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We study the existence of Bogomol’nyi-Prasad-Sommerfield (BPS) configurations in a restricted baby
Skyrme-Maxwell enlarged via the inclusion of a nontrivial magnetic permeability. In order to attain such
a goal, we use the BPS prescription, which allows us to obtain the lower bound for the energy and the
BPS equations whose (electrically neutral) solutions saturate that bound. During the energy minimization
procedure, we find a differential constraint which involves the self-dual potential, the superpotential
itself, and also the magnetic permeability. In order to solve the BPS system, we focus our attention on
those solutions with rotational symmetry. For that, we fix the magnetic permeability and select two BPS
potentials which exhibit a similar behavior near to the vacuum. We depict the resulting profiles and
proceed to an analytical description of the properties of the BPS magnetic field. Furthermore, we
consider some essential aspects of our model, such as the conditions for the overall existence of the BPS
solutions, and how the permeability affects the magnetic flux. Finally, we present a family of exact BPS
solutions.
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I. INTRODUCTION

Topologically nontrivial structures are commonly
described by means of those time-independent solutions
which come from highly nonlinear Euler-Lagrange equa-
tions [1]. In such a context, the potential termwhich defines
the vacuum manifold of the respective theory not only
introduces the nonlinearity itself, but it is also expected to
allow the spontaneous symmetry breaking mechanism to
occur (whose effects include the formation of a topological
profile as a result of the corresponding phase transition).
The point is that highly nonlinear equations of motion
are typically quite hard to solve. However, this issue can
be circumvented via the minimization of the system’s
total energy by employing the Bogomol’nyi-Prasad-
Sommerfield (BPS) prescription [2,3]. The implementation

of such an algorithm determines a specific expression for
the potential, but it also provides a lower bound for the
energy (the BPS bound) and the corresponding BPS
equations whose solutions saturate that bound (and there-
fore describe energetically stable configurations). In addi-
tion, it is always possible to verify that the BPS equations
are compatible with the Euler-Lagrange equations, from
which one concludes that the BPS profiles stand for
legitimate solutions of the model. In the literature, there
are alternative methods for the obtainment of such BPS
configurations; see, for instance, the study of the conser-
vation of the energy-momentum tensor [4], the on shell
procedure [5], and the strong-necessary conditions tech-
nique [6–10].
The full Skyrme model was proposed in 1961 as a

generalized nonlinear sigma theory defined in (3þ 1)
dimensions [11]. Its Lagrange density contains the so-
called Skyrme term (a quartic kinetic, i.e., a term of degree
four in the first derivative of the scalar sector), the σ term (a
quadratic kinetic one), and a potential which was originally
proposed as an attempt to study the pion mass. The Skyrme
model can be interpreted as an effective low-energy model
of quantum chromodynamics which engenders stable
solitonic structures, so-called Skyrmions, which can be
applied to the study of some physical properties of those
hadrons and nuclei [12–16]. Phenomenological applica-
tions of the gauged Skyrme model include not only the
studies about the electromagnetic transition strengths for
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light nuclei [17] and the spin excitation energy of the
nucleon [18], but also investigations on the energy levels of
a light nuclei A ¼ 12 [19], the proton and neutron proper-
ties in a strong magnetic field [20] and, more recently, the
electromagnetic transition rates of C12 and O16 in rota-
tional-vibrational models [21].
In this context, the study of the planar version of the

Skyrme theory, known as the baby Skyrme model [22],
serves to the comprehension of many aspects of the
original (3þ 1)-dimensional scenario, including the con-
ditions under which it eventually accepts the implemen-
tation of the BPS prescription. The baby Skyrme model in
the absence of the σ term, named the restricted baby
Skyrme model [23], supports a well-established BPS
structure [24]. Furthermore, over the last years, the
Skyrmions have also been used to describe the topological
quantum Hall effect [25–29], in chiral nematic liquid
crystals [30,31], superconductors [32], brane cosmology
[33–35], and magnetic materials [36,37], for instance.
Moreover, in order to investigate the electromagnetic

properties of the baby Skyrme model, it is necessary to
couple it to an Abelian gauge field [38]. In such a context,
the BPS Skyrmions appear in a restricted baby Skyrme-
Maxwell model [39–41], and also occur when the Skyrme
sector is minimally coupled to the Chern-Simons term [42]
and to the Maxwell-Chern-Simons action [43]. Additional
results on the study of those BPS solutions in a Skyrme-
Born-Infeld scenario can be found in [44], while super-
symmetric extensions of these restricted gauged baby
Skyrme theories are in Refs. [45–51].
We now go a little bit further into this issue and consider

how the electromagnetic properties of a material medium
affect the self-dual Skyrmions which arise from a BPS
restricted baby Maxwell-Skyrme model. Here, these prop-
erties are studied via the introduction of a nonstandard
function which multiplies the Maxwell term and therefore
represents the magnetic permeability of the medium. To
motivate our study, we highlight that enlarged models with
a nontrivial permeability have been considered with relative
intensity in recent years. In the context of scalar field
theories, for instance, it is currently known that the
presence of such a permeability can be used to simulate
geometrical constrictions in the corresponding kinklike
solutions [52], with the resulting profiles mimicking
experimental results and therefore clarifying the influence
of such a constriction on the magnetization in a magnetic
material; see Ref. [53]. Moreover, inspired by an exper-
imental investigation on the possibility of controlling the
domain wall polarity in a magnetic material in the presence
of an electric pulse [54], some authors have recently studied
how the presence of geometric constrictions influences the
behavior of fermions in a model with a nontrivial per-
meability; see Ref. [55].
In order to present our results, this manuscript is

organized as follows. In Sec. II, we introduce the restricted

baby Maxwell-Skyrme model enlarged via the inclusion
of a nontrivial magnetic permeability. We present the
definitions and conventions which we adopt in our work.
In the sequence, we look for the BPS framework inherent
to the generalized scenario via the minimization of its total
energy by means of the BPS prescription. As a result, a
differential constraint arises (which we call superpotential
equation) which relates the BPS potential to both the
superpotential and the nontrivial permeability. In view of
such a constraint, we obtain not only the BPS bound for
the energy itself, but also the self-dual equations whose
solutions saturate it. We then particularize our work by
focusing our attention on the gauged Skyrmions in a
planar context, from which we rewrite the BPS equations
in a rotationally symmetric form. Section III is dedicated
to the BPS scenario and its solutions. Here, in view of the
target space inherent to a Skyrme-Maxwell scenario, we
fix an specific analytical expression for the permeability
which then forces the gauge sector to assume a nonusual
shape. In this context, we consider two different scenarios
based on the “nature” of the superpotential, i.e., a first one
in which the superpotential is given by an exact expres-
sion, and a second case in which the superpotential must
be itself obtained numerically. In both cases, we work with
potentials which attain their vacuum values in the very
same way, for the sake of comparison. We then solve the
two models numerically and depict the corresponding
profiles, from which we identify how a noncanonical
permeability may give rise to BPS solutions with non-
standard shapes. We perform an analytical study which
explains the form which distinguishes the resulting
magnetic field. We also consider some basic aspects of
our generalized theory (in comparison to the standard
case), such as the conditions under which BPS solutions
do exist, whether the nontrivial model is capable of
reproducing the BPS bound inherent to the ungauged
baby Skyrme scenario, and how a nontrivial permeability
affects the value of the magnetic flux calculated for small
and large electromagnetic coupling g. Next, we present an
example of analytical BPS solution for the enlarged
model. Finally, Sec. IV brings a brief summary and our
perspectives regarding future contributions.
In this manuscript, we adopt the natural units system and

ημν ¼ ðþ−−Þ for the metric signature, for the sake of
simplicity.

