 3920x% + 2143x3)H, o, . (393 — 2044x + 1915x2)H, | ,
432(=1 +x)%x 216(—1+ x)x
(=2 +x)(26 = 31x + 23x%)Hy 1, (1 +x)(41 = 131x + 102x2)H_, o1 (40 + 170x + 1772 — 159x%) Ho 0.0,
- 144(—1 + x)3 36(—1 + x)%x a 144(1 — x)3
(24 163x —99x% + 10x3)H g1 (—145 + 325x — 414x? + 94x*)H,y 1 0,1
36(—1 +x)3 * 144(=1 + x)3
(=125 +651x — 753x% + 219x°)H 11 (=12 + 71x — 117x% + 15x° + 19x*)H _1 0,
72(-1 1 2)° N 36(—1 1+ x)°x
(=34 x+10x> + 10x*)H, 00, = (38 =109x +47x*)H o, (377 —586x + 401x*)H, 1 0,
- 18(—1 + x)x 18(—1 + x)2 144(=1 + x)2
+ ﬂHl - (6+x)H o101 | (1+x)(=1+3x)H 101 (=24 x)(=2+5x +x*)Hy 1.
9 36x 3(=1+x)x 36(—1 + x)*
(=24 X)(=2+5x+ X)) Hyp11  SU+X)(=1+30)H 1901 (1+2)(=1+35)H 101,
72(=1 +x)3 12(-=1 + x)x 2(-14+x)x
(1+x)(=14+30)H 1101 (1+x)(=1+3x)H_; 01  (1+x+6x*)Hyg00.
3(-14x)x 3(=1+x)x 6(—1 +x)*
(1 +x+6x*)Hogoaa | (1+x+6x")Hogro1 | (1+x+6x*)Hpgr1a 1
(=1 4 1) 24—l +2) 3Ci+xp | 3Ho0-tol
(=7 4 9x = 30x* + 4x*)Ho 1 001, (1 +x+6x")Hoi11 (1 +x+6x)Ho 0.
B 24(—=1+x) 6(—1 +x)3 B 6(—1 +x)3
—Hpi121. —1H01—101 —iH0—1001 —1H0—1011 - ]Ho 1.1.0.1 +1H0 1-1.0.1 —£H10001
370LSLOL TR 01001 TR 01O LT Y 3 12771000

N
T
2 1 1 1 (68 — 108x + 21x% + 23x3)In*(2)
3
(68

—H -—H -H -—-H H
1001 = 310100 L1001 T g 11011+6 L1211+ 864(—1 +x)°

— 108x + 21x* 4+ 23x°)Lig(5) (=43 + 161x — 105x% + 51x°)5
36(—1 +x)3 48(-1+ x)?

. (38)

LN _ 155263507  2°(=7514867 — 19812135x — 1810652 1x* 4 692147x*)
! 26873856 1672151040(—1 + x)*
1199 + 6609x + 3760x% +162x (=18 — 12x —43x> + 7x*)H,
& ( 768(—1+ x)? B 16(—1 +x)? >
o (_ 347993 + 1668009x — 548373x2 4 39943x3 N (555 — 14839x + 13219x? + 18643x> + 8342x*)H
4976640(—1 + x)3 368640(—1 +x)*x
(2691 +21975x 4 7817x% +2749x°)Hy,  (—3053 — 1209x — 7431x> + 1325x3)H | ,
- 368640(—1 + x)? N 184320(—1 + x)? )
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62208(—1 + x)? 3456(1 — x)%x
n (=18 —703x — 1779x% — 2751x + 139x*)H B EH n (90 + 118x — 479x + 325x*)H, ;
1152(=1 4 x)’x 3 M 576(=1 + x)%x
(=1 4+2x)(1 +8x)Hpoy (=5 +15x = 12x* +5x°)Hy 1 (7 +123x = 3x" + 17x3)H1.O$1>
32(-1+x)? 32(-1+x)* 64(-1+ x)*
2 [_ 100078387 + 125792410x + 60503731 17 Hiovi—ts <6599 4 36435x + 8073x? + 4549x°
71663616(—1 + x)? 128 b 27648(~1 + x)?
(335 + 147x + 813x% — 143x3)H1> (43983 + 479108x + 357953x” + 115742x°)H,
4608(1 — x)? 248832(—1 + x)%x
N (—1028 4 5603x + 12013x* + 1157x° + 867x*)H | N (1569 — 1715x — 12797x* + 307x*)H |

