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We compute spectral functions in a scalar ϕ4-theory in three spacetime dimensions via the spectral
functional renormalization group. This approach allows for the direct, manifestly Lorentz covariant
computation of correlation functions in Minkowski spacetime, including a physical on-shell renormaliza-
tion. We present numerical results for the spectral functions of the two- and four-point correlation functions
for different values of the coupling parameter. These results agree very well with those obtained from
another functional real-time approach, the spectral Dyson-Schwinger equation.
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I. INTRODUCTION

We set up the spectral functional renormalization group
(fRG) for a scalar ϕ4-theory in three spacetime dimensions.
The spectral fRG is a functional real-time approach for the
direct computation of correlation functions in Minkowski
spacetime. It is based on the general functional real-time
setup introduced in [1–4], first applied to Dyson-Schwinger
equations (DSEs). For a recent bound-state analysis with
the spectral Bethe-Salpeter equation, see [5]. The approach
is based on the Källén-Lehmann spectral representation
[6,7] for the two-point function, which allows us to
analytically access the momentum structure of functional
diagrammatic expressions. The setup has been extended to
the fRG approach by using a masslike Callan-Symanzik
(CS) regulator in [8] and has been applied to gravity in [9].
The CS regulator sustains spectral representations along
with Lorentz invariance, and it allows for a spectral
renormalization consistent with all symmetries at hand;
for more details, see [1,8], and for other applications of
the functional Callan-Symanzik equation, see [10–12].
Moreover, in [8], the concept of flowing renormalization
has been introduced, which allows for an on-shell renorm-
alization at each renormalization group scale. For further
real-time applications of the fRG in a broad variety of
research fields, see, e.g., [9,13–31]. Further real-time com-
putations include nondirect reconstruction methods, which

utilize Euclidean data to estimate the respective real-time
correlation functions. For recent results, see, e.g., [32,33].
In the present work, we accompany the conceptual

progress made in [8] with an application to spectral
functions in the three-dimensional ϕ4-theory. This allows
us to directly compare our results with those obtained in [1]
within the spectral DSE approach. Both functional
approaches implement different resummation schemes
for the correlators of the given theory through infinite
towers of one-loop (fRG) or two-loop (DSE) exact dia-
grammatic relations. Within an fRG implementation, the
successive momentum-shell integration of loop momenta
p2 ≈ k2 with the infrared cutoff scale k already provides an
average momentum dependence within simple approxima-
tions. Due to their intricate spectral representation, this is
particularly beneficial for including nontrivial vertices into
the flow, e.g., via momentum-independent but cutoff-
dependent approximations.
This work is organized as follows: In Sec. II, we briefly

discuss the spectral functional approach. In Sec. III, we set
up its application to the functional renormalization group
for a scalar theory. After discussing the different phases of
the theory in Sec. IV, we present our results in Sec. V. This
includes a detailed comparison to those obtained with the
spectral DSE in [1]. We summarize our findings in Sec. VI.

II. SPECTRAL FUNCTIONS AND
FUNCTIONAL EQUATIONS

The central idea of spectral functional approaches is to
use the spectral representation for all propagators and
vertices in the nonperturbative loop diagrams. Then, the
momentum integrals can be performed analytically, and the
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remaining numerical task boils down to the solution of real
spectral integrals.
Most of the relations in the present section can be

generalized straightforwardly to general field theories.
For the sake of simplicity, we already restrict ourselves
to a ϕ4-theory in (1þ 2) dimensions, for which also the
explicit numerical results in the present work are obtained.
Its classical action reads

S½ϕ� ¼
Z

d3x

�
1

2
ϕð−∂2 þ μÞϕþ λϕ

4!
ϕ4

�
: ð1Þ

For μ > 0, the minimum of the classical potential is at
vanishing field. Then, the mass parameter can be identified
with the classical mass squared, m2

ϕ ¼ μ. For μ < 0, the full
potential exhibits nontrivialminima, and the classicalmass of
the theory follows from the effective potential asm2

ϕ ¼ −2μ.

A. Spectral properties of the two-point function

The spectral representation of the propagator of a given
field ϕ is at the core of the spectral functional approach. In
the present work, we assume the Källén-Lehmann (KL)
representation of the full propagator Gðp0; p⃗Þ of the field ϕ
to hold:

Gðp0; p⃗Þ ¼
Z

∞

0−

dλ
π

λρðλ; p⃗Þ
λ2 þ p2

0

; ð2aÞ

where 0− ensures that massless poles are taken into account
properly. The spectral function ρðλÞ is the probability
density of creating a Fock state with energy λ from the
vacuum in the presence of the quantum field ϕ. It is related
to the propagator by

ρðω; p⃗Þ ¼ 2ImGðp0 ¼ −iðωþ i0þÞ; p⃗Þ: ð2bÞ

The propagator is a function of p2 due to Lorentz
symmetry. This allows us to drop any explicit p⃗ depend-
ence from now on and identify p2

0 ¼ p2.
The spectral function ρ encodes all dynamical, pertur-

bative, and nonperturbative information of the propagator.
In Eq. (2), p0 denotes the Euclidean andω theMinkowski

frequency. In the absence of higher-order resonances, the
spectral function of the ϕ4-theory is given by

ρðωÞ ¼ 2π

Zϕ
δðω2 −m2

poleÞ þ θðω2 −m2
scatÞρ̃ðωÞ; ð3Þ

with ρðωÞ ¼ ρðω; 0Þ and ρ̃ðωÞ ¼ ρ̃ðω; 0Þ for the scattering
continuum ρ̃. Themassmpole in Eq. (3) is the polemass of the
full quantum theory, defined by G−1ð�mpole; 0Þ ¼ 0.
The scattering continuum sets in at λ2 ¼ m2

scat. In the
case of a nonvanishing background field, the theory
admits 1 → 2 scattering (broken phase), and we have
mscat ¼ 2mpole. Figure 1(a) shows the full scattering tail
of the propagator as a function of the frequency ω and
spatial momentum jp⃗j in the broken phase. Higher thresh-
olds of 1 → N scattering processes lead to further dis-
continuities in the scattering tail and are typically strongly
suppressed. In the absence of 1 → 2 scatterings (symmetric
phase), the first allowed scattering is 1 → 3, and the
scattering threshold is mscat ¼ 3mpole; the respective spec-
tral function is depicted in Fig. 9 and discussed there.
If the spectral representation in Eq. (2) holds, all non-

analyticities of the propagator lie on the real frequency axis.
These nonanalyticities are given by either poles or cuts.
Poles originate from asymptotic states that overlap with the

FIG. 1. Propagator and vertex scattering spectra in a (1þ 2)-dimensional ϕ4-theory in the broken phase. All quantities are measured in
units of the pole mass, with a coupling strength λ=mpole ¼ 20. (a) Scattering tail of the propagator spectral function as a function of
frequency and spatial momentum in the (1þ 2)-dimensional ϕ4-theory in the broken phase. It features a sharp onset at the 1 → 2 particle
onset and explicit Lorentz invariance. Higher scattering onsets are strongly suppressed. (b) Spectrum of the resummed four-vertex in an
s-channel approximation as a function of frequency and spatial momentum. It features Lorentz invariance and exhibits a sharp onset at
the two-particle threshold. The scattering spectrum also has a visible three-particle onset at 3mpole.
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propagator of the field ϕ, while cuts represent scattering
states.
For the propagator of a physical field that describes an

asymptotic state, the spectral function is positive. Further-
more, the canonical commutation relations imply a nor-
malization via the sum rule,

Z
∞

0−

dλ
π
λρðλ; p⃗Þ ¼ 1; ð4Þ

for all spatial momenta. Inserting the spectral function (3)
into (4), we arrive at

1

Zϕ
¼ 1 −

Z
∞

mscat

dλ
π
λρ̃ðλ; p⃗Þ: ð5Þ

Equation (5) comprises the well-known property that the
on-shell amplitude 1=Zϕ is bounded from above by unity,
Zϕ ≥ 1, as the scattering tail carries part of the total
probability.

B. Spectral properties of the four-point function

Vertices also admit spectral representations, which get
increasingly complicated for higher-order correlation func-
tions due to their increase in arguments. In the present case,
we restrict ourselves to an s-channel approximation of the
full one-particle irreducible (1PI) four-point function or
vertex. This leaves us with a single momentum argument
and an accordingly simple spectral representation. The
four-point function is given by the fourth field derivative of
the effective action Γ½ϕ�, whose nth field derivatives ΓðnÞ½ϕ�
are the 1PI n-point functions. We use a spectral represen-
tation for this s-channel vertex [1],

Γð4Þðp0; p⃗Þ ¼ λϕ þ
Z
λ

ρ4ðλ; p⃗Þ
λ2 þ p2

0

;

ρ4ðω; p⃗Þ ¼ 2ImΓð4Þðp0 ¼ −iðωþ i0þÞ; p⃗Þ; ð6Þ

where λϕ is the classical vertex in Eq. (1) and

Z
λ
¼

Z
∞

0−

dλ
π
λ: ð7Þ

Analogously to the spectral function of the propagator, ρ4 is
defined by the discontinuities of the four-point function;
see Eq. (6). Also, for the four-point function, the spatial
momentum dependence of the spectral function ρ4ðω; p⃗Þ
follows from the function at vanishing spatial momentum,
ρ4ðωÞ ¼ ρ4ðω; 0Þ via a Lorentz boost.
Figure 1(b) shows the spectrum of the four-point

function in the s-channel approximation discussed in
Sec. IV. It shows the 2 → 2 scattering onset at twice the
pole mass mpole of the field ϕ. The next threshold from the
2 → 3 scattering is also visible, but the result also contains
the strongly suppressed threshold of higher-order scattering

processes. A more detailed discussion of our results is
given in Sec. V.

C. Structural properties of diagrams

In the spectral functional approach, spectral representa-
tions are utilized to rewrite diagrams in terms of momentum
loop integrals over classical propagators with spectral
masses and residual spectral integrals; for a general dis-
cussion, see [1]. In the present work, we apply this
approach in the context of the functional renormalization
group, amounting to the spectral fRG approach detailed in
Sec. III. This leads to one-loop exact relations for corre-
lation functions in terms of full propagators and vertices. In
addition, we use a one-loop closed, resummed Bethe-
Salpeter kernel to compute the four-point function.
As discussed above, the spectral fRG leads to perturba-

tive one-loop momentum integrals in diagrams, which can
be solved analytically. The nonperturbative information of
the diagrams, such as pole masses and thresholds, is stored
in the remaining spectral integrals. For the present purpose,
it is sufficient to consider a single external momentum
argument, which is either that of the propagator or the s-
channel momentum of the four-point function. However,
the generalization to diagrams with several external
momenta, as present in the spectral computations of general
n-point functions, is straightforward.
In the present case, we only have to consider diagrams

with one inflowing or outflowing external momentum �p,
and we encounter diagrams of the general form

D½p� ¼ g
Z
q
Vertðp; qÞ

YN
j¼1

GðljÞ; ð8Þ

where li ¼ q; q� p are the momenta of the N propagators,
and we have used the abbreviation

Z
q
¼

Z
ddq
ð2πÞd : ð9Þ

Vertðp; qÞ carries the momentum dependence of all ver-
tices, which we assume to be either a polynomial or rational
function of p and the li, or to admit a spectral representa-
tion. All prefactors are collected in the overall prefactor g.
By inserting the spectral representation in Eq. (2) for each
propagator, the momentum integrals acquire a standard
perturbative form, where the masses are the respective
spectral parameters squared, λ2i . Finally, the spectral
parameters are integrated over, weighted by the respective
spectral function,

D½p� ¼ g
YN
j¼1

Z
λj

ρðλjÞIðλ1;…; λN; pÞ; ð10Þ

with
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Iðλ1;…; λN; pÞ ¼
Z
q
Vertðp; qÞ

YN
j¼1

1

λ2j þ l2j
: ð11Þ

The momentum integral in (11) is readily solved, and the
resulting analytic expression holds true for p∈C. This
gives us access to the spectral function Eq. (2) via the limit
p → −iðωþ i0þÞ. We remark that in the present spectral
fRG approach to the (1þ 2)-dimensional scalar theory, all
integrals are finite, and we can safely change the order of
integration even prior to renormalization. In general, the
interchange of momentum and spectral integration per-
formed in (10) assumes a suitable regularization of the full
integral, which can be done with spectral renormaliza-
tion [1].
The spectral structure of the diagrams allows for a simple

discussion of the emergent scattering thresholds that can be
easily tracked within spectral functional approaches. An
illustrative example is given by the contribution of the
vacuum polarization diagram to the spectral function of a
single scalar field: It features a branch cut that opens at the
sum of the spectral masses of the two propagators. The
spectral function entering the diagram consists of a mass pole
atmpole and a sumof scattering continua ρN starting atNmpole
with N ≥ 2. It follows straightforwardly from the analytic
structure of that diagram that substituting scattering contri-
butions ρN and ρM for the two internal lines directly yields a
contribution to ρNþM. This demonstrates how any scattering
structure, once seeded, gives rise to higher scattering
contributions.