II. THE RESTRICTED GAUGED BABY SKYRME
MODEL IN A MAGNETIC MEDIUM: THE BPS

STRUCTURE

We begin by presenting the (2þ 1)-dimensional
restricted gauged baby Skyrme model enlarged via the
inclusion of an a priori arbitrary function which represents
a nontrivial magnetic permeability, the corresponding
Lagrangian function reading as
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L ¼ E0

Z
d2xL; ð1Þ

where the factor E0 sets the energy scale of the model
(which will be taken as E0 ¼ 1 hereafter). The Lagrangian
density is

L ¼ −
G
4g2

FμνFμν −
λ2

4
ðDμφ⃗ ×Dνφ⃗Þ2 − V: ð2Þ

Here, the first term stands for Maxwell’s action now
multiplied by a magnetic permeability function G≡
GðφnÞ (this explicit dependence on the quantity φn ¼ n̂ ·
φ⃗ will be clarified later during the implementation of the
BPS formalism). In the internal space, n̂ represents a
unitary vector which defines a preferred direction, while
the Skyrme field φ⃗ ¼ ðφ1;φ2;φ3Þ is given as a triplet of
real scalar fields constrained to satisfy φ⃗ · φ⃗ ¼ 1 and
therefore describing a spherical surface with unitary radius.
Moreover, Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field
strength tensor and

Dμφ⃗ ¼ ∂μφ⃗þ Aμn̂ × φ⃗ ð3Þ

stands for the usual covariant derivative of the Skyrme
field. The third term brings the self-interacting potential
V ¼ VðφnÞ which promotes the spontaneous breaking of
the internal symmetry. At the same time, both λ and g are
coupling constants inherent to the model (which we assume
to be non-negative from now on). Moreover, the Skyrme
field and the function G are dimensionless, while the gauge
field, the electromagnetic constant g, and the Skyrme one λ
have mass dimensions equal to 1, 1, and −1, respectively.
Now, beyond the motivations previously cited in Sec. I,

we also point out that the idea based on the inclusion of a
nontrivial permeability has also been widely used in the
context of gauged models, with different purposes: for
instance, Refs. [56,57] applied it to describe a bag model
similar to the MIT [58] and SLAC [59] bag models, while
some authors have implemented the same idea to study
peculiar properties of gauged vortices; see Refs. [60–62]. In
addition, in Refs. [63–66], a nontrivial permeability was
used in connection with the AdS/CFT correspondence.
More recently, it was also employed to study both the
presence of electrically charged structures in a multifield
scenario [67], and the arising of internal structures in
Abelian gauge field models generated by both an electric
point charge [68] and an electric dipole [69] when
immersed in a medium controlled by scalar fields. In
particular, recent studies [70–73] on dielectric Skyrme
models were investigated in view of their possible con-
nections with the binding energies of nuclei.
Here, it is worthwhile to clarify that the Lagrange density

(2) must not be considered as a trivial generalization of the
model investigated in Ref. [39] once, as we demonstrate

below, the magnetic permeability composes the differential
constraint involving both the self-dual potential and the
superpotential, which provides support for the existence of
the BPS structure. Consequently, it is possible to modify
the vacuum structure of the effective model by conveniently
choosing the form of the magnetic permeability, from
which configurations with different shapes and features
may occur, for instance.
It is instructive to write down the Gauss law for time-

independent configurations which comes from (2), i.e.,

∂iðG∂iA0Þ ¼ −g2λ2A0ðn̂ · ∂iφ⃗Þ2: ð4Þ

The point here is that A0 ¼ 0 stands for a legitimate gauge
choice, given that it solves the Gauss law (4) identically.
Thus, we conclude that the stationary configurations we
study in this manuscript are electrically neutral (i.e., present
no electric field and electric charge).
Instead of studying the solutions of the second-order

Euler-Lagrange equations, we focus our attention on those
BPS configurations that minimize the theory’s total energy.
Here, we achieve such a goal via the implementation of the
BPS procedure whose starting point is the stationary energy
density of the model (2),

ε ¼ G
2g2

B2 þ λ2

2
Q2 þ V; ð5Þ

where we have already implemented A0 ¼ 0 and Q
defined by

Q ¼ ϕ⃗ · ðD1ϕ⃗ ×D2ϕ⃗Þ
¼ φ⃗ · ð∂1φ⃗ × ∂2φ⃗Þ þ ϵijAiðn̂ · ∂jϕ⃗Þ; ð6Þ

where the term φ⃗ · ð∂1φ⃗ × ∂2φ⃗Þ is related to the topological
charge of the Skyrme field by means of

deg½φ⃗� ¼ −
1

4π

Z
d2xφ⃗ · ð∂1φ⃗ × ∂2φ⃗Þ ¼ k; ð7Þ

where k∈Znf0g.
We now establish the boundary conditions to be satisfied

by the fields to ensure the existence of finite energy
configurations. For this, the energy density (5) must be
zero at the vacuum, i.e., when jxj → ∞. Consequently, the
magnetic field B, Q, and the potential V must satisfy the
following boundary conditions:

lim
jxj→∞

ffiffiffiffi
G

p
B¼ 0; lim

jxj→∞
Q¼ 0; and lim

jxj→∞
V ¼ 0: ð8Þ

The total energy E is defined as the integral of the energy
density (5), so that the implementation of the BPS
formalism allows us to write
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E ¼
Z

d2x

�ðGB� λ2g2WÞ2
2Gg2

þ λ2

2

�
Q� ∂W

∂φn

�
2

∓ λ2BW ∓ λ2Q
∂W
∂φn

−
λ4g2

2G
W2 −

λ2

2

�
∂W
∂φn

�
2

þ V
�
; ð9Þ

where we have introduced the superpotential function
W ≡WðφnÞ. Moreover, it proves useful to define the
BPS potential VðφnÞ as