e (41639 —91621x + 51926x> (570 — 7411x + 3221x% — 4264x*)H,
3

9216(—1 + x)*x 13824(—1 + x)*x
(177 4 146x + 2244x2 — 1034x3 +27x ) Ho o, (=270 — 1433x + 5199x% + 2331x% 4+ 689x*)Hy ;|
- 4608(—1 + x)3x * 4608(—1 + x)’x
(=192 = 295x — 171922 = 2123 + 67x*)H, o, (117 + 1106x + 893x% + 476x3)H | | |
+ 4608(—1 + x)3x 2304(—1 + x)%x
(59 +423x 4+ 23x2 + 23x%)Ho 01 (9 +45x + 7x* + 2x3)Hog1q (59 +447x + 109x% + 33x3)H 1
768(1 — x)3 B 64(—1 +x) B 1536(—1 + x)3
(23 +219x 4+ 21x2 +25x°)Ho 11 (14+9x+x2 +x°)H 001 (194 183x 4+ 17x* + 21x*)H, o1,
- 256(—1 + x)3 - 32(~1+x)? B 384(—1 + x)°
(23 +219x 4+ 21x% + 25x)H, 1 ;] (—8459523 + 13259174x)H; (7125 — 3574x — 11219x))H |
- 768(—1 + x)? B 2985984x B 3456(1 — x)x
(—422544 + 762395x + 879722x2 + 1494251x3)Hy,  (=7560 + 266112x + 108349x2 + 990011x%)H |
- 331776(—1 + x)%x - 165888(—1 + x)x2
(—4440 — 16709x — 45452x2 + 10171x%)Hy o, (18 4 930x — 8811x2 — 8782x% + 2299x*)Hyy |
B 6912(—1 + x)2x - 1152(=1 + x)2x2
(54 — 5736x + 38353x2 — 10940x% + 23143x*)H, o, (420 + 3485x 4 13593x2 — 9713x> + 1521x*)Hy 0 4
B 6912(—1 4 x)2x? - 2304(—1 + x)3x
(366 — 1722x — 4797x% + 1084x> + 416x*)H 1, (450 — 2581x + 1089x% — 8599x% + 335x*)Hy 1 o 1
* 576(—1 + x)°x B 2304(—1 + x)3x
L (217524 1163x + 51025 + 3191x%) Hy 11y (=93 = 934x — 4054x + 545x° ) H, 00,
1152(=1 4 x)%x 1152(=1 + x)*x
(=101 +323x +42x> + 216x*)H, o1, (—186 + 227x — 700x2 + 677x3)H | 1 0.1
192(—1 + x)%x - 1152(—1 + x)%x
(249 = 98x +497x%)Hy 11y (12 +233x + 1137x° — 400x + 104x*)Ho 00,1
144(—1 4 x)x 384(—1 +x)3x
(=60 — 163x —423x? + 158x° + 26x*)H 0011 (6 + 6x +570x* — 77x% + 47x*)Ho 0,1 0.1
192(—1 + x)3x 192(-1 +x)3x
N (15 +379x = 21x% = 6222 +3x*)Ho 110 (=6 + 79 +723x* + 33x° + 53x*)Hy, 00,1
96(—1 + x)*x 192(—1 +x)3x
L (2441304 375x% — 379x% + 27x*)Hy 1 0.1.1 L (£12-517x+ 495x% — 82x3 + 122x*)Hy 1 0.1
192(=1 + x)3x 384(—1 +x)3x
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(18 = 133x — 364x> + 47x%)Hy 1 1.1 N (9 + x4+ 3x2 +165x% + 2x*)H | 9001