III. SPECTRAL FUNCTIONAL
RENORMALIZATION GROUP

In the spectral fRG approach put forward in [8,9], the
quantum effective action of the theory at hand is obtained

by starting with a theory with an asymptotically large
classical pole mass mϕ → ∞, and then lowering the mass
successively until the physical point is reached. The
respective classical action is given by Eq. (1), with

S½ϕ� ¼
Z

d3x

�
1

2
ϕð−∂2 þ ZϕμÞϕþ λϕ

4!
ϕ4

�
; ð12Þ

with positive or negative μ. The wave function Zϕ has been
introduced for convenience, anticipating the emergence of a
wave function. For asymptotically large pole masses, we
have Zϕ → 1; see Fig. 2(b). Then, (12) reduces to (1), and
the pole mass is given by

m2
ϕ ¼ μ − 3μθð−μÞ; ð13Þ

capturing both the symmetric and broken phases. This
setup captures both theories deep in the symmetric phase
with μ → þ∞ and theories deep in the broken phase
with μ → −∞.

A. Functional Callan-Symanzik equation

The infinitesimal change of the quantum effective action
Γ½ϕ� under a change of the mass μ is governed by the
manifestly finite, renormalized Callan-Symanzik equation
[8,9],

μ∂μΓ½ϕ� ¼
1

2

�
1 −

ηϕ
2

�
ZϕμTr½G½ϕ� þ ϕ2�

−
1

2
μ∂μSct½ϕ�; ð14aÞ

with the anomalous dimension

FIG. 2. Spectral function ρ Eq. (21) for different pole masses mpole=λϕ, measured in the fixed coupling λϕ. (a) Scattering tail ρ̃k for
vanishing spatial momentum p⃗ ¼ 0 as a function of the spectral value ω and the pole mass mpole for 1=20 ≤ mpole=λϕ ≤ 1=10.
(b) Amplitude 1=Zϕ of the pole contribution of the spectral function (21) as a function of the pole massmpole for 1=20 ≤ mpole=λϕ ≤ 1=2.
The classical value for Zϕ is indicated in gray.
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ηϕ ¼ −2
μ∂μZϕ

Zϕ
; ð14bÞ

and the argument ϕ being the mean field which is given by
the expectation value of the quantum field φ; i.e., ϕ ¼ hφi.
The right-hand side depends on the full field-dependent
propagator, which is given in the momentum basis by

G½ϕ�ðp; qÞ ¼ hφφicðp; qÞ ¼
1

Γð2Þ½ϕ� ðp; qÞ; ð14cÞ

where the subscript c refers to the connected part of the two-
point function. The first term on the right-hand side of
Eq. (14a) is the standard one-loop exact contribution to the
flowof the effective action that arises from thevariation of the
mass in the classical action. It was first derived by Symanzik
in [34] in the framework of renormalized perturbation theory,
where the UV divergences cancel order by order in the
perturbative parameter. In nonperturbative flow equations,
this is not sufficient. Starting fromnonperturbative finite flow
equations with a UV-regulating cutoff, one can analyze a
combined RG step of the IR and UV regularization scale,
where a change in the latter evidently induces a second term
in the flow equation that governs the flow of correlation
functions with the UV cutoff. This term can be used to
impose explicit renormalization conditions, which are usu-
ally set implicitly by the initial condition of the IR flow.Most
importantly, as demonstrated in [8], it removes the UV-
divergent terms of the diagrams associated with the flow of
the mass parameter and renders the CS limit finite, where the
UV regularization scale is taken to infinity. In the process, it
leads to the termμ∂μSct½ϕ� in the second line of Eq. (14a). It is
constituted by the finite parts of the UV-cutoff flow that do
not vanish. Such a finite term arises for each UV-relevant
direction and implements the corresponding renormalization
condition. We will refer to these as counterterm flows. The
derivation of (14a) entails its finiteness. Seemingly UV-
divergent diagrams only appear as such, due to the compact
representation of the CS limit of finite flow equations.
In the momentum basis, the trace in (14a) corresponds to

a momentum integral. Note that the effective action Γ½ϕ� in
(14) includes the full mass term 1=2

R
x μϕ

2 in contradis-
tinction to the effective action used in standard fRG
momentum-shell flows. There, the momentum-dependent
regulator part of the mass term is subtracted, and the
physical theory is reached when it vanishes. In the present
setup, the μ-dependent effective action is that of a physical
theory with mass parameter μ, and the flow is one in
(physical) theory space. In contrast to usual momentum-
shell flows, this physical flow both is manifestly Lorentz
invariant and sustains the causality of physical correlation
functions throughout the flow, allowing for the use of the
Källén-Lehmann spectral representation Eq. (2).
Compared to the Wetterich equation [35], with a

momentum-dependent infrared regularization, the novel

ingredient in the functional Callan-Symanzik Eq. (14) is
the explicit counterterm flow, μ∂μSct½ϕ�. The counterterm
flow has been derived in a manifestly finite limit of standard
momentum cutoff flow equations, as discussed in detail in
[8]. This derivation entails that the flow of the counterterm
originates from a closed one-loop expression, such
as the trace in Eq. (14) itself; i.e., μ∂μSct½ϕ� ∼ diagrams.
Accordingly, the counterterm flow contains no tree-level
contributions to the respective correlation functions. This
entails that classical values of the correlation functions are
solely given by the respective choice of tree-level values
specified in the classical action Eq. (12), and in particular
cannot be further changed by the specification of renorm-
alization conditions. In consequence, the latter can only be
used to renormalize the flow contributions, but not the initial
conditions of the flow. This excludes, for example, that the
counterterm flow rearranges the theory from the sym-
metric into the broken phase or vice versa by μ∂μSct ∝
�const:μ

R
ϕ2. However, the countertermcan contain similar

terms proportional to λϕ=mpole ¼ λeff .
In particular, the counterterm flow allows for flowing

renormalization conditions, and we shall use it to adjust a
flowing on-shell renormalization, based on the spectral on-
shell renormalization put forward in [1]. Then, the pole
mass mpole is identified with mϕ in (13) in both phases:
m2

pole ¼ μ − 3μθð−μÞ. In this physical RG scheme, the
phase transition between the symmetric and broken phases
happens for m2

ϕ ¼ 0. Hence, we approach the phase
transition from both the broken and the symmetric phase
in the limit μ → 0, and the flows are taking place in the one
or the other phase; see Fig. 3. Thereby, our setup avoids
flows through the strongly interacting phase transition
regime, which are usually present in momentum cutoff
flows. This minimizes the systematic error stemming from
the strong dynamics in the vicinity of a phase transition,
where the flows are highly sensitive to truncation artifacts.
However, it is in principle possible to flow through the
phase transition, which can be advantageous if it is difficult
to identify a proper starting point in one phase at which the
theory is particularly simple. An example for this situation
can be found in quantum mechanics, where the theory for
μ → −∞ does not approach the classical limit, but rather
the instanton-dominated regime.
In the present work, we consider the flow of the inverse

propagator within the spectral representation. The flow is
given by

μ∂μΓð2Þðp2Þ ¼
�
1 −

ηϕ
2

�
Zϕμ

�
Dpolðp2Þ − 1

2
Dtadðp2Þ

�

þ
�
1 −

ηϕ
2

�
Zϕμ −

1

2
μ∂μS

ð2Þ
ct ; ð15Þ

where Dtad and Dpol refer to the tadpole and polarization
diagrams; see Fig. 5. Their general form, in terms of the
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spectral representation for the propagator and four-point
function, is discussed in Appendix A. Moreover, all
quantities in (15) depend on the chosen background ϕ.
For general spacetime-dependent backgrounds ϕðxÞ, this
would lead to Γð2Þ½ϕ�ðp; qÞ. In the explicit computations,
we consider the background ϕ0, which is the constant
solution of the equation of motion,

δΓ½ϕ�
δϕ

����
ϕ¼ϕ0

¼ 0: ð16Þ

With this physical choice for the background, the general
field-dependent propagator Eq. (14c) reduces to the physi-
cal propagator Gðp2Þ in the absence of source terms:

Gðp2Þ ¼ 1

Γð2Þ½ϕ0�ðp2Þ : ð17Þ

In the symmetric phase, we have ϕ0 ¼ 0, while ϕ0 ≠ 0
signals the broken phase. At constant fields, the propagator

(14c) reduces to Gðp;qÞ¼Gðp2Þð2πÞdδðpþqÞ. Similarly,
we have Γð2Þ½ϕ0�ðp; qÞ ¼ Γð2Þ½ϕ0�ðp2Þð2πÞdδðpþ qÞ.
In three dimensions, the two phases are separated by a

second-order phase transition in the Ising universality class.
From now on, we drop the field argument ϕ0. It is implicitly
understood that all correlation functions are evaluated
at ϕ ¼ ϕ0.
In a final step, we substitute μ with �k2, to keep the

relations to standard fRG flows with momentum cutoffs
simple, where k is commonly used. This facilitates the
comparison and benchmarking of the real-time results
obtained with the spectral fRG. For example, the three-
dimensional ϕ4-theory has been studied abundantly within
the Euclidean fRG, including systematic studies of the
convergence of approximation schemes; for a recent
review, see [36]. These results carry over straightforwardly
to the present approach, and the Euclidean correlation
functions obtained from the spectral functions can be
directly compared. This substitution leads us to

k2 ¼ jμj; ∂t ¼ k∂k ¼ 2μ∂μ; ð18Þ

where the (negative) RG time t ¼ logðk=krefÞ is measured
relatively to a suitable reference scale or mass.

B. Spectral on-shell renormalization

We proceed with discussing the on-shell spectral renorm-
alization, using the direct access to Minkowskian momenta.
In (1þ 2) dimensions, both diagrams in the CS flow of the
inverse propagator (15) are manifestly finite and do not
need regularization. The flow of the counterterm action
μ∂μSct only guarantees the implementation of the chosen
renormalization conditions. The (1þ 2)-dimensional
ϕ4-theory is super-renormalizable, and it has only one
UV-relevant direction. This leaves us with one renormal-
ization condition for the mass. Now, we use on-shell
renormalization to keep the full pole mass on the classical
input mass (13) with m2

pole ¼ k2 in the symmetric phase,
and m2

pole ¼ 2k2 in the broken phase. This leads us to

FIG. 3. Schematic phase diagram with respect to the mass parameter μ. The phase boundary is located at μ ¼ 0. The flow is initiated in
the deep UV, i.e., jμj ¼ k2 → ∞, with the respective (classical) initial effective potential.