V ¼ λ4g2

2G
W2 þ λ2

2

�
∂W
∂φn

�
2

; ð10Þ

from that one gets that the third row of Eq. (9) vanishes. It is
worthwhile to note that Eq. (10) also explains why G is
supposed to depend on φn only, i.e., given the super-
potential W ¼ WðφnÞ and to maintain the dependence of
the potential V on φn (which stands for a necessary
condition to the formation of gauged Skyrmions), we must
choose G ¼ GðφnÞ. Furthermore, when the Skyrme field
assumes its vacuum configuration (supposed to be φn → 1,
as usual), the potential vanishes, and Eq. (10) leads to

lim
φn→1

WðφnÞ ¼ 0 and lim
φn→1

∂W
∂φn

¼ 0; ð11Þ

i.e., the boundary conditions to be satisfied for the super-
potential itself. After using the explicit form of Q given by
Eq. (6), the total energy (9) assumes the form

E ¼
Z

d2x
�ðGB� λ2g2WÞ2

2Gg2
þ λ2

2

�
Q� ∂W

∂φn

�
2

∓ λ2
∂W
∂φn

φ⃗ · ð∂1φ⃗ × ∂2φ⃗Þ ∓ λ2ϵij∂jðWAiÞ
�
: ð12Þ

The point is that, given the boundary conditions (11), the
contribution due to the total derivative ϵij∂jðWAiÞ appear-
ing in Eq. (12) vanishes. In this way, we can express the
total energy as

E ¼ Ēþ Ebps; ð13Þ

where Ē represents the integral composed by the quadratic
terms, i.e.,

Ē ¼
Z

d2x

�ðGB� λ2g2WÞ2
2Gg2

þ λ2

2

�
Q� ∂W

∂φn

�
2
�
; ð14Þ

and Ebps defines the energy’s lower bound, which reads as

Ebps ¼∓ λ2
Z

d2x

�
∂W
∂φn

�
φ⃗ · ð∂1φ⃗ × ∂2φ⃗Þ > 0: ð15Þ

Given that Ē ≥ 0, the total energy (13) satisfies the
typical BPS inequality

E ≥ Ebps; ð16Þ
from which we conclude that the energy’s lower bound is
achieved when the fields are such that Ē ¼ 0, i.e., when
they satisfy

GB ¼∓ g2λ2W; ð17Þ

Q ¼∓ ∂W
∂φn

; ð18Þ

which therefore stand for the self-dual equations inherent to
the enlarged model. The solutions of these equations also
are classical solutions belonging to an extended super-
symmetric model [74,75] whose bosonic sector would be
given by the Lagrangian density (2). Furthermore, some
studies concerning the gauged Skyrme model in the
supersymmetric (SUSY) field theory context can be found,
for instance, in Refs. [76–79].
The interested reader must note that, beyond multiplying

the magnetic field B in the self-dual Eq. (17) [an expected
fact given the way the magnetic permeability appears in the
Lagrangian density (2)], the function G also composes
Eq. (10) relating the BPS potential VðφnÞ and the super-
potential WðφnÞ.
Moreover, the combination of Eqs. (5) and (10) together

with the self-dual ones, (17) and (18), leads to the following
expression for the BPS energy density:

εbps ¼
G
g2

B2 þ λ2Q2; ð19Þ

which shows clearly the contribution of the magnetic
permeability.

A. Rotationally symmetric BPS Skyrmions

Once we have developed the general BPS framework, we
focus our investigation on those solutions with rotational
symmetry. In this sense, without loss of generality, we set
n̂ ¼ ð0; 0; 1Þ, from which we get φn ¼ φ3. As a conse-
quence, the potential V ¼ Vðφ3Þ now allows for the
spontaneous breaking of the SOð3Þ symmetry inherent
to the Skyrme-Maxwell model (2) that enables the occur-
rence of configurations with a nontrivial topology as
expected.
Moreover, in order to compare our results with the well-

established ones, we study time-independent solutions
using the standard ansatz for the gauge field
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Ai ¼ −ϵijx̂j
NaðrÞ

r
; ð20Þ

and the Skyrme field

φ⃗ ¼

0
B@

sin f cos ðNθÞ
sin f sin ðNθÞ

cos f

1
CA; ð21Þ

where r and θ are polar coordinates, ϵij stands for the Levi-
Civita antisymmetric tensor (with ϵ12 ¼ þ1), and x̂i ¼
ðcos θ; sin θÞ represents the unit vector. Also, N is the
winding number of the Skyrme field, while the profile
functions fðrÞ and aðrÞ are supposed to obey the boundary
conditions which are known to support the existence of
regular solutions with finite energy,

fðr ¼ 0Þ ¼ π and fðr → ∞Þ → 0; ð22Þ

aðr ¼ 0Þ ¼ 0 and a0ðr → ∞Þ → 0; ð23Þ

in which prime denotes the derivative with respect to the
radial coordinate r.
It is instructive to point out that the magnetic field in

terms of the ansatz reads as

BðrÞ ¼ F21 ¼ −
N
r
da
dr

: ð24Þ

In what follows, for the sake of convenience, we
implement the field redefinition

hðrÞ ¼ 1

2
ð1 − cos fÞ; ð25Þ

from which one gets that the new profile function hðrÞ
satisfies the boundary conditions

hðr ¼ 0Þ ¼ 1 and hðr → ∞Þ → 0: ð26Þ

In view of Eq. (25), bothG andW become functions of h
only. In particular, the boundary conditions to be satisfied
by WðhÞ can be summarized as

lim
r→0

WðhÞ¼W0; lim
r→∞

WðhÞ¼ 0; lim
r→∞

∂W
∂h

¼ 0; ð27Þ

where W0 > 0, whereas the two last ones correspond to
those which appear in Eq. (11).
The BPS energy given by Eq. (15) can be calculated

explicitly, its value reading as

Ebps ¼∓ 2πλ2NW0 > 0: ð28Þ

Here, the upper (lower) sign corresponds toN < 0 (N > 0).

The BPS equations (17) and (18) become

B ¼ −
N
r
da
dr

¼∓ λ2g2W
G

ð29Þ

ð1þ aÞ
r

dh
dr

¼ � 1

4N
∂W
∂h

; ð30Þ

respectively, where we have used Eq. (24) for the magnetic
field.
To summarize, these equations above describe a radially

symmetric structure whose total energy is given by
Eq. (28). Further, the gauged Skyrmions emerge as the
numerical solutions of the BPS equations (29) and (30)
obtained via the boundary conditions (23) and (26).
In the next sections, we demonstrate how the BPS

framework introduced here can be used to generate
legitimate gauged Skyrmions in the presence of a nontrivial
magnetic permeability. Additionally, we also investigate
some basic properties of our enlarged model, in comparison
to those presented by its canonical version.