48(—1 + x)*x 192(—1 + x)3x
(18 — 148x 4+ 309x% = 90x> + 91x*)H o011 (44 9x +42x> +9x> —4x*)H o 10,
96(—1 4+ x)*x 64(1 — x)3x
(1 + S.X) (4 - 10x + sz)Hl,O.l,l.l _ (6 + 29x + 107X2 - 16X3)H1’1’0’0’1
16(1 — x)%x 192(1 — x)%x
(6 + 16OX - 155X2 + 115X3)H1’1’0’1‘1 (151 - 14)C + 79X2)H1,1‘1,0’1 5(9 + 26X)H1,1’1.1’1
96(1 — x)*x 96(—1 + x)? 48x
_ (2 + 24x + 15X2 + 4X3)H0$0’0$0’0‘1 (7 + 57x — 3x2 + 5X3)H0,0.0’0,1_1 _ (5 + 36x + 2.X2 + 2x3)H0‘0’0‘1y0‘1
32(=1 +x)? 16(—1 + x)3 32(-1+x)?
(23 + 99x + 29)(2 + 5x3)H0’0,0’1.1’1 _ (1 + 12x + 6X2 + 2x3)H0’0,1,0,0,1 (4 + 33x + 2X2 + 3X3)H0’0.1’0’1’1
16(—1 + x)3 32(=1 +x)3 16(—1 + x)3
(14 4+48x + 7x*)Hoga100 | 3(1+x)(1+2x)Hograa X3+ 5% + %) Hoi 0001
32(=1 +x)3 2(-1+x)3 32(=1 +x)3
_ 3(1 + 2x + 3x2)H0’170!0’1'1 _ (5 + 27x -+ 15X2 +X3>H0,170.1’0.1 _ (—11 + 9x — 17x2 + 7x3)H0.1,071’1,1
16(=1 + x)? 64(—1+ x)* 32(=1 +x)?
(2+ 18x —x* +2x°)Ho 1000 (2+18x =57 + 20 )Ho 1000 33+ 15x + 5% + x*)Ho 11104
32(=1 +x)3 16(—1 + x)* 32(-1+x)*
(1+9x + x> + X )H 00000, 3(1+9x + 2% + 2 )H 90000 | 301 +2)(1+2x)H) 00,111
16(—1 +x)3 8(—1+x)* 4(-1+x)?
B+ 15x + 58 + ) Hypa000 2+ 120438 + ) H o100 EH (1+9x + 2% + x*)H, 10004
16(—1 + x)° 8(—1+ x)? 4 MOLLLE 16(=1 + x)3
(1+x)(1 +2x)H, 100,11 _(3+15x—|—5x2+x3)H1.1,0.]y0,, _EH —éH —iH
41+ 2) 32(=1 + 1) 16 ot —giiion = ool
15 15 (10 + 1185x — 42x* + 197x%) 83
- H = —
g L T peflonin 576(—1 1 x)° ; (39)

where {; denote the Riemann { function at integer argument
i. Furthermore, we use the following convention for the
iterated integrals:

(40)

We compared our analytic results for F{, F5, F§, and F*
to the ones attached to Ref. [53] including ¢* and €? terms at
one- and two-loop order, respectively. We found full
agreement after adjusting for the different tensor basis
and renormaliztion and after adapting the large-N, limit
and setting all fermionic contributions to zero.

V. NUMERICAL RESULTS

wo () :1’ w_y (1) :L’ ~ As mentioned in Sec. IIC we compute all master
t 1+t integrals using the method “expand and match.” As a

1 1 result we obtain analytic expansions of the (unknown)

wi (1) = 1-¢ wy(1) = 21 three-loop expressions around the values s/m? given in

and we drop the argument for brevity, i.e. Hy(x) = H.
The first three letters define the harmonic polylogarithms.
The forth letter can be avoided by allowing for harmonic
polylogarithms evaluated at argument 1 — x.

Eq. (30) with high-precision numerical coefficients. Note
that our approach provides generalized expansions which
may contain logarithms of square roots of the expansion
parameter, depending on the physical situation at the
expansion point.
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To illustrate the structure of our results we show in the following the first three expansion terms for s/m* — 1 of the C3.
color factor of the renormalized and infrared subtracted form factor C}. It is given by5

C¥] ey =3.95625 + 1.23578L; — 1.02622L3 + 1.06563L} — 0.37851L% + 0.0625L3 — 0.0208333L
+ B(8.31567 + 3.58274L,, — 2.03938L3 — 0.0683922L} — 0.4375L + 0.125L3)
+ A(=3.51595 — 19.1367Ly; + 4.25689L3 + 1.3063L} + 0.614583L% — 0.1875L?)
+£3(9.920 + 35.8225Ly; — 2.05302L7 — 4.15664L} + 0.194444L% + 0.125L3) + O(p), (41)

where = (1-m?/s)/(1+m?/s) and L; = log(-2p).
One observes that the expansion is logarithmically diver-
gent in the limit § — 0, however, it does not contain power
suppressed terms like 1/4", which are present in the bare
amplitude. Similarly, we have a power-log expansion
around s/m”> = —co. The expansion around the other
s/m? values are all simple Taylor expansions.

We implement the expansions around the s/m? values of
Eq. (30) in a Fortran program FFh21 which can be obtained from
the website [55]. It is either possible to access the three-loop
expressions within Fortran or via a Mathematica interface
which has the same functionality. FFh21 provides results for
the pole parts and finite contributions of all twelve ultraviolet
renormalized form factors but also for the finite parts of the
infrared subtracted form factors C. In the region

—75 < s/m* < 15/16 (42)

we provide a grid by numerically evaluating our Taylor
expansions and the analytic counterterms with the help of
GiNaC [165,166]. Around the singular points s/m?> — —oco
and s/m? = 1 we switch to dedicated power-log expansions
as shown in Eq. (41). This includes expansions of the
counterterms to increase stability. A more detailed descrip-
tion of FFh2l can be found in Appendix B.