FIG. 4. Diagrammatic notation used throughout this work:
Lines stand for full propagators, small black dots stand for
classical vertices, and larger blue dots stand for full vertices.
The crossed circle represents the scale derivative of the mass
parameter.

FIG. 5. Renormalized CS equation for the inverse propagator.
The notation is given in Fig. 4.
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(i) Symmetric phase:

Γð2Þ½ϕ0�
����
p2¼−k2

¼ 0: ð19Þ

(ii) Broken phase:

Γð2Þ½ϕ0�
����
p2¼−2k2

¼ 0: ð20Þ

In the symmetric phase, the first allowed scattering process
is the 1 → 3 scattering, and the onset of the scattering
continuum is located at 3 times the pole mass. In turn, in the
broken phase with 1 → 2 scattering, the onset of the
scattering continuum of the spectral function is located
at twice the pole mass. Thus, the spectral function (3) reads

ρðλÞ ¼ 2π

Zϕ
δðλ2 −m2

poleÞ þ θðλ2 −m2
scatÞρ̃ðλÞ; ð21Þ

with mscat ¼ 3mpole (symmetric phase) and mscat ¼ 2mpole

(broken phase). In Fig. 2, we show the scale evolution of
the spectral function ρ in the broken phase: in Fig. 2(a), we
depict the scattering tail ρ̃, and in Fig. 2(b), we depict the
amplitude of the pole contribution. All quantities are
measured relative to the coupling λϕ.
The spectral tail is rising toward smaller pole masses for

a fixed classical coupling, and in turn the amplitude 1=Zϕ

of the pole contribution is decreasing. In combination, the
sum rule (4) holds during the evolution. The growing
importance of the scattering processes can be understood
from the fact that the dynamics of the theory only depend
on the dimensionless ratio λϕ=mϕ, withmϕ ∝ k. Hence, the
effective coupling grows strong for smaller pole masses,
and on the other hand, the dynamics of the theory are
vanishing for asymptotically large pole masses.
In contrast to the Callan-Symanzik or mass regulator

used in the present work, commonly used regulators in
Euclidean flows decay for momenta larger than the IR
cutoff k. This provides manifestly finite flows without the
need of further renormalization. Moreover, for Euclidean
momenta, the respective flows of lower-order correlation
functions decay faster than for a CS regulator. In
Minkowski space, however, the CS or mass regulator
has the welcoming property that the one-loop flow of
ρðωÞ contains only classical correlation functions and is
maximally local. While this is trivial in the symmetric
phase, where the one-loop flow only shifts the pole mass
and does not generate a scattering continuum, it is non-
trivial in the broken phase. There, the flow of the scattering
continuum is given by a single delta function at the onset
of the scattering spectrum, which originates from
∂tImΓð2Þ ∝ δðω2 − 4m2

poleÞ. Since the mass pole constitutes
the dominant part of the propagator, the flow of the spectral
function at spectral values larger than the flowing onset

2mpole, which is solely induced by the scattering tail, is
subleading.

C. Flowing with the minimum

In general, the flow equation (14a) can be evaluated for
arbitrary values of the external field ϕ, which requires the
inclusion of the full effective potential. However, this goes
beyond the scope of this work, and we simply evaluate the
flow on the solution ϕ0 of the equation of motion (16). This
is a commonly used truncation, as it gives access to the
physical correlation functions.
In the present fRG approach with the spectral CS

regulator, the flow takes place in theory space, and the
effective action is physical for all values of k. In the broken
phase, the minimum of the full effective potential depends
on k, and the total mass flow of the two-point function is
given by the flow diagrams originating from the CS
equation, ∂tΓð2Þ½ϕ0�ðpÞ and a term proportional to the mass
flow of ϕ0,

d
dt

Γð2Þ½ϕ0�ðpÞ ¼ ∂tΓð2Þ½ϕ0�ðpÞ þ ð∂tϕ0Γð3Þ½ϕ0�ÞðpÞ: ð22Þ

The novel ingredient in the present setup originates in the

tree-level k dependence of ϕ0 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6k2=λϕ

q
þOðλϕkÞ,

where the second term comprises the loop corrections.
This tree-level dependence is usually absent in the flow of
the minimum in standard momentum-shell flows. There,
∂tϕ0 only comprises the effects of the momentum shell
integration, and hence is inherently one-loop and beyond.
The tree-level k dependence of ϕ0 in the present case
triggers a tree-level k dependence of ∂tϕ0Γð3ÞðpÞ, and the
tree-level flow of the physical two-point function consid-
ered here reads

d
dt

Γð2Þ
����
tree-level

¼ −2k2 þ ∂tϕ0Sð3Þ½ϕ0� ¼ 4k2; ð23Þ

where the classical three-point function is given by
Sð3Þ½ϕ� ¼ λϕϕ. Note that only the combination of both
terms leads to the expected positive flow of the physical
mass, while the flow of the mass parameter −k2 has a
negative sign.
To obtain the full momentum structure of the second

term in Eq. (22), we first note that the additional leg of the
three-point function is always augmented with an incoming
momentum of zero, as it is contracted with the scale
derivative of a constant field. The full momentum depend-
ence can then be incorporated via the DSE of the three-
point function, which allows for an exact diagrammatic
flow of the two-point function on the physical minimum. In
the presence of approximations, a fully self-consistent
treatment would require us to use the integrated flow of
Γð3Þ½ϕ0�ðp; 0Þ. However, the flow of Γð3Þ½ϕ0� also includes a
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similar additional term to (23), which is proportional to the
four-point function. To avoid solving the flow of the three-
and four-point functions, we resort to the DSE to include
the leading momentum dependence of the (contracted)
three-point function. To ensure the correct RG scaling of
the flow equation, we further employ the skeleton expan-
sion in the DSE, where every vertex is dressed.
Approximating Γðn>4Þ ≈ 0 and dropping the remaining
two-loop diagrams, we arrive at the simple diagrammatic
structure of the three-point function depicted in Fig. 6.
Additionally, using the DSE for Γð3Þ in Eq. (22) dem-

onstrates the structure of the flow as a total derivative. To
make this explicit, we choose the vertical leg in Fig. 6 to be
contracted with ∂tϕ0. Then, the three-point functions
connected to this leg carry only internal momenta, and
we approximate them as constant. With that, the first fish
diagram and the triangle diagram in Fig. 6 are proportional
to the tadpole and polarization diagrams, respectively, and
the second term on the rhs of the flow (22) reads

ð∂tϕ0Γð3Þ½ϕ0�ÞðpÞ¼ ∂tϕ0



Sð3Þ½ϕ0�−

1

2
Γð3Þ½ϕ0�DtadðpÞ

−DfishðpÞþΓð3Þ½ϕ0�DpolðpÞ
�
: ð24Þ

Note that the explicit three-point functions on the right-
hand side are now momentum-independent. For the full
expressions of the spectral diagrams, we refer to
Appendix A. We discuss our approximations for the
remaining vertices in Sec. IV.
Substituting (15) and (24) into (22), we eventually arrive

at the full flow equation of the two-point function. Its
diagrammatic representation is depicted in Fig. 7. It is
illuminating to consider the one-loop structure of the flow,
where the nature of the flow being a total derivative can be
read from Fig. 7. There, the red crossed circle comprises the
total derivative of the internal propagators in the (one-loop)

polarization and tadpole diagram, while the fish diagram
accounts for the running of the three-point vertices. The full
equation reads

d
dt

Γð2Þ½ϕ0�ðpÞ
¼ ð∂tϕ0ÞSð3Þ½ϕ0� − ð2 − ηϕÞZϕk2

þ Ṙ
�
−
1

2
Dtad þDpol

�
− ∂tϕ0Dfish − ∂tSct½ϕ0�; ð25aÞ

where

Ṙ ¼ ð∂tϕ0Γð3Þ½ϕ0� − ð2 − ηϕÞZϕk2Þ ð25bÞ

is represented as a red crossed circle in Fig. 7. Note the
appearance of a relative minus sign in front of the mass
derivative contribution (second term) to Eq. (25b) due to
μ ¼ −k2 in the broken phase. The first line in (25a) carries
the trivial, tree-level running of the inverse propagator. It
consists of the running of the mass parameter and the
classical part of the three-point function, connected to the
flow of the minimum. Its mean-field value cannot be altered
by the renormalization condition and is, analogously to the
respective term in Ṙ, crucial to recover the correct sign of
the flow; see Eq. (23). A detailed evaluation of Eq. (25a)
can be found in Appendix B.

IV. APPROXIMATIONS AND REAL-TIME FLOWS
IN THE SYMMETRIC AND BROKEN PHASES

In the following section, we discuss the approximations
used for the higher correlation functions, which lead to
nontrivial spectral flow equations in both phases. This
enables us to write down the renormalized flow equations
for the two-point function and evaluate them on the real
frequency axes.
In the ϕ4-theory, correlation functions of an odd number

of fields, Γð2nþ1Þ½ϕ�, are proportional to the mean field ϕ. In
the present approximation, we only consider three- and
four-point functions, setting all the higher correlation
functions to zero:

Γðn>4Þ ≈ 0: ð26Þ

FIG. 6. Truncated DSE for the three-point function in the
skeleton expansion. The notation is given in Fig. 4.

FIG. 7. Diagrammatic representation of the flow of the two-point function on the flowing minimum in the broken phase. The notation
is given in Fig. 4. The red crossed circle comprises the scale derivative of the mass parameter and the three-point function, where the
additional factor of 2 comes from the change from μ to k. The dashed lines indicate the contraction with ∂tϕ0.
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Then, the three-point function is proportional to a product
of the four-point function and ϕ0. This closes our
approximation.
For constant vertices, the tadpole diagram only provides

a constant contribution to the flow of the two-point
function. This contribution is absorbed completely in the
on-shell renormalization conditions, (20) and (19), for the
broken and symmetric phases, respectively. In the sym-
metric phase of the theory with ϕ0 ¼ 0, the tadpole is the
only contribution to the flow of the two-point function.
Hence, the scattering tail originates only from the nontrivial
momentum dependence of the four-point function. In a first
but important step toward the full momentum dependence
of Γð4Þðp1;…; p4Þ, we use an s-channel resummation of the
full four-point function (see Fig. 8):

Γð4Þðp2Þ ¼ λϕ

1þ λϕ
2

R
q Gðpþ qÞGðqÞ

: ð27Þ

In Eq. (27), p2 ¼ s ¼ ðp1 þ p2Þ2 is the s-channel momen-
tum, and we choose vanishing t and u channels to perform
the resummation: ðp3 − p1Þ2 ¼ ðp1 − p4Þ2 ¼ 0. This
approximation admits the simple spectral representation
(6) of the four-point function; see also [1].
We emphasize that (27) only holds true in the symmetric

phase. In contrast, in the broken phase, the flow or BSE for
the four-point function contains additional diagrams with
two or four three-point vertices. Their combined contribu-
tions are readily estimated and are suppressed by a factor
1=8. Hence, they are dropped in the following computation.
Accordingly, we use (27) in both phases.
Note also that the four-point function exhibits a bound-

state pole below 2mpole close to the phase transition. This is
discussed—for example, in [5,37]—in terms of a Bethe-
Salpeter equation, and it is indeed seen in lattice and fRG
calculations—see [38–40]. The present s-channel resum-
mation for the four-vertex does not include the resonant
channel. A full bound-state analysis and the systematic
inclusion of other channels will be considered elsewhere.
It remains to specify the three-point function Γð3Þðp1;

p2; p3Þ in Eq. (25a). In contrast to the pivotal importance of
the momentum dependence of the four-point function, that
of the three-point function is averaged out in the vacuum
polarization and the fish diagram. For the sake of simplic-
ity, we therefore approximate the full vertex by its value at
vanishing momenta, pi ¼ 0 for i ¼ 1, 2, 3. There, the three-
point function is given by the third derivative of the

effective potential on the equations of motion, Vð3Þ
eff ðϕ0Þ.