III. BPS SKYRMIONS IN MAGNETIC MEDIA

We now particularize our investigation by focusing our
attention on some effective models. Therefore, the results
presented below can contribute to the understanding of the
electromagnetic properties of gauged Skyrmions by
studying their BPS-gauged versions. The point here is
that exploring the electromagnetic properties of the
Skyrmions is commonly a rather complicated work even
in a non-BPS context, as shown by some currently
available results; see, for instance, Refs. [80,81] for
correlated developments within the standard gauged
Skyrme model. In particular, it becomes clear that the
interaction with an Abelian gauge field plays a funda-
mental role concerning the properties of baryons and
atomic nuclei. In that regard, it is known, for instance, that
while the exact form of the low-energy Skyrme theory
remains unknown, its coupling to the electromagnetic
sector is already fixed; see Refs. [82–84].
Concerning the (1þ 2)-dimensional case, Refs. [85,86]

have studied some aspects of the magnetic properties
arising in gauged BPS baby Skyrmions. This way, the
enlarged scenario plans to provide new results about BPS
baby Skyrmions immersed in a magnetic medium. As we
have already argued, we intend to identify the new effects
produced on BPS Skyrmions due to a nontrivial magnetic
permeability. In particular, we look for the arising of
Skyrmions with internal structures. With such an aim in
mind, we choose the permeability as

GðhÞ ¼ 1

ðγ − h2Þβ : ð31Þ
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Here, γ; β∈R, with β ≥ 0. Thus, the rotationally symmet-
ric version of the BPS equations (29) and (30) can be
written in the form

N
da
dy

¼ �λ2g2ðγ − h2ÞβW; ð32Þ

ð1þ aÞ dh
dy

¼ � 1

4N
dW
dh

; ð33Þ

where we have introduced a new spatial coordinate y
defined by y ¼ r2=2.
In what follows, we split our investigation into two

different branches according to the nature of the super-
potential WðhÞ. Within this sense, in Sec. III A, we first
consider a particular scenario for which the superpotential
is given by an explicit function of hðrÞ, so that Eq. (10)
provides the BPS potential in terms ofWðhÞ. Next, we use
it to solve the corresponding BPS equations numerically.
As a second case, in Sec. III B, we select explicitly the
functional form of VðhÞ, so that Eq. (10) becomes a
differential equation for the superpotential WðhÞ, which,
in general, must be solved numerically together with the
BPS equations. We then present some considerations about
comparing the resulting profiles emerging from these two
contexts.

A. Analytical superpotential and its BPS solutions

In order to solve the BPS equations, we first consider the
superpotential as

WðhÞ ¼ h2

λ2
; ð34Þ

from which one getsW0 ¼ λ−2 > 0 and the total energy of
the BPS configurations as Ebps ¼ 2πjNj > 0, as expected;
see Eq. (28). It is also clear that the superpotential above
satisfies the conditions given in Eq. (27). This choice was
motivated by the fact that the superpotential (34) is known
to support well-behaved Skyrmions which attain their
asymptotic values according to a Gaussian decay law, as
explained recently in Refs. [42–44].
It is instructive to consider the potential VðhÞ related to

WðhÞ ¼ λ−2h2. With this aim in mind, we write the
superpotential equation (10) as

μ2UðhÞ ¼ λ4g2

2G
W2 þ λ2

8

�
dW
dh

�
2

; ð35Þ

where we have rescaled the potential VðhÞ as μ2UðhÞ, for
the sake of comparison between our results and the
standard ones. Solving the equation above for UðhÞ, we
obtain

UðhÞ ¼ h2

2μ2λ2
½1þ λ2g2ðγ − h2Þβh2�; ð36Þ

where we have also considered Eq. (31) for GðhÞ.
It is interesting to note that, in the limit hðr → ∞Þ → 0,

the generalized potential above approaches the vacuum as

Uðh → 0Þ ≈ h2

2μ2λ2
; ð37Þ

i.e., in the very same way as its standard counterpartner. As
a consequence, we conclude that, despite the nontrivial
expression which we have chosen for the magnetic per-
meability, a superpotential of the form WðhÞ ∝ h2 leads to
a potential which behaves as UðhÞ ∝ h2 in the asymptotic
region, and vice versa (we return to such a conclusion
later below).
Now, in view of Eq. (34), the BPS equations (32)

and (33) assume the form

N
da
dy

¼ �g2ðγ − h2Þβh2; ð38Þ

ð1þ aÞ dh
dy

¼ � h
2λ2N

; ð39Þ

via which we intend to investigate those gauged Skyrmions
which behave standardly at the boundaries and have a
noncanonical profile for intermediate values of y. As we
clarify below, this type of configuration is directly related to
different values of γ, from which we work with fixed values
for the others parameters. In particular, we set β ¼ 2, g ¼ 1,
λ ¼ 1, and N ¼ 1 (i.e., the lower signs in the BPS
equations), for the sake of simplicity.
In view of these choices, the BPS, Eqs. (38) and (39),

reduce to

da
dy

¼ −h2ðγ − h2Þ2; ð40Þ

ð1þ aÞ dh
dy

¼ −
1

2
h; ð41Þ

which must be solved numerically via the implementation
of a finite-difference scheme together with the boundary
conditions (23) and (26).
Figure 1 shows the numerical solutions to both hðyÞ (top)

and aðyÞ (bottom) for different values of γ. Here, the gauge
profile function aðyÞ is depicted in units of ja∞j,
with a∞ ¼ aðy → ∞Þ.
It is now clear how γ affects the size of the core of hðyÞ in

an inverse way, i.e., as the values of γ increase, the resulting
core decreases. In addition, regarding the gauge profile
function, it is worthwhile to note that the solutions with
γ < 1 are characterized by the presence of noncanonical
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plateaus which appear for intermediate values of the
coordinate y. In this sense, we point out that our numerical
investigation has revealed that, for γ > 3, both hðyÞ and
aðyÞ tend to compactify as γ increases. Such a behavior is
analogous to that already found in the standard case
(G ¼ 1) for increasing values of the coupling constant g.
In Fig. 2, we show the numerical solutions to the BPS

magnetic field BðyÞ, from which it is possible to see how
the shape of this field depends on the value of γ in a
dramatic way. In the sequence, we proceed with an
analytical study of such a dependence, via which we
clarify how the aforecited plateaus give rise to the for-
mation of nonstandard internal structures which distinguish
the behavior of the corresponding magnetic sector.
In order to study the way γ affects the shape of BðyÞ, we

write this field as

BðyÞ ¼ h2ðγ − h2Þ2; ð42Þ

whose first derivative provides

FIG. 1. Numerical solutions to both hðyÞ (top) and aðyÞ
(bottom, depicted in units of ja∞j, see Table I) obtained from
Eqs. (40) and (41) for γ ¼ 0.50 (red line), γ ¼ 0.75 (blue line),
γ ¼ 0.90 (orange line), and γ ¼ 1.00 (green line). The corre-
sponding usual profile (obtained via G ¼ 1) appears as the black
line, for the sake of comparison.

FIG. 2. Numerical solutions to the BPS magnetic field BðyÞ
obtained from Eqs. (40) and (41). Conventions as in Fig. 1. Top:
the profiles [depicted in units of B0 ¼ Bðy ¼ 0Þ] for γ ¼ 0.50
and γ ¼ 0.75. Bottom: the results for γ ¼ 0.90 and γ ¼ 1.00. The
corresponding standard solution again appears as the black line.
Here, some of the noncanonical profiles were normalized for the
sake of visualization, see Table I.