As reference, we show in Fig. 2 the (finite) vector, scalar,
and tensor form factors for > = m? as a function of s/m?
for 0 < s < m?. We remind the reader that the axialvector
and pseudoscalar form factors are related to the vector form
factors through Eq. (6) and that C§ = C/, = 0 as discussed
in Sec. II D. For the color factor we have chosen C, = 3,
Cr=4/3, and Ty = 1/2. Furthermore, we have n; = 4
and n;, = 1. For the x axis we have chosen a logarithmic
scale since there is only a mild variation of the from factors
for s ~ 0. On the other hand, at all loop orders we observe
Coulomb-like singularities close to threshold. It is straight-
forward to reproduce these plots by either using the analytic
one- and two-loop expressions provided as an ancillary file
or with the help of the package Frh2l.

>We truncate the numerical values to six significant digits and
suppress trailing zeros.

There are several checks on the correctness of our
calculation. First of all, we observe that the gauge param-
eter cancels in the ultraviolet renormalized expressions.
The analytic contributions induced by the one- and two-
loop results cancel against the numerical results from the
bare three-loop form factors. We observe that this cancel-
lation happens at the level of 1072* or significantly better
which at the same time is an indication for the precision of
our semianalytic three-loop result.

An important check is the cancellation of the 1 /¢ poles in
the construction of C. As expected, there are poles up to
1/€. All of them cancel after ultraviolet renormalization
and infrared subtraction. Here, we proceed as in
Refs. [39,40] and define

F(3) |€[ 4 F(CT+Z) |€l_
F(CT+Z)| ) ’

et

§(CO¥|) = (43)

where F) stands for the bare three-loop contribution and
F(€T+2) contains the contributions induced from the
analytic tree-level, one- and two-loop terms due to ultra-
violet renormalization (“CT”), and infrared subtraction
(“Z”). In the region given by Eq. (42), we observe that
there is a cancellation of at least 16 digits for each
individual color of each form factor and each e pole.
Only for s/m* > 15/16 the cancellation of the grid drops
below that due to the Coulomb-like singularity which
supports our decision to switch to a dedicated expansion.
In most parts of the phase space the cancellation is many
orders of magnitude better as can be seen in Fig. 3 where
we show the two worst cases of all form factors.

Remarkably, all six orders of ¢ cancel with a similar
precision. Only a careful analysis reveals a slight trend
towards worse precision for the lower poles. Especially in
the region 0 < s/m? <1 the loss of precision when
switching to the next expansion point is clearly visible,
but remains on a very high level. On the negative axis, the
precision curve is much smoother and only the matching
from our boundary conditions at s/m> =0 to s/m?> =
—1/2 and the matching from s/m? = —60 to s/m* — —c0
stick out.
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FIG. 2. One-, two-, and three-loop form factors as a function of s/m? for s > 0. The color factors have been adjusted to QCD with
n; =4 and n;, = 1. For the renormalization scale x> = m?> has been chosen.

Finally, we can also check the Ward identity from Eq. (11).
Naively, one would expect that it allows us to estimate the
precision of the finite terms similar to the pole cancellation.
However, this is not the case. It was noticed in the two-loop
calculation of Ref. [43] that the Ward identity is fulfilled
already on the level of the master integrals. We observe
something similar: the sum of the bare three-loop contribu-
tions and the sum of the counterterm contributions to Eq. (11)
are separately constant, but nonzero, and vanish when
summing both contributions. This suggests that there is a
similar relation between the master integrals also at the three-
loop level. Since in our calculation we do not express the
renormalization constants in terms of master integrals, we
check Eq. (11) only numerically and observe thatitis fulfilled
to high precision. In most parts of the phase space it exceeds
our internal precision of 50 digits and only rarely drops below
that at less stable points. Even at s/m? ~ 0.9374, where we
switch to the dedicated power-log expansion due to the
Coulomb-like singularity at the threshold, the Ward identity
holds to at least 19 digits.

After all these considerations, we estimate the precision
of the finite terms by extrapolating the pole cancellations
and expect that our result is correct to at least 14 digits in

the grid region given by Eq. (42) and usually many more in
most parts of the phase space.

For the two singular power-log expansions around
s/m?> - —co and s/m> = 1 our strategy to estimate their
precision differs slightly. As mentioned before, here we
also expand the counterterms to increase stability. Hence,
we can check the cancellation of the 1/e poles order by
order in the expansion parameters —m?/s and (1 — s/m?),
respectively. For the expansion around s/m? — —oco, we
observe that they cancel with at least 15 digits up to order
(—m?/s)3 and with at least 10 digits up to (—m?/s)'7. The
expansion around s/m? = 1 behaves worse and the coef-
ficients cancel with at least 17 digits up to order
(1 —s/m?)!, with at least ten digits up to (1 —s/m?)?,
and with at least nine digits up to (1 — s/m?)?°. Similarly,
we can also check the Ward identity (11) order by order in
the expansion parameters. Again we observe that it holds
with high precision, reaching our internal precision of 50
digits for most expansion orders. Hence, we conservatively
estimate that the two power-log expansions in the singular
regions are sufficient to provide ten correct digits for the
finite part.
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FIG. 3. Relative cancellation of the poles for the C3C color structures of Cf’@) and C[Z'(3). They show the worst behavior of all form
factors. The left panels cover the region [—oo0,0] and on the right results for 0 < s < 1 are shown.