The effective potential VeffðϕÞ is the quantum analogue of

the classical potential and is simply the effective action
Γ½ϕ�, evaluated for constant fields ϕc:

VeffðϕcÞ ¼
1

V
Γ½ϕc�; V ¼

Z
d3x: ð28Þ

Due to the Z2 symmetry of the ϕ4-theory under ϕ → −ϕ,
the effective potential is symmetric, Veffð−ϕÞ ¼ VeffðϕÞ.
Moreover, it admits an expansion about the solution to the
equation of motion, ϕ2 ¼ ϕ2

0, which is valid for ϕ2 ≥ ϕ2
0.

The latter constraint on the modulus of ðϕ2 − ϕ2
0Þ originates

from the fact that the classical effective potential is the
double Legendre transform of the classical potential. In the
case of a nonconvex potential, it is simply the convex hull.
Schematically, this is depicted in Fig. 3.
The effective potential satisfies its own flow equation,

and for the sake of completeness we briefly discuss its
derivation and explicit form in Appendix H; more details
can be found in [8]. The present computation can be
augmented by the full flow of the effective potential,
effectively leading to a cutoff dependence of the coupling
λϕ in (27) and similar changes. While this provides further
quantitative precision to the computation, it goes beyond
the scope of the present work and will be presented
elsewhere. Here, we shall consider the expansion up to
ðϕ2 − ϕ2

0Þ2, dropping higher-order terms in accordance
with (26), and we shall discuss the symmetric and broken
phases separately in Secs. IV B and IVA below.

A. Symmetric phase

In the symmetric phase with ϕ0 ¼ 0 in Eq. (16), we use a
Taylor expansion about ϕ2 ¼ 0 for the effective potential,

VeffðϕÞ ¼
X∞
n¼1

λn
2n!

ϕ2n: ð29Þ

The first two couplings, λ1 and λ2, are related to the
correlation functions Γð2Þ and Γð4Þ considered here. Hence,
the coupling λ1 agrees with the curvature mass squared
in the symmetric phase, where the curvature mass is
defined as

m2
curv ¼ Vð2Þ

eff ðϕ0Þ ¼ Γð2Þ½ϕ0�ðp ¼ 0Þ ð30Þ

in both phases. Moreover, the coupling λ2 is just the full
four-point function, evaluated at vanishing momentum. In
summary, we have

λ1 ¼ m2
curv; λ2 ¼ Γð4Þðp ¼ 0Þ: ð31Þ

For the initial UV pole mass mpole ¼ Λ, the curvature mass
and the pole mass agree, λ1 ¼ Λ2, and the initial coupling is
the classical one, λ2 ¼ λϕ. Hence, the initial effective
potential VUVðϕÞ at k ¼ Λ reads

FIG. 8. Bubble resummed four-point function. The notation is
given in Fig. 4.
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VUVðϕÞ ¼
1

2
Λ2ϕ2 þ 1

4!
λϕϕ

4: ð32Þ

With the above approximations, all higher correlation
functions are fixed, and the flow equation of the two-point
function on the real frequency axes reads

∂tΓð2ÞðωþÞ ¼ −
Zϕð2 − ηϕÞk2

2
Ddyn

tad ðωþÞ þ 2k2 − ∂tŜ
ð2Þ
ct ;

ð33Þ

where the retarded limit is given by ωþ ¼ −iðwþ i0þÞ and
is explicitly carried out in Appendix F. Ŝð2Þct is given
schematically by

Ŝð2Þct ¼ diagramsðp2 ¼ −k2Þ: ð34Þ

We denoted the counterterm action with a tilde, since we
already dropped constant terms in the flow of order λϕk.

Hence, only the dynamic part of the tadpole Ddyn
tad contrib-

utes. It arises from the scattering tail of Γð4ÞðpÞ and carries
the spectral structure of the polarization diagram; see
Eq. (A4). In particular, the deviation of the constant term
in Fig. 5 from its classical value, 2k2, is of order ðλϕkÞ and
is therefore absorbed in the renormalization constant. With
that, Eq. (33) is consistent with the flowing on-shell
renormalization condition (19).

B. Broken phase

In the broken phase with ϕ0 ≠ 0, we use a Taylor
expansion about ϕ2 ¼ ϕ2

0 for the effective potential,

VeffðϕÞ ¼
X∞
n¼2

λn
2n!

ðϕ2 − ϕ2
0Þn: ð35Þ

At vanishing momentum and constant fields, the correla-
tion functions derived from the effective action Γ½ϕ0�
coincide with the moments of the effective potential. We
consider n-point functions for n ≤ 4 with

Γð2Þ½ϕ0�ðp ¼ 0Þ ¼ 1

3
λ2ϕ

2
0;

Γð3Þ½ϕ0�ðp ¼ 0Þ ¼ λ2ϕ0 þ
λ3
15

ϕ3
0;

Γð4Þ½ϕ0�ðp ¼ 0Þ ¼ λ2 þ
2

5
λ3ϕ

2
0 þ

1

105
λ4ϕ

4
0; ð36Þ

In contrast to the symmetric phase discussed in Sec. IVA,
higher-order terms with couplings λn also contribute due to
ϕ0 ≠ 0. For this reason, we have indicated the ϕ0 depend-
ence of ΓðnÞ in (36). As discussed below Eq. (17), we
generically drop the ϕ0 dependence for the sake of

readability; it is implicitly assumed that all expressions
are evaluated at ϕ0.
As a consequence of Eq. (26), all expansion coefficients

λn with n ≥ 3 vanish. The three- and four-point couplings
are then given by

Γð3Þð0Þ ¼ Γð4Þð0Þϕ0; λ2 ¼ Γð4Þð0Þ: ð37Þ

With Eq. (30), we can express the minimum of the effective
potential in terms of the curvature mass and λ2, yielding

ϕ2
0 ¼

3m2
curv

Γð4Þð0Þ : ð38Þ

Using (38), the three-point function is expressed in terms
of the full two- and four-point functions at vanishing
momentum,

Γð3Þð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Γð4Þð0Þ

q
mcurv: ð39Þ

Evidently, in the classical limit with Zϕ ¼ 1 and ρ̃k ¼ 0, the
curvature mass agrees with the pole mass. This limit is
approached for asymptotically large pole masses, where the
effective coupling λϕ=mpole tends toward zero. Hence, the
ultraviolet effective potential VUVðϕÞ with k ¼ Λ → ∞ is
augmented with a classical dispersion with μ ¼ −Λ2 and
the initial (classical) coupling λ2 ¼ λϕ:

VUVðϕÞ ¼
1

4!
λϕðϕ2 − ϕ2

0Þ2; ϕ2
0 ¼

6Λ2

λϕ
; ð40Þ

for ϕ2 ≥ ϕ2
0. The initial curvature and pole mass are

given by

m2
pole ¼ m2

curv ¼ 2Λ2: ð41Þ

With these approximations, the real-time flow of the two-
point function in the broken phase, derived in Appendix B,
reads

∂tΓð2Þðω2þÞ ¼ Ṙ


Dpolðω2þÞ −

1

2
Ddyn

tad ðω2þÞ
�

þ ADfishðω2þÞ þ 4k2 − ∂tŜ
ð2Þ
ct : ð42Þ

The prefactors are given in Eq. (B6), and Ŝð2Þct is given by

Ŝð2Þct ¼ diagramsðp2 ¼ −2k2Þ: ð43Þ

In addition to the polarization topology, we note that the
flow equation in the broken phase differs from that in the
symmetric phase. The constant part of Eq. (42) carries an
additional factor of 2. This resembles the additional factor 2
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of the squared pole mass in the broken phase compared to
its symmetric-phase counterpart. Also, the prefactor of the
tadpole diagram deviates from the symmetric case, since it
includes the implicit k dependence of the internal lines via
the flowing physical minimum.

C. Resumé

In both phases, we have a positive-curvature mass
mcurv > 0 on the equation of motion ϕ0. Its value is related
to the pole mass mpole ¼ k in the symmetric phase, and to
mpole ¼ 2k in the broken phase. The difference between the
flows is the existence of vertices Γð2nþ1Þ in the broken
phase. They are proportional to sums of powers of ϕ0—see
(36)—and hence vanish in the symmetric phase.
Specifically, the flow of the two-point function in the
broken phase contains the diagrammatic topology of a
vacuum polarization; see Fig. 7.
This leads us to the following structure: the CS flows are

initiated deep in the symmetric and deep in the broken
phase for large pole masses and a given classical coupling
λϕ; see Eqs. (32) and (40), respectively. For the broken
phase, this entails that the field expectation value at the
initial scale is also large as it scales with Λ; see Eqs. (38)
and (40). Then, the pole mass is successively lowered, and
for k ¼ 0, one reaches the phase transition point from both
sides. In particular, the flows do not leave the broken or
symmetric phases. This is in seeming contradiction to the
standard fRG picture in a scalar theory, where flows in the
broken phase may end up in the symmetric phase, while
those in the symmetric phase end up deeper in the
symmetric phase. This apparent contradiction is resolved
by the fact that ϕ0 in the standard fRG is defined from the
subtracted EOM. There, the trivial cutoff flow, which is
∝ k2ϕ2, is subtracted from the effective potential, and one
recovers physics only in the limit k → 0.

V. RESULTS

In this section, we present results for the spectral
functions of the scalar propagator in the symmetric and
broken phases. The discussion of the numerical implemen-
tation is deferred to Appendix E. The results allow for an
investigation of the scattering processes in both phases. The
present results are in remarkable quantitative agreement
with those obtained with the spectral DSE in [1]. This
agreement of the spectral functions from these two different
functional approaches holds true for a large range of
effective couplings λϕ=mϕ; see Fig. 10(a). In this coupling
regime, this agreement provides a nontrivial reliability
check for both functional approaches, thus decreasing
the respective systematic error. This error analysis is
augmented with a comparison of the present advanced
truncation with the classical vertex approximation in
Appendix D.

A. Symmetric phase

In the symmetric phase with ϕ0 ¼ 0, we are left with the
tadpole diagram in the flow of the two-point function (15).
The resummation (27) introduces a nontrivial momentum
dependence to the four-point function and, in consequence,
also to the tadpole diagram. This allows us to calculate the
propagator spectral function in the symmetric phase, i.e., at
vanishing field value, where the polarization diagram is
absent. For the respective flow equation on the real frequency
axes, see (33). The resulting spectral function is shown in
Fig. 9. In the symmetric phase, the scattering continuum
starts at 3mpole. As mentioned above, the dynamic tadpole
contribution Eq. (A4) carries the momentum structure of the
polarization diagram, resembling the s-channel structure of
the four-vertex. Still, the onset of its imaginarypart is at thrice
the polemass, since the bubble resummed vertex represents a
series of 2 → 2 scatterings which leads to a generic two-
particle onset of ρ4. The quantum corrections to the sym-
metric phase propagator are small compared to those for the
broken phase. The amplitude on the mass pole is close to 1
compared to the respective values in the broken phase; see
Table I. This is expected, since the first dynamic contribution
is of two-loop order and corresponds to the sunset topology.
In the scaling limit, characterized by λϕ=mpole → ∞, the
amplitude of the mass pole decreases and the spectral weight
is transferred to the scattering tail, which approaches a
scaling form. While this limit goes beyond the scope of

FIG. 9. Spectral functions for vanishing field value as a
function of the frequency. All quantities are measured in units
of the pole mass. 1 → 3 and 1 → 5 onsets are indicated in gray.