FIG. 3. Numerical solutions to the energy density of the
BPS configurations, i.e., εbpsðyÞ [depicted in units of
εbps;0 ¼ εbpsðy ¼ 0Þ]. Conventions as in Fig. 1. The profiles
were normalized for the sake of visualization, see Table I.
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dB
dy

¼ 2hðγ − h2Þðγ − 3h2Þ dh
dy

: ð43Þ

Now, once the solution to the Skyrme profile function
hðyÞ is supposed to vary monotonically from 1 (at y ¼ 0) to
0 (in the limit y → ∞, i.e., hy is always negative), one gets
that the condition B0ðYÞ ¼ 0 provides the extreme points
(note that we are looking for intermediary values of y, from
which we are here excluding both the origin and the
asymptotic limit)

hðY1Þ ¼ h1 ¼ ffiffiffi
γ

p
< 1; ð44Þ

hðY2Þ ¼ h2 ¼
ffiffiffi
γ

3

r
< 1; ð45Þ

where 0 < Y1 < Y2.
At these points, the magnetic field assumes the values

B1 ¼ Bðh1Þ ¼ 0; ð46Þ

B2 ¼ Bðh2Þ ¼
4

27
γ3; ð47Þ

respectively.
The first value, B1, becomes a local minimum if γ < 1,

whereas B2 results in a local maximum if γ < 3. Moreover,
from Eq. (42), the value of the magnetic field at the origin is
given by

B0 ¼ Bðy ¼ 0Þ ¼ ðγ − 1Þ2: ð48Þ

In what follows, we use Eqs. (46)–(48) above to
enumerate three different pictures based on the values of
γ. The interested reader can apply the same prescription in
order to describe additional configurations with different γ.
Here, it is important to emphasize that we are considering
intermediate values of y, i.e., we are excluding y ¼ 0 and
those values located in the asymptotic region y → ∞.

1. γ = 0 case

The first picture is defined for γ ¼ 0, from which one
gets that the BPS equations (40) and (41) assume the form

1

r
da
dr

¼ −h6; ð49Þ

ð1þ aÞ
r

dh
dr

¼ −
1

2
h; ð50Þ

which, in view of the redefinition HðrÞ ¼ ½hðrÞ�3, can be
written as

1

r
da
dr

¼ −H2; ð51Þ

ð1þ aÞ
r

dH
dr

¼ −
3

2
H: ð52Þ

In this case, despite the redefinition applied on the
Skyrme profile function, we note that the resulting
Eqs. (51) and (52) can be obtained directly from the
general ones, (29) and (30), for G ¼ 1, g ¼ N ¼ 1, and
λ ¼ ffiffiffiffiffiffiffiffi

1=3
p

. We then conclude that the a priori nontrivial
case defined by GðhÞ ¼ h−4 stands merely for a redefini-
tion of the usual case (defined by G ¼ 1) with a different
value of the coupling constant λ. As a consequence, we do
not expect significant changes to occur on the shape of the
solutions, especially on that of the magnetic sector.
Therefore, in what follows, we consider only the case with
nonvanishing values of γ.

2. 0 < γ < 1 case

A second picture occurs when 0 < γ < 1. In this context,
the solution (44) is satisfied at some point y ¼ Y1. At this
point, the magnetic field vanishes [i.e., Bðy ¼ Y1Þ ¼ 0, see
the Eq. (46)], from which it is reasonable to infer that the
magnetic solution describes a centered lump surrounded by
a ring: the lump is positioned at the origin, its amplitude
being given by Eq. (48) itself, while the radius of the ring is
located at some point y ¼ Y2 > Y1 [defined according to
Eq. (45)], the amplitude of the ring standing for
Bðy ¼ Y2Þ ¼ ð4=27Þγ3; see the previous Eq. (47).
We highlight how γ determines the difference between

these two amplitudes: for 0 < γ < 0.75, the magnitude of
the centered lump is taller than that of the ring (i.e.,
ðγ − 1Þ2 > ð4=27Þγ3). On the other hand, when γ ¼ 0.75,
the two magnitudes reach the very same value. Finally, for
0.75 < γ < 1, the amplitude of the ring is taller than that
of the lump positioned at y ¼ 0 (i.e., ðγ − 1Þ2 <
ð4=27Þγ3).
The parameter γ also controls the values of both Y1 (i.e.,

the point at which BðyÞ vanishes) and Y2 (the radius of the
ring): as γ increases, the values of h1 ¼ ffiffiffi

γ
p

and h2 ¼
ffiffiffiffiffiffiffi
γ=3

p
also increase and, once hðyÞ varies monotonically from 1 to
0, both Y1 and Y2 decrease (i.e., move toward the origin).

3. γ = 1 case

The case with γ ¼ 1 defines another picture, for which
Eq. (44) holds at the origin only (i.e., hðy ¼ 0Þ ¼ h1 ¼ 1),
which agrees with the boundary condition (26). Therefore,
the magnetic field vanishes at y ¼ 0, which agrees with the
result which comes from Eq. (48) for γ ¼ 1. We then
conclude that the resulting magnetic profile stands for a
single ring whose radius is located at some point y ¼ Y2

[defined by hðy ¼ Y2Þ ¼ h2 ¼
ffiffiffiffiffiffiffiffi
1=3

p
; see Eq. (45)], its

magnitude being equal to Bðy ¼ Y2Þ ¼ 4=27; see Eq. (47).
As we said before, the very same prescription can be

used by the reader to describe additional configurations
with different values of γ.
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The following section explores a more complex context
where the superpotential is numerically determined. To
achieve this goal, we consider the BPS and superpotential
equation parts of a self-dual system, which we solve using
numerical methods. Afterward, we compare the analytical
and numerical approaches by commenting on the main
characteristics.

B. Numerical superpotential and its BPS solutions

Following the idea introduced in [39], we transform
Eq. (10) in a differential equation for the superpotential
WðhÞ which, together with the BPS equations (29) and
(30), forms a set of differential equations to be solved for
specific choices of both V and G. Additionally, the
boundary conditions satisfied by the profiles aðrÞ, hðrÞ,
andWðhÞ remain unaltered, from which it is possible to say
that introducing a magnetic permeability does not change
the target space of the effective model, as expected.
In order to continue, we now need to fix a specific

expression for the potential UðhÞ itself. We then adopt an
expression similar to the one which appears in the asymp-
totic behavior exposed in the previous Eq. (37), that is

UðhÞ ¼ 4h2; ð53Þ

which is a power of the so-called old baby Skyrme potential
UoðhÞ ¼ 2h. Then the superpotential equation (35) reads as

λ2

8

�
dW
dy

�
2

þ
�
λ4g2

2
ðγ − h2ÞβW2 − 4μ2h2

��
dh
dy

�
2

¼ 0;

ð54Þ

in terms of the coordinate y ¼ r2=2 and considering
Wy ¼ Whhy.
Therefore, Eq. (54) and the BPS ones, (32) and (33),

constitute a system of differential equations which must be
solved numerically according to the boundary conditions
(23), (26), and (27) in terms of the y variable.
Below, to compare the numerical results with those

obtained via the analytical superpotential, we again fix
β ¼ 2, g ¼ 1, λ ¼ 1, andN ¼ 1. Moreover, we set μ2 ¼ 0.1.