With this in mind, the grids and expansions provided in
FFh21 are designed to provide at least ten correct digits over
the full range —oo < s/m? < 1.

VI. THE HARD FUNCTION IN B — X,y

In a SCET-based approach to B — X,y the decay width
is written as the product of a hard function with a
convolution of the jet and soft function [62-64]. While
the latter two are known to three loops already [65—-68] the
hard function was up to now only known to two loops [69—
71]. With the three-loop matching coefficients of the tensor
current at hand, we are now in the position to extract the
hard function of B — X,y to three loops as well.

To this end, we follow the discussions in Refs. [69-71]
and consider the operator

) (510, F¥bg), (44)

where i, (1) is the bottom-quark mass in the MS scheme
and e the electric charge of the positron. At leading power
this operator is matched onto the SCET current

JA = (Ewhc)éL(l - },S)hvv (45)

with the heavy quark effective theory (HQET) field £, of
the heavy quark, the SCET field ¢ of the light quark, the
hard-collinear Wilson line W}, and the polarization vector
¢/ of the on-shell photon. The field strength tensor F** in
Eq. (44) gives rise to the Feynman rule

FW = 0FAY — PAF — i(gley — ¢¥¢)).  (46)

If the matching is done on shell, one can use
€, -q, =€, -q, =0, and arrive for ¢g*> = 0 at

em,2FE 1
(57101 = =<0 (

1
— ' FY =~ F, —~F" x JA,
4r? 272 2 3>|qz=0
(47)

where 2E, = m,, at leading power. After infrared subtrac-
tion the expression in parenthesis becomes

cyscg(s:())—%c;(s:()). (48)
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The factorization formula of B — X,y is formulated on the level of the decay rate. Moreover, since the hard function A (u)
in B — X,y is a genuine SCET object, the logarithms of the QCD scale v have to be set to zero in the following. We

therefore arrive at
hy(u) = |Cypp, o>
s\H ¥|L,=0
The explicit result of i (u) to three loops reads

2

(ny)
hy(y) = 1+ Cp [—L,% -5L, —%— 12] (“ 475”)> + {EC%Lf, L3 (_ECACF +5C2 +§an,TF>

2 299 49 2 50 3925 1622
i ((?_1_8> CaCrrt (2 6>C2 ) CF"’TF) <CACF <22C3 54 _T>

117 1722\ (682 8z 7126 160, 2327
2(24gy+ L ) 4 (22 Ty ) L T e
+CF< G5t >+<27+ 9)CF'” F> wt Cr F( 81 3 27 )

122443 478, 8297 31a* 74 3379 477 148
44786 | 8290 Sla >+C2<——88c:3—25n ——”+—n21n()

- ?”2 In(2)

+CACF(_ 648 9 108 60 24 723

526, 7859 10922\ 7 /i (u)\’ 1 5 11 4
+an,TF( 5t T a7 ) TTeCH T (73 Gt g CaCh e G )L

12 70 37 409 2 8
+ ( Cch —nTpC%— (—+”—) Ci + ( I >0A02 > —nT%Cr + 7CAn,TFCF>

54 9 2 12 18 3
238 1ix 1540 267° 400 4601 17z
(e _T_T> e (7%7‘22@“3)@*

2476 8z 227> 3595 6799 1552 477 148
T _ 2 L3 _ — 222
(81 27>CA"1 FCF+<27 81 )C CF) (( % T T T3

920, 34205 326 165 7126 232
+208C3>C3F+( & - ”>n,TFc2 ( & _ ”)TFC,%

9 162 27 81 27

(4863,5;7 . 39;”2 ) 1(1)234 LT 2260§3> (% + %;”2) WT%Cp
. (22043 27 190 149”2 _ 13"; )cz Cr+ (1789156 + “227” 323§3> cAn,TFcF> L2
N (( 16811 39jn +4zzg _7;1_0 2In(2) + 660¢5 +28ﬂ2§3 +2404§5> Cy
. (1422251 291 2;:: 285217;4 +43966”2 n(2) _%_ 120¢5 — 19’?) CaC}
. (8053 356130 1122712) roce (6932(:3 ~ 8?223 . 28575“ N 1;4 _ “984772 1n(2)>n,TFc%
. ( 171918 12;71? . 1(;7;4_ 16928ﬂ21n(2) N 1882774433 _ 100z _56”2§3>C§CF