TABLE I. Amplitudes 1=Zϕ of the pole contribution for given
effective couplings, corresponding to the scattering tails dis-
played in Figs. 10(a) and 9.

λϕ=mpole 1=Zϕ (fRG) 1=Zϕ (DSE) 1=Zϕðϕ0 ¼ 0Þ
5 0.971 0.969 0.9998
10 0.950 0.945 0.9995
20 0.921 0.907 0.9986
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the present work, a full analysis of this regime is carried out
in [41].

B. Broken phase

In the broken phase, the condensate is nonvanishing,
ϕ0 ≠ 0. To compute the spectral function, the flow equation
is evaluated on the real frequency axes; see Eq. (42).
The N-particle onset positions of the spectral scattering

tail are governed by the imaginary part of (12). For the
polarization diagrams, where only propagators come into
play, the flow exhibits an onset at the sum of the two mass
poles. In contrast, the contribution of the tadpole leads to an
onset at thrice the pole mass, as the four-point spectral
function only consists of a scattering continuum starting at
2mpole, cf. Fig. 10(b). A more detailed discussion of the
scattering onsets in general is found in Appendix F, and one
specifically for the tadpole in Sec. VA.
In Fig. 10(a), the spectral function from the current fRG

approach is compared to spectral DSE results from [1].
Every quantity is measured relative to the respective pole
mass to facilitate comparison with the DSE results. This
allows us to compare the relative magnitude of the
scattering continua for different coupling strengths. For
effective couplings λϕ=mpole ≲ 20, the spectral weight of
the scattering continuum is subleading, as can be inferred
from the combination of Fig. 2(b) and the sum rule (5). The
amplitudes of the pole contributions are listed in Table I.
We find a remarkable agreement of both methods in the

tested coupling range. For effective couplings λϕ=mpole ≈ 20,
the deviations start growing, specifically at the thresholds.
Deviations between both methods arise due to differences in
the resummation structure of the two functional equations in
the current truncation. The convergence of functional
techniques for a large range of couplings is nontrivial and
strengthens our confidence in spectral functional approaches.

In general, the tail of the propagator spectral function is
enhanced for stronger couplings, while the residue of the
mass pole decreases as the scattering states become more
accessible due to the rising dimensionless interaction
strength. The three- and higher-N-particle onsets are graphi-
cally not visible in the full spectral functions of Fig. 10(a), but
they are present in the data. In the limit of large couplings, we
expect the three-particle onset to become more pronounced
as the tadpole contribution becomes large.
The four-point spectral function shown in Fig. 10(b)

consists of only a negative scattering tail, corresponding to
a 2 → 2 scattering process. For higher couplings, the three-
particle onset becomes visible. The different suppression of
higher-N-particle thresholds in the propagator and four-
point spectra are explained by dimensional analysis. While
for the propagator spectral function, higher-N-particle
onsets are suppressed by their squared energy threshold,

FIG. 11. Propagator as a function of Euclidean frequency. This
result serves as a cross-check between a direct computation via
the flow and a calculation using the spectral functions.

FIG. 10. Spectral functions as a function of Minkowski frequency in comparison to DSE results from [1]. In contrast to Fig. 2, all
quantities are measured in units of the pole mass to facilitate the comparison with the DSE results. (a) Spectral function of the
propagator. The 1 → 2 and 1 → 3 particle scattering onsets are indicated in gray. (b) Spectral function of the four-point function. The
2 → 2 and 2 → 3 particle scattering onsets are indicated in gray.
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the four-point spectral function decays only with λ−1,
leading to a suppression linear in their respective energy
thresholds. In both cases, four-particle or higher onsets are
strongly suppressed, since they come with at least one
additional loop each.
Figure 11 shows the Euclidean propagators correspond-

ing to the spectral functions of Fig. 10(a). As a cross-check,
we compare the Euclidean propagator calculated from the
spectral representation to the propagator directly obtained
from the integrated Euclidean flow. We find the spectral
representation to hold.

VI. CONCLUSION

In the present work, we computed single-particle spectral
functions of a scalar ϕ4-theory within the spectral func-
tional renormalization group approach, put forward in [8].
This approach leads to renormalized spectral flows with
flowing renormalization, and it facilitates a fully self-
consistent computation of spectral functions. We derived
full flow equations for the inverse propagator in both the
symmetric and broken regimes of the theory; for a detailed
discussion, see Secs. III C and IV C.
Our setup is manifestly Lorentz invariant and sustains the

causal properties of the theory throughout the flow. Every
point on the Callan-Symanzik RG trajectory is a physical
theory of scale k. Trajectories in the symmetric and broken
regimes each start from an infinitely heavy theory in the
respective phase and meet at the phase boundary in the
strongly interacting massless limit of the theory; see
Sec. III A and Fig. 3. Thereby, our setup avoids flows
through the strongly interacting phase transition regime,
which are usually present in momentum cutoff flows. This
minimizes the systematic error stemming from the strong
dynamics in thevicinity of a phase transition,where the flows
are highly sensitive to truncation artefacts. Furthermore, the
implementation of a flowing renormalization condition
eliminates the need of fine-tuned initial conditions and
allows for monotonic mass flows.
The explicit results in the broken phase are in impressive

agreement with those obtained in [1] within the spectral
DSE; see Sec. V B. This affirms the reliability of the
spectral functional approach for the computation of funda-
mental Minkowski spacetime correlation functions.
In contrast to DSE, the fRG approach captures average

momentum dependencies of vertices via their scale depend-
ence. This allows us to include nontrivial vertex dynamics
without resorting to intricate spectral representations of
higher correlation functions. Furthermore, the current
spectral fRG approach is straightforwardly and easily
extended to include the flow of the full effective potential.
This work represents an important step toward unraveling
real-time correlations in QCD from first principles with
spectral functional approaches. We hope to report on
respective results in the near future.
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APPENDIX A: SPECTRAL DIAGRAMS

The general spectral form of the diagrams in Figs. 5
and 6 is given by

Dtadðp2Þ ¼

Y2

i¼1

Z
λi

ρðλiÞ
�
Ltadðλ⃗; p2Þ;

Dpolðp2Þ ¼

Y3

i¼1

Z
λi

ρðλiÞ
�
Lpolðλ⃗; p2Þ;

Dfishðp2Þ ¼

Y2

i¼1

Z
λi

ρðλiÞ
�
Lfishðλ⃗; p2Þ; ðA1Þ

with λ⃗ ¼ ðλ1;…; λnÞ denoting the ordered vector of spectral
masses. The loop structure reads

Ltadðλ⃗; p2Þ ¼
Z
q

Γð4Þ½p; q;−p�
ðq2 þ λ21Þðq2 þ λ22Þ

;

Lpolðλ⃗; p2Þ ¼
Z
q

ðΓð3Þ½p; q�Þ2
ðq2 þ λ21Þðq2 þ λ22Þððp − qÞ2 þ λ23Þ

;

Lfishðλ⃗; p2Þ ¼
Z
q

Γð3Þ½p; q�Γð4Þ½p; q; 0�
ðq2 þ λ21Þððp − qÞ2 þ λ22Þ

; ðA2Þ

where the vertex functions are not specified yet, and we
have dropped the field argument for readability. With the
approximations discussed in Sec. IV, we have fixed all
correlation functions, and we can compute the final
expressions for the diagrams. For the fish diagram, the
four-point function is connected to the constant scale
derivative of the field. With (39) and (37), the polarization
and fish diagrams of the flow equation in the broken phase
read
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Dpol½p2� ¼ ðΓð3ÞÞ2
Z
λ⃗
ρðλ1Þρðλ2Þρðλ3ÞIpolðλ⃗; p2Þ;

Dfish½p2� ¼ ðΓð3ÞÞ2
ϕ0

Z
λ⃗
ρðλ1Þρðλ2ÞĨpolðλ⃗; p2Þ; ðA3aÞ

where

Ipolðλ⃗; p2Þ ¼
Z
q

1

ðq2 þ λ21Þðq2 þ λ22Þððq − pÞ2 þ λ23Þ
;

Ĩpolðλ⃗; p2Þ ¼
Z
q

1

ðq2 þ λ21Þððq − pÞ2 þ λ22Þ
; ðA3bÞ

and λ⃗ is the ordered vector of spectral parameters, one for
each internal propagator in the diagram. We denoted the
loop structure of the fish diagram as Ĩpol, since it carries the
momentum structure of a DSE polarization diagram.
The loop integrals I and Ĩ are evaluated analytically and
given in terms of real and imaginary frequencies in
Appendix F.
Substituting the four-vertex in (15) with the respective

spectral representation (6), the constant classical part of the
tadpole diagram is absorbed by renormalization. The
remaining dynamical part of the tadpole diagram reads

Ddyn
tad ðpÞ ¼

Z
λ⃗
ρðλ1Þρðλ2Þρ4ðλ3ÞIpolðλ⃗; p2Þ: ðA4Þ

The four-point spectral function ρ4 (A4) is obtained from
(27) in both phases. As discussed below Eq. (27), there are
further diagrams with two or four three-point functions
contributing to ρ4. These diagrams are suppressed by
roughly an order of magnitude.