Figure 4 shows the numerical solutions to both hðyÞ (top)
and aðyÞ (bottom). We see that these profiles behave in the
same general way as in the previous case, including the
arising of plateaus (which, as before, can be understood as
the origin of the formation of internal structures that
characterize the solution to the magnetic sector) in the
solutions to the gauge profile function for intermediary
values of y.
The numerical solutions shown in Fig. 5 depict the BPS

magnetic field BðyÞ. Again, the numerical behavior mimics
the one obtained previously (i.e., for a purely analytical
superpotential), including the presence of internal struc-
tures for intermediary y. In particular, the value of B0 is
controlled by γ in the very same way as before, such as can
be seen from Eq. (32) at y ¼ 0,

B0 ¼∓ λ2g2ðγ − 1ÞβW0: ð55Þ

In this regard, the magnetic field at the origin always
vanishes for γ ¼ 1, independently of the value for W0.

FIG. 4. Numerical solutions to both hðyÞ (top) andaðyÞ (bottom,
depicted in units of ja∞j, see Table II) obtained via the first-order
system formed by Eqs. (32), (33), and (54) for γ ¼ 0.50 (red line),
γ ¼ 0.75 (blue line), γ ¼ 0.90 (orange line), and γ ¼ 1.00 (green
line). The corresponding usual profile (obtained via G ¼ 1)
appears as the black line, for the sake of comparison.

TABLE I. Approximate numerical values used for the normali-
zation of the noncanonical profiles obtained from Eqs. (40) and
(41). The standard values (with β ¼ 0) are a∞ ¼ −0.632121,
B0 ¼ 1, and εbps;0 ¼ 2, for the sake of comparison.

γ a∞ B0 εbps;0

0.50 −0.079951 0.2500 1.2500
0.75 −0.135692 0.0625 1.0625
0.90 −0.215987 0.0100 1.0100
1.00 −0.283467 0.0000 1.0000
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C. Additional considerations

We now consider some attributes of our generalized
model beyond its BPS framework and the corresponding
solutions. This section aims to demonstrate that the
standard Skyrme-Maxwell scenario’s basic properties
remain unaltered when adding a magnetic permeability.
In order to perform such a goal, we follow the prescrip-
tion previously stated in Ref. [39] for the Skyrme-
Maxwell model.

1. On the existence of BPS solutions

We first consider the superpotential equation (10), where
V, G, and W are functions of h only, i.e., (here,
Wh ¼ dW=dh)

V ¼ λ4g2

2G
W2 þ λ2

8
ðWhÞ2; ð56Þ

which we solve for Wh as

Wh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

λ2
V − 4g2λ2

W2

G

s
; ð57Þ

from which we calculate Whh, i.e.,

Whh ¼
4

Wh

�
1

λ2
Vh − g2λ2

W
G

�
Wh −

W
2G

Gh

��
; ð58Þ

which reveals thatWh ¼ 0 leads to a nonsingularWhh only
provided that Vh ¼ 0 and Gh ¼ 0. In other words, if
Vh ≠ 0 or Gh ≠ 0, Wh ¼ 0 produces a singularity, and
therefore a regular superpotential cannot be defined within
the target space, from which we conclude that the corre-
sponding theory does not support BPS solutions. As a
consequence, also Conjecture 2 as stated in Ref. [39]
continues to hold even in the enlarged scenario defined in
terms of a nontrivial permeability, i.e., BPS solitons exist if
and only if the superpotential equation admits a well-
defined solution on the whole target space, withWh ¼ 0 in
the corresponding open interval.
As before, one can always imagine the existence of a

particular point h ¼ hs within the target space at which
Whðh ¼ hsÞ ¼ 0, Vhðh ¼ hsÞ ¼ 0, and Ghðh ¼ hsÞ ¼ 0
simultaneously as an exception to the aforecited Conjecture
2. In such a case, a well-defined superpotential WðhÞ can
be obtained from the superpotential equation. However,
given Wh ¼ 0, the BPS, Eq. (30) (which does not depend
on the magnetic permeability explicitly, i.e., is the very
same one that appears in the standard case), predicts a
Skyrme profile function hðrÞ with a nonmonotonic behav-
ior. The question here is that this same argument can be
applied to any arbitrary point h ¼ hs. In this sense, for hs
sufficiently close to 1, the corresponding solution reaches
values that are greater than the unity and therefore are
outside the target space, which is incompatible with the
boundary conditions hðr ¼ 0Þ ¼ 1 and hðr → ∞Þ → 0.

2. Bogomol’nyi bound for g → 0

In Ref. [39], the authors argued that potentials of the type
V ∼ hα (with α > 0) allow for the existence of a global (i.e.,
defined in the whole target space) solution WðhÞ for the
standard superpotential equation and, therefore, for the
complete BPS scenario (with a Bogomol’nyi bound and
BPS solutions). This way, the point to be enlightened is that
if a BPS bound exists, it must attain the same value inherent
to the ungauged BPS baby Skyrme model in the limit of a
vanishing electromagnetic coupling constant g.
We now verify whether such a convergence still holds

even in our generalized case. To attain this goal, we
implement the prescription established by Ref. [39] and
expand the second root, which appears on the right-hand

FIG. 5. Numerical solutions to the BPS magnetic field BðyÞ
obtained via the first-order system formed by Eqs. (32), (33), and
(54). Conventions as in Fig. 1. Top: the profiles (depicted in units
of B0) for γ ¼ 0.50 and γ ¼ 0.75. Bottom: the results for
γ ¼ 0.90 and γ ¼ 1.00. The corresponding standard solution
again appears as the black line. Here, some of the noncanonical
profiles were normalized for the sake of visualization, see Table II.
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side of Eq. (57) in a power series in g2, via which, by
considering only the first relevant terms, we obtain

Wh ≈
2

λ

ffiffiffiffiffiffi
2V

p �
1 −

g2λ4

4

W2

VG

�
: ð59Þ

In view of the expansion, we also consider the super-
potential at second order in g, i.e.,

W ≈Wð0Þ þ g2Wð2Þ; ð60Þ
from which Eq. (59) provides a set of differential equations
for every order in g as

∂Wð0Þ

∂h
¼ 2

ffiffiffi
2

p

λ

ffiffiffiffi
V

p
; ð61Þ

∂Wð2Þ

∂h
¼ −

ffiffiffi
2

p
λ3

2

ðWð0ÞÞ2
G

ffiffiffiffi
V

p : ð62Þ

In the sequence, by regarding the family of potentials
VðhÞ ¼ h2α (α > 0), we promptly integrate Eq. (61) and
obtain