(83776 99272 n 448§3> WT2C, (156772 510472 3524,

729 81 27 243 8l 9 )CATFCF

+

81 729 * 243 9 9
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1754597% 219365 41303z* 3776 1472 1072In*(2) = 8576Li4(})
- - - In(2) + —=7z%1n2(2 2
( 972 186~ 2430 9 T M@yt g
6481605 2987°C; 89605\ ., 8584738 1513037> 4703z% 1888 736 ,
T n(2) — =2 21n2(2
TR tTg o )Tt Tese 2187 15 T g 7 @) -7 In2)
536In*(2)  4288Lis(}) 126400, 7672

27 9 81 9
+ 1429.62034756690622959783C 4 C% — 3126.14625382895615802902C3 Cr-
+ 181.97737877492915588766C%T - + 345.53350842018910941336C%.

- 136§5> C,Crn Ty — 95.12984922305611775005C,C5 Ty

256¢5

1287> 23936 32z*
15 81 135 9

(741898 66327%  884rx*

1215 243

6561 + 243

In this expression, the bottom-quark mass in L, =
In(u?/m3) is renormalized in the pole scheme. In this
scheme, the hard function satisfies the following RGE,

dh, (u)
dlnp

(m0) W (m)
= | = (e (1) In o+ 277 (o™ (u)) | by ().
b
(51)

At a given order in a,, all terms containing L, are
determined by the anomalous dimension coefficients and
lower-loop results, and all our L# terms agree with the
derivation in Ref. [71]. The L, -independent terms at three
|

)

1664, 70887> 211888 647
C,.T? - -
> F F+< 243

20672 ()
+ C%) CpnlzT%:| <O‘A (ﬂ)

2
729 405 | 27 >CF"’TF

3
yp ) +0(a). (50)

loops are, however, genuinely new. In Eq. (50), all terms
through to two loops are analytic and agree with
Refs. [61,69-71]. At three loops, all terms containing
L,, as well as the light fermionic pieces and the color
factor CpT% are also analytic. The remaining ones are
obtained numerically to at least 100 decimal digits, of
which we display 20 in the present write-up. An electronic
version of Eq. (50) can be downloaded from the web-
page [164].

Upon substituting the numerical values C, = 3,
Cr=4/3, Tr =1/2, and n; = 4 for the color and flavor
factors, the expansion of &g for y = m,; reads

0) 2
hy(my) = 1 —4.5483113556160754788 <M> — 19.286105172591724459 (“5 (mb)>
T /1
a(4)(m ) 3
- 181.16173810663548219<S7h> +O@). (52)
T

An interesting detail to note is that the coefficient /13, which
was treated as a nuisance parameter in Ref. [71] and varied
in the range i3 = 0 = 80, comes out of the genuine three-
loop calculation as i3 = —181.1617381 and therefore more
than a factor of two larger in magnitude compared to the
variation boundaries.

VII. CONCLUSION

We compute the three-loop QCD corrections to heavy-
to-light transitions for the entire set of Dirac bilinears
which are independent in four space-time dimensions.

The calculations use state-of-the art multiloop techniques
and a well-established workflow, starting from the gen-
eration of the amplitude and the projection onto Lorentz-
covariant structures. The resulting scalar integrals are
subsequently reduced to master integrals. A certain subset
of master integrals (one- and two-loop integrals, three-loop
leading color and fermionic integrals apart from the ones
with a single closed heavy fermion loop) are obtained
analytically, while for the others the differential equations
are solved via the “expand and match” method, which uses
expansions about several kinematic points and as such
gives semianalytic results for the form factors.
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Infrared subtraction is applied to the ultraviolet renor-
malized QCD form factors at three loops, and finite
matching coefficients to SCET are obtained. In this
procedure, the poles in the dimensional regulator e cancel
to at least 12 digits and we thus estimate the precision of the
finite part to be at least ten digits. From the matching
coefficients of the tensor current at lightlike momentum
transfer, the three-loop correction to the hard function in
B — X,y is extracted. Further phenomenological applica-
tions to rare semileptonic decays, top-quark or muon
decays are left for future investigations.