APPENDIX B: RENORMALIZED FLOW
OF THE TWO-POINT FUNCTION
ON THE PHYSICAL MINIMUM

In this appendix, we provide details on the derivation of
the flow equation in the broken phase Eq. (25a). In
particular, we explain the crucial role of the three-point
function in (22) for obtaining one-loop perturbation theory
as leading-order behavior. We show that the flow of the
two-point function has the expected sign [see (23)], if we
include the flow of the minimum correctly, and that the on-
shell renormalization condition (20) can be imposed
consistently.
The flow equation in the broken phase reads

d
dt
Γð2Þ½ϕ0�ðpÞ¼ð∂tϕ0ÞSð3Þ½ϕ0�−ð2−ηϕÞZϕk2

þṘ
�
−
1

2
DtadþDpol

�
−∂tϕ0Dfish−∂tSct½ϕ0�;

ðB1aÞ

where

Ṙ ¼ ð∂tϕ0Γð3Þ½ϕ0� − ð2 − ηϕÞZϕk2Þ; ðB1bÞ
as derived in Sec. III C.
To renormalize the flow of the two-point function and

show how the correct sign of the flow is recovered by the
inclusion of ∂tϕ0, we first separate the tree-level and loop-
induced running of the prefactors of the diagrams in
Eq. (B1a). To that end, we start with the full three-point
function in (B1b). The separation into trivial and loop-
induced RG running can be made apparent by introducing a
corresponding split of the curvature mass (30) via
Δm2

curv ¼ m2
curv − 2Zϕk2:

∂tϕ0Γð3Þ ¼ 1

2
ð∂tϕ2

0ÞΓð4Þ

¼ 3

2



∂tΔm2

curv þ 2Zϕð2 − ηϕÞk2 −m2
curv

∂tΓð4Þ

Γð4Þ

�
:

ðB2aÞ
In the first line, we related the three- and four-point
functions by (37), and we used (38) in the second step.
For the classical three-vertex in (B1a), we analogously

obtain

∂tϕ0Sð3Þ ¼
λϕ
Γð4Þ ð∂tϕ0Γð3ÞÞ: ðB2bÞ

With (A3a), the fish diagram in (B1a) carries a prefactor
proportional to

∂tϕ0

ϕ0

¼ ∂tm2
curv

m2
curv

−
∂tΓð4Þ

Γð4Þ : ðB3Þ

Inserting (B2) and (B3) intoEq. (B1a),we canwrite down the
final flow equation for the two-point function in the broken
phase:

d
dt

Γð2Þ½ϕ0�ðpÞ ¼ Ṙ


−
1

2
Dtad þDpol

�
þ ADfish

þ Bð2 − ηϕÞZϕk2 þ C − ∂tS
ð2Þ
ct ; ðB4aÞ

with

Ṙ ¼ 2Zϕð2 − ηϕÞk2 þ
3

2
m2

curv



∂tΔm2

curv

m2
curv

−
∂tΓð4Þ

Γð4Þ

�
;

A ¼ −
ϕ0

2



∂tm2

curv

m2
curv

−
∂tΓð4Þ

Γð4Þ

�
;

B ¼


3λϕ
Γð4Þ − 1

�
;

C ¼ 3

2
m2

curv
λϕ
Γð4Þ



∂tΔm2

curv

m2
curv

−
∂tΓð4Þ

Γð4Þ

�
: ðB4bÞ
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The diagramsDpol; Dfish andD
dyn
tad are given in Eqs. (A3) and

(A4), respectively.
The prefactor of the first term in (B4b), Ṙ, carries the

scale dependence of the internal propagators on the
physical minimum. It takes the role of the regulator
derivative in usual fRG applications. The first term of Ṙ
and the third term of the flow in (B4a) are explicitly
proportional to k2, and they have the same structure as the
respective contributions in (15), where the flow equation is
evaluated at arbitrary values of the field. However, it carries
an additional relative factor −2, stemming from the three-
point function, which is proportional to ∂tϕ0Γð3Þ. In total,
the tree-level term of Ṙ is positive and can be written as the
t-derivative of 2Zϕk2. This reflects the positivity of the
physical pole mass. At one-loop order, it reduces to 4k2,
resembling the k dependence of a classical propagator with
mϕ ¼ 2k2; see Eq. (23).
The same holds true for the constant part of the flow,

given by the third and fourth terms of (B4a).
Complementary to Ṙ, these encode the explicit running
of the mass. At tree level, this running reduces to 4k2,
which is simply the flow of the classical (squared) mass on
the physical minimum. Hence, the deviation of the constant
part of the flow from the classical running is, as expected,
of one-loop order and beyond, and it can be absorbed in the
renormalization constant. With that, we can consistently
impose our renormalization condition.
The second term of (B4a) is proportional to the fish

diagram. Note that Dfish carries a factor 1=ϕ0, which
cancels the respective factor in A. At one-loop order, it
carries the running of the classical three-point function.
Together, Dfish and Dpol can be written as the total
derivative of the (one-loop) vacuum polarization.
We now apply our renormalization condition (20) to the

flow (B4a), for which it translates into the condition

∂tm2
pole ¼ 4k2: ðB5Þ

This specifies our counterterm flow and leads us to the final
renormalized flow equation in the broken phase:

d
dt

Γð2ÞðpÞ ¼ Ṙ


DpolðpÞ −

1

2
Ddyn

tad ðpÞ
�

þ ADfishðpÞ þ 4k2 − ∂tŜ
ð2Þ
ct ; ðB6Þ

where we have split the tadpole into a constant and a
dynamical p-dependent part defined by (A4), via the
spectral representation Eq. (6) of the four-vertex.
Furthermore, we have dropped all constants in p of order
ðλϕkÞ, including the constant part of the tadpole, as they are
subtracted by the renormalization constant implicitly speci-

fied by Eq. (B5). The remaining ∂tŜ
ð2Þ
ct ½ϕ0� now comprises

only the counterterms of the diagrammatic contributions,
where the renormalization scale is the pole mass.

APPENDIX C: FLOW OF ϕ0 AND
CRITICAL EXPONENTS

In this appendix, we discuss the evolution of the solution
of the EOM, ϕ0, in the broken phase. It is given by Eq. (38).
This exact relation depends on λ2, which we have identified
with Γð4Þ, dropping higher-order terms proportional to λ3,
λ4, and ϕ0 itself. Implicitly, these terms can be included by
solving the flow of ϕ0. It is derived from the EOM for
constant fields, which is solved for a k-dependent ϕ0.
Acting with a total t-derivative on the EoM (16) leads us to

∂tϕ0 ¼ −
∂tV

ð1Þ
eff ðϕ0Þ

Vð2Þ
eff ðϕ0Þ

¼ −
∂tV

ð1Þ
eff ðϕ0Þ
m2

curv
: ðC1Þ

The denominator is simply the curvature mass squared,
while the numerator is given by the first field derivative of
the CS equation (14), evaluated at ϕ0. At each flow step, the
latter generates higher-order terms beyond the approxima-
tion in Eq. (26). In summary, if we are using the flow
equation in (C1), we implicitly take into account terms
dropped in (38). In the present approximation, the numer-
ator of (C1) reads

∂tVð1Þ½ϕ0� ¼ ϕ0ð2 − ηϕÞZϕk2
�
1

2
Dtadð0Þ − 1

�

− ϕ0ð∂tΔm2Þ: ðC2Þ

The last term stems from the flow of the counterterm action

∂tSct½ϕ� ¼ Tr
1

2
ð∂tΔm2Þϕ2: ðC3Þ

Collecting the terms proportional to ϕ0 and ∂tϕ0, we
arrive at

∂t logðϕ0Þ ¼
ð2 − ηϕÞZϕk2

m2
curv

ð1þ T Þ; ðC4Þ

where T comprises the corrections from the tadpole
diagram and the counterterm

T ¼ −
1

2
Dtadð0Þ þ

∂tΔm2

ð2 − ηϕÞZϕk2
: ðC5Þ

Equation (C4) is easily integrated, leading to

ϕ0 ¼ ϕ0;Λ exp

�Z
k

Λ

dk
k

ð2 − ηϕÞZϕk2

m2
curv

ð1þ T Þ
�
; ðC6Þ

where ϕ0;Λ is the classical ultraviolet value of the con-
densate in the initial UV effective potential Eq. (40) at the
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initial large mass Λ. For smaller pole masses, the con-
densate gets progressively smaller and vanishes for k ¼ 0.
We can simplify (C6) further by noting that the squared
curvature mass—see (38)—is conveniently written in terms
of the spectral representation

m2
curv ¼

2Zϕk2

1þ R
∞
2

dλ
λ ρ̄ðλÞ

; ðC7Þ

where we define the RG-invariant spectral function as

ρ̄ðλÞ ¼ 2Zϕk2

π
ρð

ffiffiffiffiffiffiffi
2k2

p
λÞ: ðC8Þ

With (C7), the exponent of (C6) reads

Z
k

Λ

dk
k

�

1 −

ηϕ
2

�

1þ

Z
∞

2

dλ
λ
ρ̄ðλÞ

�
ð1þ T Þ

�
: ðC9Þ

For large k (i.e., λϕ ≪ k), we can approximate m2
curv ≈ 2k2,

and λ2 ¼ Γð4Þð0Þ ≈ λϕ. The flow of the renormalization
constants is dominated by the tadpole contribution for large
cutoff scales. It is of mass dimension 2, and at leading order

in k it is proportional to ðλϕkÞ. Consequently, ∂tΔm2

k2 ≈ 0,
along with the tadpole contribution

Dtad ¼ λϕ

Z
d3q
ð2πÞ3

1

ðq2 þ 2k2Þ2 ¼
λϕffiffiffi
2

p
k8π

: ðC10Þ

The propagator is then well approximated by the free one,
Zϕ ¼ 1 and ρ̃ ¼ 0, and Eq. (C9) reduces to 1þ T ≈
1þ λ̄ϕc, with the effective coupling λ̄ϕ ¼ λϕ=k and a
dimensionless constant c. In the limit of large masses,
(C11) flows to the classical solution as expected:

ϕ0;k ¼ ϕ0;Λ exp

�Z
k

Λ

dk
k
þ c

Z
k

Λ

dk
k
λ̄

�
⟶ ϕ0;Λ



k
Λ

�
:

ðC11Þ

Similar equations could be formulated in terms of ρ ¼ ϕ2,
reflecting the symmetry of the theory. InOðNÞ theories and
in the real scalar case, such a representation is typically
used, as derivatives in ρ project directly on λn in both
phases. While all different formulations are equivalent if
the full effective potential is used, they deal differently with
the approximation in Eq. (26).

1. Phase transition and critical scaling

Here we provide a qualitative discussion on the scaling
limit and use the integrated flow of the physical minimum,
ϕ0, and the (hyper)scaling relation (C12) to derive explicit
equations for the scaling exponent ηϕ. The phase transition
between the symmetric and broken phases is reached with

k → 0 in both phases. In the limit of a vanishing pole mass,
m2

pole ¼ 2k2 ¼ 2jμj → 0, we are interested in the running of

the “magnetization,” ϕ̄0 ¼ ϕ0=
ffiffiffiffiffiffi
Zϕ

p
. The division by

1=
ffiffiffiffiffiffi
Zϕ

p
eliminates the RG scaling of the expectation value

and leads to the physical observable. In the scaling limit,
the magnetization acquires a scaling form

ϕ̄0 ∝ τβ; β ¼ 1

2
νð1þ ηϕÞ ≈ 0.3264; ðC12Þ

where ν ≈ 0.6300 and ηϕ ≈ 0.03630 are the scaling expo-
nents of the three-dimensional Ising universality class. The
tuning parameter τ is, in contrast to usual critical theory, not
directly proportional to the mass parameter μ or k2 as a
consequence of the flowing on-shell renormalization. To
see that, we consider the scaling form of the correlation
length

ξ ∝ τ−ν; ðC13Þ

with the mean-field scaling ν ¼ 1
2
. In general, the correla-

tion length is inversely proportional to the lowest-lying pole
of the propagator. Beyond the mean field theory, the
correlation length acquires an anomalous scaling in dimen-
sions below d ¼ 4. With the on-shell renormalization
procedure, this anomalous scaling is hidden, and we have

ξ ∝ k−1 ðC14Þ

for all cutoff scales. This entails that the tuning parameter τ
is related to the pole mass mpole ∝ k as

τ ∝ k
1
ν: ðC15Þ

In every flow step, the diagrams of the flow introduce an
anomalous scaling to the pole mass, which is subtracted by
the counterterm and expresses the renormalization of the
full scaling of the pole mass to the classical one. Hence, the
scaling exponent ν is encoded in the flow of the counter-
term in the scaling limit. With (C15), the magnetization
(C12) can be rewritten as

ϕ̄0 ∝ k
β
ν;

β

ν
¼ 1

2
ð1þ ηϕÞ: ðC16Þ

The k scaling of the magnetization is encoded in the k → 0
limit of Eq. (C6). Resolving the brackets, we notice that the
first two terms of the exponent (C9) can be integrated
immediately, leading to

ϕ0 ¼ ϕ0;Λ
ffiffiffiffiffiffi
Zϕ

p 

k
Λ

�
exp

�Z
k

Λ

dk0

k0
Dðk0Þ

�
; ðC17aÞ

where we have used the definition of ηϕ. The residual
integrand is abbreviated as