Wð0Þ ¼ 2
ffiffiffi
2

p

λðαþ 1Þ h
αþ1; ð63Þ

via which Eq. (62) assumes the form

∂Wð2Þ

∂h
¼ −

4
ffiffiffi
2

p
λ

ðαþ 1Þ2
hαþ2

G
: ð64Þ

The equation above clarifies that the solution for Wð2Þ
depends upon the magnetic permeability G, i.e., according
to Eq. (60), the superpotentialWðhÞ echoes the presence of
GðhÞ starting from the second order in the electromagnetic
coupling constant. In what follows, we also consider
GðhÞ ¼ ðγ − h2Þ−2, from which we write Eq. (64) as

∂Wð2Þ

∂h
¼ −

4
ffiffiffi
2

p
λ

ðαþ 1Þ2 h
αþ2ðγ − h2Þ2; ð65Þ

whose solution reads as

Wð2Þ ¼ −
4

ffiffiffi
2

p
λ

ðαþ 1Þ2 h
αþ3

�
γ2

αþ 3
−

2γh2

αþ 5
þ h4

αþ 7

�
; ð66Þ

which, together with Eq. (63), leads to the solution for the
superpotential in the limit of sufficiently small g, i.e.,

WðhÞ¼ 2
ffiffiffi
2

p
hαþ1

λðαþ1Þ
�
1−

2λ2g2h2

αþ1

�
γ2

αþ3
−
2γh2

αþ5
þ h4

αþ7

��
:

ð67Þ

The evaluation of the above expression at h ¼ 1 provides
the BPS bound, which allows us to conclude that our

enlarged scenario correctly reproduces the bound inherent
to the ungauged baby Skyrme case [the interested reader
may compare the above expression with Eq. (112) of the
Ref. [39] ]. The novelty here appears in the leading
correction for small g (which is of order g2 and negative,
as in the Skyrme-Maxwell case with G ¼ 1), i.e., a
magnetic permeability affects not only the general behavior
of the corresponding term (through the power of h) but also
its value calculated at h ¼ 1.

3. Magnetic flux

It is also interesting to clarify whether the presence of a
nontrivial magnetic permeability affects the value of the
magnetic flux calculated for small and large electromag-
netic coupling g. In order to offer a response to this
question, we first observe that the magnetic flux can be
expressed as

ΦB ¼ 2π

Z
BðrÞrdr ¼ −2πNa∞; ð68Þ

where we have used Eq. (24) for both the magnetic
field and the conditions (23). Here, we have defined
a∞ ¼ aðr → ∞Þ.
In the sequence, we divide Eq. (29) by Eq. (30), from

which we obtain

da
ð1þ aÞ ¼ g2λ2Fhdh; ð69Þ

where

Fh ¼
4W
WhG

: ð70Þ

Equation (69) has the solution (here, C stands for an
integration constant)

ln ½Cð1þ aÞ� ¼ g2λ2FðhÞ; ð71Þ

where

FðhÞ ¼ 4

Zh
0

Wðh0Þ
Whðh0ÞGðh0Þ

dh0: ð72Þ

In order to calculate the value of C, we evaluate Eq. (71)
at r ¼ 0, which leads to

C ¼ eg
2λ2Fð1Þ; ð73Þ

where we have used the boundary conditions hðr ¼ 0Þ ¼ 1
and aðr ¼ 0Þ ¼ 0.
Moreover, at the vacuum h ¼ 0, Eq. (27) predicts

Wðh ¼ 0Þ ¼ 0, from which it is reasonable to suppose
that the potential behaves V ∼ h2α (again with α > 0).
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In such a scenario, the superpotential Eq. (56) suggests the
adoption of Wh ∼ hα, W ∼ hαþ1, and G−1 ∼ ΔþOðh2Þ
[with Δ constant; for GðhÞ ¼ ðγ − h2Þ−2, one gets Δ ¼ γ2],
from which Eq. (70) leads to

Fh ∼ 4Δh; ð74Þ

which indicates that not only Fh, but also FðhÞ itself
vanishes at h ¼ 0.
Now, whether we evaluate Eq. (71) in the asymptotic

region r → ∞, we get that [here, we have used both
Fðh ¼ 0Þ ¼ 0 and Eq. (73) for the value of C]

a∞ ¼ −1þ e−g
2λ2Fð1Þ; ð75Þ

via which the magnetic flux ΦB Eq. (68) assumes the form

ΦB ¼ 2πN½1 − e−g
2λ2Fð1Þ�; ð76Þ

which leads to the following expressions:

g small∶ ΦB ∼ 2πNg2λ2Fð1Þ; ð77Þ

g large∶ ΦB ∼ 2πN; ð78Þ

which are the same ones that appear in the restricted baby
Skyrme-Maxwell theory (with G ¼ 1); see Eqs. (121) and
(122) of Ref. [39], respectively. However, despite the same
symbolic form, the value of the magnetic flux for small g in
Eq. (77) is now influenced by the nontrivial magnetic
permeability via the definition of FðhÞ given in Eq. (72).

4. Some exact BPS solutions

We end this manuscript by exploring whether our
generalized model admits exact solutions. In this sense,
we use the prescription proposed in Ref. [39] in the context
of the canonical Skyrme-Maxwell scenario, the starting

point being the BPS, Eqs. (29) and (30), now rewritten in
terms of the variable y ¼ r2=2 as

Nay ¼ −λ2g2
W
G

; ð79Þ

4Nhyð1þ aÞ ¼ −Wh; ð80Þ

for N > 0.
Whether we introduce the new field p ¼ h2, the above

first-order expressions can be written as

Nay ¼ −λ2g2
W
G

; ð81Þ

Npyð1þ aÞ ¼ −Wpp; ð82Þ

where both W and G are now functions of p.
In addition, from Eq. (81), one gets that

−
N
λ2g2

ayy ¼
py

G

�
Wp −

W
G

Gp

�
; ð83Þ

which can be combined with Eqs. (81) and (82) in order to
give

−Nayy ¼
ay

ð1þ aÞ
Wpp

W

�
Wp −

W
G

Gp

�
: ð84Þ

In order to continue with our construction, it is now
necessary to specify both GðpÞ and WðpÞ. Then, for such
an aim, we set the superpotential as (with σ ≥ 1)

WðpÞ ¼ W0pσ; ð85Þ

where W0 ¼ Wðpð0ÞÞ ¼ Wð1Þ. In addition, for the mag-
netic permeability, we choose

GðpÞ ¼ G0p1−β ðfor σ ¼ 1Þ; ð86Þ

GðpÞ ¼ G0pσ exp

�
−
βðp1−σ − 1Þ
σð1 − σÞ

�
ðfor σ > 1Þ; ð87Þ

with G0 ¼ Gðpð0ÞÞ ¼ Gð1Þ. Here, we also have defined
the parameter β as

β ¼ δ

W0

: ð88Þ

By substituting both the equations above in Eq. (84), we
attain a differential equation similar to that found in
Ref. [39], i.e.,