Electronic results are provided as Mathematica and
Fortran codes which allow for fast and precise numerical
evaluations for physically relevant values of the square of
the four-momentum transfer (we do not consider values of
s/m? > 1, though). The supplementary material to this
paper can be found on the websites [55,164,167].
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APPENDIX A: PROJECTORS

The scalar form factors introduced in Eq. (3) are obtained
by the application of the appropriate projectors via

i q*
+¢;}M%+M,

i
P = | 5o+ o,

+g

Fi = Te[P4, 1), (A1)
where the Pj; are given by
Ko v _ L Ua H v __ v M
DYV — 4T 919 — 14
X - - +gfl,j% (2 + m), (A2)

with p=q,+¢,q9g=qg,—q2, i =1,2,3,and j =1, ...,4. The coefficients are functions of m, s, and ¢ and read

s (=3 +2¢)m?s

m?(=2m? + 2em?* — s)

STy e ) A STy e e K TG s s
92 = _4(1 _ 6;{; —m?)?’ 922 = m:E;Ti)_(szi_;zz;S) ) 932 = 4(;—_3:)—(56_)11’::2)3 J (A4)
e e IR e SRR o
9i1 = 4(1—¢) (SS —m)?’ 1= 4((1__3 ;;(ie)_mni;)B J g1 = mif(—fji)—é—f_enjz; ) ) (A6)
iy - m? m?(—m?* — 25 + 2es) o (=34 2¢)m* (A7)

di—e)(s—mip P27 7

di-e)(s—my B2

41 —e)(s —m?)*’
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. m? . (Z3+2e)m? W mA(=5m% 4 4em? 4 25 — 2es) (A8)
T3ZgU—e)s—m2)? BT 8(—e)(s—md)p P37 8(1—¢)(s —m?)? ’
S (A9)
g C2(m?—s)’
e (A10)
2(m? — )
o ] r mz ! _0 r m2
=" 2(1-3e+2e*)(m*—s)’ 92']_2(—1—1—5)( 1+2¢)(m? —s)* B == 2(1=3e+2€%)(m?—s)?’
(A1)
. m? —(=3+2¢e)m
Ji2= "~ 2> G2 = 3
(=14 ¢€)(=1+2¢)(m?> - ) 2(=1+¢€)(=1 +2¢)(m* = s)°
2
. m fo_ (=3 +2¢)m* A2
B2= 4 em =52 2T T o) (-l 2e)(m —s) (A12)
m?
913 :O’gtzs :4( 1+ e)(m —s)z’ 9%,3 20’93,3 =0, (A13)
. m? . (=3 +2¢)m* 0. - — e(=3 +2¢)m*
N4 A Be 12 m2 =52 P47 20 =3e+2)(m =5  B4T BT T e 2 (P = 5)
(A14)

APPENDIX B: IMPLEMENTATION IN
COMPUTER CODE

In this appendix we present the implementation of the
three-loop form factors for the heavy-to-light transition in
the Fortran library Frh2l. The library numerically evaluates
the third-order corrections to the form factors. The code is
deposited on Zenodo [167] and also available at the web
address [55] where documentation and sample programs
can be found. The code provides interpolation grids and
series expansion which can be used for instance in a
Monte Carlo program.

We do not implement all series expansion presented in
Eq. (30), instead we use Chebyshev interpolation grids in the
range —75 < s/m* < 15/16. Around the singular points
s/m?> = 1, —oco we implement the power-log expansions.

The Fortran library FFh21 can be cloned from Gitlab with

$ git clone https://gitlab.com/formfac-
tors31l/ffh2l.git

A Fortran compiler such as gfortran is required. The
library can be compiled by running

$ ./configure

make

Running make without further arguments generates the
static library 1ibffh21 . a which can be linked to the user’s
program. The module files are located in the directory
modules. They must be also passed to the compiler.
This gives access to the public functions and subroutines.
The names of all subroutines start with the suffix £fh21 .

In order to explain the functionality of the library, let us
analyze the following sample program which evaluates the
vector form factor at three-loops.
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program examplel
use £fh21
implicit none

double complex :: ff
double precision ::
integer :: eporder

s =0.3d0

print *, “EXAMPLE 1: Numerical evaluation of”
print *,"the vector form factor F1 at s = 3/10”

"

print *,©

print *, “Default configuration:”
print *, " - nl =4"

print *,™ - nh =1"

print *, "

do eporder = -6,0

print *,“F1(s=",s,“, ep = ”,eporder,“ ) =", £fh2]l veFl (s, eporder)

enddo

print * , w7

print *, “Form factor: finite remainder after IR subtraction”
print *,“F1*fin(s=",s,%) =", £ffh21 veFl fin(s)

end program examplel

In the preamble of the program, one includes use
ffh21 to load the respective module. The form factor
is computed by the function £fh21 veF1 (s, epor-
der) which returns the corresponding order in € of the
ultraviolet renormalized (but not infrared subtracted) form

factor F 11"<3>. The result is the third-order correction in the

expansion parameter a§”') /(4r), the strong coupling con-

stant renormalized in the MS scheme with the renormal-
ization scale set to the heavy-quark mass: y = m.