HORAK, IHSSEN, PAWLOWSKI, WESSELY, and WINK PHYS. REV. D 110, 056009 (2024)

056009-16



DðkÞ ¼


1 −

ηϕ
2

��
ð1þ T Þ

Z
∞

2

dλ
λ
ρ̄ðλÞ

þT


1þ

Z
∞

2

dλ
λ
ρ̄ðλÞ

��
; ðC17bÞ

with T given in (C5). In the scaling regime, we have k → 0
and

ϕ̄0 ∝ lim
k→0

k exp

�Z
k

Λ

dk0

k0
Dðk0Þ

�
: ðC18Þ

In the limit k → 0, the integral in Eq. (C18) diverges
logarithmically with the prefactor D0 ¼ Dð0Þ. This allows
to identify β=ν with D0 and solve (C16) for ηϕ:

ηϕ ¼ 1þ 2D0: ðC19Þ

The prefactor D0 is either computed for k → 0 or is
extrapolated when the scaling regime is reached.
Alternatively, ηϕ can be computed directly from the flow
in the scaling limit via its definition; see Eq. (E10c). The
size of the scaling regime can be estimated from the
running of the four-point function: For large values of
the dimensionless coupling λϕ=mpole ≫ 1, the loop correc-
tion in the denominator of Eq. (27) outgrows the constant
part,

Γð4ÞðpÞ ¼ λϕ

1þ λϕ
2

R
q Gðpþ qÞGðqÞ

→
2R

q Gðpþ qÞGðqÞ ;

ðC20Þ

and the flow becomes independent of the coupling. Our
computational setup did not allow for a direct computation

in this limit. Hence, we refrain from giving an estimate for
the scaling exponents and defer quantitative results to
future publications.
Let us close this investigation with a discussion of the

spectral function in the critical regime. To begin with, for
k → 0, the pole contribution of the propagator vanishes as
Zϕ ∝ k−ηϕ → ∞. In turn, for k ¼ 0, the scattering tail
carries all the weight, and the solution for k ¼ 0 is given by

ρ̃ðλÞ ∝ 1

λ2ð1−
ηϕ
2
Þ

→ GkðpÞ ∝
1

ðp2Þð1−ηϕ
2
Þ
: ðC21Þ

Note that the scaling in (C21) is naturally cut off in the
infrared at λ ¼ 2mpole according to (21). In the ultraviolet,
for λ → ∞, the spectral function also has to decay faster
than (C21). As has been discussed in [2,43], the propa-
gators of physical states or fields have to decay as 1=p2 for
large momenta. This is at odds with (C21), and indeed the
spectral function ρ̃ in (C21) is not (UV) normalizable. For a
finite k, ρ̃ decays faster than 1=λ2, as is manifest in our
explicit solutions in the broken and symmetric phases,
Figs. 9 and 10(a), respectively.

APPENDIX D: VARYING THE TRUNCATION

This section is dedicated to the comparison of our
approximation to the classical vertex approximation. The
latter is given by

Γð4Þ ¼ λϕ;

Γð3Þ ¼
ffiffiffiffiffiffiffi
3λϕ

q
mcurv: ðD1Þ

The value of the tadpole diagram is absorbed in the
renormalization constant, and the only remaining

FIG. 12. Propagator spectral functions and Euclidean four-point functions in the broken phase. All quantities are measured in units of
the pole mass. (a) Comparison of the spectral functions within a classical vertex approximation to the results with a bubble resummed
vertex function. Both spectral functions where calculated via the spectral fRG. (b) Four-point vertex as function of Euclidean frequency.
Results are obtained from the respective spectral functions in Fig. 10(a). The classical values of the vertices are indicated in gray.
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contribution is the polarization diagram in Eq. (F4). Note
that this approximation leads to a nonzero scattering
spectrum only, if evaluated in the broken phase with a
finite three-point function.
The resulting spectral functions are presented inFig. 12(a),

indicated by dashed lines. All curves aremeasured in units of
the respective pole masses to compare the magnitude of the
scattering spectra with our main results. By introducing the
resummed quantumcorrections to the four-point function, its
amplitude in the infrared is lowered due to the negativity of
the respective scattering spectra; see Figs. 12(b) and 10(b).
This leads to a systematic decrease of the spectral tail
compared to the classical vertex approximation. Other than
that, the visible structure is very similar. Nevertheless, the
classical approximation misses any contribution of the tad-
pole and is quantitatively different from the result with a
nontrivial four-point function for higher couplings in the
brokenphase. In the symmetric phase, however, the inclusion
of the tadpole momentum structure is crucial to generating a
nontrivial scattering spectrum with the fRG.

APPENDIX E: TECHNICAL DETAILS
AND NUMERICS

This section is dedicated to the numerical solution of the
flow equation. First, we rewrite the leading contributions as
scale derivatives and integrate by parts in the k direction.
This allows us to flow the nonanalyticities at the respective
onset positions analytically; see Eq. (E2). We will make use
of this relation to define consistent initial conditions in the
UV. The second part of this appendix explains the numeri-
cal algorithm we used to obtain the results given in Sec. V.

1. Leading order and initial conditions

Inserting (21) into (A1), we find all combinations of
poles and tails we have to integrate over. The leading order
is given by the contribution of δ functions only and is
already present on the classical level. To study the structure
of the flow and the dependency of the result of the initial
condition, we first note that certain contributions of the
Callan-Symanzik flow can be rewritten in terms of a scale
derivative. This is possible for every contribution to the
Callan-Symanzik flow that carries only pole contributions
on the two lines surrounding the (modified) regulator
insertion in Fig. 7. This allows us to integrate the flow
by parts, which reduces the degree of divergence of
potential integrable singularities and simplifies the numeri-
cal treatment. To this end, we rewrite the (modified) fRG
polarization diagram at leading order as

Ipolðmpole; mpole; mpole; p2Þ ¼ −
1

8k
∂kĨpolðmpole; mpole; p2Þ;

ðE1Þ

where the factor 1=4k follows from the k-derivative of the
spectral kernel with ∂km2

pole ¼ 4k, and another factor 1=2
accounts for the double-counting from hitting both argu-
ments in k with the derivative. This connects both polari-
zation-type momentum structures, Ipol and Ĩpol, given in
(A3b). Evaluating every spectral parameter on the mass
pole, we can integrate the combined contribution of the
polarization and fish diagrams to arrive at

½Γð2Þðp2Þ�kΛ ¼
Z

k

Λ

dk
k
ðΓð3Þ

k Þ2
Z2
ϕ



−

Ṙ
8Zϕk

∂k þ
A
ϕ0

�
Ĩpolðp2Þ

¼ ½−F ðkÞĨpolðp2Þ�kΛ þ
Z

k

Λ

dk
k
LðkÞĨpolðp2Þ;

ðE2Þ

where we have summarized the prefactors of the fRG
polarization diagram and the prefactors from the t-integral as

F ðkÞ ¼ ṘðΓð3Þ
k Þ2

8Z3
ϕk

2
¼

�ð2 − ηϕÞ
4

þ S
Zϕ

� ðΓð3Þ
k Þ2
Z2
ϕ

; ðE3Þ

with

S ¼ 3

16

m2
curv

k2



∂tΔm2

curv

m2
curv

þ ∂tΓð4Þ

Γð4Þ

�
: ðE4Þ

The boundary term will be the leading contribution. At one-
loop order (i.e., Zϕ ¼ 1 and Γð4Þ ¼ λϕ), S vanishes identi-
cally andF reduces to 1

2
ðSð3ÞÞ2, which is the prefactor of the

one-loop polarization diagram times the squared classical
three-vertex. The factor in the remaining integral reads

LðkÞ ¼


∂tF ðkÞ þ A

ϕ0

ðΓð3Þ
k Þ2
Z2
ϕ

�

¼
�ð2− ηϕÞ

4

∂tΓð4Þ

Γð4Þ −
ð2− ηϕÞ

2
ηϕ þ

η̇ϕ
4
−
ηϕ∂tm2

curv

4m2
curv

þ 1

Zϕ

�
∂tSþS



3ηϕ þ

∂tm2
curv

m2
curv

þ ∂tΓð4Þ

Γð4Þ

��� ðΓð3Þ
k Þ2
Z3
ϕ

;

ðE5Þ

where the tree-level terms stemming fromF ðkÞ andA cancel
exactly. With that, we recover one-loop perturbation theory.
Without the additional one-loop structure of the three-point
function in Eq. (25a) (i.e., A ¼ 0), the remaining tree-level
term would spoil the one-loop result.
To discuss the necessity of a consistent initial condition,

it is instructive to work out the one-loop result from a
spectral fRG perspective. In the large-k limit, we can
neglect the nontrivial flow of Γð2Þðp ¼ 0Þ and Zϕ, leading
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to Zϕ ¼ 1 and ðΓð3Þ
k Þ2 ¼ 3λm2

pole, with m2
pole ¼ 2k2.

Equation (E2) is then readily integrated and reduces to

Γð2Þ
1-loopðp2Þjk ¼ Γð2Þðp2ÞjΛ þ 3λϕ½k2Ĩpolð

ffiffiffi
2

p
k;

ffiffiffi
2

p
k; p2Þ�Λk :

ðE6Þ

With a classical initial condition, (E6) leads to

Γð2Þ
1-loopðp2Þjk ¼ p2 þ 3λϕ

2
½2k2Ĩpolð

ffiffiffi
2

p
k;

ffiffiffi
2

p
k; p2Þ�Λk : ðE7Þ

Performing the Wick rotation of (E7) and extracting the
spectral function with 2, we find that the one-loop scatter-
ing contribution to the spectral function is discontinuous at
ω ¼ 2

ffiffiffiffiffiffiffiffi
2Λ2

p
¼ 2mΛ

pole and turns negative for larger spectral
values. Clearly, leading-order information is lost above the
initial onset scale and cannot be recovered by the flow.
Even worse, for higher frequencies than 2mΛ

pole, the
positivity of the spectral function is violated. This is cured
by using RG-consistent initial conditions, which appears to
be crucial to obtain a physical spectral function from the
flow. To that end, we require the solution to be independent
of the initial scale Λ. This can be achieved by sending the
initial scale to infinity, corresponding to an initial condition
that cancels the Λ dependence trivially. This is done by
choosing the initial condition to be an iterative solution of

Γð2Þ½p2;Zϕ;Γð3Þ;mpole�

¼m2
poleþp2−

1

2

ðΓð3ÞÞ2
Z3
ϕ

× ½Ĩpolðmpole;mpole;p2Þ− Ĩpolðmpole;mpole;−m2
poleÞ�; ðE8Þ

where the last term accounts for the on-shell renormaliza-
tion. As an initial guess, we use the parameter of the
classical effective potential [Eqs. (39) and (40)] with
Zϕ ¼ 1 and m2

pole ¼ 2Λ2. In other words, we choose our
initial condition to be compatible with (E2). Note that with
this choice of initial conditions, the loss of leading-order
information is circumvented at all momentum scales, as all
contributions of order Oðλ=kÞ are taken into account. The
flow is initialized at large cutoff scales, where higher terms
in λeff ¼ λϕ=k are strongly suppressed. To determine the
three-point function dynamically, Eq. (E8) was coupled to
the resummed four-point function via (39). The initial
values for Zϕ and Γð3Þ are presented in Table II.
It remains for us to determine the flow of the vertices and