−Nayy ¼ δ
ay

1þ a
; ð89Þ

FIG. 6. Numerical solutions to the energy density of the BPS
configurations, i.e., εbpsðyÞ (depicted in units of εbps;0). Con-
ventions as in Fig. 4. The profiles were normalized for the sake of
visualization, see Table II.
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whose solution for the gauge profile function aðyÞ reads as

aðyÞ ¼ −1þ 1

C
Li−1

�
LiðCÞ − Cδ

N
y

�
; ð90Þ

expressed in terms of the logarithmic integral function Li,
where the parameter C now is read as

C ¼ exp

�
λ2g2W0

G0δ

�
: ð91Þ

Immediately, we also solve Eq. (79), which provides the
following expressions for hðyÞ ¼ ffiffiffiffiffiffiffiffiffiffi

pðyÞp
:

hðyÞ ¼
�
ln½Cð1þ aðyÞÞ�

lnðCÞ
� 1

2β

; ð92Þ

which holds for σ ¼ 1, while

hðyÞ ¼
�
1þ σð1 − σÞ

β
ln

�
ln ½Cð1þ aðyÞÞ�

lnðCÞ
�� 1

2ð1−σÞ ð93Þ

holds when σ > 1. Here, aðyÞ is given by Eq. (90).
The solutions for σ ≥ 1 are extended profiles along all

the radial axis. Thus, the behavior in the limit y → ∞ for
the gauge field reads as

aðyÞ ≈ a∞ þ 1

C
exp

�
−
Cδ
N

y

�
; ð94Þ

where a∞ ¼ −1þ C−1. We therefore observe that the
respective tail follows a Gaussian-law decay. On the other
hand, the behavior of the Skyrmion profile function
depends on the values of σ. This way, for σ ¼ 1, such a
function also presents a Gaussian-law decay, i.e.,

hðyÞ ≈
�

1

lnðCÞ
� 1

2β

exp

�
−

Cδ
2βN

y

�
; ð95Þ

while for σ > 1, the respective tail follows a power-
law decay,

hðyÞ ≈
�

βN
δCσðσ − 1Þ

� 1
2ðσ−1Þ

y−
1

2ðσ−1Þ: ð96Þ

It is important to note that, given our choices (85)–(87)
for WðpÞ and GðpÞ, the factor W−1WppðWp−
G−1WGpÞ which appears in Eq. (84) can be reduced to
a constant (in this case, δ). As a direct consequence, we
arrive at Eq. (89) [containing aðyÞ itself and its derivatives
only], which also plays a central role in the construction of
our exact solutions.

IV. SUMMARY AND PERSPECTIVES

We have investigated BPS solitons inherent to a gauged
baby Skyrme scenario immersed in a magnetic medium.
We have minimized the corresponding total energy by
implementing the BPS technique, from which we have
verified that the enlarged model also possesses a well-
defined BPS structure. As expected, it allows us to attain
the self-dual equations and a lower bound for the total
energy. In such a context, we have clarified how the
permeability enters the differential relation between the
superpotential and the corresponding BPS potential, and
also the self-dual equation which defines the magnetic
field. Consequently, the permeability may engender a
magnetic field with an internal structure, i.e., one that
behaves in the standard way at the vacuum but sometimes
not at the origin. Besides, along the radial axis, its profile
can have a format different from the one found in the
canonical gauged BPS Skyrme model.
To solve the BPS system of differential equations, we

have focused our attention on those configurations pos-
sessing a rotational symmetry described by the profile
functions hðrÞ and aðrÞ. Next, after choosing an analytical
expression for the permeability function (which includes
the parameter γ ∈R), we have explored two different
scenarios based on the nature of the superpotential: in
the first case, we set the superpotential as an explicit
function of hðrÞ, such that, together with the permeability,
the BPS potential can be defined analytically. In contrast, in
the second situation, we fix the particular form of the BPS
potential and determine the superpotential through the
numerical solution of a system of differential equations
formed by the two BPS equations and the superpotential
equation itself.
For the sake of comparison, in both scenarios, we have

worked with potentials whose behaviors when approaching
the vacuum are similar (here, both potentials behave as h2).
We have then numerically solved the two scenarios and
depicted the corresponding profiles in Figs. 1–3 (for the
analytical superpotential), and in Figs. 4–6 (for the second
case). The resulting solutions have revealed how the
profiles change with variations on γ, giving rise to
configurations with internal structures. In particular, for
the case with an exact superpotential, we have analyzed the

TABLE II. Approximate numerical values used for the nor-
malization of the noncanonical profiles obtained from Eqs. (32),
(33), and (54), for β ¼ 2, g ¼ 1, λ ¼ 1, N ¼ 1, and μ2 ¼ 0.1. The
standard values (with β ¼ 0) are a∞ ¼ −0.679311, B0 ¼ 0.7057,
and εbps;0 ¼ 0.8, for the sake of comparison.

γ a∞ B0 εbps;0

0.50 −0.082308 0.2189 0.8000
0.75 −0.136245 0.0551 0.8000
0.90 −0.217839 0.0087 0.8000
1.00 −0.286781 0.0000 0.8000
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main features inherent to the shape of the magnetic field
emerging within a range of values of γ. This study has
shown, for instance, the relation between the amplitudes of
the peaks (local maxima) inherent to the magnetic profile,
showing a format which differs dramatically from the one
obtained in the gauged BPS Skyrme model. Similarly, we
could analyze the form of the magnetic field for other
values of γ.
Beyond the BPS framework and its solutions, we have

investigated some basic properties of our enlarged Skyrme-
Maxwell scenario. For instance, we have verified that it
mimics some properties which the canonical model itself
satisfies. In particular, we have clarified that both
Conjecture 1 and Conjecture 2 and Corollary 1 stated in
Ref. [39] continue to hold. As a second point, we have also
discovered that our generalized theory correctly reproduces
the bound inherent to the ungauged baby Skyrme model in
the limit of a sufficiently small electromagnetic coupling
constant g. In addition, the effects of our generalization also
appear at g2 order. Subsequently, in our third item, we have
studied how permeability affects the value of the magnetic
flux ΦB for both small and large values of g by obtaining
the very same [symbolic] analytical expressions that appear
in the standard case. Thus, for small g, the permeability
influences the magnetic flux. In contrast, for large g, the
fluxΦB remains unaltered. Finally, we have selected a class
of functions defining the superpotential and magnetic
permeability which generate a family of noncompact
solutions. Whereas the gauge field and the magnetic one
attain their vacuum values by following a Gaussian-law

decay, the tail of the Skyrmion’s profile follows a Gaussian-
law decay or a power-law one.
The results introduced in this manuscript aim to contrib-

ute to the understanding of the electromagnetic properties of
gaugedSkyrmions by studying its gaugedBPSbabySkyrme
versions.We now intend to apply the same approach to other
gauged versions of the restricted baby Skyrme enlarged
model, for instance, in the presence of the Chern-Simons’ or
Born-Infeld’s gauge fields. The results concerning these
perspectives will be reported in future contributions.
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