For the other form factors, the user can replace veF1 in
the function name with one of the following: veF2,
veF3, axFl, axF2, axF3, scFl, psFl, teFl,
teF2, teF3, teF4. Note that the form factors scF1
and psF1 have been implemented using as renormalization
constants for the currents Z; = Z, = Z)°. In addition to
the 12 routines aforementioned, the user can utilize
scF10S and psF10S to obtain results for the scalar
and pseudoscalar form factors with Z, = Z, = Z9S for the
current renormalization.

The functions return a double complex and have the
following two inputs:

double complex function f£fhl2 veFl (s,
eporder)

double precision, intent (in) :: s
integer, intent (in) :: eporder

The variable s is the value of the momentum transfer
normalized with respect to the squared quark mass. The
order in the dimensional regulator € = (4 — d)/2 is set by

the integer eporder. Only the values eporder=-6,

, 0 are valid. These form factors still contain poles
since we do not perform the infrared subtraction. In this
way, any infrared subtraction scheme can be applied and it
is the task of the user to implement it.

For completeness, we also implement the finite remain-
der at three loops after minimal subtraction of the infrared
poles, as described in Sec. I D. In the example above, the
finite remainder for the vector form factor F 11”(3) is obtained
using the function ££h21 veF1 fin(s). It returns the
third-order corrections in the expansion parameter

aﬁ”’ ) /(4r). Here the strong coupling constant is renormal-
ized in the MS scheme with the renormalization scale
1 = m. The finite remainders for the other form factors are
obtained substituting veF1l with one of the following:
veF2, veF3, axF1l, axF2, axF3, scFl, psF1l,
teFl, teF2, teF3, teF4. Also in this case, the
routines with scF1 and psF1 correspond to the form

factors renormalized with Z; = Z, = ZMS. We provide
additionally two routines identified by scF10S and
psF10S for the finite remainder of the scalar and pseu-
doscalar form factors with Z; = Z, = Z95.

Each function returns a double complex and has the
following two inputs:

double complex function £fhl2 veFl
fin (s)
double precision, intent (in) :: s
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The variable s is the value of the momentum transfer
normalized with respect to the squared heavy-quark mass.

In the current implementation, the numerical values of the
Casimir are hard coded for QCD in the file £fh21
global.F90. We set Cr =4/3,C4 =3,Tr = 1/2. By
default the number of massless and massive quarks are set to
n; =4 and n;, = 1, respectively. The user can modify the
values, forinstance n; = 3 and n;, = 0, in the following way:

integer :: nl =3

integer :: nh =0

call £fh21 set nl(nl)

call £fh21 set nh(nh)

In addition to the Fortran library, we provide also a
Mathematica interface by making use of Wolfram’s
MathLink interface (for details on the setup see
Ref. [170]). The interface provides a convenient tool for
numerical evaluation and cross-check of our results within
Mathematica. The interface is complied with

$ make mathlink

To use the library within Mathematica, the interface must
be loaded:

In[] := Install [“"PATH/ffh21"]

where PATH/ffh21 is the location where the
MathLink executable £fh21 is saved. The ultraviolet
renormalized form factors in QCD are evaluated with a
call to one of the following functions:

FFh2lveFl FFh2lveF2 FFh21lveF3

FFh2laxF1l FFh2laxF2 FFh2laxF3

FFh2lscF1l FFh21scF10S

FFh2lpsF1l. FFh21psF10S
FFh2lteFl FFh2lteF2 FFh2lteF3 FFh2lteF4
For instance, the order €° in the ultraviolet renormalized

form factor ' T’G) is obtained with the following command:
In[] s =3/10;
In[] eporder = 0;
In[] := FFh2lveF1l[s, eporder]
Out[] :=2439.87
The finite remainders of the form factors after infrared
subtraction are obtained by calling the functions
FFh21lveF1lFin FFh2lveF2Fin FFh21lveF3Fin
FFh2laxF1Fin FFh2laxF2Fin FFh2laxF3Fin
FFh21lscF1lFin FFh21scF10SFin
FFh21lpsF1Fin FFh21lpsF10SFin
FFh2lteFlFin FFh2lteF2Fin FFh2lteF3Fin
FFh2lteF4Fin
For example, the finite remainder of F §
lated with

®) is calcu-

In[] :=s=3/10;
In[] := FFh2lveFlFin[s]
Out[] := -8467.54

Also in Mathematica, it is possible to modify the default
values of n; and n;, in the following way:
In[] :=nl=3;

[
In[] := nh=0;
In[] := FFh21SetNl [nl]
In[] := FFh21SetNh [nh]
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