η. These have exact diagrammatic expressions, which are in
parts necessary to consider. It is convenient to approximate
∂tΓð4Þ by the t-derivative of (27), where we only consider
the contributions of the mass pole for simplicity. It leads to

∂tΓð4Þ ≈
ð1 − 2ηϕÞ

Z2
ϕ

ðΓð4ÞÞ2
16π

ffiffiffi
2

p
k
;

ð∂tÞ2Γð4Þ ≈
2ð∂tΓð4ÞÞ2

Γð4Þ − ∂tΓð4Þ

þ ðηϕð1 − 2ηϕÞ − η̇ϕÞ
Z2
ϕ

ðΓð4ÞÞ2
8π

ffiffiffi
2

p
k
: ðE9Þ

The explicit k dependences of (E9) can now be taken into
account analytically in (E2). For ηϕ, we use the definition of
Zϕ as the residue on the mass pole:

Zϕ ¼ −∂ω2Γ2ðω2Þjω2¼m2
pole
: ðE10aÞ

With the parametrization of the real part of the inverse
propagator as

Γð2Þðω2Þ ¼ ZðωÞðm2
pole − ω2Þ; ðE10bÞ

the anomalous dimension ηϕ is computed conveniently
from the momentum derivative of the flow on the mass
pole,

ηϕ ¼
1

Zϕ
∂ω2

d
dt
Γ2ðω2Þjm2

pole
−

1

Zϕ
4k2∂ω2ZðωÞjm2

pole
: ðE10cÞ

Only the diagrams of (B6) contribute due to the momentum
derivative. The second term is given in terms of the spectral
function:

∂ω2ZðωÞjω2¼m2
pole

¼ 1

Zϕ

Z
λ

ρðλÞ
λ2 −m2

pole

: ðE11Þ

The other parameters, such as η̇ϕ and ∂tΔm2
curv, were

approximated by a numerical right derivative.

2. Numerical implementation

The numerical implementation uses Mathematica [44].
The leading-order contribution to the flow was integrated
by means of (E2), where we split the explicit k depend-
encies of each term from the subleading running of the
respective parameter. This was facilitated by the split of the
tree-level curvature mass: m2

curv ¼ Zϕð2k2Þ þ Δm2
curv, as it

allowed us to incorporate the tree-level running of the
integrand in (E2) analytically. The subleading corrections

TABLE II. Initial conditions obtained from (E8). We measure
the initial RG scale Λ in units of the coupling and every other
quantity in units of the mass.

Λ=λϕ Γð3Þ½λ3
2

ϕ� Zϕ

10 17.3084 1.0007
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to the flow parameter were approximated as constants in
each step, while the combined k dependence of Ĩpol and the
tree-level k dependence of m2

curv and ∂tΓð4Þ was integrated
analytically.
For the one-cut contributions, including the tadpole, we

approximated the k-integral by an explicit Euler scheme.
For the sake of computation time, higher-dimensional
spectral integrals were dropped, as they were numerically
negligible in the considered coupling range in comparison
to the leading-order and next-to-leading-order contribu-
tions. For an investigation of the scaling limit, their
incorporation is crucial. The numerical integrations of
spectral integrals were carried out using a global adaptive
integration strategy. All contributions to diagrams were
calculated and interpolated separately, where we used finer
grids around sharp structures and more coarse grids where
the functions are smooth. We implemented a local feedback
of the spectral function with a step size dk ¼ 0.005, using
the spectral function ρ to calculate ∂tΓð2Þ. The correct
renormalization was enforced conveniently in every step by
subtracting the value of the inverse propagator on the mass
pole. The residue on the pole was extracted from Γð2ÞðpÞ in
each step via Eq. (E10a).

APPENDIX F: CALCULATION OF DIAGRAMS

In this section, all diagrammatic expressions appearing
in the main text are given in analytic form. The spectral
approach we use, allows us to calculate diagrams with full
propagators in terms of integrals known from perturbation
theory. The insertion of a mass-derivative in Fig. 5 leads to
a squared propagator on one line in comparison with the
usual vacuum polarization or tadpole diagram. Using
the spectral representation, the momentum structure of
the regulator line can be rewritten via a partial fraction
decomposition

1

ðλ21þq2Þðλ22þq2Þ¼
−1

ðλ21−λ22Þ



1

λ21þq2
−

1

λ22þq2

�
: ðF1Þ

A given (spectral) flow diagram can therefore be reduced to
the computation of the momentum integral, where the
regulator line is replaced by a single propagator, which we
will denote with a tilde. Denoting the spectral parameters of
the divided line as λ1 and λ2, we write schematically

Dðλ1; λ2;…; p2Þ ¼ −1
ðλ21 − λ22Þ

½D̃ðλ1…; p2Þ − D̃ðλ2…; p2Þ�;

ðF2Þ

and accordingly

Dðλ; λ;…; p2Þ ¼ −1
2λ

∂λD̃ðλ…; p2Þ: ðF3Þ

This reduces the calculation of Ipol, as defined in Eq. (A3b)
to the calculation of Ĩpol as given below:

Ipolðλ1; λ2; λ3; p2Þ

¼ −1
ðλ21 − λ22Þ

½Ĩpolðλ1; λ3; p2Þ − Ĩpolðλ2; λ3; p2Þ�: ðF4Þ

Denoting the Euclidean andMinkowskian frequencies by p
and ω, respectively, the momentum structure of the spectral
polarization diagram reads

Ĩpolðp; λ1; λ2Þ ¼
1

4πp
Arctan

�
p

λ1 þ λ2

�
;

Ĩpolðω; λ1; λ2Þ ¼
1

4πω

�
Arctanh

�
w

λ1 þ λ2

�

þ iθðω − ðλ1 þ λ2ÞÞ
�
; ðF5Þ

see [1,45]. We find the integrand Ipol of the polarization
diagram to have a branch cut with compact support, i.e., for
ω∈ ½λ1 þ λ3; λ2 þ λ3� for λ1 ≤ λ2. This peculiarity is a
dimension-dependent property of the polarization diagram
which does not hold in four dimensions. There, the imaginary
part of Ipol has support for ω∈ ½λ1 þ λ3;∞Þ for λ1 ≤ λ2.
The onset position of these structures allows us to

discuss the scattering continua. To this end, we note that
the diagrams with a polarization topology have two or three
lines that can carry either a mass pole or a scattering
contribution; see Fig. 7. If all lines carry a pole contribu-
tion, which is the leading order for all couplings in the
considered coupling range, we find the flow of a disconti-
nuity seeded at 2mpole, representing a 1 → 2 scattering.

APPENDIX G: HIGHER-ORDER
CONTRIBUTIONS TO ImΓð2Þ

In this section, we discuss the feedback of the scattering
continuum and present the next-to-leading-order contribu-
tions. We restrict ourselves to the imaginary part, since it
carries the dominant features. In contrast, the contributions
of the respective real parts to the spectral function cannot be
separated from each other, as they only appear in the
denominator of Eq. (2b). Inserting exactly one scattering
continuum in one of the top lines of the polarization
diagram, we find a contribution adding to both the 1→ 2
and the 1 → 3 onset, consequently also starting at 2mpole, as
can be seen in the top panel of Fig. 13. The dominant sharp
onsets of the 1 → 3 scattering are found in the polarization
diagram by inserting exactly one scattering continuum into
the bottom line and into the tadpole. Their integrated flows
are presented in the middle and lower panels of Fig. 13.
Note that they correspond to different diagrammatic topol-
ogies. The 1 → 3 contribution of the polarization diagram
can be described diagrammatically by two consecutive
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1 → 2 scatterings, whereas the tadpole reproduces a sunset
topology. The insertion of two or three scattering continua
lead to sharp—although strongly suppressed—onsets at
3mpole and 4mpole.
In Fig. 13, the one-cut corrections to the imaginary part

are given in units of their respective coupling strength. The
rescaled contributions are qualitatively compatible with
each other, showing the proportionality of the one-cut
contribution to λ2ϕ. This can be anticipated from two-loop

perturbation theory. The decrease of the peak for higher
couplings is connected to the decrease of the residue Z−1 of
the mass pole, as shown in Fig. 10(a). The tadpole
contribution is at leading order proportional to λ2ϕ. On a
perturbative level, the first dynamic contribution is intro-
duced by the first bubble diagram in Fig. 8. This is
confirmed in the third panel of Fig. 13, where the different
tadpole contributions share the same order of magnitude if
rescaled with λ2ϕ.

APPENDIX H: FLOW EQUATION OF THE
EFFECTIVE POTENTIAL

In this section, we briefly discuss the flow equation of
the effective potential in the local potential approximation
for the sake of completeness and for the illustration of
consistency of the approach. Its derivation, including the
determination of the counterterm, has been discussed in
detail in Appendix A of Ref. [8]. The flow of the first field
derivative of the effective potential in three dimensions is
given by

∂μV
ð1Þ
eff ðϕÞ ¼ −

1

2

Z
d3p
ð2πÞ3

Vð3Þ
eff ðϕÞ

½p2 þ Vð2Þ
eff ðϕÞ�2

þ ϕ − ∂μS
ð1Þ
ct ½ϕ�;

ðH1Þ

where we have dropped the multiplication with μ present in
Eq. (14). We have already used the fact that the momentum
integral in (H1) is finite, and hence we can remove
additional regularizations such as dimensional regulariza-
tion relevant in the d ¼ 4 case; see again Appendix A of
[8]. The momentum integral in (H1) is readily performed,
and we arrive at

∂μV
ð1Þ
eff ðϕÞ ¼ −

1

4π2
Vð3Þ
eff ðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð2Þ
eff ðϕÞ

q þ ϕ − ∂μS
ð1Þ
ct ½ϕ�; ðH2Þ

and upon ϕ-integration, we are led to

∂μVeffðϕÞ ¼ −
1

8π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð2Þ
eff ðϕÞ

q
þ 1

2
ϕ2 − ∂μSct½ϕ�; ðH3Þ

where we have set the integration constant to zero. Note
that (H3) has a peculiar form: the loop contribution is
negative, while its diagrammatic form is seemingly pos-
itive, but not well defined without regularization. We
emphasize that the first field derivative of the flow in

(H3) is negative (times Vð3Þ
eff ) [see (H2)], as holds true for all

momentum-cutoff flows.
It is illustrative to consider the large field limit with

ϕ2=jμj → ∞. For these field values, the effective potential
(or rather its interaction part) reduces to the classical one,
and the flow reduces to

FIG. 13. Next-to-leading-order contributions to the imaginary
part of the integrated flow in the broken phase rescaled by λ2ϕ. All
dimensionful quantities are measured in units of the pole mass.
The first two figures show the contributions of the polarization
diagram. They start at 2mpole and 3mpole, respectively. The third
figure is the dominating tadpole contribution, i.e., the insertion of
ρ4 for the vertex and only the pole contributions for the
propagators. It exhibits only a three-particle onset, as discussed
in Sec. VA.
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∂μVeffðϕÞ → −
1

8π2

ffiffiffiffiffiffiffiffiffiffiffi
λϕ
2
ϕ2

r
þ 1

2
ϕ2 − ∂μSct½ϕ�; ðH4Þ

up to subleading terms. We note in passing that (H4) shows
the self-consistency of the assumption that the interaction
part reduces to the classical one. The right-hand side is

proportional to jϕj ¼ ffiffiffiffiffi
2ρ

p
. This reflects the infrared cut in

three-dimensional momentum cutoff flows for μ → 0. For
the CS flow, it is present for all μ in the large field limit, in
contradistinction to momentum cutoff flows that decay with

1=Vð2Þ
eff ðϕÞ for large fields.
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